
Online Makespan Scheduling with Job Migration
on Uniform Machines
Matthias Englert
DIMAP and Department of Computer Science, University of Warwick, Coventry, UK
m.englert@warwick.ac.uk

David Mezlaf
Department of Computer Science, TU Dortmund, Dortmund, Germany
david.mezlaf@tu-dortmund.de

Matthias Westermann
Department of Computer Science, TU Dortmund, Dortmund, Germany
matthias.westermann@cs.tu-dortmund.de

Abstract
In the classic minimum makespan scheduling problem, we are given an input sequence of n jobs
with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The objective
is to minimize the makespan, which is the time it takes until all jobs are processed. In this
paper, we consider online scheduling algorithms without preemption. However, we allow the
online algorithm to reassign up to k jobs to different machines in the final assignment.

For m identical machines, Albers and Hellwig (Algorithmica, 2017) give tight bounds on the
competitive ratio in this model. The precise ratio depends on, and increases with, m. It lies
between 4/3 and ≈ 1.4659. They show that k = O(m) is sufficient to achieve this bound and no
k = o(n) can result in a better bound.

We studym uniform machines, i.e., machines with different speeds, and show that this setting
is strictly harder. For sufficiently large m, there is a δ = Θ(1) such that, for m machines with
only two different machine speeds, no online algorithm can achieve a competitive ratio of less
than 1.4659 + δ with k = o(n).

We present a new algorithm for the uniform machine setting. Depending on the speeds of
the machines, our scheduling algorithm achieves a competitive ratio that lies between 4/3 and
≈ 1.7992 with k = O(m). We also show that k = Ω(m) is necessary to achieve a competitive
ratio below 2.

Our algorithm is based on a subtle imbalance with respect to the completion times of the
machines, complemented by a bicriteria approximation algorithm that minimizes the makespan
and maximizes the average completion time for certain sets of machines.
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1 Introduction

In the classic minimum makespan scheduling problem, we are given an input sequence of n
jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The
objective is to minimize the makespan, which is the time it takes until all jobs are processed.
This problem is NP-hard in the strong sense [20]. In this paper, we consider online scheduling
without preemption. An online algorithm does not have knowledge about the input sequence
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in advance. Instead, it gets to know the input sequence job by job without knowledge about
the future. An online algorithm is called c-competitive if the makespan of the algorithm is at
most c times the makespan of an optimal offline solution.

Extensive work has been done to narrow the gap between lower and upper bounds on
the competitive ratio for online minimum makespan scheduling. Increasingly sophisticated
algorithms and complex analyses were developed. Nevertheless, even for the most basic
case of identical machines, in which each job has the same processing time, i.e., its size, on
every machine, there is still a gap between the best known lower and upper bounds on the
competitive ratio of 1.880 [30] and 1.9201 [18], respectively. In the setting with uniform
machines, in which different machines may run at different speeds, the best known lower and
upper bounds on the competitive ratio are 2.564 [13] and 5.828 [6], respectively.

In this work, we study to what extent the ability to migrate a limited number of jobs can
help an online algorithm in terms of the competitive ratio in the uniform machine setting.
In this model, the online algorithm has to assign jobs to machines as they arrive. However,
after all jobs have arrived, the algorithm may remove up to k jobs from the machines and
reassign them to different machines.

Job migration in scheduling has been studied previously, see for example [8, 12, 27, 32, 33,
34], but in particular, Albers and Hellwig [2] studied this problem for m identical machines1
and gave tight bounds on the competitive ratio for this case. Roughly speaking, k = Θ(m)
job migrations are sufficient and necessary to achieve this tight bound. Allowing more job
migrations does not result in further improvements as long as k = o(n), where n denotes the
total number of arriving jobs.

We provide related results for the more general setting of uniform machines, which
introduces new technical challenges. Our contribution also implies new results on a different
but related problem: online reordering for scheduling. In this model, a so-called reordering
buffer can be used to reorder the input sequence of jobs in a restricted fashion. Arriving
jobs are first stored in the reordering buffer which has capacity to store up to k jobs. When
the buffer is full, the online scheduling algorithm has to decide which of the jobs to remove
from the buffer and to assign (irrevocably) to a machine. When no more jobs arrive, all jobs
remaining in the buffer have to be assigned to machines as well.

This model was introduced by Englert, Özmen, and Westermann [14] and the work by
Albers and Hellwig [2] generalizes their results for identical machines to the setting were no
buffer is used, but a limited number of job migrations are permitted. It is not known what the
relationship between the two models is in general. However, Albers and Hellwig note that any
online algorithm for the job migration model that satisfies a certain monotonicity property
can be transformed into an online algorithm for the corresponding reordering buffer problem
which has the same competitive ratio. If the algorithm migrates k jobs, the transformed
algorithm requires a buffer of size k. The aforementioned monotonicity property is as follows:
if the algorithm would not migrate a job at time t if we pretend that the input sequence
ends at that time, then the algorithm does not migrate the job at any later time either.

