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Abstract
We give a prompt online mechanism for minimizing the sum of [weighted] completion times.
This is the first prompt online algorithm for the problem. When such jobs are strategic agents,
delaying scheduling decisions makes little sense. Moreover, the mechanism has a particularly
simple form of an anonymous menu of options.
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1 Introduction

The setting herein includes [multiple] service queues and selfish agents that arrive online
over time and can be processed on one of m machines. Agents may have some (private)
processing time p and/or some private weight w.

The goal is to improve service as much as possible. Minimizing the sum of [weighted]
completion times is one measure of how good (or bad) service really is.

This problem has long been studied, as a pure optimization problem, without strategic
considerations [11]. Given a collection of jobs, processing times, and weights, the shortest
weighted processing time order [26], also known as Smith’s rule, produces a minimal sum of
weighted completion times with a non-preemptive schedule on a single machine.
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27:2 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Schedules can be preemptive (where jobs may be stopped and restarted over time) or
non-preemptive (where a job, once execution starts, cannot be stopped until the job is done).

To the best of our knowledge, all online algorithms for this problem have the following
property: when a job arrives, there are no guarantees as to when it will finish. If preemption
is allowed, even if the job starts, there is no guarantee that it will not be preempted, or for
how long. If preemption is disallowed, the online algorithm keeps the job “hanging about” for
some unknown length of time, until the algorithm finally decides that it is time to start it.

Essentially, this means that when one requests service, the answer is “OK – just hang
around and you will get service at some unknown future date”. It is in fact impossible to
achieve any bounded ratio for the sum of [weighted] completion times if one has to start
processing the job as soon as possible1. Some delay is inevitable. However, the issue we
address is “does the job know when it will be served?”. All of these issues are fundamental
when considering that every such “job” is a strategic agent. It is not only that one avoids
uncertainty, knowing the future schedule allows one to make appropriate plans for the interim.
Consider a setting where you call up to arrange a 2 hour dental appointment and you are
told: “Show up ASAP but there are no guarantees as to when the dentist will see you.”
This is a non-prompt schedule. It has some disadvantages when compared with the prompt
alternative: “Show up at 17:00 and the dentist will see you immediately then.”

In this paper we present prompt online algorithms that immediately determine as to
when an incoming job will be processed (without preemption). The competitive ratio is the
best possible, amongst all prompt online algorithms, even if randomization is allowed (the
algorithm is in fact deterministic). The competitive ratio compares the sum of completion
times of the online algorithm with the [harder to achieve] sum of completion times of an
optimal preemptive schedule. Moreover, viewed in the context of jobs being strategic agents,
our algorithms are also dominant strategy incentive compatible, and have a particularly
simple form. We describe the algorithms in the strategic setting, but – even ignoring strategic
issues – no non-trivial online algorithm for the problem of prompt scheduling of jobs was
known prior to this study.

Upon arrival, agents are presented with a menu of possible options, where a menu entry
is of the form ([b, e], q, π). This means that the period from b to e is available on machine q
and will cost the agent π. These menus are anonymous and do not depend on the agent that
arrives. The agent then chooses one of the options. Rational agents will never choose an
interval that is shorter than the processing time. (If so the agent cost is ∞).

The cost to the agent is the sum of two components: (a) The time spent waiting, weighted
by the agents’ [private] weight. I.e., highly impatient agents will have high weight, less
impatient agents will have lower weight. (b) The price, π, associated with an option on the
menu. Agents seek to minimize their cost.

Consider the case of a single queue, a selfish agent will simply join the queue immediately
upon arrival, there is no reason to delay. Thus, jobs will be processed in first-in-first-out
(FIFO) order. However, this may be quite bad in terms of the sum of completion times.
Imagine a job with processing time L, arriving at time zero, followed by

√
L jobs of processing

time 1, all of which arrive immediately after the first.
As the first job will only be done at time L, the sum of completion times for these 1 +

√
L

jobs is about L3/2. Contrariwise, if the
√
L size one jobs were processed before the size L

job, the sum of completion times would be about 2L. Obviously it seems a good idea to
delay longer jobs and expedite shorter jobs.

