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Abstract
We propose a novel solver that efficiently finds almost the exact number of solutions of a Boolean
formula (#Sat) and the weighted model count of a weighted Boolean formula (WMC) if the
treewidth of the given formula is sufficiently small. The basis of our approach are dynamic
programming algorithms on tree decompositions, which we engineered towards efficient parallel
execution on the GPU. We provide thorough experiments and compare the runtime of our system
with state-of-the-art #Sat and WMC solvers. Our results are encouraging in the sense that also
complex reasoning problems can be tackled by parameterized algorithms executed on the GPU
if instances have treewidth at most 30, which is the case for more than half of counting and
weighted counting benchmark instances.
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1 Introduction

Many computational problems in modern society account to probabilistic reasoning, statistics,
and combinatorics. Examples of such problems are identifying the reliability of energy
infrastructure [16] or learning preference distributions [10]. Several of these real-world
problems can be solved by representing the question in (Boolean) formulas [42, 15, 47] and
associating the number of solutions of the formula directly with the answer to the question.
The task to compute the number of solutions of a formula is usually referred to as the problem
#Sat, which is theoretically of high worst case complexity (#P-hard [38]), and generalizes
the problem of deciding whether a formula has a solution (Sat). If in addition each literal
in the formula has an associated weight and we are interested in the sum of weights of all
solutions, where the weight of a truth assignment is the product of the weights of its literals,
we speak about weighted model counting (WMC).

One approach to tackle these problems origins in parameterized algorithms, which are
based on the assumption that certain structural restrictions in the input allow for efficient
solving of problems that are hard in general. A seminal example in this direction is to exploit
small treewidth for Sat and #Sat [40]. Treewidth roughly measures the tree-likeness of an
input graph and is defined in terms of certain decompositions of the graph. For Boolean
formulas one takes a graph representation of the input formula, namely the primal or incidence
graph. In order to solve #Sat, dynamic programming on a tree decomposition of the graph
representation [40] is used. There one traverses the decomposition in post-order (bottom-up
traversal) and computes at each node information stored in a table. The runtime heavily
depends on the size of the table, which is bounded by a function in the treewidth. Recent
competitions in parameterized complexity [14] reveal that exact parameterized algorithms
are not just a vibrant theoretical research area, but their implementations are also able to
outperform up-to-date Sat solvers when determining treewidth.

State-of-the-art #Sat or WMC engines so far rely on standard techniques from Sat-
solving [44, 41, 26], knowledge compilation [33], or approximate solving [7, 8] by means of
sampling using Sat solvers. There is few work on parallelizing certain aspects of modern
Sat solving on Graphics Progressing Units (GPUs), e.g., [11]. However, a core technique
of Sat solving, conflict driven clause learning (CDCL), has inherent sequential aspects and
does not parallelize well [3, 22, 24, 34]. In contrast, many problems in artificial intelligence
and machine learning have significantly benefited from parallelization. In particular, running
algorithms on GPUs or using special purpose processing units such as Tensor Processing
Units (TPUs) can speedup standard AI tasks by more than two orders [28].

Parallel algorithms can be implemented on shared-memory or distributed-memory ma-
chines. Shared-memory based systems concern parallelizing one machine, whereas distributed-
memory based systems involve several machines. Compared to distributed-memory based
systems (as for example dCountAntom [6]) consisting of a massive amount of units, we rely
on shared-memory based (used for instance in countAntom [5]) techniques, i.e., in particular
plain consumer processors and graphics cards. Distributed units build on fast communication
networks, and when designing such systems, the goal is to avoid communication overhead
where possible to reduce the bottleneck induced by the transport channel. Shared-memory
systems on the other hand – though limited by synchronization necessities – do not directly
suffer from this issue and are in a sense incomparable to distributed-memory based systems.
Consequently, we purposely focus on shared-memory based systems in this paper.
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New Contribution

In this paper, we show that computationally involved problems such as #Sat or WMC
benefit in practice from parallelization when the input instance has small treewidth. To this
end, we implement the aforementioned dynamic programming approach for the first time on
a GPU and provide an experimental evaluation. More specifically, our contributions are:
1. We engineer a novel architecture for GPU-based parameterized algorithms that allow

for parallel solving of #Sat and WMC and where the runtime depends on the size of
the computed decomposition of the graph representation of the formula. To this end,
we traverse a tree decomposition similar to a sequential algorithm, but distribute the
computation of tables among different computation units such that each potential row
runs in one thread of the GPU, which is key for an efficient parallelization in practice.

