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Abstract
In this paper, we propose to study a new geometric optimization problem called the “geometric
prototype” in Euclidean space. Given a set of patterns, where each pattern is represented by
a (weighted or unweighted) point set, the geometric prototype can be viewed as the “average
pattern” minimizing the total matching cost to them. As a general model, the problem finds
many applications in real-world, such as Wasserstein barycenter and ensemble clustering. The
dimensionality could be either constant or high, depending on the applications. To our best
knowledge, the general geometric prototype problem has yet to be seriously considered by the
theory community. To bridge the gap between theory and practice, we first show that a small core-
set can be obtained to substantially reduce the data size. Consequently, any existing heuristic
or algorithm can run on the core-set to achieve a great improvement on the efficiency. As a new
application of core-set, it needs to tackle a couple of challenges particularly in theory. Finally,
we test our method on both image and high dimensional clustering datasets; the experimental
results remain stable even if we run the algorithms on core-sets much smaller than the original
datasets, while the running times are reduced significantly.
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1 Introduction

Given a set of points in Euclidean space, we can easily use the geometric mean or median
point to represent them. However, if they are replaced by a set of point sets where each
point set denotes a “pattern”, the problem of finding their representation will be much more
challenging. We call it the “geometric prototype” problem. Before introducing its formal
definition, we need to define the matching cost between two patterns first.
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I Definition 1 (M(A,B)). Given two point sets A = {a1, a2, · · · , ak} and B = {b1, b2, · · · ,
bk} in Rd,

M(A,B) = min
π∈Π

k∑
j=1
||aj − bπ(j)||2 (1)

where Π contains all the possible permutations of {1, 2, · · · , k}.

M(A,B) is in fact the problem of geometric matching which can be optimally solved
by the Hungarian algorithm [16]. When the dimensionality is constant, a number of effi-
cient approximation algorithms have been developed in past years (see more discussion in
Section 1.1).

I Definition 2 (Geometric Prototype). Given a set of point sets P = {P1, P2, · · · , Pn} with
each Pi containing k points {pi1, pi2, · · · , pik} ⊂ Rd, the geometric prototype is a new point
set g(P) having k points such that

n∑
i=1
M(Pi, g(P)) (2)

is minimized. Note that g(P) can be a new pattern not from P. Also, any k-point set
achieving at most c times the minimum value of (2) is called a c-approximation with ∀c ≥ 1.

I Remark. It is easy to see that when k = 1, the geometric prototype is simply the mean
point. Actually, the problem of geometric prototype can be viewed as a “chromatic k-means
clustering”. The kn points of ∪ni=1Pi form k clusters where the k points of each Pi should be
assigned to the k clusters separately; to minimize the objective function (2), the k points of
g(P) should be the mean points of the resulting clusters.

In Definition 2, the dimension d could be either constant or high depending on the
applications, and n usually is large (k could be not constant, but often much smaller than
n in the applications). To our best knowledge, the general geometric prototype problem
has never been systematically studied in the area of computational geometry (except some
special cases; see Section 1.1), but finds many real-world applications recently. Below, we
introduce two important applications in low and high dimension, respectively.

(1) Wasserstein Barycenter. Given a large set of images, finding their average yields
several benefits in practice. For example, if all the images are taken from the same object
but have certain extents of noise, their average image could serve as a robust pattern to
represent them; also, this is an efficient way to compress large image datasets. In computer
vision, Earth Mover’s Distance (EMD) [39] is widely used to measure the difference between
two images; the average image minimizing the total EMDs to all the images is defined as
the Wasserstein Barycenter [9, 10,17,29,46]. In addition, Ding and Xu [20,24] considered
the case allowing rigid/affine transformations for each image. Wasserstein Barycenter can
also be applied to Bayesian inference [43]. Note that the geometric prototype defined above
is not exactly equivalent to Wasserstein Barycenter, because the latter one requires each
point having a non-negative weight and EMD is to minimize the max flow cost; however, the
techniques proposed in this paper can be easily extended to handle EMD and we will discuss
it later.
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Figure 1 d = 10 and k = 3. The three clusters are mapped to 3 binary vectors in R10.

(2) Ensemble Clustering. Given a number of different clustering solutions for the same
set of items, the problem about finding a unified clustering solution minimizing the total
differences to them is called ensemble clustering [28]. This problem has attracted a great
deal of attention, especially for the applications in big data and crowdsourcing [27,35,42,44].
For example, due to the proliferation of networked sensing systems, we can use a large
number of sensors to record the same environment and each sensor can generate an individual
clustering for the same set of objects. However, most of existing approaches rely on algebraic
or graphic models and need to solve complicated optimizations with high complexities (such
as semi-definite programming [42]).