1 This is illustrated in the introduction of the full version [6].
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Similarly, consider a first batch of L jobs, each of size 1 and weight 1, immediately
followed by a single job of size 1 and weight W . For FIFO processing, the weighted sum
of completion times is L2/2 (for the weight 1 jobs) plus (L+ 1) ·W (for the job of weight
W ). Optimally, the weight W job should be processed first, followed by the size 1 jobs.
The weighted sum of completion times is then about W + L2/2. For any constant L and
sufficiently large W , the ratio between the two sums approaches L+ 1.

The main question addressed in this paper is how to produce such dynamic menus so
as to incentivize selfish agents towards behavior that achieves some desirable social goal,
specifically, minimizing the sum of completion times. The dynamic menu is produced based
on the past decisions of the previous agents and the current time2.

We measure the quality of the solution achieved by the competitive ratio, the ratio
between the sum of completion times of the selfish agents, when presented with the dynamic
menus, and the minimal sum of completion times, when the future arrivals and their private
values are known and there are no incentive considerations. In fact, the comparison is
with the optimal preemptive schedule (which could definitely be better than the optimal
non-preemptive schedule).

We consider several scenarios:
1. All agents have weight 1 and arbitrary processing times, nothing known apriori on the

processing times. This models cases where all agents are equally impatient but have
different processing requirements. The underlying idea here is to offer menu options that
delay longer jobs so that they do not overly delay many shorter jobs that arrive later.

2. All agents have processing time 1 and arbitrary weight, nothing known apriori on the
weights. The underlying idea here is to set prices so as to delay jobs of small weight and
thus to allow later jobs of large weight to finish early.

3. Jobs with arbitrary processing times and weights bounded by a known bound Bmax. This
means that we have to delay long jobs and simultaneously have to leave available time
slots for jobs with large weights.

The competitive ratios for the different scenarios appear in Table 1. We remark that the
lower bounds hold even if one assumes that the machines used are arbitrarily faster than the
machines used by the optimal schedule that minimizes the sum of weighted completion times.

1.1 Related Work
For one machine, weighted jobs, available at time zero, ordering the jobs in order of weight/-
processing time minimizes the sum of competition times [26]. For one machine, unweighted
jobs with release times, a preemptive schedule that always processes the job with the minimal
remaining processing time minimizes the sum of weighted completion times [24, 23]. As
an offline problem, where jobs cannot be executed prior to some earliest time, finding an
optimal non-preemptive schedule is computationally hard [12].

For parallel machines, where jobs arrive over time, a preemptive schedule that always
processes the jobs with the highest priority – weight divided by remaining processing
time – is a 2 approximation [20]. This algorithm is called weighted shortest remaining
processing time (WSRPT). If all weights are one this preemptive algorithm is called shortest
remaining processing time (SRPT). Other online and offline algorithms to minimize the sum
of completion times appear in [1, 25, 12].

2 For clarity we describe the menu as though it was infinite. In fact, one can think of the process as
though the menu is presented entry by entry. The selfish job will provably choose an option early on.
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Table 1 Competitive Ratios of our Dynamic Menus, and associated lower bounds. Pmax is the
longest job processing time in the input sequence, it is not known apriori. Wmax is the maximal job
weight in the sequence, it is not known apriori. Bmax is an apriori upper bound on Wmax.

Processing
Time

Job
Weight

Menu
entries

Upper
Bound

(Deterministic)

Lower
Bound
(Randomized)

pj ∈ Z+ wj = 1
intervals
(various lengths)
no prices

O(log Pmax) Ω(log Pmax)

pj = 1 wj ∈ Z+
unit length
intervals
with prices

O

(
log Wmax·
(log log Wmax + log n)

)
Ω(log Wmax)

pj ∈ Z+ wj ∈ Z+
intervals
(various lengths)
with prices

O

(
log Bmax·
(log Pmax + log n)

)
Ω
(

max
(

log Bmax,

log Pmax

))

[22] show how to convert a preemptive online algorithm into a non-preemptive online
algorithm while increasing the completion time of the job by no more than a constant factor.
This transformation strongly depends on not determining immediately when the job will
be executed. This is in comparison to a prompt algorithm that determines when the job is
executed immediately upon the job‘s arrival.