2. We provide an OpenCL implementation gpusat1 of two parameterized algorithms for the
GPU. We highlight crucial algorithm engineering steps such as handling non-nice tree
decompositions and specialized procedures that adjust the table sizes to the available
number of computation units.

3. We provide rigorous experimental work where we consider an extensive number of
dedicated #Sat and WMC instances and compare gpusat with a wide range of related
solvers. We present upper bounds on the primal and incidence treewidth for our entire
set of benchmark instances and compare the solving time with state-of-the-art solvers.
In particular, our results show that gpusat is the fastest, precise solver for instances of
treewidth up to 30 and is even able to solve certain instances of treewidth up to 45.

2 Solving #SAT by Dynamic Programming

Boolean Satisfiability and Weighted Model Counting

A literal is a Boolean variable x or its negation ¬x. A clause is a finite set of literals,
interpreted as the disjunction of these literals. We say that a clause is unit if it is singleton.
A (CNF) formula is a finite set of clauses, interpreted as the conjunction of its clauses. Let
F be a formula. A sub-formula S of F consists of subsets of clauses of F . For a clause c ∈ F ,
var(c) consists of all variables that occur in c and var(F ) :=

⋃
c∈F var(c). An assignment

is a mapping α : var(F ) → {0, 1} and 2var(F ) the set of all assignments of F . F (α) is the
formula F under assignment α obtained by removing all clauses c from F that contain a
literal set to 1 by α and removing from the remaining clauses all literals set to 0 by α. An
assignment α is satisfying if F (α) = ∅. The problem #Sat asks to output the number of
satisfying assignments of a formula. Let w be function that maps each literal of F to a real
between 0 and 1. We call w(`) the weight of literal `. The weight of α is the product over
the weights of its literals, i.e., w(α) := Πv∈α−1(1)w(v) ·Πv∈α−1(0)w(¬v). The weighted model
count of F is the sum of weights over all its satisfying assignments, i.e., Σα∈2var(F ),F (α)=∅w(α).
The problem WMC asks to output the weighted model count of F .

Tree Decomposition and Treewidth

A tree decomposition (TD) of a graph G is a pair T = (T, χ) where T is a rooted tree
(arborescence) and χ is a mapping that assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G),
called a bag, such that the following conditions hold: (i) V (G) =

⋃
t∈V (T ) χ(t) and E(G) ⊆

1 Our solver is available at github.com/daajoe/GPUSAT.

ESA 2018

https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre


28:4 Weighted Model Counting on the GPU by Exploiting Small Treewidth

d a
c b {a, b, c}

t1
{a, d}
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{a}t3

Figure 1 Primal graph PF of F from Example 1 (left) with a tree decomposition T of the
graph PF (right).

⋃
t∈V (T ){ {u, v} | u, v ∈ χ(t) }; and (ii) for each r, s, t ∈ T , such that s lies on the path from r

to t, we have χ(r) ∩ χ(t) ⊆ χ(s). The width of T , denoted width(T ), is maxt∈V (T ) |χ(t)| − 1.
The treewidth tw(G) of G is the minimum width(T ) over all tree decompositions T of G. For
arbitrary but fixed w ≥ 1, it is feasible in linear time to decide if a graph has treewidth at
most w and, if so, to compute a tree decomposition of width w [4]. Graphs that originate in
the real-world often admit tree decompositions of small width [14]. Interestingly, one can use
GPU-based implementations to compute the treewidth [46]. However, we use htd together
with min-fill heuristics to compute TDs [1]. In that case, the width might not be minimal.
In order to simplify cases in the theoretical algorithms, one uses for theoretical descriptions
so-called nice TDs, which we can compute in linear time without increasing the width [29].

We need dedicated graph representations for satisfiability problems. The primal graph
of a formula F has as vertices its variables and two variables are joined by an edge if they
occur together in a clause of F . For a given node s of a TD (T, χ) of the primal graph of F ,
we let Fs := { c | c ∈ F, var(c) ⊆ χ(s) }, i.e., clauses entirely covered by χ(s). The set F≤s
denotes the union over Ft for all descendant nodes t ∈ V (T ) of s. The incidence graph of
a formula F is the bipartite graph on the clauses and variables of F , where a clause and a
variable are joined by an edge if the variable occurs in the clause. We call the treewidth of
the primal or incidence graph the primal treewidth or incidence treewidth, respectively.

