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—— Abstract

We extend a recently developed framework for analyzing asynchronous coordinate descent al-
gorithms to show that an asynchronous version of tatonnement, a fundamental price dynamic
widely studied in general equilibrium theory, converges toward a market equilibrium for Fisher
markets with CES utilities or Leontief utilities, for which tatonnement is equivalent to coordinate
descent.
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1 Introduction

As is well known, it is PPAD-hard to compute equilibria for general games and markets [21, 9,
18, 8, 37, 10]. By viewing the players and the environment collectively as implicitly performing
a computation, these hardness results indicate that, in general, a game or market cannot reach
an equilibrium quickly (assuming no unexpected complexity results such as PPAD = FP). As
a result, a lot of attention has been given to the design of polynomial-time algorithms to
compute equilibria, either exactly or approximately, for specific families of games and markets.
Most of these algorithms can be categorized as either simplex-like (e.g., Lemke-Howson [30]),
numerical methods (e.g., the interior-point method [40] or the ellipsoid method [27]), or
some carefully-crafted combinatorial algorithms (e.g., flow-based algorithms for computing
an equilibrium of a market with agents having linear utility functions [22, 33, 24]).
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However, it seems implausible that these algorithms describe the implicit computations
in games or markets. In particular, many markets appear to have a highly distributed
environment. This would appear to preclude computations which require centralized co-
ordination, which is essential for the three categories of algorithms above. Consequently, in
order to justify equilibrium concepts, we want natural algorithms which could plausibly be
running (in an implicit form) in the associated distributed environments. Moreover, since it
is preferable not to assume centralized timing or coordination, a desirable feature of such
natural algorithms is robustness against asynchrony, which means such algorithms should
remain effective even in situations where information transfer takes time and agents make
decisions (i.e., perform computations) with possibly outdated information.

A first candidate for a natural algorithm in markets is tatonnement: it adjusts the
price of a good upward if there is too much demand, and downward if too little. Indeed,
tatonnement was proposed alongside the concept of a market equilibrium by Walras [3§]
in 1874. Since then, studies of market equilibria and tatonnement have received much
attention in economics, operations research, and most recently in computer science; we
list a small sample of the voluminous literature, focusing mainly on computer science
works [2, 36, 23, 17, 19, 20, 14, 13, 35]. Underlying many of these works is the issue of what
are plausible price adjustment mechanisms and in what types of markets they attain a market
equilibrium.

The tatonnements studied in prior work have mostly been continuous, or discrete and
synchronous. Cole and Fleischer [19] observed that real-world market dynamics are highly
distributed and hence presumably asynchronous. They argued that any realistic price
dynamics must involve out-of-equilibrium trade in order to induce the imbalances leading
to price updates. Further, they argued that simple rules with relatively low information
requirements were more plausible. The lowest imaginable level of information would be for
each seller to only know the demand for the good it was selling, and for any price updating
to occur in a non-coordinated manner, i.e., asynchronously. Accordingly, they introduced
the Ongoing market model, a model of a repeating market incorporating update dynamics,
and they analyzed the performance of an asynchronous tatonnement in this market. The
market also incorporated warehouses (buffers) to cope with supply and demand imbalances.

Cheung, Cole and Devanur [13] showed that tatonnement is equivalent to coordinate
descent on a convex function for several classes of Fisher markets, and consequently that a
suitable synchronous tatonnement converges toward the market equilibrium in three general
classes of markets: complementary-CES Fisher markets?, substitute-CES Fisher markets,
and Leontief Fisher markets; Cheung [11] extended this to all nested-CES Fisher markets. In
this paper, we show that this equivalence enables us to perform an amortized analysis to show
that the corresponding asynchronous version of tatonnement converges toward the market
equilibrium in these classes of markets; indeed, our analysis also covers Fisher markets in
which some buyers have substitute-CES utility functions and others have complementary
ones. We also note that the tatonnement for Leontief Fisher markets analyzed in [13] had an
unnatural constraint on the step sizes; our analysis removes that constraint.

Finally, we remark that it is by no means obvious that the existence of a convergence
result for synchronous updating implies an analogous result for asynchronous updating. An
example of a setting where an asynchronous result has yet to be achieved is proportional
response dynamics [41, 4, 15].

