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Abstract
In their seminal work, Mustafa and Ray [30] showed that a wide class of geometric set cover
(SC) problems admit a PTAS via local search – this is one of the most general approaches
known for such problems. Their result applies if a naturally defined “exchange graph” for two
feasible solutions is planar and is based on subdividing this graph via a planar separator theorem
due to Frederickson [17]. Obtaining similar results for the related maximum coverage problem
(MC) seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru,
Kleinberg, and Lee [4] have shown (via a different analysis) that local search yields a PTAS for
two-dimensional real halfspaces, they only conjectured that the same holds true for dimension
three. Interestingly, at this point it was already known that local search provides a PTAS for the
corresponding set cover case and this followed directly from the approach of Mustafa and Ray.

In this work we provide a way to address the above-mentioned issue. First, we propose a color-
balanced version of the planar separator theorem. The resulting subdivision approximates locally
in each part the global distribution of the colors. Second, we show how this roughly balanced
subdivision can be employed in a more careful analysis to strictly obey the hard cardinality
constraint. More specifically, we obtain a PTAS for any “planarizable” instance of MC and thus
essentially for all cases where the corresponding SC instance can be tackled via the approach of
Mustafa and Ray. As a corollary, we confirm the conjecture of Badanidiyuru, Kleinberg, and
Lee [4] regarding real halfspaces in dimension three. We feel that our ideas could also be helpful
in other geometric settings involving a cardinality constraint.
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1 Introduction

The Maximum Coverage (MC) problem is one of the classic combinatorial optimization
problems which is well studied due to its wealth of applications. Let U be a set of ground
elements, F ⊆ 2U be a family of subsets of U and k be a positive integer. The Maximum
Coverage (MC) problem asks for a k-subset F ′ of F such that the number |

⋃
F ′| of ground

elements covered by F ′ is maximized.
Many real life problems arising from banking [13], social networks, transportation net-

work [28], databases [22], information retrieval, sensor placement, security (and others) can
be framed as an instance of MC problem. For example, the following are easily seen as MC
problems: placing k sensors to maximize the number of covered customers, finding a set of k
documents satisfying the information needs of as many users as possible [4], and placing k
security personnel in a terrain to maximize the number of secured regions.

From the result of Cornuéjols [13], it is well known that the greedy algorithm is a 1− 1/e
approximation algorithm for the MC problem. Due to wide applicability of the problem,
whether one can achieve an approximation factor better than 1− 1/e was subject of research
for a long period of time. From the result of Feige [16], it is known that if there exists a
polynomial-time algorithm that approximates maximum coverage within a ratio of 1−1/e+ ε

for some ε > 0 then P = NP. Better results can, however, be obtained for special cases of MC.
For example, Ageev and Sviridenko [1] show in their seminal work that their pipage rounding
approach gives a factor 1− (1− 1/r)r for instances of MC where every element occurs in
at most r sets. For constant r this is a strict improvement on 1 − 1/e but this bound is
approached if r is unbounded. For example, pipage rounding gives a 3/4-approximation
algorithm for Maximum Vertex Cover (MVC), which asks for a k-subset of nodes of a
given graph that maximizes the number of edges incident on at least one of the selected
nodes. Petrank [31] showed that this special case of MC is APX-hard.

In this paper, we study the approximability of MC in geometric settings where elements
and sets are represented by geometric objects. Such problems have been considered before
and have applications, for example, in information retrieval [4] and in wireless networks [15].

MC is related to the Set Cover problem (SC). For a given set U of ground elements
and a family F ⊆ 2U of subsets of U , this problem asks for a minimum cardinality subset
of F which covers all the ground elements of U . This problem plays a central role in
combinatorial optimization and in particular in the study of approximation algorithms. The
best known approximation algorithm has a ratio of lnn, which is essentially the best possible
[16] under a plausible complexity-theoretic assumption. A lot of work has been devoted to
beating the logarithmic barrier in the context of geometric set cover problems [6, 33, 8, 29].
Mustafa and Ray [30] introduced a powerful tool which can be used to show that a local
search approach provides a PTAS for various geometric SC problems. Their result applies
if a naturally defined exchange graph (whose nodes are the sets in two feasible solutions)
is planar and is based on subdividing this graph via a planar separator theorem due to
Frederickson [17]. In the same paper [30], they applied this approach to provide a PTAS for
the SC problem when the family F consists of either a set of halfspaces in R3, or a set of disks
in R2. Concurrently with Mustafa and Ray [30], Chan and Har-Peled [9] also introduced the
exchange graph concept, but for the independent set problem. Subsequently, many results
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have been obtained using this technique for problems in geometric settings [10, 14, 19, 26].
Some of these works extend to cases where the exchange graph is not planar but admits a
small-size separator [3, 7, 20, 21].

Beyond the context of SC, local search has also turned out to be a very powerful tool for
other geometric problems but the analysis of such algorithms is usually non-trivial and highly
tailored to the specific setting. Examples of such problems are Euclidean TSP, Euclidean
Steiner tree, facility location, k-median [12]. In some recent breakthroughs, PTASs for the
k-means problem in finite Euclidean dimension (and more general cases) via local search
have been published [11, 18].

In this paper, we study the effectiveness of local search for geometric MC problems. In
the general case, b-swap local search is known to yield a tight approximation ratio of 1/2
[24]. However, for special cases such as geometric MC problems local search is a promising
candidate for beating the barrier 1−1/e. It seems, however, non-trivial to obtain such results
using the technique of Mustafa and Ray [30]. In their analysis, each part of the subdivided
planar exchange graph (see above) corresponds to a feasible candidate swap that replaces
some sets of the local optimum with some sets of the global optimum and it is ensured that
every element stays covered due to the construction of the exchange graph. It is moreover
argued that if the global optimum is sufficiently smaller than the local optimum then one of
the considered candidate swaps would actually reduce the size of the solution.

It is possible to construct the same exchange graphs also for the case of MC. However,
the hard cardinality constraint given by input parameter k poses an obstacle. In particular,
when considering a swap corresponding to a part of the subdivision, this swap might be
infeasible as it may contain (substantially) more sets from the global optimum than from
the local optimum. Another issue is that MC has a different objective function than SC.
Namely, the goal is to maximize the number of covered elements rather than minimizing the
number of used sets. Finally, while for SC all elements are covered by both solutions, in
MC we additionally have elements that are covered by none or only one of the two solutions
requiring a more detailed distinction of several types of elements.