When selfish agents are involved, it is valuable to keep things simple [13]. Offering
selfish agents an anonymous menu of options is an example of such a simple process. More
complicated mechanisms require trust on the part of the agents.

Recently, [7] considered a similar question to ours, where a job with private processing time
had to choose between multiple FIFO queues, where the servers had different speeds. Here,
dynamic posted prices were associated with every queue, with the goal of [approximately]
minimizing the makespan, the length of time until the last job would finish. Shortly thereafter,
[15] used dynamic pricing to minimize the maximal flow time. Dynamic pricing schemes
were considered for non-scheduling cost minimization problems in [3].

A constant approximation mechanism for minimizing sum of completion times for selfish
jobs was considered in [9], where the setting was an offline setting, the processing time was
known in advance and the weight was private information. In an online setting, [14] show a
constant approximation preemptive mechanism that gives an O(1/ε2) approximation to the
sum of flow times when using machines that are faster by a factor of 1 + ε.

Online mechanisms were considered in [17, 8], whereas prompt online mechanisms are
defined in [4].

In this paper our goals are pricing schemes that affect agents as to behave in a manner
that [approximately] minimizes the sum of weighted completion times.

There is a vast body of work on machine scheduling problems, in offline and online
settings, with strategic agents involved and not, and in a host of models. It is impossible to
do justice to this body of work but a very short list of additional relevant papers includes
[10, 19, 11, 18, 21, 2, 16].

1.2 Organization of this paper
In Section 2 we describe our model. In Section 3 we give an optimal O(logPmax)-competitive
menu based mechanism for the case of arbitrary [unknown] lengths and identical weights, and
in Section 4 we show a matching Ω(logPmax) lower bound that holds for any [randomized,
non-truthful] prompt online algorithm. In the full version [6] we handle the case of arbitrary
weighted jobs with identical processing times and give a O(logWmax(log logWmax + logn))-
competitive pricing menu. An Ω(Wmax) lower bound for this case is given.



A. Eden, M. Feldman, A. Fiat, and T. Taub 27:5

2 The Model

We consider a job scheduling setting with m machines and n jobs that arrive in real time,
where pj , wj , and rj are, respectively, the processing time, weight, and release time of the
jth job to arrive. It may be that rj = rj+1, i.e., more than one job arrive at the same time.
However, job decisions are made sequentially in index order.

A valid input for this problem can be described as a sequence of jobs

σ = (r1, w1, p1), (r2, w2, p2), . . . , (rn, wn, pn),

where the release time ri ≤ ri+1 for i = 1, . . . , n− 1, the job weight wi ≥ 1 for i = 1, . . . , n,
and the job processing time pi ≥ 1 for i = 1, . . . , n. We refer to the jth job in this sequence
as job j. We use the terms size and processing time interchangeably. Let σ[1..`] be the length
` prefix of σ. The total volume of a set of jobs D, denoted vol(D) is the sum of processing
times of the jobs in D, i.e., vol(D) =

∑
j∈D pj .

Let sj ≥ rj be the time at which job j starts processing (on some machine 1 ≤ q ≤ m).
The completion time of job j is cj = sj + pj .

The objective considered in this paper is to minimize the sum of [weighted] completion
times; i.e., we wish to minimize

∑n
j=1 wj · cj .

For jobs j, j′, with j < j′ and with rj = rj′ , job j is assigned (or chooses) machine qj at
time sj before job j′ is assigned machine qj′ at sj′ . We say that (qj , sj) and (qj′ , sj′) overlap,
if qj = qj′ and (sj ≤ sj′ < cj = sj + pj or sj′ ≤ sj < cj′ = sj′ + pj′).

A valid (non-preemptive) schedule for an input σ is a sequence

(m1, s1), (m2, s2), . . . , (mn, sn)

where no overlaps occur. An online algorithm determines (mj , sj) after seeing σ[1 . . . j] and
before seeing job j + 1.