Both the algorithm by Albers and Hellwig and the algorithm we present in this work
satisfy the monotonicity property. Therefore, our results also directly imply an improved
upper bound for the online minimum makespan scheduling problem with a reordering buffer
on uniform machines.

1 Technically, they allow job migration to be performed before all jobs have arrived as long as the total
number of migration is still bounded by k. However, performing all migrations at the end cannot
increase the competitive ratio.
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1.1 The model and our contribution
We present a lower bound on the competitive ratio showing that the problem is strictly
harder for uniform machines than for identical machines. We give the first online algorithm
for uniform machines with job migration. Depending on the speeds of the m machines, our
scheduling algorithm achieves a competitive ratio that lies between 4/3 and ≈ 1.7992 and
performs O(m) job migrations. In addition, we show that Ω(m) job migrations are necessary
to achieve a competitive ratio of less than 2.

For the corresponding problem of online minimum makespan scheduling with a reordering
buffer, Englert, Özmen, and Westermann [14] present a greedy algorithm that achieves a
competitive ratio of 2 (or 2 + ε if the algorithm is supposed to be efficient) with a reordering
buffer of size m. Subsequently, Ding et al. [9] improved the competitive ratio to 2 − 1/m
with a buffer of size m+ 1.2 Therefore, we also obtain a significant improvement over these
previously known results for the reordering buffer version of the problem, since our upper
bound translates to this model as well.

Before we explain our contribution in more detail, we define the model more formally
and introduce some useful notation and definitions. The m ≥ 2 machines are denoted by
M0, . . . ,Mm−1. For each 0 ≤ i ≤ m − 1, the speed of machine Mi is denoted by si, with
min{s0, . . . , sm−1} = 1. The sum of speeds is denoted by S =

∑m−1
i=0 si. The size of a job J

is denoted by p(J). The load L(Mi) of a machine Mi is defined as the sum of the sizes of the
jobs assigned to machine Mi. The completion time of a machine Mi is defined as the load
L(Mi) of machine Mi divided by the speed si of machine Mi. The objective is to minimize
the makespan, i.e., the maximum completion time.

As in previous works of Englert, Özmen, and Westermann [14] and Albers and Hellwig
[2], our algorithm attempts to maintain a specific (and not balanced) load distribution on
the machines. The desired load on a machine Mi is defined by the so-called weight wi of the
machine. The weight is defined as

wi =

si ·
rs0,...,sm−1

S , if 0 ≤
∑i−1

j=0 sj ≤
rs0,...,sm−1−1

rs0,...,sm−1
· S

si ·
rs0,...,sm−1−1∑i−1

j=0
sj

, if rs0,...,sm−1−1
rs0,...,sm−1

· S <
∑i−1

j=0 sj < S
.

Now, rs0,...,sm−1 is the smallest positive solution to
∑m−1

i=0 wi = 1, i.e., we ensure that the
weights of all machines sum up to 1. Such a solution always exists. (Due to space limitations,
the proof of this claim is omitted.) Note that, if s0 = · · · = sm−1 = 1, the weights match
those in [2, 14] and that rs0,...,sm−1 =: rm is equal to the competitive ratio achieved in [2, 14]
for m identical machines.

Unfortunately, we do not know a closed-form formula for rs0,...,sm−1 , but the value can be
calculated for any given s0, . . . , sm−1 and 1 < rs0,...,sm−1 ≤W−1(−1/e2)/(1+W−1(−1/e2)) ≈
1.4659.3 (Due to space limitations, the proof of this claim is omitted.) Note that, for the
optimal competitive ratio rm for m identical machines, 4/3 ≤ rm ≤ W−1(−1/e2)/(1 +
W−1(−1/e2)). Depending on the speeds of the machines, rs0,...,sm−1 can be significantly
smaller than rm.

2 Note that in this and several of the following papers, the model differs from the model in [14] in that
arriving jobs can bypass the buffer and may directly be assigned to a machine. This is equivalent to
increasing the buffer size in the model from [14] by 1. We express buffer sizes in terms of the model
from [14] here.

3 W−1 is the lower branch of the Lambert W function, i.e., W−1(−1/e2) is the smallest real solution to
x · ex = −1/e2.
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Our results are as follows.
We prove that a δ = Θ(1) exists such that, for m uniform machines with only two different
machine speeds, m sufficiently large, no online algorithm can achieve a competitive
ratio less than W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ while migrating o(n)
jobs. Recall that, for the optimal competitive ratio rm for m identical machines, rm ≤
W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. Hence, the more general problem of uniform
machines is strictly harder than the special case of identical machines.
The lower bound construction differs from the previous ones for identical machines in
[2, 14]. The previous constructions used a very large number, say about 1/ε, of very
small jobs, say of size ε, which the online algorithm has to schedule on the machines.
The adversary then identifies a machine with load of at least wi, i.e., a machine with a
load that is not below the “target load” and, roughly speaking, produces just enough
large jobs so that one of them has to be assigned to a machine with load wi. Migrating
small jobs is ineffective and the large jobs cannot all avoid a machine with load wi.
This technique alone however is no longer sufficient to obtain a lower bound that is strictly
larger than the known one. Using a larger number of possible continuations of the initial
input, we can show that to handle these additional continuations, the online algorithm
would have to have a significant number of machines with load strictly less than, and
bounded away from, wi. But then another machine must have load strictly above wi