In fact, subsequent to the work of Mustafa and Ray on SC [30], Badanidiyuru, Kleinberg,
and Lee [4] studied geometric MC. They obtained fixed-parameter approximation schemes
for MC instances for the very general case where the family F consists of objects with
bounded VC dimension, but the running times are exponential in the cardinality bound
k. They further provided APX-hardness for each of the following cases: set systems of
VC-dimension 2, halfspaces in R4, and axis-parallel rectangles in R2. Interestingly, while
they have shown that for MC instances where F consists of halfspaces in R2 local search can
be used to provide a PTAS, they only conjecture that local search provides a PTAS when
F consists of halfspaces in R3. This underlines the observation that it seems non-trivial to
apply the approach of Mustafa and Ray to geometric MC problems as at that point a PTAS
for halfspaces in R3 for SC was already known via the approach of Mustafa and Ray.

The difficulty of analyzing local search under the presence of a cardinality constraint is
also known in other settings. For example, one of the main technical contributions of the
recent breakthrough for the Euclidean k-means problem [11, 18] is that the authors are able
to handle the hard cardinality constraint by the concept of so-called isolated pairs [11]. Prior
to these works approximation schemes have only been known for bicriteria variants where
the cardinality constraint may be violated or where there is no constraint but – analogously
to SC – the cardinality contributes to the objective function [5].

ESA 2018



17:4 Approximation Schemes for Geometric Coverage Problems

1.1 Our Contribution
We show a way to cope with the above-mentioned issue with a cardinality constraint. We
are able to achieve a PTAS for many geometric MC problems using the b-swap local search
approach given in Algorithm 1. At a high level we follow the framework of Mustafa and
Ray defining a planar (or more generally f-separable as formalized below) exchange graph
and subdividing it into a number of small parts each of them corresponding to a candidate
swap. As each part may be (substantially) imbalanced in terms of the number of sets of
the global optimum and local optimum, respectively, a natural idea is to swap-in only a
sufficiently small subset of the globally optimal sets. This idea alone is, however, not sufficient.
Consider, for example, the case where each part contains either only sets from the local or
only sets from the global optimum making it impossible to retrieve any feasible swap from
considering the single parts. To overcome this difficulty, in Section 2, we prove in a first step
a color-balanced version (Theorem 7) of the planar division theorem (Theorem 4 [17]). In
this theorem, the input is a planar (or more generally f-separable) graph whose nodes are
two-colored arbitrarily. The distinctions of our division theorem from the prior work, are
that our division theorem guarantees that all parts have roughly the same size (rather than
simply an upper limit on their size) and that the two colors are represented in each part in
roughly the same ratio as in the whole graph. This balancing property allows us to address
the issue of the above-mentioned infeasible swaps. In a second step, described in Section 3,
we employ this roughly color-balanced subdivision to establish a set of perfectly balanced
candidate swaps. We prove by a careful analysis (which turns out more intricate than for the
SC case) that local search also yields a PTAS for the wide class f -separable MC problems (see
Theorem 2). As a direct consequence, we obtain PTASs for essentially all cases of geometric
MC problems (see (Theorem 3)) where the corresponding SC problem can be tackled via the
approach of Mustafa and Ray. For example, this confirms the conjecture of Badanidiyuru,
Kleinberg, and Lee [4] regarding halfspaces in R3. We also obtain PTASs for Maximum
Dominating Set and Maximum Vertex Cover on f -separable and minor-closed graph
classes (as formalized below) which, to the best of our knowledge, were not known before.
We feel that our approach has the potential for further applications in similar cardinality
constrained settings.

In the remainder of this section we formalize our main theorem (providing the needed
definitions) and then present a set of applications of this theorem.

Definitions and the main theorem. For a number n, [n] denotes the set {1, . . . , n}. For
a graph G, a subset S of V (G) is an α-balanced separator when its removal breaks G into
two collections of connected components such that each collection contains at most an α
fraction of V (G) where α ∈ [ 1

2 , 1) and α is a constant. The size of a separator S is simply the
number of vertices it contains. Let f be a non-decreasing (strictly) sublinear function, that
is, f(x) = O(x1−δ) for some δ > 0. A class of graphs that is closed under taking subgraphs
is said to be f-separable if there is an α ∈ [ 1

2 , 1) such that for any n > 2, an n-vertex
graph in the class has an α-balanced separator whose size is at most f(n). In what follows,
whenever we discuss an f -separable graph classes we implicitly assume that the function f is
non-decreasing and has the form f(x) = O(x1−δ) for some δ > 0 – this is what we mean by
strictly sublinear. Note that, by the Lipton-Tarjan separator theorem [27], planar graphs
are a subclass of the

√
n-separable graphs. More generally, Alon, Seymour, and Thomas [2]

have shown that every graph class characterized by a finite set of forbidden minors is also a
subclass of the (c ·

√
n)-separable graphs (here, the constant c depends on the size of the

largest forbidden minor). In particular, from the graph minors theorem [32], every non-trivial
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Algorithm 1: b-swap local search on an MC instance with ground set U , set family
S, and parameter k.
b-LocalSearch(U,S, k)
F ← initialize with a greedy solution
while ∃ F ′ ⊆ F , ∃F∗ ⊂ S, such that b = |F∗| = |F ′| and
|
⋃
F| < |

⋃
((F \ F ′) ∪ F∗)| do

perform the swap, i.e., F ← (F \ F ′) ∪ F∗

return F

minor-closed graph class is a subclass of the (c ·
√
n)-separable graphs (for some constant c).

With this notion in mind, we define the concept of f -separable MC instances, then state our
main theorem (the proof is given in Section 3).

I Definition 1. A class C of instances of MC is f-separable (or in particular planarizable)
if for any two disjoint feasible solutions F and F ′ of any instance in C there exists an
f -separable (planar) graph G with node set F ∪ F ′ with the following exchange property.
For each element u ∈ U that is covered both by F and F ′, there is an edge (S, S′) in G with
S ∈ F and S′ ∈ F ′ with u ∈ S ∩ S′.

I Theorem 2. For any non-decreasing strictly sublinear function f , every f -separable class
of MC instances (closed under removing elements and sets) admits a PTAS via Algorithm 1.