We consider online mechanisms where jobs are selfish agents, processing times and weights
are private information, and job j is presented with a menu of options upon arrival. Every
option on the menu is of the form (I, q, π) where (i) I is a time interval [b(I), e(I)], with
integer endpoints, and where b(I) ≥ rj , (ii) 1 ≤ q ≤ m is some machine, and (iii) π is the
price for choosing this entry. The menu of options presented to job j is computed after jobs
1, . . . , j − 1 have all made their choices and also depends on the release time of job j, rj

(because one cannot process a job in the past). We assume no feedback from jobs after they
choose their menu options, i.e., if a job of size p chooses an interval I of length |I| > p on
some machine, we do not know the interval is only partly used, and specifically, cannot offer
the |I| − p remaining to future jobs.

For job j that chooses menu entry ([b(I), e(I)], q, π) we use the following notation (i) I(j)
for the interval chosen by job j, [b(I), e(I)], (ii) M(j) for the machine chosen by job j, q,
and (iii) Π(j) for the price of the entry chosen by j, π.

Although the menus we describe are infinite, one can present the menu items sequentially.
With unit weight jobs, a job of processing time p will make its choice within the first log p
options presented. With unit length jobs, a job of weight w will make its choice within
the first logw options presented. With arbitrary lengths and arbitrary weights, a job of
processing time p and of weight w will make its choice within the first log p · logw options
presented.

The cost to job j with weight wj and processing time pj for choosing the menu entry
([b, e], q, π) is ∞ if the time interval is too short: e− b < pj . If e− b ≥ pj then the cost to
job j is a cost of wj for every unit of time until job j starts processing, plus the extra price

ESA 2018



27:6 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

from the menu. I.e., the cost to job j with release time rj , processing time pj and weight wj ,
for choosing menu entry ([b, e], q, π), e− b ≥ pj , is

(b+ pj) · wj + π.

For the specialized cases of weight one jobs or unit length jobs the general model above
is somewhat simpler:

2.1 Modeling weight one jobs with arbitrary Processing times
If jobs have weight one, we give (optimal) menus that do not require pricing menu entries.
Any entry on the menu is available for free. Therefore, we can simplify the menu structure as
follows: The job chooses a time interval and a machine from a menu with entries of the form
([b, e], 1 ≤ q ≤ m) where the first entry is a time interval, and the second entry is a machine3.

Jobs choose from the menu one of the entries immediately upon arrival. As above, we say
that job j chooses menu entry (I(j),M(j)) where I(j) is an interval, and 1 ≤M(j) ≤ m.

For job j with arrival time rj , and processing time pj the cost associated with choosing
the menu item ([b, e], 1 ≤ q ≤ m) is ∞ if pj > e− b and (b+ pj) otherwise. Jobs always seek
to minimize their cost.

2.2 Modeling unit length jobs of arbitrary weight
Every job requires one unit of processing time on one of m different processors. Every job j
is a selfish agent that has a private weight wj , the cost to the job of one unit of delay.

The job chooses a machine and time slot from a menu with entries of the form ([i, i+1], 1 ≤
q ≤ m,π) where the first entry is a time slot, the second entry is a machine, and the third
entry is the price of this time slot on the machine.

Jobs choose from the menu one of the entries immediately upon arrival. Job j is said to
choose menu item (I(j),M(j),Π(j)) where I(j) is a length one interval, 1 ≤M(j) ≤ m, and
Π(j) is the price to be paid for choosing this option.

For job j with arrival time rj , and weight wj the cost associated with choosing the menu
item ([i, i+ 1], 1 ≤ q ≤ m,π) is wj(i+ 1) + π. Jobs always seek to minimize their cost.

3 Dynamic Menu for Jobs with Heterogeneous Processing Times

In this section we introduce a dynamic menu based mechanism, for jobs of weight one
and heterogeneous processing times, with competitive ratio O(logPmax), where Pmax is the
maximal job processing time among all jobs. Due to lack of space, the analysis of the
mechanism is deferred to the full version [6].

In Section 3.1 we provide integer sequences and corresponding interval sequences that
serve as a building block for our dynamic menu mechanism, which is presented in Section 3.2.