I Example 1. Consider the formula F := {c1 := a ∨ b ∨ ¬c, c2 := ¬b ∨ ¬a, c3 := a ∨ ¬d}.
The primal graph PF of formula F and a TD T of PF are depicted in Figure 1. Intuitively,
T allows to evaluate formula F in parts. Later when evaluating F≤t3 , we split into F≤t1 and
F≤t2 , which refer to {c1, c2} and {c3}, respectively.

Dynamic Programming on TDs

A #SAT or WMC solver based on dynamic programming (DP) evaluates the input formula F
in parts along a given TD of F . For each node of the tree decomposition results are stored
in tables. The algorithm works as outlined in Figure 2 and performs the following steps:
1. Construct a primal graph or incidence graph G of F .
2. Heuristically compute a tree decomposition (T, χ) of G.
3. DP: For every node t in post-order of V (T ), we run an algorithm A ∈ {PRIM, INC}

that outputs a table τt and takes as input the node t, its bag χ(t), sub-formula Ft, and
previously computed child tables C-Tabs of t (empty at the leaves).

4. Print the result by interpreting the table for root n of T .

We provide a brief intuition on PRIM. For details and algorithm PRIM and INC, we refer
to the original source [40]. The main idea of PRIM is to store in table τt only assignments,
which are restricted to bag χt depending on nice case distinctions of the node type, and its
counters. From the count stored together with an assignment in the table at node t, we can
read the number of satisfying assignments of the formula F≤t for the induced sub-tree of T
rooted at t. In the end, we can simply read the solution from the table at the root. INC
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1. Build graph G of F
Store results
in table τt

Apply A to Ft

2. Create TD T of G
done?

no

yes

Visit next node t
of T in post-order

4. Output count
3. Dynamic Programming

Figure 2 Architecture of solvers based on dynamic programming on the CPU where an algorithm A
modifies tables.

1. Build graph Add results
to table τt

Apply K to Ft

for each row in C

2. Create TD T
nodes done?

no

yes

Visit next node t
of T in post-order chunks done?

yes

no Get next
chunk C of τt

C done?

Get next child ta-
ble chunks C-Tabs

yes

no

4. Output count

2b. Preprocess T

3. DP on GPUs 3a. Table splitter 3b. Chunk handler

Figure 3 Architecture of our dynamic programming solver on the GPU where kernel K modifies
each row individually and in parallel.

works similar, but requires more complex data structures. Both algorithms can be modified
for computing the weighted model count.

3 GPU-based DP Architecture

Over the last decade there has been significant effort in the consumer market on graphics
processing units (GPU) dedicated to render 3D graphics. GPUs are highly specialized in
processing geometry and image information independent and in parallel. When one compares
the actual computation power of such units to CPUs, GPUs are extremely cost efficient [28].
Recently, there is also increasingly strong interest in using such units for general purposes of
parallelizable tasks in artificial intelligence and computation intensive applications such as
number crunching [43].

In this section, we present an architecture for parallel dynamic programming on the
GPU. In the dynamic programming algorithm, as outlined in Figure 2, nodes only depend
on child nodes and in the table algorithm (PRIM) rows in a table are entirely independent
of each other. Consequently, there are two imminent ways to parallelize the execution. The
first way is to compute tables for multiple nodes in parallel. This, however, does not allow
for immediate massive parallelization due to dependencies to the child nodes. The second
way is to distribute rows among different computation units. This allows with the right
hindsight for massive parallelization, in particular, because the computation of a specific row
is independent of any other row in the same table.

We would like to emphasize that the crucial tricks are (i) the way how we parallelize and
(ii) a direct way to represent potential assignments (as explained below). Implementation
techniques on the GPU and its parallelization follow a straight-forward programming paradigm
and require in contrast to distributed-memory based systems [6] no parameter tuning.