Applications. We now describe several problems which are special instances of the MC
problem. Then, in Theorem 3, we state several PTASs for each of these problems that
can be obtained from our analysis of local search. As this latter part is essentially a direct
consequence of Theorem 2, the details will be provided in the full version.

I Problem 1. Let H be a set of ground elements, S ⊆ 2H be a set of ranges and k be a
positive integer. A range S ∈ S is hit by a subset H ′ of H if S ∩H ′ 6= ∅. The Maximum
Hitting (MH) problem asks for a k-subset H ′ of H such that the number of ranges hit by
H ′ is maximized.

I Problem 2. Let G = (V,E) be a graph and k be a positive integer. A vertex v ∈ V

dominates itself and all its neighbors. The Maximum Dominating (MD) problem asks for
a k-subset V ′ of V such that the number of vertices dominated by V ′ is maximized.

I Problem 3. Let T be a 1.5D terrain – an x-monotone polygonal chain in R2 consisting of
a set of vertices {v1, v2, . . . , vm} sorted in increasing order of their x-coordinate, and vi and
vi+1 are connected by an edge for all i ∈ [m− 1]. For any two points x, y ∈ T , we say that y
guards x if each point in xy lies above or on the terrain. Given finite sets X,Y ⊆ T and a
positive integer k, the Maximum Terrain Guarding (MTG) problem asks for a k-subset
Y ′ of Y such that the number of points of X guarded by Y ′ is maximized.

Let r be an even, positive integer. A set of regions in R2 (each bounded by a closed
Jordan curve), is called r-admissible if for any two such regions q1, q2, the curves bounding
them cross s ≤ r times for some even s and q1 \ q2 and q2 \ q1 are connected regions. A set
of regions are called pseudo-disks if it is 2-admissible (e.g., a set of disks or squares).

The below consequences of Theorem 2 hold since the corresponding SC problem is known
to be planarizable or by constructing the exchange graph as a minor of the input graph.

ESA 2018



17:6 Approximation Schemes for Geometric Coverage Problems

I Theorem 3. Local search gives a PTAS for:

(V) the MVC problem on f -separable and subgraph-closed graph classes,
(T) the MTG problem.

and the following classes of MC problems:
(C1) the set of ground elements is a set of points in R3, and the family of subsets is induced

by a set of halfspaces in R3.
(C2) the set of ground elements is a set of points in R2, and the family of subsets is induced

by a set of convex pseudodisks (a set of convex objects where any two objects can have at
most two intersections in their boundary).

and the following MH problems:
(H1) the set of ground elements is a set of points in R2, and the set of ranges is induced by a

set of r-admissible regions (this includes pseudodisks, same-height axis-parallel rectangles,
circular disks, translates of convex objects).

(H2) the set of ground elements is a set of points in R3, and the set of ranges is induced by
a set of halfspaces in R3.

and MD problems in each of the following graph classes:
(D1) intersection graphs of homothetic copies of convex objects (which includes arbitrary

squares, regular k-gons, translated and scaled copies of a convex object).
(D2) non-trivial minor-closed graph classes.

2 Color-Balanced Divisions

In this section we provide the main tool (see Theorem 7) used to prove our main result (i.e.,
Theorem 2). We first describe a new subtle strengthening (see Lemma 5) of the standard
division theorem on f -separable graph classes (see Theorem 4). This builds on the concept
of (r, f(r))-divisions (in the sense of Henzinger et al. [23]) of graphs in an f -separable graph
class. We then extend this strengthened division lemma by suitably aggregating the pieces of
the partition to obtain a two-color balanced version (see Theorem 7). This result generalizes
to more than two colors. However, as our applications stem from the two-colored version, we
defer the generalization to the full version.

Frederickson [17] introduced the notion of an r-division of an n-vertex graph G, namely,
a cover of V (G) by Θ(nr ) sets each of size O(r) where each set has O(

√
r) boundary vertices,

i.e., O(
√
r) vertices in common with the other sets. Frederickson showed that, for any r, every

planar graph G has an r-division and that one can be computed in O(n logn) time. This
result follows from a recursive application of the Lipton-Tarjan planar separator theorem [27].
This notion was further generalized by Henzinger et al. [23] to (r, f(r))-divisions‡ where f is
a function in o(r) and each set has at most f(r) vertices in common with the other sets. They
noted that Frederickson’s proof can easily be adapted to obtain an (r, c · f(r))-division of any
graph G from a subgraph-closed f -separable graph class – as formalized in Theorem 4. Note
that we use an equivalent but slightly different notation than Frederickson and Henzinger
et al. in that we consider the “boundary” vertices as a single separate set apart from the
non-boundary vertices in each “region”, i.e., our divisions are actually partitions of the vertex
set. This allows us to carefully describe the number of vertices inside each “region”.

‡ They use a more general notion of (r, s)-division but we need the restricted version as described here.
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I Theorem 4 ([17, 23]). For any subgraph-closed f-separable class of graphs G, there are
constants c1, c2 such that every graph G in the class has an (r, c1 · f(r))-division for any r.
Namely, for any r ≥ 1, there is an integer t ∈ Θ(nr ) such that V can be partitioned into t+ 1
sets X , V1, . . . , Vt where the following properties hold.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi ∪N(Vi)| ≤ r for each i,
(iii) |N(Vi)| ≤ c1 · f(r) for each i (thus, |X | ≤

∑t
i=1 |N(Vi)| ≤ c2 · f(r)·n

r ).
Moreover, such a partition can be found in O(g(n) logn) time where g(n) is the time required
to find an f -separation in G.

We obtain our color-balanced version of Theorem 4 via two steps. First, we strengthen
the notion of (r, f(r))-divisions to uniform (r, f(r))-divisions. A uniform (r, f(r))-division is
an (r, f(r))-division where the Θ(nr ) sets have a uniform size. Namely, there are not only
O(r) many internal vertices (as in Theorem 4) but there are also Ω(r) many of them.