3.1 The Sk Integer and Interval Sequences
We define sequences of integers Sk, k = 0, 1, . . ., as follows: Let S0 = 〈1〉 and for k > 0 let
Sk = Sk−1‖Sk−1‖〈2k〉 where ‖ denotes concatenation. Ergo,

S0 = 〈1〉; S1 = S0‖S0‖〈21〉 = 〈1, 1, 2〉; S2 = S1‖S1‖〈22〉 = 〈1, 1, 2, 1, 1, 2, 4〉; · · ·

3 Although the general setting allows pricing menu items, it turns out that for weight 1 jobs the optimal
menu does not need to differentiate entries by price.
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Let nk = 2k+1 − 1 denote the length of Sk (follows inductively from n0 = 1 and
nk = 2nk−1 + 1). Let Sk[i], i = 1, . . . , nk be the ith element of Sk. Let S∞ be an infinite
sequence whose length nk prefix is Sk (for all k):

S∞ = 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, . . .〉.

Let S∞[i], i = 1, 2, . . . be the ith element of S∞. Note that Sk[i] = Sk′ [i] for all k ≤ k′ and
all i = 1, . . . , nk, ergo, Sk is a prefix of Sk′ for k ≤ k′.

I Lemma 1. For all d ≥ 0, for all 0 ≤ k ≤ d, the sum of all the 2k value items in Sd is
equal 2d. That is,

∑
1≤i≤nd:Sd[i]=2k

2k = 2d.

We use the Sk sequences to define interval sequences. Let γi be the sum of the first i
entries in S∞, γi =

∑i
j=1 S∞[j] (i.e., γ1 = 1, γ2 = 2, γ3 = 4, etc.).

We define Sk(t), t ≥ 0, to be a sequence of nk consecutive intervals, the first of which
starts at time t, and where the length of the jth interval equals Sk[j]. I.e.,

Sk(t) = 〈[t, t+ γ1], [t+ γ1, t+ γ2], . . . , [t+ γnk−1, t+ γnk
]〉 .

For example

S2(2) = 〈[2, 3], [3, 4], [4, 6], [6, 7], [7, 8], [8, 10], [10, 14]〉. (1)

For any interval sequence S let b(S) be the start of the first interval in S and let e(S) be
the end of the last interval in S. For example, b(S2(2)) = 2 and e(S2(2)) = 14.

We say that Sk appears in Sd(t) if there exists some t′ such that the interval sequence
Sk(t′) is a contiguous subsequence of Sd(t). In this case we also say that Sk(t′) appears
in Sd(t). Note that while Sk is a sequence of integers, both Sk(t′) and Sd(t) are interval
sequences.

By construction, for any k and any t 6= t′ if Sk(t) and Sk(t′) appear in some Sd(t̃), then
[b(Sk(t)), e(Sk(t))] and [b(Sk(t′)), e(Sk(t′))] are disjoint except for, possibly, their endpoints.
Let I be an interval of length 2k that appears in S∞(t). Then there is a unique t′ such that
Sk(t′) appears in S∞(t) and I is the last interval of Sk(t′). It follows from Lemma 1 that

I Corollary 2. For all k ≤ d, for all t,
1. Sk appears in Sd(t) 2d−k times.
2. The sum of the lengths of the intervals in Sd(t) is (d+ 1)2d.

The interval sequences defined above suggests a new possible static algorithm. Divide the
timeline of each machine into intervals as in S∞(0), and let any job that arrives occupy the
first unoccupied interval it fits in. Unfortunately, when the competitive ratio is evaluated as
a function of Pmax alone, this algorithm is Ω

(√
Pmax

)
competitive4 (When the competitive

ratio may be a function of Pmax and n, this algorithm is O (logPmax + logn) competitive as
analyzed in Theorem 5 of the full version).

I Definition 3. A state is a vector of consecutive interval sequences of the form

A = 〈A1, A2, · · · , A`〉 where
Ai = Ski(ti) for every 1 ≤ i ≤ `,

for some ` (which we refer to as the length of A) and integers ki for 1 ≤ i ≤ `, and where
e(Ai) = e(Ski(ti)) ≤ ti+1 = b(Ai+1) for 1 ≤ i ≤ `−1. This means that the interval sequences
are disjoint and ordered by their starting times. Note that there might be gaps between two
consecutive state entries, i.e., e(Ai) < b(Ai+1) for some 1 ≤ i ≤ `− 1.