(rather than just equal to wi).
We remark that the same lower bound can be constructed for the reordering buffer model
with uniform machines.
We show that, for m uniform machines, Ω(m) migrations are necessary to achieve a
competitive ratio of less than 2. Specifically, for c = d− ln(2− r)/ ln re ≥ 2 and m ≥ c2,
no online algorithm can achieve a competitive ratio less than r ∈ (1, 2) while migrating at
most bm/c2c − 1 jobs. For example, r ≈ 1.8393 > W−1(−1/e2)/(1 + W−1(−1/e2)) + 1/3
if at most bm/9c − 1 job migrations are allowed.
Again, we remark that the same lower bound can be constructed for the reordering buffer
model with uniform machines.
For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our online algorithm
achieves a competitive ratio of rs0,...,sm−1 + 1/3 with O(m) job migrations. If an efficient
algorithm is desired, there is an additional additive loss of ε in the competitive ratio
due to the use of a PTAS by Hochbaum and Shmoys [24] in a subroutine. Note that
1 < rs0,...,sm−1 ≤W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659, i.e., the competitive ratio is
at most an additive 1/3 larger than in the identical machines case. However, depending
on the speeds of the machines, rs0,...,sm−1 can also be significantly smaller than rm in
which case the difference between the competitive ratios can also be smaller than 1/3.
The basic structure of our algorithm is similar to the algorithm for the special case of
identical machines [2]: Jobs are classified into small and large jobs according to their
relative size compared to the total load on all machines. Ignoring the contribution of
large jobs, the small jobs are scheduled in such a way that an imbalance with respect to
the completion times of the machines is maintained. Roughly speaking, faster machines
are kept at lower completion times than slower ones.
After all jobs have arrived, some jobs are migrated. The rough intuition is that the
largest jobs should be reassigned to improve the solution. For this, we first remove some
jobs from machines. Then, we schedule the largest ones optimally on m empty virtual
machines M ′0, . . . ,M ′m−1 with L(M ′0) ≤ · · · ≤ L(M ′m−1). As a consequence, for each
0 ≤ i ≤ m− 1, the completion time of machine M ′i is less than or equal to the average
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completion time of the machines M ′i , . . . ,M ′m−1, which is a crucial property for achieving
the optimal competitive ratio for identical machines. In the more general case of uniform
machines, this is not always the case. For example, if M ′0 has speed 1 and M ′1, . . . ,M ′m−1
have speed 3/2, then m jobs of size 1 are optimally scheduled with makespan 1, but the
completion time of M ′0 is 1, which is strictly greater than the average completion time of
the machines M ′0, . . . ,M ′m−1.
To address this, our algorithm contains a crucial additional balancing step in which the
average completion time for certain sets of virtual machines is increased at the cost of a
small increase in the maximum completion time (which is responsible for the additive
loss of 1/3).
Finally, the smaller jobs that were removed from their machines, are reassigned greedily
one by one. The analysis of this step is also more involved than the corresponding one
for identical machines because a more straightforward naive argument would introduce a
factor of sm−1/s0 into the number of job migrations.
Obviously, once we determine which jobs to migrate, we could just assign those jobs
optimally to the existing machines. However, it is not clear how to analyze such a
procedure directly. We state a specific algorithm for the reassignment step because it
provides us with important properties that enable us to analyze the competitive ratio.

1.2 Related work

Minimum makespan scheduling has been extensively studied. See the survey by Pruhs,
Sgall, and Torng [29] for an overview. For m identical machines, the currently best upper
and lower bounds are 1.9201 [18] and 1.880 [30], respectively. These bounds were the
last ones in a long series of successive improvements for general or specific values of m
[1, 4, 5, 7, 17, 21, 22, 25, 31].

For uniform machines, Aspnes et al. [3] present the first algorithm that achieves a constant
competitive ratio. Due to Berman, Charikar and Karpinski [6], the best known upper bound
on the competitive ratio is 5.828, and, due to Ebenlendr and Sgall [13], the best known lower
bound on the competitive ratio is 2.564.

In a semi-online variant of the problem the jobs arrive in decreasing order of their size.
The greedy LPT algorithm, which assigns each job to a machine with minimum load, was
considered in this setting. For m identical machines, Graham [23] shows that the LPT
algorithm achieves a competitive ratio of 4/3 − 1/(3m). For uniform machines, the LPT
algorithm achieves a competitive ratio of 1.66 and a lower bound of 1.52 on its competitive
ratio is known [19]. A detailed and tight analysis for two uniform machines is given by
Mireault, Orlin, and Vohra [28] and Epstein and Favrholdt [15].