Recently, Ding et al. [22] presented a novel high dimensional geometric model for the
problem of ensemble clustering: suppose there are d items and each clustering solution has
k clusters on these items (if less than k, we can add some dummy empty clusters); then,
each single cluster is mapped to a binary vector in Rd where each dimension indicates the
membership of an individual item (see Figure 1); so each clustering solution is mapped to
a k-point set in Rd; the size of the symmetric difference between two clusters is equal to
their squared distance in Rd, and thus the difference between two clustering solutions is
always equal to half of their matching cost (Definition 1) in Euclidean space. Therefore,
finding the final clustering solution minimizing the total differences to the given solutions is
equivalent to computing the geometric prototype of the resulting k-point sets in Rd. Please
find more details in [22]. Note that the obtained geometric prototype may result in fractional
clustering memberships, because the points of the geometric prototype are not necessarily
binary vectors. So the approximation result in [22] does not violate the APX-hardness for
strict ensemble/consensus clustering [11]. Actually fractional clustering memberships are
acceptable and make sense in practice; for instance, we may claim that one object belongs to
class 1, 2, and 3 with probabilities of 70%, 20%, and 10%, respectively.

1.1 Our Main Contributions and Related Work
Due to the non-convex nature of the geometric prototype problem, most of the aforementioned
approaches for Wasserstein barycenter [9,10,17,29,46] and large-scale ensemble clustering [22]
are iterative algorithms, such as alternating minimization and Alternating Direction Method
of Multipliers (ADMM) [12], which can converge to some local optimums. Those approaches
could be very slow for large datasets, because they may run many rounds and each round
usually needs to conduct some complicated update or optimization. This is also the main
motivation of our work, that is, replacing the original large input by a small core-set to speed
up the computation of existing algorithms.

In this paper, our contribution is twofold in the aspects of theory and applications. In
theory, we show that a small core-set can be obtained for the problem of geometric prototype.
More importantly, our core-set is independent of any geometric prototype algorithm; namely,
we can run any available algorithm as a black box on the core-set, instead of the original
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instance P, to achieve a similar result. Although core-set has been extensively studied for
many applications before [3,38], we still need to tackle several significant challenges when
constructing the core-set for geometric prototype. In practice, we test our method for solving
the applications Wasserstein barycenter and ensemble clustering. The experiment shows that
running the existing algorithms on core-sets can achieve almost the same results while the
running times are substantially reduced.

Related work. The general geometric prototype problem has yet to be seriously considered
by the theory community (to our best knowledge), however, some special cases were studied
before. Based on the remark below Definition 2, we know that finding the geometric prototype
is also a chromatic clustering problem. Motivated by the application of managing traffic
flows, Arkin et al. [8] studied a variety of chromatic 2-center clustering in 2D and gave
both exact and approximate solutions. In addition, Ding and Xu [23,25] studied chromatic
clustering in high dimension; however, their method assumes that k is constant and thus it
is unable to be extended to our general geometric prototype problem.

Computing the geometric matchingM(A,B) is a sub-problem of geometric prototype.
Besides the Hungarian algorithm [16], the computational geometry community has extensively
studied its approximation algorithms for the case in constant dimension [2, 4, 7, 40,41], and
some of them can achieve nearly linear running time.

The rest of the paper is organized as follows. First, we introduce some basic results and
useful tools in Section 2. Then we show our core-set construction and analysis in Section 3.
Finally, we implement our algorithm and test it on multiple datasets in Section 4. Due to
the space limit, we omit some proofs and the reader can find more details in the full version
of our paper [21].

2 Preliminaries

The hardness. Actually, we are able to show that finding the optimal geometric prototype
of a given instance is NP-hard and has no FPTAS even if k = 2 in high dimensional space,
unless P=NP. Our proof makes use of the construction by Dasgupta for the NP-hardness
proof of the 2-means clustering problem in high dimension [18].

The following lemma, which can be easily obtained via Definition 1, is repeatedly used in
our analysis.

I Lemma 3. Given three k-point sets A, B, and C in Rd,

M(A,B) ≤ 2M(A,C) + 2M(C,B). (3)

Using Markov inequality and Lemma 3, Ding et al. [22] showed that a constant approx-
imation can be achieved with constant probability.