4 This is shown in Appendix B in the full version [6].
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3.2 O(log Pmax) Competitive Dynamic Menu
When job j + 1 arrives the algorithm is in some configuration ψj =

(
Aj , Xj

)
, where Aj is

some state of length `j , and Xj is the set of intervals occupied by the previous j jobs. State
Aj represents every machines’ division of

[
0,maxi∈[j] ci

]
into time intervals (same division

for all machines). This division will be kept at any future time. For every i < `j , Aj
i is

fixed and will be a part of every future state, while Aj
`j

might be subject to change. We
refer to Aj

`j
as the tentative sequence of state Aj . Xj keeps track of all previously allocated

intervals (in all machines): ([b, e], q) ∈ Xj means that some job j′ ≤ j chose the interval [b, e]
on machine 1 ≤ q ≤ m. Note that the size of job j′, pj′ , might be strictly smaller than the
length of the interval (e− b), yet it is still considered occupied.

We note that our mechanism has the property that, roughly, every time interval in state
Aj has a 1

log Pmax
fraction of its volume allocated to “small” jobs.

Generating the Dynamic Menu
Given a state A = (A1, A2, . . . , A`) and a time t, we define an interval sequence τ as follows:

τ(A, t) =
{
A1‖A2‖ . . . ‖A`‖S∞(t) t ≥ e (A`)
A1‖A2‖ . . . ‖A`−1‖S∞(b (A`)) t < e (A`)

τ is used to create the menu presented to a job j. We present an algorithm for the creation
of the menu, based on the previous configuration ψj−1, and the current time t.

Let τ j = τ
(
Aj−1, rj

)
.

Set d1 to be the length of the first time interval in τ j beginning at time b1 ≥ t.
Add ([b1, b1 + d1], q) to the menu for all machines 1 ≤ q ≤ m in which [b1, b1 + d1] is
unoccupied (i.e, ([b1, b1 + d1], q) /∈ Xj−1).
Set i = 1
Repeat until job j chooses an interval:

Let di+1 be the length of the first interval longer than di in τ j that starts at time
bi+1 ≥ t (it follows that bi+1 > bi).
Add ([bi+1, bi+1 + di+1], q) to the menu for all machines 1 ≤ q ≤ m in which
[bi+1, bi+1 + di+1] is unoccupied (i.e., ([bi+1, bi+1 + di+1], q) /∈ Xj−1).
Set i = i+ 1.

By construction, no job will ever choose a time interval that starts before the job arrival
time, nor will it ever choose a slot that has already been chosen.

A selfish job of length pj always chooses a menu entry of the form ([b, e], q) where b is
the earliest menu entry with pj ≤ e− b.

Updating States
After job j makes its choice of menu entry, (I(j),M(j)), we update the configuration from
ψj−1 =

(
Aj−1, Xj−1) to ψj =

(
Aj , Xj

)
. Clearly, Xj = Xj−1 ∪ {(I(j),M(j))}. In the rest

of this section we describe how to compute Aj .
Recall that a state is a vector of consecutive and disjoint interval sequences. Initially,

A0 = 〈〉 with length `0 = 0 and A0
`0

is an empty sequence with b
(
A0

`0

)
= e

(
A0

`0

)
= 0. Aj

always contains all of Aj−1’s interval sequences except possibly the tentative sequence Aj−1
`j−1

.
When job j of size 2k chooses an interval, the new tentative sequence Aj

`j
can be one of the

following:
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Table 2 Update rules: After job j makes its choice (and cj is determined), the new state Aj is a
function of (i) Aj−1, (ii) release time rj , (iii) processing time pj = 2k, and (iv) completion time cj .