The Kernel

Figure 3 outlines our dynamic programming approach on the GPU. It replaces Step 3 in the
sequential dynamic programming approach above. The core of our solver is the procedure K,

ESA 2018
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which considers all possibly resulting rows at node t; even rows where the assignment in the
row might not satisfy the sub-formula Ft, as we do not know the satisfiability in advance.
For a node t, we call the table that consists of all possible rows exhaustive table (at node t).
On the GPU a potential row can be seen as an output pixel that has to be computed. For
all rows we take as common input the sub-formula Ft and specific to the row (assignment)
corresponding rows in the tables of children of t. In terms of the methodology of programming
on the GPU, procedure K is called a kernel. In our case, we spawn a (computation) thread at
the GPU for each potential row of the exhaustive table with kernel K. All threads have the
same instructions K, but start on different data. The underlying principle of the architecture
is usually called single instruction multiple threads (SIMT). The kernel K depends on the
type of the node just as before. For example, from the algorithm PRIM would still obtain
several case distinctions but only for the different node types. In practice, however, we do
not work on nice tree decompositions and therefore have case distinctions of mixed form.
Further, it is crucial to tune our implementation towards simplicity and efficiency, which
requires extensive bit-twiddling [2]. In particular, we need to reduce the number of execution
paths, which we obtain by avoiding conditional jumps if possible. In other words, we prefer
bit operations over if then else constructions to optimize for the underlying hardware. The
GPU computation outputs counts of assignments that satisfy the sub-formula Ft. Processing
all rows at once on the GPU allows us to compute the entire table in one GPU call, if the
number of threads on the GPU and the available video RAM (VRAM) suffices, otherwise we
run multiple “rounds” of computation.

Table Splitting

Even though running the kernel on the GPU allows us to obtain a parallel version of dynamic
programming, our main memory (RAM) requirements are quite extensive and the required
RAM might exceed the capacity of the VRAM on the GPU. Hence, we need to split large
tables into smaller partitions of exhaustive tables (chunks). For a node t, this affects tables
of the children of t as well as the exhaustive table at node t. We split the exhaustive table
by a table splitter in Step 3a of Figure 3. A chunk handler then takes relevant chunks of the
exhaustive table and spawns kernels depending on chunks of corresponding child tables as in
Step 3b of Figure 3. The resulting counts for one exhaustive table chunk of this step are
summed up accordingly and stored in table τt as previously explained.

TD Preprocessing

Orthogonally, in order to utilize the entire computation power of one cycle on the GPU, we
merge several nodes of the tree decomposition into one node to obtain larger exhaustive
tables. This reduces overhead caused by IO operations between the RAM and the VRAM
and caused by spawning and deallocating GPU threads. Therefore, we run a preprocessing
operation on the tree decomposition that merges small bags. This step may result in a
tree decomposition that is not nice. Hence, we need to implement more complex kernel
algorithms. Further, we obtain an even better GPU utilization by handling certain cases
(introduce, remove, and leaf [40]) in one case and merging small bags, which share introduced
and removed variables or clauses.

Data Types and Precision

In contrast to programs that are executed on the CPU, the instruction set for procedures on
the GPU (kernels) is very limited and only a few data structures are available. In particular,
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there is no established data type for storing big numbers as directly offered in common
programming languages [27, 48]. Still, we need dedicated data types to represent large
numbers to express counts of satisfying assignments. Unfortunately, storing the exact number
of solutions in each row of each table can be too expensive on the VRAM. Instead, we use
the data type double. Hence, we cannot expect an exact solution when solving #Sat or
WMC. However, we can use an extended type (double4 ) that combines four plain double
types to increase the precision. Then, we can balance between a faster running time or higher
precision. When solving #SAT we may run into a double or double4 overflow. Then, we
can relax the instance into a weighted model count instance where all literals have the same
weight, but less than 1, and reconstruct the original count at the end of the computation.

Implementation

We implemented our approach for dynamic programming on the GPU and kernels for the
table algorithms PRIM and INC into our prototypical solver gpusat. We used OpenCL1.2 [37],
which is a universal vendor and hardware independent computation framework, and C++11
for our implementation. Currently, we only use very limited formula preprocessing and
simplifications during the search. Prior solving, we once propagate unit clauses in the usual
way. If there is a table that does not contain any solution, we terminate and output that
there is no solution. At a node t, we compute the sub-formula Ft using the CPU and start one
GPU thread for each possible assignment. Kernels are compiled only once. The assignment
is tied to the memory address, which then requires only memory for counts on the VRAM.
We statically split tables based on the available memory on the GPU. We merge bags of
small size as long as we obtain at most 14 variables in one bag.

4 Experimental Results

We performed an extensive series of experiments using several benchmark sets among
them instances that originate in model counting and weighted model counting questions.
All benchmarks as well as detailed results including raw data are publicly available2.
Theoretically, we do not expect to solve formulas with graph representations of high treewidth.
Therefore, we restricted the sets to instances where we were able to find tree decompositions
of width below 30 using standard heuristic decomposers [1]. Nonetheless, we provide upper
bounds on the treewidth for all instances of our benchmark sets. Since our benchmarks require
entirely different type of hardware, we can only use wall clock time as a time measurement.
Note that we used cheap consumer hardware for gpusat; whereas we used a very recent server
hardware configuration for all other solvers.