I Theorem 4 ( [22]). Let α > 1. Given an instance P of the geometric prototype problem, if
we randomly pick a point set Pi0 from P, then with probability at least 1− 1

α ,M(Pi0 , g(P))
is no larger than α

n

∑n
i=1M(Pi, g(P)) and Pi0 yields a (2α+ 2)-approximation.

I Remark. To boost the success probability, we can try multiple times and select the one
yielding the lowest objective value. For example, if we try t times, the success probability
will be 1− 1

αt .

According to Theorem 4, the selected Pi0 could serve as a good initialization for the
geometric prototype. To further improve the approximation ratio, the algorithm in [22]
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adopts a simple alternating minimization procedure, i.e., alternatively updating the prototype
and matchings round by round. The main drawback of this algorithm is that it needs to
repeatedly compute the matchings between the prototype and all the given point sets in each
round, and thus the running time is high especially when some or all of n, k, and d are large
(as discussed at the beginning of Section 1.1).

In addition, we are able to apply the well known Johnson-Lindenstrauss (JL) lemma [1]
to reduce the dimensionality before running the algorithm; also, the obtained geometric
prototype in the lower dimension can be efficiently mapped back to the original space [22].

I Theorem 5 ( [22]). Let 0 < ε < 1 and c ≥ 1. Suppose we randomly project a given instance
P of the geometric prototype problem from Rd to RO(log(nk)/ε2) and obtain a new instance P′
in the lower dimension. Then, with high probability, we can convert any c-approximation for
P′ to a c( 1+ε

1−ε )
2-approximation for P in Rd, in O(nkd) time.

The following lemma is a key tool in our analysis. In fact, it can be viewed as an
interesting supplement of Lemma 3.

I Lemma 6. Let A, B, and C be three k-point sets in Rd. Then for any ε > 0,∣∣∣M(A,B)−M(A,C)
∣∣∣ ≤ (1 + 1

ε
)M(B,C) + εM(A,B) (4)

3 Core-set for Reducing the Data Size

Langberg and Schulman [32] introduced a framework of core-set (it was called “ε-approximator”
in their paper) to compress data for several geometric shape fitting problems; further, Feldman
and Langberg [26] improved the core-set size for a large class of clustering problems. Here, we
consider constructing a core-set of the instance P so as to reduce the data size and running
time. Formally, our objective is to find a small sample S ⊂ P and assign a weight wl for each
Pl ∈ S, such that for any k-point set Q ⊂ Rd,∣∣∣ ∑

Pl∈P
M(Pl, Q)−

∑
Pl∈S

wlM(Pl, Q)
∣∣∣ ≤ O(ε)

∑
Pl∈P
M(Pl, Q) (5)

with certain probability and small enough ε > 0. Moreover, we want to keep each weight wl
to be non-negative so as to easily run any existing algorithm or heuristic on the core-set.

Unfortunately, we cannot directly apply the existing ideas to the problem of geometric
prototype, because the points from ∪ni=1Pi are not independent from each other (due to the
matching constraint in Definition 1; also see our remark below Definition 2) and it would
be much more challenging to build the connection between the sampled core-set and P.
Instead, we regard each Pi as an “abstract point” and compute a core-set on these n abstract
points. Though these abstract points can form some metric space with the matching costs
being their pairwise (squared) distances, it is still quite different to metric clustering studied
by [14, 26, 32], since the prototype g(P) is not necessarily from P and could appear anywhere
in the Euclidean space.

Conceptually, the core-set construction is a random sampling process: first, compute an
upper bound on the sensitivity σP(Pi) of each Pi (we will formally define the sensitivity later);
then take a sample from P with probabilities proportional to σP(Pi) to form the core-set. To
implement this construction, we have to develop new ideas for resolving the following two
issues. (I) How to compute σP(Pi), or its upper bound, so as to generate the probability
distribution for sampling. (II) What sample size is needed to ensure our core-set yields a
sufficient approximation. We consider these two issues in Section 3.1 and 3.2, respectively.

ESA 2018
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The final result for core-set construction of geometric prototype is presented in Theorem 13.
We also discuss some extensions on other metrics (e.g., l1 norm and earth mover’s distance)
and the time complexity in Section 3.3 and 3.4, respectively.