It is important to note that while this uniformity condition (i.e., that each region is
not too small – see Lemma 5(ii)) has not been needed in the past§, it is essential for our
analysis of local search as applied to MC problems in the next section. Moreover, to the
best of our knowledge, neither Frederickson’s construction nor more modern constructions
(e.g. [25]) of an r-division explicitly guarantee that the resulting r-division is uniform. To
be specific, Frederickson’s approach consists of two steps. The first step recursively applies
the separator theorem until each region together with its boundary is “small enough”. In
the second step, each region where the boundary is “too large” is further divided. This is
accomplished by applying the separator theorem to a weighted version of each such region
where the boundary vertices are uniformly weighted and the non-boundary vertices are
zero-weighted. Clearly, even a single application of this latter step may result in regions with
o(r) interior vertices. Modern approaches (e.g. [25]) similarly involve applying the separator
theorem to weighted regions where boundary vertices are uniformly weighted and interior
vertices are zero-weighted, i.e., regions which are too small are not explicitly avoided.

In the second step, we generalize the uniform (r, f(r))-divisions to two-color uniform
(r, f(r))-divisions of a two-colored graph (the coloring need not be proper in the usual sense).
A two-color uniform (r, f(r))-division of a two-colored graph is a uniform (r, f(r))-division
where each set has the “same” proportion of each color class (this is formalized in Theorem 7).

The remainder of this section is outlined as follows. We will first show that for every
f -separable graph class G there is a constant c such that every graph in G has a uniform
(r, c ·f(r))-division (see Lemma 5). We then use this result to show that for every f -separable
graph class G there is a constant c′ such that every two-colored graph in G has a two-color
uniform (rq, c′ · q · f(r))-division for any q – see Theorem 7. Our proofs are constructive
and lead to efficient algorithms that produce such divisions when there is a corresponding
efficient algorithm to compute an f -separation.

To prove the first result, we start from a given (r, f(r))-division and “group” the sets
carefully to obtain the desired uniformity. For the two-colored version, we start from a
uniform (r, f(r))-division and again regroup the sets via a reformulation of the problem as a
partitioning problem on two-dimensional vectors. Lemma 6 is used for this regrouping.

I Lemma 5. Let G be a subgraph-closed f -separable graph class and G be a sufficiently large
n-vertex graph in G. There are constants r0, x0 (depending only on f) such that for any

§ E.g., to analyse local search for SC problems [30], or for fast algorithms to find shortest paths [23].
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17:8 Approximation Schemes for Geometric Coverage Problems

r ∈ [r0,
n
x0

] there is an integer t ∈ Θ(nr ) such that V (G) can be partitioned into t + 1 sets
X , V1, . . . , Vt where c1, c2 are constants (depending only on f) with the following properties.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi| ≥ r
2
¶ and |Vi| ≤ 2r for each i,

(iii) |N(Vi)| ≤ c1 · f(r) for each i (thus, |X | ≤
∑t
i=1 |N(Vi)| ≤ c2·f(r)·n

r ).
Moreover, such a partition can be found in O(h(n) + n) time where h(n) is the amount of
time required to produce an (r, f(r))-division of G.

Proof. We pick the constants c′1, c′2 as obtained from Theorem 4 for our f -separable subgraph-
closed graph class. We further pick r0 such that it is divisible by 8 and c∗ = 1− c′2 · f( r0

8 ) ·
( r0

8 )−1 > 0. Now, let x0 = 3
c∗ , and assume r ∈ [r0,

n
x0

] in what follows.
Consider an (b r8c, c

′
1 · f(b r8c))-division U = (X , U1, . . . , U`) as given by Theorem 4 – note:

|X | ≤ c′2·f(b r
8 c)n

b r
8 c

. We further define c` so that ` = c` · 8·n
r . We will partition [`] into t

sets I1, . . . , It such that (X , V1, . . . , Vt) is a uniform (r, c · f(r))-division X , V1, . . . , Vt where
Vi =

⋃
j∈Ii

Uj . In order to describe the partitioning, we first observe some useful properties
of U1, . . . , U` where, without loss of generality, |U1| ≥ · · · ≥ |U`|. Let n∗ =

∑`
j=1 |Uj |, and

set t = dn
∗

r e. Note that:

n∗ =
∑̀
j=1
|Uj | = n− |X | ≥ n ·

(
1−

c′2 · f(b r8c)
b r8c

)
.

From our choice of t, the average size of the sets Vi is n
∗

t ∈ ( r
1+ r

n∗
, r]. Additionally, n∗ ≥ c∗ ·n,

i.e., c∗ ≤ n∗

n . Thus, we have r ≤ n∗

3 , and the average size of our sets |Vi| is in [ 3r
4 , r].

Notice that `
t ≤ c` ·

8·n
r · (

n∗

r )−1 ≤ 8c`

c∗ . We build the sets Ii such that |Ii| ≤ 40 · c`

c∗ . This
provides |N(Vi)| ≤ 40 · c`

c∗ · c
′
1f(b r8c) ∈ O(f(r)). We build the sets Ii in two steps. In the

first step we greedily fill the sets Ii according to the largest unassigned set Uj as follows. For
each j∗ from 1 to `, we consider an index i∗ ∈ [t] where |Ii∗ | < 32 · c`

c∗ and |Vi∗ | is minimized.
If |Vi∗ | ≤ n∗

t , then we place j∗ into Ii∗ , that is, we replace Vi∗ with Vi∗ ∪ Uj∗ . Otherwise
(there is no such index i∗), we proceed to step two (below). Before discussing step two, we
first consider the state of the sets Vi at the moment when this greedy placement finishes. To
this end, let j∗ be the index of the first (i.e., the largest) Uj which has not been placed.

Claim 1: If |Vi| ≤ n∗

t for every i, then each set Uj has been merged into some Vi and the
Vi’s satisfy the conditions of the lemma.
First, suppose there is an unallocated set Uj . Since |Vi| ≤ n∗

t for each i ∈ [t], our greedy
procedure stopped due to having |Ii| = 32 · c`

c∗ for each i ∈ [t]. This contradicts the average
size of the Ii’s being `

t ≤ 8 · c`

c∗ . So, every set Uj must have been merged into some Vi. Thus,
since |Vi| ≤ n∗

t and the average of the |Vi|’s is n∗

t , we have that for every i ∈ [t], |Vi| = n∗

t .
Moreover, for each i ∈ [t], |Ii| ≤ 32 c`

c∗ . Thus the Vi’s satisfy the lemma.

Claim 2: For every i ∈ [t], |Vi| ≥ r
2 .