3 i.e., markets in which the buyers all have complementary CES utilities.
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Technique of Analysis, and Comparison with the Companion Paper [16]. In a companion
paper [16], we analyzed several versions of asynchronous coordinate descent. The analyses
in both papers follow a common framework. We use an amortized analysis which relates
the actual progress to the desired progress, where the desired progress is a constant fraction
of the progress achieved with synchronous updating. The amortization is used to hide the

difference between these two measures of progress by amortizing it over multiple updates.

As we shall see, this difference is bounded by the squares of appropriate excess demand
(resp. gradient) differences, and using Lipschitz gradient parameters, these can in turn be
bounded by sum of the squares of recent changes to the prices (resp. coordinates). The final
ingredient is to show that the progress is an upper bound on the square of the change to the
updated price. Combining these ingredients yields a lower bound on the rate of progress.
In [16], it was assumed that the underlying convex function has some global finite Lipschitz

gradient parameters, which is a common assumption in optimization and machine learning.

The main focus there is on the maximum possible degree of parallelism which permits linear
speedup, and on a number of challenges to devising rigorous and complete analyses which
handle the subtle interplay between randomness (choices of coordinates) and asynchrony.

However, in the asynchronous tatonnement setting we analyze here, there are no global
finite Lipschitz gradient parameters. Instead, we use local Lipschitz gradient parameters,
as was done implicitly in [13]; the consequence is that the rate of convergence depends
on the starting point. Also, the only acceptable degree of parallelism is the maximal one,
i.e., all sellers are adjusting prices independently in parallel. The challenge is to devise an
asynchronous analysis while keeping the price update rule reasonable, i.e., having the step
size be an absolute constant which is independent of the number of goods. This calls for a
somewhat different potential function and analysis from the one used for the asynchronous
coordinate descent analysis in [16]; the analysis also differs quite substantially from the
synchronous tatonnement analyses in [13].

Relevance to Theoretical Computer Science. Iterative procedures and dynamical systems
are pervasive across multiple disciplines; a non-exhaustive list of such systems which have
interested theorists includes bandwidth sharing (e.g., proportional response [39, 41, 15]), SDD
linear system solvers [28, 29], distributed load balancing [26, 3], bird flocking [6], influence
systems [7] and the spread of information memes across the Internet [31].

There have been many analyses of these systems, but one issue that has received relatively
little attention is the timing of agents’ actions. In most prior analyses, amenable timing
schemes (e.g., synchronous or round robin updates) and perfect information retrieval were
assumed, perhaps because they were more readily analyzed. However, typically these
assumptions are unrealistic, and to better understand how these systems really behave, it is
important to obtain asynchronous analyses of such systems. We believe the insight from our
amortization framework may be useful in obtaining such analyses.

Other Related Work. In a similar spirit to our analysis, Cheung, Cole and Rastogi [14]
analyzed asynchronous tatonnement in certain Fisher markets. This earlier work employed a
potential function which drops continuously when there is no update and does not increase
when an update is made. This approach could be followed for the current market setting, but
in the current work, we instead use a discrete analysis which has more in common with our
asynchronous coordinate descent analyses in [16]. Our work differs from [14] in two aspects.
First, the update rule in [14] is more restricted: they use average excess demand for updates,
while our update rule allows an arbitrary value between the mazimum and minimum excess
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demands. Second, while the high-level idea is similar, our potential function is substantially
different from (and more sophisticated than) the one in [14], and the classes of markets
covered by the two analyses are quite different.

In a recent work, Dvijotham et al. [25] study a different asynchronous dynamics. In their
setting sellers are boundedly rational and buyers are myopic (i.e., best responding). More
specifically, the base (zero) level for the sellers is to be best responding, and level k + 1 is
obtained by best responding to level k sellers. They show that this system converges linearly
to the market equilibrium in suitable Fisher markets including substitute-CES markets.

For the closely related topic of learning dynamics in games, where updates are based
on the payoffs received by agents, again, the classical approach assumes synchronous or
round-robin updates with up-to-date payoffs; models with stochastic update schedules were
also studied previously (e.g., in [5, 1, 32]), while learning dynamics with delayed payoffs [34]
were studied recently.

2 Preliminaries and Results

Fisher Market. In a Fisher market, there are n perfectly divisible goods and m buyers.
Without loss of generality, the supply of each good is normalized to be one unit. Each
buyer 7 has a utility function u; : R} — R, and a budget of size e;. At any given price
vector p € R}, each buyer purchases a maximum utility affordable collection of goods. More
precisely, x; € R’} is said to be a demand of buyer 7 if x; € argmax,,. ,.p<., ui(X).