`j Aj
`j

cj ≤ e
(

Aj−1
`j−1

)
rj ≥ e

(
Aj−1

`j−1

)
Aj−1

`j−1
= Sd(t)

k ≤ d

1 `j−1 Aj−1
`j−1

True - -
2 `j−1 + 1 Sk(rj) False True -

3 `j−1 + 1 Sk

(
e
(

Aj−1
`j−1

))
False False True

4 `j−1 Sk

(
b
(

Aj−1
`j−1

))
False False False

1. Unchanged from former: The new tentative sequence in Aj is the same as the former
tentative sequence in Aj−1, i.e., Aj

`j
= Aj−1

`j−1
. This happens when I(j) ∈ Aj−1, see entry

1 in Table 2.
2. Disjoint from former: The former tentative sequence, Aj−1

`j−1
becomes fixed, and the new

tentative sequence Aj
`j

is disjoint from the former. The tentative sequence in Aj−1, Aj−1
`j−1

,
is the `j−1th element in all future states Ai, for i ≥ j. See entries 2 and 3 in Table 2.

3. Extension of former: The new tentative sequence is an extension of the former tentative
sequence. I.e., if Aj−1

`j−1
= Sd(t) then `j = `j−1 and Aj

`j
= Sk(t), k > d. See entry 4 in

Table 2.

Let Aj
i , A

j
i+1 be two consecutive interval sequences in a state Aj . If b

(
Aj

i+1

)
> e

(
Aj

i

)
,

we say the interval
[
e
(
Aj

i

)
, b
(
Aj

i+1

)]
is a gap.

Figure 1 is an example with 5 jobs that arrive over time, and the matching configuration
changes. The jobs in Figure 1 illustrate cases 1–4 from Table 2 in the following order: case 2
for job 1, case 1 for job 2, case 3 for job 3, case 4 for job 4 and case 2 for job 5.

3.2.1 High level overview of the analysis
Due to lack of space, we only give a high level overview of the analysis. The full analysis
appears in Section 3.4 of the full version [6]. We first show that w.l.o.g. one may assume
that all job lengths are powers of 2 and that the adversary’s schedule never includes gaps. In
our analysis, we compare the completion time of each job under our mechanism with the
completion time of the same job under SRPT. Let j be a job in the input sequence. We
define D(j) = {j′ ≤ j|pj′ ≤ pj} to be the set of all jobs that arrived no later than job j

and that are no bigger (note j ∈ D(j)). These jobs are all completed no later than job j
both under our mechanism and under SRPT, implying c∗j ≥ 1

mvol(D(j)) (where c∗j is the
completion time of job j under SRPT). Our analysis is based upon this observation. We
show that the mechanism depicted above ensures that cj = O(logPmax) · c∗j for every job j.
Since SRPT is an O(1)-competitive algorithm, this immediately implies the following.

I Theorem 4. Our mechanism is O(logPmax)-competitive.

3.3 Arbitrary processing times, weight ≤ Bmax

The static algorithm suggested at the end of Section 3.1 used for weight one jobs of arbitrary
sizes can be easily adapted to weights in some predetermined range from 1 to Bmax. Replicate
every interval in the sequence S∞(0) logBmax + 1 times. For ` = 0, . . . , logBmax, the `th
copy is designed to hold only jobs of weight ≥ 2`. To achieve this, one associates prices with
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Figure 1 Changing Menus of the Dynamic Menu Algorithm, as jobs arrive and make choices.
The two bottom rows in the tables represents two machines. An X in a machine cell represents
an (interval,machine) entry in the currently presented menu. A dashed line marks the release time
of the current job. Gray cells represent choices previously made by jobs. A gap is represented by
a rectangle filled with vertical lines. A rectangle outline in the top row of a table represents the
tentative sequence before job j makes it choice, i.e., Aj−1

`j−1
. Note that this example does not make

the simplicity assumptions made in the analysis.
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such intervals, as done in Section 5 of the full version. The analysis preformed in Appendix
A of the full version holds when multiplying every element with logBmax + 1, implying a
competitive ratio of O ((logPmax + logn) · logBmax).

4 Lower Bound on the Competitive Ratio for any Prompt Online
Algorithm, Arbitrary Lengths

We now show that any prompt online scheduling algorithm must have a competitive ratio of
Ω (logPmax), even if randomization is allowed.