Suppose some index i has |Vi| < r
2 . Notice that, if |Ii| < 32 · c`

c∗ , then for every i′ ∈ [t],
|Vi′ | ≤ |Vi|+ r

8 ≤
3r
4 ≤

n∗

t , i.e., contradicting Claim 1. Thus, |Ii| = 32· c`

c∗ for each i ∈ [t] where
|Vi| < r

2 . For each i
′ ∈ [t], j′ ∈ [`], let Ij

′

i′ and V j
′

i′ be the states of Ii′ and Vi′(respectively)
directly after index j′ has been added to some set Ii′′ by the greedy algorithm.

¶ This lower bound is the difference from the known Theorem 4.
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We now let ĵ be the largest index in Ii, and assume (without loss of generality) that for
every i′ ∈ [t] \ {i}, if |V ĵi′ | < r

2 , then I
ĵ
i′ < 32 · c`

c∗ . Intuitively, i is the “first” index which
attains |Ii| = 32 · c`

c∗ while still having |Vi| < r
2 . Now, since |I

ĵ
i | = 32 · c`

c∗ , and |V
ĵ
i | < r

2 , we
have |Uĵ | < r · c∗

64c`
. Thus, for every iteration j > ĵ, we have |Uj | < r · c∗

64c`
. This means that

after iteration ĵ, the number of unallocated vertices is strictly less than:

∑̀
j=ĵ

Uj < ` · r · c∗

64c`
≤ t · 8 · c`

c∗
· r · c∗

64c`
= tr

8 .

In particular, this means that on average each set Vi can grow by less than r
8 . However, due

to our choice of i, we see that for every i′ ∈ [t] \ {i}, |V ĵi′ | ≤ |V
ĵ
i |+ r

8 <
r
2 + r

8 . This means
that even if we allocate all the remaining vertices, the average size of our sets Vi will be
strictly less than 3r

4 ≤
n∗

t , i.e., providing a contradiction and proving Claim 2.

Claim 3: If every j ∈ [`] is placed into some Ii, the Vi’s satisfy the conditions of the lemma.
First, note that |Ii| is at most 32 · c`

c∗ , i.e., |N(Vi)| ∈ O(f(r)). By Claim 2, we see that |Vi| ≥ r
2

for each i ∈ [t]. Additionally, from the greedy construction, we have that |Vi| ≤ n∗

t + r
8 .

Thus, |Vi| ∈ [ r2 ,
9r
8 ] ⊂ [ r2 , 2r].

We now describe the second step. By Claim 3, we assume there are unassigned sets
Uj . By Claim 2, for every i ∈ [t], |Vi| ≥ r

2 . Finally, by Claim 1, there is an index i′ where
|Vi′ | > n∗

t . Thus, since we have t = dn
∗

r e sets which partition at most n∗ elements, there
must be some index i′′ where |Vi′′ | ≤ n∗

t and |Ii′′ | = 32 · c`

c∗ , i.e., |Uj∗ | ≤
n∗

t ·(32 · c`

c∗ )−1 ≤ r·c∗
32·c`

where Uj∗ is the largest unassigned set. Notice that there are at most ` ≤ t · 8 · c`

c∗ indices
which can be assigned and all the remaining sets contain at most |Uj∗ | vertices. If we spread
these remaining Uj ’s uniformly throughout our Vi’s, we will place at most 8 · c`

c∗ · |Uj∗ | ≤
r
4

vertices into each Vi. Thus, for each i ∈ [t], we have |Vi| ≤ n∗

t + r
8 + r

4 ≤ 2r. So, by
uniformly assigning these remaining indices, we have |Ii| ≤ 40 · c`

c∗ , |Vi| ∈ [ r2 , 2r], and
|N(Vi)| ≤ 40 · c`

c∗ · c
′
1f(b r8c) ∈ O(f(r)), as needed.

We conclude with a brief discussion of the time complexity. First, we generate the
(b r8c, c

′
1f(b r8c))-division in h(n) time. We then sort the sets |U1| ≥ . . . ≥ |U`| (this can be

done in O(n) time via bucket sort). In the next step we greedily fill the index sets – this
takes O(n) time. Finally, we place the remaining “small” sets uniformly throughout the Vi’s
– taking again O(n) time. Thus, we have O(h(n) + n) time in total. J

We now prove a technical lemma which, together with the previous lemma regarding
uniform divisions, provides our uniform two-color balanced divisions (see Theorem 7).

I Lemma 6. Let c and c′ be positive constants, and A = {(a1, b1), . . . , (an, bn)} ⊆ (Q ∩
[0,∞))2 be a set of 2-dimensional vectors where ai + bi ∈ [c′, c] for each i ∈ [n], and α ∈ [0, 1]
such that

∑n
i=1 ai = α ·

∑n
i=1 bi. Then:

(?) There is a permutation p1, . . . , pn of [n] such that for any 1 ≤ i ≤ i′ ≤ n,
|
∑i′

j=i(apj − α · bpj )| ≤ 2 · c; and
(??) For any positive integer q′ such that q′(q′ + 1) ≤ n there is a partitioning of [n] into

subsets I1, . . . , Ik such that for each j ∈ [k]:
(i) q′ ≤ |Ij | ≤ q′ + 1 (thus, q′c′ ≤

∑
i∈Ij

ai + bi ≤ q′c+ c),
(ii) |

∑
i∈Ij

(ai − α · bi)| ≤ 2 · c.
Moreover, the permutation p1, . . . , pn and partition can be computed in O(n) time.
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Proof. We first prove (?). To this end, we partition [n] into three sets A>0, A<0, and
A=0 according to whether the weighted difference di = ai − α · bi is positive, negative, or
0 (respectively). Note that,

∑n
i=1 di = 0 and for each i ∈ [n], |di| ≤ c. We pick indices

one-by-one from A>0, A<0, A=0 to form the permutation.
We now construct a permutation p1, . . . , pn on the indices [n] so that any consecutive

subsequence S has |
∑
i∈S dpi | ≤ 2 · c. For notational convenience, for each j ∈ [n], we use

δ<j to denote
∑j−1
i=1 dpi

. We now pick the pi’s so that for each j, |δ<j | ≤ c. We initialize
δ<1 = 0. For each j from 1 to n we proceed as follows. Assume that |δ<j | ≤ c. We further
assume that any index i ∈ {p1, . . . , pj−1} has been removed from the sets A>0, A<0, and
A=0. If δ<j is negative, A>0 must contain an index j∗ since