3.1 Solving Issue I
Following [32], the sensitivity of each Pi ∈ P is defined as follows:

σP(Pi) = supQ
M(Pi, Q)∑
Pl∈PM(Pl, Q) (6)

where Q is restricted to be k-point set in Rd. Intuitively, the sensitivity measures the
importance of each Pi among all the patterns of P. Directly obtaining the value of σP(Pi)
could be challenging and also needless, thus we often turn to compute an upper bound for it.

Recall that g(P) is the optimal geometric prototype of P, and let ∆ =
∑
Pl∈PM(Pl, g(P))

for convenience.

I Lemma 7. For any Pi ∈ P, σP(Pi) ≤ 2M(Pi,g(P))
∆ + 16

n .

Proof. First, we consider M(Pi,Q)∑
Pl∈P

M(Pl,Q)
with a fixed Q in (6). Through Lemma 3, we know

that the numeratorM(Pi, Q) is bounded by 2M(Pi, g(P))+2M(g(P), Q). Then, we consider
two cases: (1) M(g(P), Q) ≤ 8

n∆ and (2) M(g(P), Q) > 8
n∆.

Since ∆ ≤
∑
Pl∈PM(Pl, Q), we directly have

M(Pi, Q)∑
Pl∈PM(Pl, Q) ≤ 2M(Pi, g(P)) + 2M(g(P), Q)∑

Pl∈PM(Pl, Q)

≤
2M(Pi, g(P)) + 16

n ∆
∆

= 2M(Pi, g(P))
∆ + 16

n
(7)

for case (1).
Now, we assume that case (2) is true. Denote by P′ the set {Pl ∈ P | M(Pl, g(P)) ≤ 2

n∆},
and Markov inequality implies |P′| ≥ n

2 . Applying Lemma 3 again, we have∑
Pl∈P
M(Pl, Q) ≥

∑
Pl∈P′

M(Pl, Q) ≥
∑
Pl∈P′

(1
2M(g(P), Q)−M(g(P), Pl)

)
≥

∑
Pl∈P′

(1
2M(g(P), Q)− 2

n
∆
)
≥ n

2

(1
2M(g(P), Q)− 2

n
∆
)

= n

4M(g(P), Q)−∆. (8)

As a consequence,

M(Pi, Q)∑
Pl∈PM(Pl, Q) ≤

2M(Pi, g(P)) + 2M(g(P), Q)
n
4M(g(P), Q)−∆ . (9)

Since bothM(Pi, g(P)) and ∆ are independent of Q, the right-hand side of (9) can be viewed
as a function onM(g(P), Q). Through a simple calculation and the assumption of case (2)
(i.e.,M(g(P), Q) > 8

n∆), we know that it is always less than 2M(Pi,g(P))
∆ + 16

n .
Overall, we have σP(Pi) ≤ 2M(Pi,g(P))

∆ + 16
n for both cases. J
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However, only Lemma 7 is not enough to compute the upper bound for σP(Pi), because
neitherM(Pi, g(P)) nor ∆ is known. Therefore, we need to compute an approximation to
replace the upper bound given by Lemma 7.

I Lemma 8. Suppose Pi0 is randomly picked from P, and let ∆̃ =
∑
Pl∈PM(Pl, Pi0) and

α > 1. Then with probability 1− 1
α , for all 1 ≤ i ≤ n, σP(Pi) ≤ 8(α+ 1)M(Pi,Pi0 )

∆̃ + 4α+16
n .

Proof. According to Theorem 4, we know thatM(Pi0 , g(P)) ≤ α
n∆ and ∆̃ ≤ 2(α+ 1)∆ with

probability at least 1− 1
α . Then we have

σP(Pi) ≤ 2M(Pi, g(P))
∆ + 16

n
≤ 4M(Pi, Pi0) + 4M(Pi0 , g(P))

∆ + 16
n

≤ 4M(Pi, Pi0)
1

2(α+1)∆̃
+ 4M(Pi0 , g(P))

∆ + 16
n

≤ 8(α+ 1)M(Pi, Pi0)
∆̃

+ 4α+ 16
n

, (10)

where the first inequality comes from Lemma 7. So the proof is completed. J

Lemma 8 indicates that once Pi0 is selected, we can obtain an upper bound for each
σP(Pi) by computing the valuesM(Pi, Pi0) and ∆̃.

3.2 Solving Issue II
Let tP(Pi) and T denote the obtained upper bound of σP(Pi) from Lemma 8 and their sum,
respectively. It is easy to know that T =

∑
Pi∈P tP(Pi) ≤ 8(α+ 1) + 4α+ 16 which is constant

if α is constant. For the sake of simplicity, we always assume T = O(1) in our analysis below.
We have the following theorem from [32,45] (we slightly modify their statements to fit

our problem better).