A price vector p* € R} is called a market equilibrium if at p*, there exists a demand x;
of each buyer i such that

m
p; >0 = Zx” =1 and p;=0 = inj < 1.

i=1 i=1

We note that in the markets we studied here, the demand at any price vector is unique.
In these markets, we let z; := Y " x;; — 1 denote the excess demand for good j.

CES utilities. In this paper, each buyer i’s utility function is of the form

1/pi

n
wilx) = | D ay - (@) :
j=1

for some —oo < p; < 1, where each a;; is a non-negative number. w;(x;) is called a Constant
Elasticity of Substitution (CES) utility function. They are a class of utility functions often
used in economic analysis. The limit as p; — —oc is called a Leontief utility, usually written
as u;(x;) = min; ij 4. and the limit as p; — 0 is called a Cobb-Douglas utility, usually
written as ]_[j x;;%9, with Zj a;; = 1. The utilities with p; < 0 capture goods that are
complements, and those with p; > 0 goods that are substitutes. Accordingly, when p; < 0,
we say the utility function is a complementary CES utility function, and when p; > 0 we say

it is a substitute CES utility function.

1

- 2.\ P\ 7
* The utility function u;(x) = min; 2 can be seen as the limit of u;(x) = (Z] (“L—f> ) " as py \y —oo0.
i

Cij
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Directly Related Prior Results and Our Results. Cheung, Cole and Devanur [13] showed
that tatonnement is equivalent to coordinate descent on a convex function ¢ for Fisher
markets with buyers having complementary-CES or Leontief utility functions (and in a later
version of the paper, substitute-CES utility functions too). To be specific, [13] showed that
for the convex function

¢(p)=> pk + Y _ei-logii(p),
k=1 =1

where 4;(p) is the optimal utility that buyer ¢ attains at price vector p with a unit of
spending, we have that V;¢(p) = —z;(p). The corresponding update rule is

p; — pj-[1+ X -min{z;,1}], (1)
where A > 0 is a suitable constant. As the update rule is multiplicative, they assumed that
the initial prices were positive.

As argued in [19], when the economic activity is occurring over time, it is natural to base
each price update for a good on the excess demand observed by its seller since the time
of the last price update to her good (possibly weighted toward more recent sales). This
perceived excess demand can be written as the product of the length of the time interval
with an instantaneous excess demand at some specific time in this interval, which yields the
following modification of update rule (1).

p; 4 pi-[1+A-min{z, 1} (t—o;(2)) ], (2)

where o (t) denotes the time of the latest update to price j strictly before time ¢, Z; is a
value between the minimum and maximum instantaneous excess demands during the time
interval (cy;(t),t), and A > 0 is a suitable constant. We assume that ¢ — a;;(¢) < 1 for all
t > 0 and for all goods j.

As we will see, having A < 1/25.5 suffices. In comparison, in the synchronous version [13],
A < 1/6 suffices. This implies that the step sizes of the asynchronous tatonnement can be
kept at a constant fraction of those used in its synchronous counterpart.

» Theorem 1. For A\ < 1/25.5, asynchronous tatonnement price updates using rule (2)
converge linearly toward the market equilibrium in any complementary-CES market, and they
converge in any Leontief Fisher market.

» Theorem 2. Let M be a Fisher market in which buyers have CES utility functions.
Suppose that p := max; p; < 1 and min; p; > —oo in M. Let E := max{l/(1—p), 1}.
Then for A\ < 1/(26F), asynchronous tatonnement price updates using rule (2) converge
linearly toward the market equilibrium.

Here, we focus on the result concerning complementary-CES Fisher markets; the analyses
for the other cases are deferred to the full version. The analysis for Theorem 2 is just a small
modification of the complementary case. For the Leontief Fisher markets, while the first part
of the analysis is identical to the complementary case, this is not enough to demonstrate
convergence, and to do so requires substantially more effort.

In an earlier version of this paper [12] on arXiv, we proved Theorem 1 (except that A was
slightly larger) using a potential function which decreases continuously over time, as was the

case for the analyses in [20, 14] also. We believe the current analysis is considerably simpler.