∑
i∈[n] di = 0. Moreover, if we

set pj = j∗, we have |δ<j+1| ≤ c as needed (we also remove the index j∗ from A>0 at this
point). Similarly, if δ<j is positive, we pick any index j∗ from A<0, remove it from A<0, and
set pj = j∗. Finally, when δ<j = 0, we take any index j∗ from A>0 ∪ A<0 ∪ A=0, remove
it from A>0 ∪A<0 ∪A=0, and set pj = j∗. Thus, in all cases, |δ<j+1| ≤ c. Notice that, for
any 1 ≤ j ≤ j′ ≤ n, we have |

∑j′

i=j dpi
| = |δ<j − δ<j′+1| ≤ |δ<j | + |δ<j′+1| ≤ 2 · c (thus,

establishing (?)).
We now prove (??) using (?). We partition [n] to form the sets I1, . . . , Ik by splitting

p1, . . . , pn into k consecutive subsequences of almost equal size. Namely, since n
q′ −

n
q′+1 ≥ 1,

we can pick a positive integer k ∈
[

n
q′+1 ,

n
q′

]
. Then q′k ≤ n ≤ (q′ + 1)k, so we can make the

sets I1, . . . , In−q′k with q′ + 1 indices each and the sets In−q′k+1, . . . , Ik with q′ indices each
by partitioning π into these sets in order. This is all easily accomplished in O(n) time. J

We will now use Lemmas 5 and 6 to prove Theorem 7. In particular, for a given two-
colored graph G where G belongs to an f -separable graph class, we first construct a uniform
(r, c · f(r))-division (X , V1, . . . , Vt) of G as in Lemma 5. From this division we can again
carefully combine the Vi’s to make new sets Wj where each Wj has roughly the same size
and contains roughly the same proportion of each color class as occurring in G. This follows
by simply imagining each region Vi of the uniform (r, c · f(r))-division as a two-dimensional
vector (according to its coloring) and then applying Lemma 6.

I Theorem 7. Let G be a subgraph-closed f-separable graph class and G be a 2-colored
n-vertex graph in G with color classes Γ1,Γ2 such that |Γ2| ≥ |Γ1|. For any q and r � n

where r is suitably large, there is an integer t ∈ Θ( n
q·r ) such that V can be partitioned into

t + 1 sets X , V1, . . . , Vt where c1, c2 are constants (depending only on f) and there is an
integer q′ ∈ [q, 2q − 1] satisfying the following properties.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi| ≥ q′·r
2 and |Vi| ≤ 2 · (q′ + 1) · r for each i,

(iii) |N(Vi)| ≤ c1 · q · f(r) for each i
(thus, |X | ≤

∑t
i=1 |N(Vi)| ≤ c2·f(r)·n

r ),
(iv)

∣∣∣|Vi ∩ Γ1| − |Γ1|
|Γ2| · |Vi ∩ Γ2|

∣∣∣ ≤ 4 · r for each i.

Moreover, such a partition can be found in O(h(n) + n) time where h(n) is the amount
of time required to produce a uniform (r, c · f(r))-division of G.

3 Proof of Theorem 2: PTAS for f -Separable Maximum Coverage

Recall that, we have an f -separable instance of MC where f is strictly sublinear. Our
algorithm is based on local search. We fix a sufficiently large positive constant integer b ≥ 1.
Given an f -separable instance of MC, we pick an arbitrary initial solution A. We check if it



S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:11

is possible to replace 2b2 + 2b sets in A with the same number of sets from F so that the
total number of elements covered is increased. We perform such a replacement (swap) as
long as there is one. We stop if there is no profitable swap and output the resulting solution.

We will show that for sufficiently large b the above algorithm yields a (1− 8c1f(b)/b)-
approximate solution and that it runs in polynomial time (for constant b). Here, c1 is the
constant from Theorem 7. Setting b to be sufficiently large will complete this proof. Note
that, if c1 < 1, Theorem 7 also holds for c1 = 1. Thus, it suffices to consider c1 ≥ 1.

Since each step increases the number of covered elements, the number of iterations of the
above algorithm is at most |U |. In each iteration, we consider each of the

(
k
b

)(|F|
b

)
potential

b-swaps, and check whether it is an improvement. Therefore, the total running time of the
algorithm is polynomial for constant b.

It remains to establish the performance guarantee. Let O be an optimum solution to
the instance and let A be the (locally optimal) solution output by the algorithm. Let OPT,
ALG denote the number of elements covered by O, A, respectively.

Suppose that ALG <
(

1− 8c1f(b)
b

)
OPT. We will show that implies that there is a

profitable swap (contradicting the local optimality of A and hence completing the proof).
We claim that it suffices to consider the case when O,A are disjoint, which is justified as

follows. Assume that O ∩A 6= ∅. We remove the sets in O ∩A from F and all the elements
covered by these sets from U . Moreover, we decrease k by |O ∩A| and replace O with O \A
and A with A \ O. Since our class of instances is closed under removing sets and elements,
the resulting instance is still contained in the class. Moreover, |

⋃
A| <

(
1− 8c1f(b)

b

)
|
⋃
O|

(note that the number of elements covered by A and O, respectively, decreases by the same
amount as we remove the elements covered by A ∩O from the instance). Finally, a feasible
and profitable swap in the reduced instance implies that the same swap is also feasible and
profitable in the original.

Therefore, we assume from now on that A and O are disjoint. Since our instance is
f -separable, there exists an f -separable graph G with precisely 2k nodes for the two feasible
solutions O and A with the properties stated in Definition 1.

We now apply Theorem 7 to G with color classes Γ1 = O and Γ2 = A and with parameters
r = b and q = b. Here, we assume that the constant b has been picked sufficiently large as
required by Theorem 7. We further assume that the number 2k of nodes in the exchange
graph is substantially larger than b as the problem can be solved to optimality in polynomial
time for constant k. Since |O| = |A| = k, the two color classes in G are perfectly balanced.
Let Ai = A ∩ Vi, Oi = O ∩ Vi, NOi = N(Vi) ∩ O and Ōi = Oi ∪NOi for any part Vi with
i ∈ [t] of the resulting subdivision of G. Note that every set in O is in Ōi for some i ∈ [t].

The idea of the analysis is to consider for each i ∈ [t] a nearly balanced (but possibly
infeasible) candidate swap that replaces in A the sets Ai with Ōi. We will first show that
there exists a profitable candidate swap if ALG <

(
1− 8c1f(b)

b

)
OPT. Second, we will show

that even a feasible profitable swap can be obtained by adding only some of the sets in Ōi as
the candidate swap was nearly balanced.