For m identical machines, Albers and Hellwig [2] present an algorithm that is rm-
competitive, which is optimal as long as at most o(n) jobs can be migrated. For m ≥ 11, the
algorithm migrates at most 7m jobs. For smaller m, 8m to 10m jobs may be migrated. They
further give some results on the trade-off between the number of job migrations and the
competitive ratio. For example, 2.5 ·m job migrations are sufficient to achieve a competitive
ratio of 1.75.

Tan and Yu [33] study two identical machines. They give a tight bound of 4/3 on the
competitive ratio and this bound is achievable by migrating a single job. They also explore
two other models. One in which, at the end, for each machine, the last job that was assigned
to the machine may be migrated. And another in which, at the end, the k jobs that arrived
last in the input may be migrated.

ESA 2018
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Chen et al. [8] give an optimal algorithm for two uniform machines. Using independent
techniques and algorithms, Wang et al. [34] show bounds which are similar, but not quite
optimal for all machine speeds. Both improve upon work by Liu et al. [27].

Dósa et al. [12] consider a variant in which up to k jobs can be migrated after every job
arrival, which is a relaxation of online scheduling with a reordering buffer of size k. Sanders,
Sivadasan, and Skutella [32] introduce another model in which, after every job arrival, a
number of jobs can be reassigned as long as the total size of the reassigned jobs is bounded
as some linear function of the size of the arriving job.

Numerous variants related to online minimum makespan scheduling with reordering buffers
have been studied. Kellerer et al. [26] present, for two identical machines, an algorithm
that achieves an optimal competitive ratio of 4/3 with a reordering buffer of size 2, i.e., the
smallest buffer size allowing reordering.

For m identical machines, Englert, Özmen, and Westermann [14] present a tight and, in
comparison to the problem without reordering, improved bound on the competitive ratio for
minimum makespan scheduling with reordering buffers. Depending on m, their scheduling
algorithm achieves the optimal competitive ratio rm with a buffer of size Θ(m). Further,
they show that larger buffer sizes do not result in an additional advantage and that a buffer
of size Ω(m) is necessary to achieve this competitive ratio.

Ding et al. [9] give, for m identical machines, a 1.5-competitive algorithm with a buffer
of size 1.5m+ 1 and, for three identical machines, a (15/11)-competitive algorithm with a
buffer of size 7.

Dósa and Epstein [10] study minimum makespan scheduling on two uniform machines
with speed ratio s ≥ 1. They show that, for any s > 1, a buffer of size 3 is sufficient to
achieve an optimal competitive ratio and, in the case s ≥ 2, a buffer of size 2 already allows
to achieve an optimal ratio.

Dósa and Epstein [11] further study preemptive scheduling, as opposed to non-preemptive
scheduling, on m identical machines with a reordering buffer. They present a tight bound on
the competitive ratio for any m. This bound is 4/3 for even values of m and slightly lower
for odd values of m. They show that a buffer of size Θ(m) is sufficient to achieve this bound,
but a buffer of size o(m) does not reduce the best overall competitive ratio of e/(e− 1) that
is known for the case without reordering.

Epstein, Levin, and van Stee [16] study the objective to maximize the minimum completion
time. For m identical machines, they present an upper bound on the competitive ratio of
Hm−1 + 1 for a buffer of size m and a lower bound of Hm for any fixed buffer size. For m
uniform machines, they show that a buffer of size m+ 2 is sufficient to achieve the optimal
competitive ratio m.

2 Lower bounds

Due to space limitations, the proofs of the following two theorems are omitted.

I Theorem 1. A δ = Θ(1) exists such that, for m uniform machines with only two machine
speeds, m sufficiently large, no online algorithm can achieve a competitive ratio of less than
W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ while migrating o(n) jobs, where n denotes
the total number of arriving jobs.

I Theorem 2. For c = d− ln(2 − r)/ ln re ≥ 2 and m ≥ c2 uniform machines, no online
algorithm can achieve a competitive ratio of less than r ∈ (1, 2) while migrating at most
bm/c2c − 1 jobs.
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3 Scheduling algorithm

For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our algorithm consists of two
phases: In the scheduling phase, arriving jobs are assigned to (or scheduled on) machines
online. In the migration phase, which starts after all jobs have arrived, some jobs are removed
from their machines and reassigned to other machines.

More specifically, the scheduling phase consists of steps 1, . . . , n, where n denotes the
total number of arriving jobs. In step t, the t-th job arrives and is assigned to a machine.
For t > 1, let Tt denote the total size of the t− 1 jobs that have arrived up to and including
step t− 1. In addition, define T1 = 0. A job J is called small in step t, if p(J) ≤ Tt/(b ·m),
where b is a constant that will be defined later. Otherwise, J is called large in step t. Note
that during the scheduling phase, a job that is large in step t can become small in step t+ 1.

Further, let T s
t denote the total size of the jobs that have arrived up to and including

step t− 1 and that are small in step t. Finally, let Lt(Mi) denote the total size of the jobs
that are scheduled on machine Mi at the end of step t − 1, i.e., after the (t − 1)-th job is
assigned to a machine, and let Ls

t (Mi) denote the total size of the jobs that are scheduled
on machine Mi at the end of step t− 1 and that are small in step t. For simplicity, define
r = rs0,...,sm−1 .