The main advantage of the prior analysis at this point is that we extended it to account for
the warehouses in the Ongoing market model, albeit with a quite non-trivial argument. This
seems possible with the potential function in the present paper too, but we suspect it would
be of interest to at most a few specialists.
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Standard Notation in Coordinate Descent. Let e; denote the unit vector along coordinate
(in our context, price) j. A function F is L-Lipschitz-smooth if for any p,Ap € R,
IVF(p+Ap)—VF(p)| < L-||Ap||. For any coordinates j, k, a function F' is L;j-Lipschitz-
smooth if for any p € R” and r € R, |V F(p+1r-e;) — Vi F(p)| < Lji-|r|. Also, as is
standard, L; denotes L;;.

3 Key Ildeas and Lemmas

For simplicity, we assume that at any particular time ¢, there is at most one update to one
good. In general, since there is no coordination between price updates of different goods, it
is possible that the prices of two goods are updated at the same moment; but by using any
arbitrary tie-breaking (perturbation) rule, our analysis extends to such cases.

Recall update rule (2). For the purposes of our analysis, for each update we now need
to know the elapsed time since the previous update to the same coordinate, or since time
0 if it is the first update to that coordinate; for the update at time 7, we denote this by
At.. As explained in [19], in the Ongoing market model, all the sellers need to know is the
size of their warehouse stock at the times of the current update and the previous update,
which seem to be very natural information. We let c;(7) denote the time of the most recent
update to p; strictly before time 7, or time 0 if there is no previous update to this price. We
let a(7) denote the time of the most recent update to any price strictly before time 7, or
time 0 if there is no previous update to any price. And we let 6, := 7 — «(7), the elapsed
time since the most recent previous update to any price.

Suppose there is an update at time t. We let pi, denote the price updated at time t,
we let pi,t denote its updated value, and p’,: its value right before this update; note that
p}: = pzt(t) = p’,i,;‘s‘. Let Apj, :=pj, — pZ? Also, we let Zj, denote the value of the excess
demand used in the update to price py, at time ¢. Finally, we let I'}, := max{1, Z,‘;t}/()\p}:)
Then update rule (2) can be rewritten in the following form:

PR o
k¢

In our analysis, when we write ) __;, where I is a time interval, the summation is
summing over all updates that occurred in time interval I.

Let 2z} be the instantaneous excess demand for good k right before a price update at
time t. We note that 2} = —V;¢(p®"). For each update 7, let 27 and z,rfin’T denote
the maximum and minimum of accurate excess demand values of good k in the time interval
(ak, (1),7).

We also need to define local Lipschitz parameters: Lﬁ“’”] is an upper bound on the
Lipschitz gradient parameter L, of the function ¢ within a rectangular hull of those prices
which might appear in the time interval [r,,75]. Observe that in update rule (2), since
lmin{Z;,1}| < 1 always, the above-mentioned rectangular hull is finitely bounded, and
furthermore, it shrinks as A gets smaller.

We use the following three lemmas. Lemma 3 is modified from a standard lemma in
coordinate descent to accommodate local Lipschitz gradient continuity. Lemma 4 is a direct
consequence of the Power-Mean inequality. Lemma 5 is a simple algebra exercise. See the
full version for the missing proofs.
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» Lemma 3. Suppose there is an update to coordinate k; at time t according to rule (2), and
suppose that X < 1/10. Recall that Zy, is the value used in applying rule (2). Then

Ft (Apt )2 1
t t ke K+ ¢ N2
o ) —op) = i - N (2, = 2,) " 1A
» Lemma 4. Suppose that wy,ws, - ,we and Y1, Y2, -+ ,Ye are non-negative numbers. Then

(Zﬁ:l wjyj>2 < <Z§:1 wj) <Z§:1 w;j - (yj)Z)-

» Lemma 5. In Lemma 3, suppose that Z, were used instead of Z, in update rule (3), but
with cht unchanged. Let the new Apy, value be A’pzt. Then

(Aph,)* _ Th  (Am,)° 1

rt . _—
BeOAt T2 At i

(Zn, — 2,)% - At

i, (Ap)?

In the RHS of the inequality in Lemma 3, we call the first term, —* - —x3—, a progress
term, and we call the second term, —ﬁ . (z,it — Zkt)Q -|At|, an error term. The progress term

is cut into two halves. The first half will be used to demonstrate progress of the convergence,

while the second half will be saved to compensate for the error terms in subsequent updates.