For technical reasons we will define a set Z of elements that we (temporarily) disregard
from our calculations because they will remain covered and thus do not impact which of the
sets in Ōi we will pick for the feasible swap. Let Zi =

⋃
(A \ Ai) be the set of elements that

remain covered even if Ai is removed from A and let Z =
⋂t
i=1 Zi be the set of elements that

are covered by A but not exclusively by one of the Ai. In particular, Z contains all elements
in
⋃

(X ∩A). Let Li =
⋃
Ai \ Z be the set of elements that are “lost” when removing the

Ai from A. Moreover, let Wi =
⋃
Ōi \ Zi be the set of elements that are “won” when we

add all the sets of Ōi after removing Ai.
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We claim that
∑t
i=1 |Li| ≤ ALG−|Z|. To this end, note that Z ⊆

⋃
A and that the

family {Li}i∈[t] contains pairwise disjoint sets because all elements that are not exclusively
covered by a single Ai are contained in Z and thus removed.

We further claim that
∑t
i=1 |Wi| ≥ OPT−|Z|. To see this, note first that every element

in Z contributes 0 to the left hand side and 0 or -1 to the right hand side. Every element
covered by O but not by A contributes at least 1 to the left hand side and precisely 1 to the
right hand side. Finally, consider an element u that is covered both by A and by O but does
not lie in Z. Since u /∈ Z there is no S ∈ X ∩ A covering u. This also implies that u lies in
a set S ∈ Ai for some unique i ∈ [t]. Thus, we even have u /∈ Zi. Since G is an exchange
graph, there is some set T ∈ O with u ∈ T and some set S′ ∈ A with u ∈ S′ such that S′
and T are adjacent in G. Since u /∈ Zi we have S′ ∈ Ai. Since T is adjacent to S′ ∈ Ai ⊆ Vi,
we have T ∈ N(Vi). Since T ∈ O, it follows that T ∈ NOi ⊆ Ōi. Thus u ∈

⋃
Ōi \ Zi = Wi.

Hence u contributes at least 1 to the left hand side and precisely 1 to the right hand side of∑t
i=1 |Wi| ≥ OPT−|Z|, which shows the claim.

By OPT > ALG ≥ |Z|, min
i∈[t]
|Wi|>0

|Li|
|Wi|

≤
∑t
i=1 |Li|∑t
i=1 |Wi|

≤ ALG−|Z|
OPT−|Z| ≤

ALG
OPT < 1−8c1f(b)

b
.

Hence, we pick i ∈ [t] so that |Li|
|Wi|

< 1− 8c1f(b)
b

. (1)

Recall that c1 ≥ 1 and assume that b is large enough so that f(b) ≥ 1. Then by
Properties (ii), (iii), and (iv) of Theorem 7 (respectively), we have that |Vi| ≥ b2/2,
|N(Vi)| ≤ c1b · f(b), and ||Ai| − |Oi|| ≤ 4b (respectively). Now, since |Ai|+ |Oi| = |Vi|, we
have |Ōi| ≤ 1

2 |Vi|+ 2b+ c1b · f(b) and |Ai| ≥ 1
2 |Vi| − 2b. Hence

|Ai|
|Ōi|

≥
1
2 |Vi| − 2b

1
2 |Vi|+ 2b+ c1b · f(b)

≥
( 1

2 |Vi|+ 2b+ 4c1c2b · f(b))− 4b− 4c1c2b · f(b)
1
2 |Vi|+ 2b+ 4c1c2b · f(b)

(2)

|Vi|≥b2/2
≥ 1− 8c1f(b)

b
. (3)

We are now ready to construct our feasible and profitable swap. We inductively define an
order S1, . . . , S|Ōi| on the sets in Ōi where we require that

Sj = arg max
S∈Ōi

∣∣∣∣∣S \
(
Zi ∪

j−1⋃
`=1

S`

)∣∣∣∣∣ for any j = 1, . . . , |Ōi| where S1 maximizes |S \ Zi|.

Consider the following process of iteratively building a set W ′ starting with W ′ = ∅.
Suppose that we add to W ′ the sets (S1 \ Zi), . . . , (S|Ōi| \ Zi) in this order ending up with
W ′ = Wi. In doing so, the incremental gain is monotonically non-increasing due to the
definition of the order on Ōi and due to the submodularity of the objective function. Hence,

for any prefix of the first j sets we have that
∣∣∣∣∣
(

j⋃
`=1

S`

)
\ Zi

∣∣∣∣∣ ≥ j · |Wi|
|Ōi|

. (4)

Suppose that |Ōi| > |Ai| (otherwise due to (1), we can just add all sets in Ōi). Consider
the swap where we replace the |Ai| ≤ 1/2|Vi|+ 2b ≤ 2b2 + 2b many sets Ai from the local
optimum A with at most |Ai| many sets {S1, . . . , S|Ai|} from Ōi.
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We now analyze how this swap affects the objective function value. Notice that, by
removing the sets in Ai, the objective function value drops by

|Li|
(1)
<

(
1− 8c1f(b)

b

)
· |Wi|

(4)
≤
(

1− 8c1f(b)
b

)
|Ōi|
|Ai|

∣∣∣∣∣∣
|Ai|⋃
`=1

S`

 \ Zi
∣∣∣∣∣∣

(3)
≤

∣∣∣∣∣∣
|Ai|⋃
`=1

S`

 \ Zi
∣∣∣∣∣∣ .

The right hand side of this inequality is the increase of the objective function due to adding
the sets {S1, . . . , S|Ai|} after removing the sets in Ai.

Therefore the above described swap is feasible and also profitable and thus A is not a
local optimum leading to a contradiction (and completing the proof of Theorem 2).

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of construct-

ing algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004.
doi:10.1023/B:JOCO.0000038913.96607.c2.

2 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar
graphs. J. of the American Mathematical Society, 3:801–808, 1990. doi:10.1090/
S0894-0347-1990-1065053-0.

3 Rom Aschner, Matthew J. Katz, Gila Morgenstern, and Yelena Yuditsky. Approximation
schemes for covering and packing. In 7th Int. Workshop on Algorithms and Computation
(WALCOM’13), pages 89–100, 2013.