We use two different algorithms. The first algorithm, which is used when sm−1 > 3/4 · S,
schedules every job on machine Mm−1 and does not migrate any jobs. The second algorithm,
which is used when sm−1 ≤ 3/4 · S, is more interesting and works as follows.

Scheduling phase: The t-th arriving job J is scheduled in step t as follows.
If J is small in step t, J is assigned to a machine Mi with Ls

t (Mi) ≤ wi · T s
t . (Since∑m−1

j=0 wi = 1 and
∑m−1

i=0 Ls
t (Mi) = T s

t , such a machine always exists.)
If J is large in step t, J is assigned to a machine Mi that has minimum completion
time Lt(Mi)/si among all machines.

Migration phase: Throughout the migration phase, we remove jobs from machines and
reassign them. At any point during this process, let L(Mi) denote the load of machine Mi

at that point, i.e., the L(Mi) values are dynamically changing throughout the migration
phase.
At the start of the migration phase, after all n jobs have arrived, we have, for each
0 ≤ i ≤ m− 1, L(Mi) = Ln+1(Mi). Then do the following. For each machine Mi, as long
as L(Mi) > wi · T s

n+1 and L(Mi) > (r − 1) · Tn+1 · si/S, remove the job of largest size
from Mi.
The removed jobs can now be reassigned optimally to the machines, i.e., in such a way
that the resulting makespan is minimized. However, as stated before, it is difficult to
analyze the resulting makespan directly. In the following, we therefore present a more
specific procedure for this reassignment step which provides us with certain properties
that enable us to analyze the competitive ratio. The resulting bound is of course also an
upper bound on the competitive ratio achieved through an optimal reassignment.

(1) Those removed jobs that are large at time n + 1 are scheduled on m empty virtual
machines M ′0, . . . ,M ′m−1 with speeds 1 = s0 ≤ · · · ≤ sm−1:

(1a) The jobs are scheduled on the virtual machines optimally, i.e., to minimize the
makepsan of the virtual machines.4 Call the resulting makespan on the virtual
machines OPT′. We assume that the resulting loads of the virtual machines

4 If computational efficiency is a concern, the PTAS by Hochbaum and Shmoys [24] may be used instead,
resulting in an additive loss of ε in the competitive ratio.
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are sorted, i.e., L(M ′0) ≤ · · · ≤ L(M ′m−1), and that, for each 1 ≤ i ≤ m − 1,
L(M ′i)/si > OPT′/2 if L(M ′i−1) > 0. (See the following Observation 3 items (1)
and (2).)

(1b) Each machine M ′i , with

i ∈ C =

0 ≤ i ≤ m− 1 :
m−1∑
j=0

L(M ′j) ≤
(
L(M ′i)
si

− OPT′

3

)
·

m−1∑
j=i

sj

 ,

is called critical. If C 6= ∅, all jobs from the machines M ′0, . . . ,M ′c, with c =
max(C) < m− 1, are reassigned to the machines M ′c+1, . . . ,M

′
m−1.

For i = 0, . . . , c do the following:
Find the largest ` ≥ c+ 1 such that (L(M ′i) + L(M ′`))/s` ≤ 4/3 ·OPT′. (Due to
the following Observation 3 item (3), such a machine always exists.)
Reassign all jobs from M ′i to M ′`, i.e., L(M ′`) is increased by L(M ′i) and L(M ′i)
is set to 0.
Resort the loads of the machines such that L(M ′0) ≤ · · · ≤ L(M ′m−1) again. (See
the following Observation 3 item (1).)

Finally, for each 0 ≤ i ≤ m− 1, assign the jobs from M ′i to the real machine Mi.
(2) Those removed jobs that are small at time n+ 1 are scheduled according to the greedy

algorithm that assigns a job to a machine finishing it first.

Due to space limitations, the proof of the following observation is omitted.

I Observation 3. For the migration phase, the following observations can be made.
(1) Sorting according to the load does not increase the makespan.
(2) We can assume that, for each 1 ≤ i ≤ m− 1, L(M ′i)/si > OPT′/2 if L(M ′i−1) > 0.
(3) If C 6= ∅, {c+ 1 ≤ j ≤ m− 1 : (L(M ′i) + L(M ′j))/sj ≤ 4/3 ·OPT′} 6= ∅.
(4) For each 0 ≤ i ≤ m− 1, L(M ′i)/si ≤ 4/3 ·OPT′.

3.1 Analysis of the algorithm
The analysis of the algorithm consists of two parts. The first part provides a bound on the
number of migrated jobs. The second part provides a bound on the competitive ratio of the
algorithm. These two parts together give the following theorem.

I Theorem 4. For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our online
algorithm achieves a competitive ratio of rs0,...,sm−1 + 1/3 with O(m) job migrations.

3.1.1 Bounding the number of migrated jobs
The following lemma gives an upper bound on the number of jobs removed from a single
machine.

I Lemma 5. For each 0 ≤ i ≤ m−1, in the migration phase, at most r/(r−1) ·b ·m ·si/S+1
jobs are removed from machine Mi.