I Theorem 9 ( [32,45]). Let Q be any fixed k-point set in Rd. i. If we take a sample Pi from
P according to the distribution tP(Pi)

T , the expectation of T
tP(Pi)M(Pi, Q) is

∑
Pl∈PM(Pl, Q).

ii. If we take a sample S of size of r from P according to the same distribution, and let ε > 0,

Pr

[∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣ ≤ ε∑
Pl∈P
M(Pl, Q)

]
≥ 1− 2e−

2rε2
T2 . (11)

In particular, (11) is an application of Hoeffding’s inequality because each T
tP(Pi)M(Pi, Q) is

a random variable between 0 and T
∑
Pl∈PM(Pl, Q) (see Lemma 2.2 of [45] for more details).

Moreover, (11) shows that the sample S together with the weight wl = 1
r

T
tP(Pl) for each Pl ∈ S

will form a core-set of P with respect to the fixed Q (see (5)). But (5) should hold for an
infinite number of possible candidates for the geometric prototype, rather than one single Q,
in the space. Hence, we need to determine an appropriate sample size (i.e., issue (II)).

Our basic idea is to discretize the space and generate a finite number of representations
for them; then we can take a union bound for the final success probability through (11).
Note [45] also used discretization to determine the sample size for projective clustering
integer points; but our idea and analysis are quite different due to the different natures of the
problems. Also, [26,32] defined the “dimension” of the clustering problems so as to bound
their sample sizes. Here, we avoid using their approach due to two reasons: first, it will be
very complicated to define and compute the dimension of the geometric prototype problem;
second, the framework in [26] would result in a more complicated sampling process and
even may cause negative weights, however, we prefer to keep our sampling process simple

ESA 2018
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as described in Theorem 9 (especially when using any available algorithm or heuristic as a
black box on the core-set). We elaborate on our analysis below.

By Theorem 4, we assume that a randomly picked Pi0 yields a (2α+ 2)-approximation
and denote by L the resulting cost

∑
Pl∈PM(Pl, Pi0). The following lemma reveals that we

just need to consider the k-point sets which are not too far from Pi0 .

I Lemma 10. For any k-point set Q withM(Q,Pi0) > 4L
n , the resulting cost

∑
Pl∈PM(Pl, Q)

is always higher than
∑
Pl∈PM(Pl, Pi0).

Proof. Using Lemma 3, we have∑
Pl∈P
M(Pl, Q) ≥

∑
Pl∈P

(1
2M(Q,Pi0)−M(Pl, Pi0)) > 1

24L− L =
∑
Pl∈P
M(Pl, Pi0). (12)

So the proof is completed. J

Because we already have the initial solution Pi0 , we are only interested in the solutions
having lower costs. Thus, we focus on the k-point set Qs with M(Q,Pi0) ≤ 4L

n based
on Lemma 10. Let Q = {q1, q2, · · · , qk} ⊂ Rd and R = L/n. W.l.o.g, we assume the
induced permutation ofM(Q,Pi0) in Definition 1 is π(j) = j for 1 ≤ j ≤ k. The constraint
M(Q,Pi0) ≤ 4L

n directly implies that ||qj − pi0j || ≤ 2
√
R for each 1 ≤ j ≤ k. We use

B(x, ρ) to denote the ball centered at the point x with the radius ρ. Then we draw k balls
B(pi0j , 2

√
R) for each 1 ≤ j ≤ k; inside each ball, we build a uniform grid Gj with the grid

side length ε
√

R
kd . Let Γ be the Cartesian product G1×G2×· · ·×Gk. It is easy to know that

Γ contains O
(

( 4
√
kd
ε )kd

)
k-point sets in total. Therefore, we can apply (11) of Theorem 9 to

obtain a union bound over all the k-point sets of Γ (recall T = O(1)).

I Lemma 11. If the sample S in Theorem 9 has the size of O(kdε2 log kd
ε ), and each Pl ∈ S

has the weight wl = 1
r

T
tP(Pl) , then with constant probability the inequality (5) holds for each

Q ∈ Γ.