Accordingly, we design a potential function ®(¢) of the form ®(¢) := ¢(p?) + A(t), where
A(t) > 0 for all t and A(0) = 0. We call A(t) the amortization bank; its purpose is to save
portions of the progress terms for future compensations.

By showing that ®(t) reduces by a constant fraction ¢ in every O(1) time units, we can
deduce that ¢(p?) < ®(t) < ®(0) - (1 —£)°® = ¢(p°) - (1 —)®®), as desired.

We define the function A(t) as follows:

T AT 2
S Y a+uEkn) - LT o (Ark)”
T Py AtT
re(t—1,t] k#k, ~

where ¢; > 0 is a constant we will determine later, and E(k, 7,t) denotes the event that price
k is not updated during the time interval (7,¢].
4  Analysis

Suppose there is an update at time ¢ > 2. We let ¢, denote the time of the latest update
strictly before time (¢t — 2), if any; otherwise, we let ¢, = 0. We let ¢, denote the time of the
earliest update in the time interval [t — 1,¢]. By Lemma 3,

Y (@) - ()]

TE(ta,t]

v

- — (2. — %) At

7 A
[ SN /S T At - A)
At, I7

—

At Iy k. k., + A(ta) — A(t). (4)

*) FT A 1 . i
2 Z [ ( pk ) (zmax,r _ Zmln,T)Q . At-,—
TE(ta

Inequality (*) holds because in the tatonnement setting, both the accurate excess demand

max,T m1n T

2y, and the inaccurate excess demand zj must lie between z; " and z;
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For any v € (ag,(7),7), let A'p} denote the Apj,_ value if there were an update at time
v to price py, using the accurate excess demand zj/ . By Lemma 5, for each 7 € (ta,t],

L (ApL)?
8 At
7 ApY 2
=z Z P 4( pkf) . Oy 1 v 5T

2
_ .5,
6 A, A 8y ke )

ve(max{tq,ar, (1)},7]

e (AP, )? 1 ~
r r . 61, o . max,7 _ _ min,T 2.
16 > (At, )2 STT (2, ) (5)

ve(max{tq,or, (7)},7]

-

For any k and any time v, let S (v) denote the time of the earliest update to price k on
or after time v. Combining (4) and (5) yields

> [@(a(r) — ()]

TE(ta,t]

Iy (A'pp)?
2. D 16 (At,)? K

TE(ta,t] vE(max{ts,ak, (7)},7]

v

FZ (Ap; )2 9 max,T min,T
+o YD R LA - AR | - YD (T = )
8 At 8I'7
TE(ta)t] TE(tast] i
Fﬁk(l’) (A/ ) 9 s
2ig X G gt S )
Br (v k
VE(ta,tb] k=1 TE(tq,t] T
Iy (Apf))?
| D At Alta) - AW
TE(ta,t] T
T (A 9 4
> Z 5, Z % + ez Ala(v)| — Z (e Z}T:n,f)z
—  (Atg) 87,
VE(ta,tp] k=1 TE(ta,t]

I ApT 2

| Y E R ) - aw - 2% s aeon |
TE(ta,t] VE(tq,ts]

for some small constant ¢y > 0 we will determine later.

In [13], it was proved that the function ¢ is strongly convex in any region bounded away
from zero prices, and that the maximum I' value throughout the tatonnement is upper
bounded by a finite constant which depends on the starting price p°.> We denote the finite
upper bound on all I'’s by T, and the strong convexity parameter of ¢ by i, which also
depends on the starting prices. We let € = pg /T. Then it is a standard fact in optimization

that
n o =Be(V) At v\2 n n
Iy (A'py) 1 2 1 2
~ D) _ - > = > - p(p*¥)).
” 2y)
;; (Atp(w))? ;ka“ ,;F

5 Their argument concerned the synchronous setting, but it can be reused without change for the
asynchronous setting.
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Setting ¢’ = min{e, c3}/16 yields

Y [@(a(m) — ()]

Te(ta»t]
9 max,T min, T
> Y 6 daw) - Y qe (AT =)
VE(tayts] T€(ta 1] ks
7 (Ap‘r )2 c
LY e A’;T + Alte) — A(t) — 1—26 > 6, Ala(v) (6)