Proof. If the final load ofMi at the end of the scheduling phase satisfies Ln+1(Mi) ≤ wi ·T s
n+1

or Ln+1(Mi) ≤ (r − 1) · Tn+1 · si/S, no job is removed from Mi. Otherwise, let t be the last
time at which Ls

t (Mi) ≤ wi · T s
n+1 or Lt(Mi) ≤ (r − 1) · Tn+1 · si/S. Such a time t exists

because the condition is met for t = 1.
It is sufficient to remove the following jobs from Mi to guarantee L(Mi) ≤ wi · T s

n+1 or
L(Mi) ≤ (r − 1) · Tn+1 · si/S.
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(a) All jobs that are large at time t and are scheduled on Mi before the arrival of the t-th
job and

(b) all jobs assigned to Mi in step t or after.

At any time t′ (before the arrival of the t′-th job), there are at most b ·m · si/S jobs that
are large at time t′ scheduled on Mi. Suppose this is not true and let t′ be the first time
at which this is not true. Then there were b ·m · si/S jobs of size greater than Tt′/(b ·m)
scheduled on Mi at time t′ − 1 and in step t′ − 1 one more such job J is assigned to Mi.
However, before the assignment of J , the load of Mi is Lt′−1(Mi) > Tt′ · si/S ≥ Tt′−1 · si/S.
Then Mi cannot be a machine with minimum completion time among all machines in step t′
and therefore a large job J would not be assigned to it. We conclude that, due to (a), at
most b ·m · si/S jobs are removed.

To bound the number of jobs removed due to (b), we observe that in steps t+ 1, . . . , n our
algorithm only allocates jobs to Mi that are large at the time of allocation. This is due to the
fact that by definition of t, for each t′ ≥ t+1, Ls

t′(Mi) > wi ·T s
t′ . Therefore, whenever a job J is

assigned toMi in a step t′ ≥ t+1, it is a large job, which is assigned to a machine of minimum
completion time. But then, for each 0 ≤ j ≤ m−1, Lt′(Mj) > (r−1) ·Tn+1 ·sj/S, because we
also have Lt′(Mi) > (r− 1) · Tn+1 · si/S. Hence Tt′ =

∑m−1
j=0 Lt′(Mj) > (r− 1) · Tn+1. Since

job J is large at the time of assignment, its size has to be greater than (r − 1) · Tn+1/(b ·m).
After assigning b ·m · si/(S · (r − 1)) such jobs to Mi in steps after t, the load of Mi exceeds
Tn+1 · si/S. After that, no further such jobs are assigned to Mi, because a machine with
load greater than Tn+1 · si/S can never be a machine that has the smallest completion time
among all machines. We conclude that, due to (b), at most b ·m · si/(S · (r− 1)) + 1 jobs are
removed, where the additive 1 is due to the job that is assigned to machine Mi in step t.

In total, it is sufficient to remove these b · m · si/S + b · m · si/(S · (r − 1)) + 1 =
r/(r − 1) · b ·m · si/S + 1 many jobs, and, because the algorithm removes jobs from Mi in
decreasing order of size, the number of jobs removed is bounded by the same number. J

Recall, that we only migrate jobs when sm−1 ≤ 3/4 · S, as otherwise, we simply schedule
all jobs on machineMm−1. If sm−1 ≤ 3/4·S, 18/17 ≤ r ≤W−1(−1/e2)/(1+W−1(−1/e2)) ≈
1.4659. (Due to space limitations, the proof of this claim is omitted.) Hence, due to Lemma 5,
the total number of jobs migrated is bounded by

m−1∑
i=0

(
r

r − 1 · b ·m ·
si

S
+ 1
)

=
(

r

r − 1 · b+ 1
)
·m = Θ(m) .

3.1.2 Bounding the competitive ratio
If sm−1 > 3/4 · S, we assign all jobs to machine Mm−1. The resulting makespan is
Ln+1(Mm−1)/sm−1 = Tn+1/sm−1 < 4/3 · Tn+1/S ≤ 4/3 · OPT, where OPT denotes the
optimal makespan. Hence the competitive ratio is bounded by 1 + 1/3.

For the reminder of the paper, we consider the case sm−1 ≤ 3/4 ·S. The following lemma
shows that, at the end of step (1b), there are no critical machines. In fact, it gives a lower
bound on

∑m−1
j=0 L(M ′j).