Next we consider the k-point set Q = {q1, q2, · · · , qk} /∈ Γ. Again, w.l.o.g, we assume
the induced permutation of M(Pi0 , Q) is π(j) = j for 1 ≤ j ≤ k. Also, due to our above
assumption, we know that each qj is covered by the ball B(pi0j , 2

√
R). To help our analysis,

we take its “nearest neighbor” from Γ, N (Q) = {N (q1),N (q2), · · · ,N (qk)} with each N (qj)
being the nearest grid point of qj in Gj . So we have

||qj −N (qj)|| ≤ ε
√
R

k
for 1 ≤ j ≤ k. (13)

For the sake of convenience, let X1 =
∣∣∣∑Pl∈PM(Pl, Q)−

∑
Pl∈PM(Pl,N (Q))

∣∣∣, X2 =∣∣∣∑Pl∈PM(Pl,N (Q)) − 1
r

∑
Pl∈S

T
tP(Pl)M(Pl,N (Q))

∣∣∣, X3 =
∣∣∣ 1r∑Pl∈S

T
tP(Pl)M(Pl, N (Q))

− 1
r

∑
Pl∈S

T
tP(Pl)M(Pl, Q)

∣∣∣. It is easy to see∣∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣ ≤ X1 +X2 +X3 (14)

where X2 is bounded by Lemma 11. So the remaining issue is to prove that the other two
items X1 and X3 in (14) are small as well. That is, Lemma 11 can be extended from N (Q)
to Q.
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Note X1 ≤
∑
Pl∈P

∣∣M(Pl, Q) − M(Pl,N (Q))
∣∣, so we consider each item

∣∣M(Pl, Q)
−M(Pl,N (Q))

∣∣ separately. Using Lemma 6, we have∣∣M(Pl, Q)−M(Pl,N (Q))
∣∣ ≤ (1 + 1

ε
)M(Q,N (Q)) + εM(Pl, Q). (15)

In addition, we haveM(Q,N (Q)) ≤ k
(
ε
√

R
k

)2
= ε2R by (13). Therefore, we have∣∣∣ ∑

Pl∈P
M(Pl, Q)−

∑
Pl∈P
M(Pl,N (Q))

∣∣∣ ≤ ∑
Pl∈P

∣∣M(Pl, Q)−M(Pl,N (Q))
∣∣

≤ (1 + 1
ε

)nM(Q,N (Q)) + ε
∑
Pl∈P
M(Pl, Q)

≤ O(ε)nR+ ε
∑
Pl∈P
M(Pl, Q)

= O(ε)
∑
Pl∈P
M(Pl, Q), (16)

where the last equality comes from nR = L which is a constant approximation of the optimal
objective value. (16) also implies that(

1−O(ε)
) ∑
Pl∈P
M(Pl, Q) ≤

∑
Pl∈P
M(Pl,N (Q)) ≤

(
1 +O(ε)

) ∑
Pl∈P
M(Pl, Q). (17)

Next, we consider the last item X3 in (14). It is a little more complicated because the
coefficient T

tP(Pl) could be large. We need the following lemma first.

I Lemma 12. For each Pl ∈ P, tP(Pl) > 1
4n .

Proof. Fix one Pl ∈ P. We select Pl′ that has the largest matching cost to Pl, i.e.,
M(Pl, Pl′) = maxPi∈PM(Pl, Pi), and set Q = Pl′ . Using Lemma 3, we have M(Pi, Q) ≤
2M(Pi, Pl) + 2M(Pl, Q) ≤ 4M(Pl, Q) for any 1 ≤ i ≤ n. Therefore, based on the fact
that tP(Pl) is the upper bound of σP(Pl) in (6), we know that it should be at least

M(Pl,Q)
(1+4(n−1))M(Pl,Q) >

1
4n . J

Using Lemma 12 and the same idea for (16), we have∣∣∣1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q))− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣
≤ 1

r

∑
Pl∈S

T

tP(Pl)

∣∣∣M(Pl,N (Q))−M(Pl, Q)
∣∣∣

≤ 1
r

∑
Pl∈S

T

tP(Pl)

(
(1 + 1

ε
)M(N (Q), Q) + εM(Pl,N (Q))

)
≤ max

Pl∈S
{ T

tP(Pl)
} · (1 + 1

ε
)M(N (Q), Q) + ε

1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q))

≤ O(ε)nR+ ε
1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q)), (18)

where the last inequality comes from Lemma 12 and T = O(1). In addition, Lemma 11
guarantees that ε 1

r

∑
Pl∈S

T
tP(Pl)M(Pl,N (Q)) = O(ε)

∑
Pl∈PM(Pl,N (Q)). Applying the
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triangle inequality (14) with the bounds (16), (17) and (18), we have∣∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣
≤ O(ε)

∑
Pl∈P
M(Pl, Q) +O(ε)

∑
Pl∈P
M(Pl,N (Q))

= O(ε)
∑
Pl∈P
M(Pl, Q). (19)

Consequently, we have the final theorem for core-set.