Let c be the competitive ratio of some algorithm ALG as a function of Pmax. Consider
the following sequence, for PPP to be determined later:

For i = 0, . . . , 16c:
ni = 2i jobs of size Pi = PPP

2i arrive one after the other (at time 0).
If the expected number of Pi sized jobs with completion time greater than 8cPPP is at
least ni/2, stop the sequence. Let j be the last iteration.

Note that for every i = 0, . . . , 16c it holds that ni · Pi = PPP .

I Lemma 5. There must be an iteration j ∈ {0, . . . , 16c} for which in expectation more than
half of the jobs have completion time greater than 8cPPP .

Proof. Let Xi be a random variable representing the number of size Pi jobs, with completion
time greater than 8cPPP . If for all i ∈ {0, . . . , 16c}, E [Xi] ≤ ni/2, then the total expected
volume of jobs completed before time 8cPPP is at least

16c∑
i=0

E [(ni −Xi) · Pi] ≥
16c∑
i=0

ni

2 · Pi =
16c∑
i=0

PPP

2 > 8cPPP ,

a contradiction. J

I Theorem 6. Any random prompt online algorithm must be Ω (logPmax) competitive for
the above sequence.

Proof. According to Lemma 5, there must be some j ∈ {0, . . . , 16c} for which in expectation
at least half of the jobs are completed after time 8cPPP . Given this j, we give bounds on both
OPT and ALG. Let Xi be as in Lemma 5. In ALG, E [Xj ] > nj/2, thus:

E [Cost(ALG)] > E [Xj · 8cPPP ] > 8cPPP · nj

2 = 4cPPP · nj . (2)

In OPT, the jobs are scheduled from the smallest one (of size Pj) to the biggest one (of size
P0 = PPP ). The kth job of size Pi to be scheduled, is completed after all jobs smaller than it
(of sizes Pi+1, . . . , Pj) and after k − 1 jobs of size Pi, and therefore has a completion time of(

j∑
`=i+1

n` · P`

)
+ Pi · (k − 1) + Pi = Pi · k +

j∑
`=i+1

n` · P`.
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Summing over all jobs of all sizes, we have

Cost(OPT) =
j∑

i=0

(
ni∑

k=1

(
Pi · k +

j∑
`=i+1

n` · P`

))

=
nj∑

k=1
Pj · k︸ ︷︷ ︸
(i)

+
j−1∑
i=0

ni∑
k=1

Pi · k︸ ︷︷ ︸
(ii)

+
j−1∑
i=0

(
j∑

`=i+1
n` · P`

)
· ni︸ ︷︷ ︸

(iii)

. (3)

We now bound each term of Cost(OPT) separately.

(i) : Pj

nj∑
k=1

k < Pj · n2
j = PPP · nj . (4)

(ii) :
j−1∑
i=0

Pi

ni∑
k=1

k <

j−1∑
i=0

Pi · n2
i = PPP ·

j−1∑
i=0

2i ≤ PPP · 2j = PPP · nj . (5)

For (iii) we have

(iii) :
j−1∑
i=0

(
j∑

`=i+1
n` · P`

)
· ni =

j−1∑
i=0

j∑
`=i+1

PPP · 2i = PPP

j−1∑
i=0

(j − i)2i = PPP

j∑
i=1

i · 2j−i

= PPP · 2j

j∑
i=1

i

2i
≤ 2PPP · nj . (6)

From Equations (4), (5) and (6), we get that Cost(OPT) ≤ 4PPP · nj . Therefore,

E [Cost(ALG)/Cost(OPT)] > c,

in contradiction to the assumption that ALG is c-competitive.
For the input sequence to be valid, it must be that Pj ≥ 1. As j ≤ 16c, it is sufficient that

c (PPP ) ≤ 1
16 logPPP , as in this case, P16c = PPP

216c ≥ 1. So for every competitive ratio function c
such that c (Pmax) = o (logPmax) there exists a sufficiently large PPP for which c (PPP ) ≤ 1

16 logPPP ,
and our input is a valid counter example. J
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