Hardware

Our results were gathered on Ubuntu 16.04 LTS Linux machines kernel 4.4.0-101 and 4.14.0-
041400, respectively, both pre-Spectre and pre-Meltdown kernels3. We ran non-GPU solvers
on a cluster of 9 nodes. Each node is equipped with two Intel Xeon E5-2650 CPUs consisting
of 12 physical cores each at 2.2 GHz clock speed and 256 GB RAM. Hyper threading was
disabled. For gpusat we used a machine equipped with a consumer GPU: Intel Core i3-3245
CPU operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570 GPU

2 See: Benchmark repository (including used tree decompositions) [19] and results/raw data [20].
3 See: spectreattack.com
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Table 1 Overview on upper bounds of the primal treewidth for considered benchmarks. #
represents counting and W represents weighted model counting, number N of instances, number n

of variables, median t Mdn of the runtime in seconds, maximum runtime t, and median Mdn and
percentiles of the upper bounds on the treewidth.

set origin N n Mdn t[s] Mdn (max.) Mdn 50% 80% 95%

W Dqmr Cachet 660 140 0.0 (1.6) 28 28 42 44
W Grid Cachet 420 1825 0.2 (1.3) 29 29 39 71
W Plan Cachet 11 812 2.9 (9.3) 73 85 399 na
# Mixed c2d 14 1287 3.8 (15.9) 57 63 399 540
# Basic fre/meel 92 604 1.0 (9.3) 26 37 64 352
# Proj. fre/meel 308 62586 120.3 (880.4) 273 328 1084 na
# Weig. fre/meel 1080 200 0.1 (1.6) 28 28 40 48

running at 1.24 GHz with 32 compute units, 2048 shader units, and 4GB VRAM using driver
amdgpu-pro 17.10.

Solvers

We benchmarked c2d [12], d4 [33], DSHARP [35], miniC2D [36], cnf2eadt [30], bdd_minisat_
all [45], and sdd [13], which are based on knowledge compilation techniques. We also included
recent approximate solvers ApproxMC [7] and sts [17], as well as pure CDCL-based solvers
Clasp [25], Cachet [41], sharpCDCL4 and sharpSAT [44]. Further, we considered the recent
multi-core solver countAntom [5] utilizing exclusively all 12 physical cores, and DP based
solvers on tree decompositions from related domains that allow with slight modifications
for #Sat solving, i.e., dynasp [18] and dynQBF 1.1.1 [9]. We used all solvers with default
options and ran gpusat with uniform weights 0.78 for #SAT experiments. All solvers allow
for #SAT solving and sts, gpusat, miniC2D, and Cachet in addition support WMC5.

Setup and Limits

In order to draw conclusions about the efficiency of gpusat, we mainly inspected the wall
clock time including decomposition time and number of timeouts. We set a timeout of 900
seconds and limited available RAM to 8 GB per instance. For each instance we only used
one tree decomposition, which was obtained by setting a random seed for the decomposer.
All the tree decompositions together with the experimental data are provided as well2. Note
that we avoid IO access on the CPU solvers whenever possible, i.e., we extract instances into
the RAM before starting solving.

Benchmark Instances

We considered a selection of 2585 instances from various publicly available benchmark sets
for model counting and weighted model counting, consisting of Cachet benchmarks6 (1091
instances), fre/meel benchmarks7(1451 instances), and c2d benchmarks8 (14 instances).

4 See: tools.computational-logic.org
5 Note that in principle using a d-DNNF reasoner one can also use c2d and d4 to solve WMC.
6 See: cs.rochester.edu/u/kautz/Cachet
7 See: tinyurl.com/countingbenchmarks
8 See: reasoning.cs.ucla.edu/c2d

http://reasoning.cs.ucla.edu/c2d/download.php
http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://github.com/potassco/clasp
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/dynasp
https://github.com/gcharwat/dynqbf/releases/tag/v1.1.1
http://tools.computational-logic. org/content/sharpCDCL.php
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.html
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html
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Figure 4 Distribution of instances in upper bound intervals on the primal treewidth over our
benchmarks. The x-axis labels the intervals. The y-axis labels the number of observed instances.