I Theorem 13. Let Pi0 be the k-point set randomly selected by Theorem 4, and S be the sample
from P according to the distribution tP(Pi)

T . If the sample S has the size of r = O(kdε2 log kd
ε )

and each Pl ∈ S has the weight wl = 1
r

T
tP(Pl) , then with constant probability the inequality (5)

holds for any k-point set Q ⊂ Rd withM(Q,Pi0) ≤ 4L
n .

Recall that Theorem 5 tells us that the dimension can be reduced by Johnson-Lindenstrauss
(JL)-transform. Thus, we directly have the following corollary.

I Corollary 14. Given a high dimensional instance P (e.g., d� logn, log k), we can obtain
a sample S having the size of Õ( kε4 ), where with constant probability the inequality (5) holds
for any k-point set Q ⊂ Rd withM(Q,Pi0) ≤ 4L

n . Õ(·) ignores the logarithmic factors logn
and log k.

3.3 Some Extensions

Here, we briefly introduce some extensions of our core-set construction on other metrics.
(1). Our core-set construction can be extended to l1 norm, i.e., the squared distances are
replaced by absolute distances in the matching cost (1). Actually, the analysis for l1 norm is
even easier than that for l2 norm, since we can directly use the triangle inequality rather than
Lemma 3 or Lemma 6 when solving the aforementioned two issues, bounding the sensitivities
and discretizing the space of candidates for geometric prototype.

A remaining issue for future work is that the dimension reduction result of Theorem 5
is not applicable to l1 norm, due to the fact that it is much harder to compute geometric
median (Fermat-Weber point) than mean point [15]. Fortunately, the high dimensional
application, ensemble clustering, mentioned in Section 1 only uses l2 norm, because the
symmetric difference between two clusters corresponds to their squared distance in the space.
(2). We can also consider the case with weighted point sets for both l1 and l2 norm, i.e.,
each point of Pi has a non-negative weight. To make the problem meaningful in practice,
we require that each Pi and the desired geometric prototype have the same total weight
W > 0; we can further assume W and all the weights are integers by scaling and rounding
in practice. Thus, the computation on the matching between two point sets becomes the
problem of earth mover’s distance (EMD) [39]. Fortunately, the triangle inequality still holds
for EMD because we assume they have equal total weight; as a consequence, we can bound
the sensitivities for issue (I). For issue (II), we still discretize the space and build the set of
k-point sets Γ with the same cardinality of the unweighted case; the only difference is that
we need to consider the total O(W k) possible distributions of the total weight W over the k
points of each k-point set, which increases the size of the core-set with an extra O(k logW

ε2 ).
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3.4 The Time Complexity
Suppose the complexity of computingM(A,B) is h(k, d), then the running time for computing
the core-set is simply O(h(k, d) · n) because we just need to compute eachM(Pi, Pi0) so as
to obtain the sensitivities for sampling (see Lemma 8). For simplicity, we can just use the
Hungarian algorithm [16] so that h(k, d) = O(k2d+ k3), where the term k2d is for building
the bipartite graph. In fact, this can be further improved by our following two observations.
First, we just need to know the matching costs, rather than the matchings, for computing
the upper bounds of the sensitivities in Lemma 8. Second, it is not necessary to always
have the optimal matching costs. For example, if we compute a valueM′(Pi, Pi0) for each
M(Pi, Pi0) instead, such thatM(Pi, Pi0) ≤M′(Pi, Pi0) ≤ cM(Pi, Pi0) with some constant
c ≥ 1, the resulting T and each tP(Pi) will increase by some appropriate constant factors
correspondingly; in other words, the sample size in Theorem 13 will increase by only a
constant factor. Some algorithms [13,30,31] are designed for approximately estimating the
matching cost, and their running times can be nearly linear if the dimension d is constant; in
practical fields, several heuristic algorithms [37] are also proposed for this purpose.

For the high dimensional case, we can apply JL-transform in advance, to reduce the
dimensionality to be O(log(nk)/ε2) (Theorem 5 and Corollary 14). A naive implementation
of the JL-transform by matrix multiplication has the complexity O

( 1
ε2nkd log(nk)

)
[19], and

several even faster and practical algorithms have been studied before [1, 6, 34].