4 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Hooyeon Lee. Approximating low-
dimensional coverage problems. In Symp. Computational Geometry (SoCG’12), pages 161–
170, 2012. doi:10.1145/2261250.2261274.

5 Sayan Bandyapadhyay and Kasturi R. Varadarajan. On variants of k-means clustering. In
32nd Symp. Computational Geometry (SoCG’16), pages 14:1–14:15, 2016. doi:10.4230/
LIPIcs.SoCG.2016.14.

6 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995. doi:10.1007/
BF02570718.

7 Sergio Cabello and David Gajser. Simple PTAS’s for families of graphs excluding a minor.
Discrete Applied Mathematics, 189:41–48, 2015.

8 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted
capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In
23rd ACM-SIAM Symp. Discrete Algorithms (SODA’12), pages 1576–1585, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095241.

9 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. In 25th ACM Symp. Computational Geometry (SoCG’09), pages
333–340, 2009. doi:10.1145/1542362.1542420.

10 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.
doi:10.1007/s00454-012-9417-5.

11 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approx-
imation schemes for k-means and k-median in Euclidean and minor-free metrics. In
57th IEEE Symp. Foundations of Computer Science (FOCS’16), pages 353–364, 2016.
doi:10.1109/FOCS.2016.46.

ESA 2018

http://dx.doi.org/10.1023/B:JOCO.0000038913.96607.c2
http://dx.doi.org/10.1090/S0894-0347-1990-1065053-0
http://dx.doi.org/10.1090/S0894-0347-1990-1065053-0
http://dx.doi.org/10.1145/2261250.2261274
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.14
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.14
http://dx.doi.org/10.1007/BF02570718
http://dx.doi.org/10.1007/BF02570718
http://dl.acm.org/citation.cfm?id=2095116.2095241
http://dx.doi.org/10.1145/1542362.1542420
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1109/FOCS.2016.46


17:14 Approximation Schemes for Geometric Coverage Problems

12 Vincent Cohen-Addad and Claire Mathieu. Effectiveness of local search for geometric
optimization. In 31st Symp. Computational Geometry (SoCG’15), pages 329–343, 2015.
doi:10.4230/LIPIcs.SOCG.2015.329.

13 Gérard Cornuéjols, George L. Nemhauser, and Laurence A. Wolsey. Worst-case and prob-
abilistic analysis of algorithms for a location problem. Operations Research, 28(4):847–858,
1980. doi:10.1287/opre.28.4.847.

14 Minati De and Abhiruk Lahiri. Geometric dominating set and set cover via local search.
CoRR, abs/1605.02499, 2016. URL: http://arxiv.org/abs/1605.02499, arXiv:1605.
02499.

15 Thomas Erlebach and Erik Jan van Leeuwen. Approximating geometric coverage problems.
In 19th ACM-SIAM Symp. Discrete Algorithms (SODA’08), pages 1267–1276, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347220.

16 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

17 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987.

18 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. In 57th IEEE Symp. Foundations of Computer
Science (FOCS’16), pages 365–374, 2016. doi:10.1109/FOCS.2016.47.

19 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier - (extended abstract). In 18th European Symp. Algorithms (ESA’10), pages
243–254, 2010. doi:10.1007/978-3-642-15775-2_21.

20 Sathish Govindarajan, Rajiv Raman, Saurabh Ray, and Aniket Basu Roy. Packing and
covering with non-piercing regions. In 24th European Symp. Algorithms (ESA’16), pages
47:1–47:17, 2016. doi:10.4230/LIPIcs.ESA.2016.47.

21 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In 23rd European Symp. Algorithms (ESA’15), pages 717–728,
2015.

22 Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data cubes
efficiently. In ACM SIGMOD Int. Conference on Management of Data (ICDM’96), pages
205–216, 1996. doi:10.1145/233269.233333.

23 Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997. doi:
10.1006/jcss.1997.1493.

24 R. B. O. Kerkkamp and Karen Aardal. A constructive proof of swap local search worst-
case instances for the maximum coverage problem. Oper. Res. Lett., 44(3):329–335, 2016.
doi:10.1016/j.orl.2016.03.001.

25 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In 45th Symp. Theory of Computing (STOC’13),
pages 505–514, 2013. doi:10.1145/2488608.2488672.

26 Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi R. Varadarajan. Guarding terrains
via local search. J. of Computational Geometry, 5(1):168–178, 2014. URL: http://jocg.
org/index.php/jocg/article/view/128.

27 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
J. on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

28 Steffen Mecke and Dorothea Wagner. Solving geometric covering problems by data re-
duction. In 12th European Symp. Algorithms (ESA’04), pages 760–771, 2004. doi:
10.1007/978-3-540-30140-0_67.

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.329
http://dx.doi.org/10.1287/opre.28.4.847
http://arxiv.org/abs/1605.02499
http://arxiv.org/abs/1605.02499
http://arxiv.org/abs/1605.02499
http://dl.acm.org/citation.cfm?id=1347082.1347220
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1109/FOCS.2016.47
http://dx.doi.org/10.1007/978-3-642-15775-2_21
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.47
http://dx.doi.org/10.1145/233269.233333
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1016/j.orl.2016.03.001
http://dx.doi.org/10.1145/2488608.2488672
http://jocg.org/index.php/jocg/article/view/128
http://jocg.org/index.php/jocg/article/view/128
http://dx.doi.org/10.1137/0136016
http://dx.doi.org/10.1007/978-3-540-30140-0_67
http://dx.doi.org/10.1007/978-3-540-30140-0_67


S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:15

29 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,
44(1):1650–1669, 2015. doi:10.1137/14099317X.

30 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

31 Erez Petrank. The hardness of approximation: Gap location. Comput. Complexity, 4:133–
157, 1994. doi:10.1007/BF01202286.

32 Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. J. of Com-
binatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

33 Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
42nd ACM Symp. Theory of Computing (STOC’10), pages 641–648, 2010. doi:10.1145/
1806689.1806777.

ESA 2018

http://dx.doi.org/10.1137/14099317X
http://dx.doi.org/10.1007/BF01202286
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1145/1806689.1806777
http://dx.doi.org/10.1145/1806689.1806777

	Introduction
	Our Contribution

	Color-Balanced Divisions
	Proof of Theorem 2: PTAS for f-Separable Maximum Coverage