TE(ta,t] VE(ta,ts]

In the subsections below, we will prove that for a suitable choice of the I" parameters
and ¢y, ¢, the final two terms of (6), in sum, are non-negative. Also, we will show that & is
decreasing over time. With these, the above inequality implies that

Yo [@am)—em)] =& Y b -eaw)

TE(ta,t] VE(ta,tp)

> & - (1),

and hence ®(t) < ta + ¢'). By iterating this (note that t > t, >t — 3), we obtain
dh (0] P 1 N. By i i hi h 3 btai
¢(p") < @(t) < (14&) WPV 9(0) = (1+&) 1. ¢(p),

thus demonstrating linear convergence.

4.1 & is a Decreasing Function

For any time 7 at which there is an update, by Lemma 3 and the definition of A, we have

_ 2
r7 (App)? 1, vot1] Ph. (AP}
= 4 TAL F(ZkT_ZkT)Q'AtT +tea Yy Evk e At,
T kr ve(ok, (1),7) kv v
2
7,7+1] p (APET)
=20y LR Tk— AL
k#k. P, T
Next,
( max,T mi]ﬂ,‘r‘)2
2. — 2.
2
< S A,
ve(ag, (1),7)
= Z (LECUA,TA At _) . <|Apzy/‘ V:)
ve(ak, (1),7) . pkr At” pk;/
V— v 2
(v,7] pk vl Pk, (Apkv)
< > Lk AL o > Lk m R
ve(an, (1),7) k) \vetar ()7 kv Y
(by Lemma 4)
- b \2
g, (7),7 v,v+1 pk.r (Apku)
< >ooon A R AL (7)
ve(ag, (1),7) kT ve(ag, (1),7) ky v
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Combining the above two equations and recalling that At, <1 yields

P(a(r)) - @(7)

v

Apr )?
~on 3 af 2 ) B
k#k, P, T

1 « T), T
P Z ka;(),].Atu.pﬁ

T vy T
kr ve(ag, (1),7) Py,

_ 2
vwt1] Pe. (Ap;
S gl e (B) A’;v) : (8)
ve(ag, (1),7) Py, v

Thus, for ® to be decreasing, we impose the following conditions (the second one is
stronger than what is needed at this point):

T, T T 2 T),T 8
7 > 8 Y LY. pT—’g and TL > — 3 rlen@7ag, B )

k#k, kr 1 ve (o, (1),7) pkﬂ'

4.2 The Sum of the Last Two Terms in (6) is Non-negative

It remains to show that the sum of the last two terms in (6) is non-negative, i.e.,

> %k (Ai’ik_f S 6, A(() + Alta) - A1)

TE(ta,t] VE (ta,tp]

9 max,T min,T
> > TR Cu )2. (10)

TE(ta ] Kr

We first simplify the LHS using the definition of A:

IT. (App)?
> = At T 16 Z 5, Ala(v)) + A(ta) — Alt)
TE(ta,t] ue(tmtb]
> FET (APE,)Q C2 4 Luu+1 Dy (Apzy)Q
> D N AL 6 2 e AL
TE(ta,t] vE(ta—1,tp) k#k, Ky
2
, wory pf (APE)
v Y s B O
VvE(ta—1,ta] k#k, ku
2
Vl/+1 Z (Apz,,)
— 2 Y > L AL
ve(t—1,t] k#k. k.
> C1C2 L v l/+1] pk; (APZV ) ’
= (Cl_ 4) >, 2 - At
vE(ta—1,t,] k#ky k,,
Iy, c1C2 rr+1] Pi (App.)?
£ 2| () 3ot e S0
TE(ta,t] ktk, -

By imposing the requirement that I', > 8cz >, 2k, LLTT”T,CH] : p’i , for some constant

o
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c3 > 0 which we will determine later, we obtain

7 (A
3 g(i’]’; 203 6 AWE) + Alt) - A

TE(ta,t] ue(t Jt]

e c A T \2
> mm{clfcg,%iﬂ,gq}. DI dne {k_ %_
r€(ta—1,t] k#ks kr T

On the other hand, by (7) and by the second condition imposed in (9),

2
9 max,T min, T 901 v,v+1 pk (APZU)
P C e SN D DENNED DI St i
TE(ta,t] kr TE(ta,t] ve(og, (1),7) pku v
2
D S
= 16 Ly, == -
16 TE(ta,t] vE(ag, (T),7) Dy, At,
v )2
IR
16 ve(ta—1,t] ktk, Pk, ty