4 Experiments

To show the advantage of using core-sets for the problem of geometric prototype, we study
the two important applications introduced in Section 1, Wasserstein barycenter and ensemble
clustering. For each application, we run the existing algorithm on the original dataset and
core-sets with different size levels. In general, our experiments suggest that running the
algorithm on a small core-set can achieve very close performance and greatly reduce the
running time. All of the experimental results were obtained on a Windows workstation with
2.4GHz Intel Xeon E5-2630 v3 CPU and 32GB DDR4 2133MHz Memory; the algorithms are
implemented in Matlab R2016b.

Wasserstein barycenter. MNIST [33] is a popular benchmark dataset of handwritten digits
from 0 to 9. For each digit, we generate a set of 3000 28× 28 grayscale images including 10%
noise (i.e., 300 images randomly selected from the other 9 digits). First, we represent the
28× 28 pixels by 60 weighted 2D points via k-means clustering [36]: group the pixels into 60
clusters and each cluster is represented by its cluster center; each center has the weight equal
to the total pixel values of the cluster. Therefore the problem of Wasserstein barycenter
becomes an instance of geometric prototype with n = 3000, k = 60, and d = 2.

Ensemble clustering. To construct an instance of ensemble clustering, we generate a
synthetic dataset of 2000 points randomly sampled from k = 50 Gaussian distributions in
R100; we apply k-means clustering 1000 times, where each time has a different initialization
for the k mean points, to generate 1000 different clustering solutions. According to the
model introduced by [22], each instance is a geometric prototype problem with 1000 different
50-point sets in R2000. We apply JL-transform to reduce the dimensionality from 2000 to
100, before constructing the core-set and running the algorithm; we just use the simplest
random matrix multiplication to implement JL-transform [19] (actually this step takes about
only 5% of the whole running time in the experiments).
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Figure 2 Normalized objective value. Figure 3 Normalized running time.

Figure 4 Percentage of misclustered items. Figure 5 Matching cost to ground truth.

For both applications, we construct the core-sets using the method in Section 3; we vary
the core-set size from 5% to 30% of the input size. To construct the core-set, we need to
compute the matching costM(Pi, Pi0) as discussed in Section 3.4: for the high dimensional
application (i.e., ensemble clustering), we just use the Hungarian algorithm [16]; for the
low dimensional application (i.e., Wasserstein barycenter), we use two existing popular
algorithms for computing EMD, Network simplex algorithm [5] and the heuristic but faster
algorithm FastEMD [37]. As the black box for computing the geometric prototype, we use
the alternating minimization approach [22]. For each application, we consider three criteria:
running time, objective value (in Definition 2), and difference to ground truth. For ensemble
clustering, we compute the percentage of misclustered items of the obtained prototype as the
difference to ground truth. For Wasserstein barycenter, since it is difficult to determine a
unique ground truth for each handwritten digit, we directly use the prototype obtained from
the original input dataset as the ground truth; then we compute its matching cost to the
prototype obtained from core-set, denoted by x, as well as the average matching cost over
the input images to the ground truth, denoted by Ave; finally, we obtain the ratio x/Ave. In
general, the lower the ratio x/Ave, the closer the obtained prototype to the ground truth
(comparing with the input images).

Results. For each application, we run 50 trials and report the average results. Figure 2
shows the obtained normalized objective values over the base line (i.e., the objective value
obtained on the original input dataset), which are all lower than 1.2; that means our core-sets
are good approximations for the original data. More importantly, the running times are
significantly reduced in Figure 3, e.g., for the core-set having 5% of the input data size, the
algorithm (containing the core-sets construction) only runs within 10%-17% of the original
time. In addition, our obtained prototypes are very close to the corresponding ground truths,
even for the core-set at the level 5%. Figure 4 provides the percentages of misclustered
items for ensemble clustering, which are around 8%-12%. Figure 5 shows the values of
x/Ave, which are around 0.25. For Wasserstein barycenter, we can see the Network simplex
algorithm and FastEMD algorithm achieve very similar qualities, but FastEMD only takes
about 60% of the running time of the Network simplex algorithm.



H. Ding and M. Liu 23:13

5 Future Work

Following our work, several interesting problems for geometric prototype deserve to be
explored. For example, is there any algorithm achieving a better approximation ratio than
Theorem 4? In addition, we leave the hardness for the low dimensional case of geometric
prototype as an open problem in future work.
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