I Lemma 6. At the end of step (1b), for each 0 ≤ j ≤ m− 1,

m−1∑
k=0

L(M ′k) ≥
(
L(M ′j)
sj

− OPT′

3

)
·

m−1∑
k=j

sk ≥
(
L(M ′j)
sj

− OPT
3

)
·

m−1∑
k=j

sk .
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Proof. The second inequality is true because OPT′ ≤ OPT (optimally scheduling a subset
of all jobs can only result in a smaller makespan than optimally scheduling all jobs). In
the following, we prove the first inequality. If C = ∅, the lemma is true by definition of C.
In the following, we consider the case C 6= ∅. At the end of step (1b), for each 0 ≤ j ≤ c,
L(M ′i) = 0 and, as a consequence, the lemma is true for these machines. In the following, we
show that the lemma is true for M ′c+1, . . . ,M

′
m−1 after each reassignment in step (1b), if it

is true for these machines before this reassignment.
Initially, at the beginning of step (1b), for each c+ 1 ≤ j ≤ m− 1, M ′j is not critical by

definition of c, i.e., the lemma is true for M ′j .
Now, consider a reassignment in step (1b). For each 0 ≤ j ≤ m− 1, let L(M ′i) and L̂(M ′i)

denote the load of machine M ′i before and after this reassignment, respectively. Assume that
the lemma is true for M ′c+1, . . . ,M

′
m−1 before this reassignment.

In this reassignment, all jobs from M ′i , with 0 ≤ i ≤ c, are reassigned to M ′`, with

` = max
{
c+ 1 ≤ j ≤ m− 1 :

L(M ′i) + L(M ′j)
sj

≤ 4
3 ·OPT′

}
.

Then, resort the loads of the machines again. In detail,

z = max
{
` ≤ j ≤ m− 1 : L(M ′j) < L(M ′i) + L(M ′`)

}
,

i.e., after resorting, L̂(M ′z) = L(M ′i)+L(M ′`), and, for each ` ≤ j ≤ z−1, L̂(M ′j) = L(M ′j+1).
In addition, for each j ∈ {c+ 1, . . . ,m− 1} \ {`, . . . , z}, L̂(M ′j) = L(M ′j). Note that, for each
c+ 1 ≤ j ≤ m− 1, L(M ′j) ≤ L̂(M ′j) and, if j + 1 ≤ m− 1, L̂(M ′j) ≤ L(M ′j+1).

It remains to show that the lemma is true for M ′`, . . . ,M ′z. Consider machine M ′x with
` ≤ x ≤ z. If L̂(M ′x)/sx ≤ OPT′, then

m−1∑
j=0

L̂(M ′
j) ≥

m−1∑
j=x

L̂(M ′
j) ≥ L̂(M ′

x)
sx

· sx +
m−1∑

j=x+1

2
3 · OPT′ · sj ≥

(
L̂(M ′

x)
sx

− OPT′

3

)
·

m−1∑
j=x

sj ,

since, by definition of `, for each ` + 1 ≤ j ≤ m − 1, L̂(M ′j)/sj ≥ L(M ′j)/sj ≥ (L(M ′i) +
L(M ′j))/(2sj) > 2/3 ·OPT′.

In the following, we consider the case L̂(M ′x)/sx > OPT′. Due to space limitations, the
proof of the following observation is omitted.

I Observation 7. For each x+ 1 ≤ j ≤ m− 1, L(M ′j)/sj ≥ 4/5 ·OPT′.

Due to the fact that M ′c is critical,
m−1∑
j=c

L(M ′j) ≤
m−1∑
j=0

L(M ′j) ≤
(
L(M ′c)
sc

− OPT′

3

)
·

m−1∑
j=c

sj .

As a consequence,
m−1∑

j=c+1
L(M ′j) ≤

(
L(M ′c)
sc

− OPT′

3

)
·

m−1∑
j=c+1

sj ≤
2
3 ·OPT′ ·

m−1∑
j=c+1

sj ,

since L(M ′c)/sc −OPT′/3 ≤ L(M ′c)/sc ≤ OPT′.
Due to Observation 3 item (2),

∑x
j=c+1 L(M ′j) ≥ 1/2 · OPT′ ·

∑x
j=c+1 sj and, due to

Observation 7,
∑m−1

j=x+1 L(M ′j) ≥ 4/5 ·OPT′ ·
∑m−1

j=x+1 sj . Hence,

2
3 ·OPT′ ·

 x∑
j=c+1

sj +
m−1∑

j=x+1
sj

 ≥ m−1∑
j=c+1

L(M ′j) ≥ 1
2 ·OPT′ ·

x∑
j=c+1

sj + 4
5 ·OPT′ ·

m−1∑
j=x+1

sj ,



M. Englert, D. Mezlaf, and M. Westermann 26:11

i.e.,
∑x

j=c+1 sj ≥ 4/5 ·
∑m−1

j=x+1 sj .
Altogether,

m−1∑
j=0

L̂(M ′j) ≥
x−1∑

j=c+1
L(M ′j) + L̂(M ′x) +

m−1∑
j=x+1

L(M ′j)

≥ 1
2 ·OPT′ ·

x−1∑
j=c+1

sj + 1
3 ·OPT′ · sx +

(
L̂(M ′x)
sx

− OPT′

3

)
· sx

+ 4
5 ·OPT′ ·

m−1∑
j=x+1

sj

≥ 1
3 ·OPT′ ·

x∑
j=c+1

sj +
(
L̂(M ′x)
sx

− OPT′

3

)
· sx + 4

5 ·OPT′ ·
m−1∑

j=x+1
sj

≥

(
L̂(M ′x)
sx

− OPT′

3

)
· sx +

(
1
3 ·

4
5 + 4

5

)
·OPT′ ·

m−1∑
j=x+1

sj

≥

(
L̂(M ′x)
sx

− OPT′

3

)
·

m−1∑
j=x

sj ,

since L̂(M ′x)/sx ≤ 4/3 ·OPT′ due to Observation 3 item (4). J

Next, we give a bound on the makespan at the end of step (1) of the migration phase.
We distinguish two cases.