By the above two inequalities, to satisfy (10), it suffices to have 91661 < min{ c1— 42,

c3 — A2 =20 } There are multiple possible choices for ¢, c2, c5. We choose ¢3 = 21¢1/8

and ¢ = 1/4. To summarize, we need the I' parameters to satisfy

T [ 2 o T),T c
L > 200y LG 2 and TR > S0 3 L Loat, P )
kkr Pk, L ve(an, (1)) Pk,

Our remaining tasks are to derive upper bounds on the two summations in (11).

4.3 Upper Bounds on the Local Lipschitz Parameters, and
Determining the I''s

Suppose in a Fisher market with buyers having CES utility functions, each buyer i has a
budget of e;, and her CES utility function has parameter p;. For each 4, let 6; := p; /(p; — 1).
As we have discussed in Section 2, at any given price vector p € R}, buyer ¢ computes
the demand-maximizing bundle of goods costing at most e;; we let 2;,(p) denote buyer 4’s
demand for good £ at price vector p.

In a Fisher market with buyers having complementary-CES utility functions, the following
properties are well-known. (See [14].)
1. For any k # j,

62¢ ‘ _ < 91 xij( xzk: - xzk )
‘3171' op )| = ; e ; '

2. Given positive price vector p, for any 0 < r; < rg, let p’ be prices such that for all £,
ripe < py < rape. Then for all £, Lay(p) < ze(p') < Fxe(p).

» Lemma 6. If the parameter A in update rule (2) is at most 1/10, then

DRGNS Pk oo T (PTT)
Kk, v pZT Dy
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and

Z L[“’“*(T)’T]Atu.% < 268*(A+1).x7kf(p7_).

ky kor P
ve(a, (7),7) Py Pk,

Proof. Let M = 2A(A+ 1). Since A < 1/10, it is easy to observe that for any v € [1,7 + 1]
and for any k (including coordinate k),
e prn < pp < e “pr (12)

on noting that the At, terms span up to 2 time units.
Accordingly, let P := {(ﬁl,p'z, <o Pn) ‘Vk‘ e [n], e o < P < et PR } . Then,

T, T pT 1 aZ(b ~ T
Z LL,,kﬂ]'p% < Z (max D)) pi

k#k- kr p;: ktk, peP | Opr, Opy
1 m N, T=\Y . (N o (T —
< —= Z Z (e zik, (P77)) - (e zik(P™7)) L (by Properties 1 and 2)
P, izk, i=1 €i
(13)
2\ m T— T—
e - zik(P™") - P,
< - (pT /
> pZ, Z Tik, (p ) Z e;
.=l Kb
62)\/ m
< o Z Tk, (P77) (the second summation < 1, due to the budget constraint)
kr =1
—
= 2. ’“;)(Tp_ ). (14)
ke

For the time range v € [ay. (7), 7], inequality (12) also holds. Thus,

> LA e

p
ve(ak, (7),7) Pher
< - Z SRR S o
< —= Ky For v Py,
ka ve (o, (1),7)
e oy (7] oo
< = > LU DL A
Dy, k#k, ve(ay, (7),7)
k=Fk
< 2 S oL bserve that the Y At is at 2
< —= koo “pr - (observe that the Z » term is at most 2)
Pk, pzr, v
The summation Zk;&k, LLO‘Z: ()] -py._ above can be bounded as in (14), yielding an upper
bound of €2’ - z;._(p™7). <

To conclude, by (11) and Lemma 6, it suffices to have:

4 =
-max{l,%,} = I, > max {210164>\(>\+1) . — .GSA(A+1)} ) M7

1
Apy.- ¢l Pr.
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or equivalently, \-max {21016‘”‘()‘“) , é . 68/\()‘+1)} < %ﬁf"f)}. The minimum possible

value of the RHS above is 1/(2e2*(*+1)). Thus, we need that

A - max {420166)\(A+1) , 8 ~elo>‘(/\+1)} < 1.

C1 -
We choose ¢; such that the two parameters in the max are equal, i.e., ¢; = \/% - e2AAD),

Then the above inequality reduces to 4v/21 - X - 82O+ < 1; X < 1/25.5 suffices.
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