L(Mi) ≤ (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi) ≤ (r − 1) · Tn+1 · si/S ≤ (r − 1) · OPT · si. The completion time of
machine Mi at the end of step (1) of the migration phase is (L(Mi) + L(M ′i))/si ≤
(r − 1) ·OPT + 4/3 ·OPT ≤ (r + 1/3) ·OPT, since L(M ′i)/si ≤ 4/3 ·OPT′ ≤ 4/3 ·OPT
due to Observation 3 item (4).
L(Mi) > (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi) ≤ wi · T s

n+1 after the removal of jobs. We distinguish two sub-cases.
wi = si · r/S:
By definition of wi,

∑i−1
j=0 sj ≤ (r − 1)/r · S and, as a consequence,

m−1∑
j=i

sj = S −
i−1∑
j=0

sj ≥ S −
r − 1
r
· S = S

r
.

Then we can bound the completion time of machine Mi at the end of step (1) of the
migration phase as follows:

L(Mi)
si

≤ wi

si
·

S ·OPT−
m−1∑
j=0

L(M ′j)

+ L(M ′i)
si

≤ r

S
·

S ·OPT−max
{

0, L(M ′i)
si

− OPT
3

}
·

m−1∑
j=i

sj

+ L(M ′i)
si

≤ r

S
·
(
S ·OPT−max

{
0, L(M ′i)

si
− OPT

3

}
· S
r

)
+ L(M ′i)

si

≤ r ·OPT + 1
3 ·OPT .
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wi = si · (r − 1)/
∑i−1

j=0 sj :
By definition of wi,

r − 1
r
· S ≤

i−1∑
j=0

sj .

Then we can bound the completion time of machine Mi at the end of step (1) of the
migration phase as follows:

L(Mi)
si

≤ wi

si
·

(
S · OPT −

m−1∑
j=0

L(M ′
j)

)
+ L(M ′

i)
si

≤ r − 1∑i−1
j=0 sj

·

(
S · OPT − max

{
0,

L(M ′
i)

si
− OPT

3

}
·

(
S −

i−1∑
j=0

sj

))
+ L(M ′

i)
si

≤ r − 1∑i−1
j=0 sj

· S ·
(

OPT − max
{

0,
L(M ′

i)
si

− OPT
3

})
+ (r − 1) · max

{
0,

L(M ′
i)

si
− OPT

3

}
+ L(M ′

i)
si

≤ r · OPT − max
{

0,
L(M ′

i)
si

− OPT
3

}
+ L(M ′

i)
si

≤ r · OPT + 1
3 · OPT ,

since
∑m−1

j=i sj = S−
∑i−1

j=0 sj and 4/3 ·OPT−L(M ′i)/si ≥ 4/3 ·OPT′−L(M ′i)/si ≥ 0
due to Observation 3 item (4).

In all cases, the makespan is at most (r + 1/3) ·OPT at the end of step (1) of the migration
phase.

Finally, we analyze the makespan at the end of step (2) of the migration phase. We start
with the following observation. Due to space limitations, the proof of this observation is
omitted.

I Observation 8. There exists a machine Mi with mb + 1 ≤ i ≤ m− 1 and completion time
of at most (

√
b+ 1)/

√
b ·OPT, where

mb = max

0 ≤ i ≤ m− 1 :
i∑

j=0
sj <

S√
b+ 1

 < m− 1 .

Consider a removed job J that is scheduled in step (2) of the migration phase. Since J is
small at time n + 1, p(J) ≤ Tn+1/(b ·m) ≤ OPT · S/(b ·m). According to Observation 8,
there exists a machine Mi with mb + 1 ≤ i ≤ m − 1 and completion time of at most
(
√
b+ 1)/

√
b ·OPT. Since

∑mb+1
j=0 sj ≥ S/(

√
b+ 1), si ≥

∑i
j=0 sj/(i+ 1) ≥ S/((

√
b+ 1) ·m).

In step (2) of the migration phase, J is assigned to a machine finishing it first. Then, we can
bound the completion time of this machine after J is assigned to it as follows:

L(Mi)
si

+ p(J)
si
≤
√
b+ 1√
b
·OPT + OPT · S

b ·m
· (
√
b+ 1) ·m
S

=
(√

b+ 1√
b

)2

·OPT .

At the end of the migration phase, the makespan is at most max{r+1/3, (1+1/
√
b)2}·OPT.

Recall that 1 < r ≤W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. For example, for b = 8.5827,
(1 + 1/

√
b)2 ≤ 1.4659 + 1/3, and, for b = 41.7847, (1 + 1/

√
b)2 ≤ 4/3.
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