Table 2 Number of WMC instances solved. Intervals are given with respect to primal graph.
abs err indicates the absolute error. best indicates the number of instances the solver solved the
fastest. † absolute weighted model counts were rounded to 3 decimal places. ∗ indicates a significant
(≥ 0.2 on average) absolute error.

solver abs err 0-20 21-30 31-40 41-50 51-60 >60 best
∑

Cachet 0.0 92 448 108 105 2 9 476 764
gpusat(i) ±0.0 127 487 83 101 0 0 42 798
gpusat(i4) ±0.0 127 432 75 90 0 0 0 724
gpusat(p) ±0.0 128 526 88 104 0 0 296 846
gpusat(p4) ±0.0 127 478 80 96 0 0 0 781
miniC2D †±0.0 126 513 143 110 5 6 143 903
sts∗ †±0.2 121 533 200 152 1 6 ∗na ∗1013

Treewidth

We computed upper bounds on the primal and incidence treewidth for our benchmarks.
The sets contain instances that have the same graph representation. Upper bounds on the
treewidth and running times to obtain a decomposition were quite similar for both the primal
graph and the incidence graph, except for instances of the set Proj. Hence, we focus on an
upper bound of the treewidth of the primal graph only and state them in intervals. Table 1
provides statistics on the benchmarks, including runtime of the decomposer to obtain a
decomposition. Further, the decomposer ran 0.034s in median (max 1.57s) for instances
of width 0–30, 0.132s (max 2.503s) for instances of width 31–40, and 0.054s (max 900.0s)
over all instances. The decomposer did not output a decomposition within 900 seconds for
41 instances. Table 1 also states the median of the width of the obtained decompositions
and its percentiles, which is the width below a given percentage the instances have. When
considering the set Dqmr, even 99% of the instances have treewidth below 45. In contrast, the
decomposer outputted only decompositions of very high width for instances from the set Proj.
Figure 4 illustrates the distribution of number of instances (y-axis) and their respective upper
bounds (x-axis) for primal treewidth. Considering all sets 54% of the instances have primal
treewidth below 30, 70% of the instances have treewidth below 40, and 88% of the instances
have treewidth below 150, and for 1% of the instances we obtained no result within the limit.
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Table 3 Number of counting instances solved by sum of the top ten counting solvers and gpusat.
The symbol ∗ indicates that this gpusat configuration was not among the top ten.

solver 0-20 21-30 31-40 41-50 51-60 >60 best
∑

c2d 164 519 175 116 20 118 120 1112
Cachet 133 421 91 109 8 58 13 820
d4 169 510 156 119 23 162 191 1139
gpusat(i) 169 490 79 97 0 0 1 835
gpusat(i4) 168 427 70 89 0 0 1 ∗761
gpusat(p) 169 523 79 104 0 0 88 875
gpusat(p4) 169 478 79 97 0 0 0 823
miniC2D 167 491 137 103 8 67 2 973
sharpSAT 136 465 136 112 11 124 483 984
sts 162 448 101 146 10 45 252 912

Solved Instances, Runtime, and Error (WMC)

Table 2 gives an overview on the number of solved instances for weighted model counting
benchmarks (Cachet) and the average error on the weighted model count of the solver. The
absolute error is the difference of the weighted model count of the solver and the one obtained
by Cachet. The configuration gpusat(p) and gpusat(i) refer to the primal and incidence graph
implementation, respectively. gpusat(i4) or gpusat(p4) indicates that this configuration uses
extended data type precision (double4). gpusat(p) solved the most instances in interval 0–20
and second most instances in interval 21–31 on benchmark sets for WMC; in interval 0–30
gpusat(p) solved the same number of instances as sts. However, gpusat(p) produced almost
no absolute error on average (±1.42 · 10−5). sts produced a very high absolute error on
average (± 0.2, stdev 0.8; avg relative error 1037) and had a relative error of more than one
order on 56 instances (even when rounding weighted model counts to 3 decimal places). For
example, sts outputted a weighted model count of 1.5 (0.873 Cachet) on instance 90-12-
3-q.cnf and 0.316 (0.001 Cachet) on instance or-50-5-4-UC-20.cnf. Slightly increasing the
number of sampling iterations and samples per level resulted in slower runtimes than gpusat
at similar error. Considering all instances gpusat(p) still solved the second most instances at
sufficiently high accuracy. The double4 precision versions solved 65 and 74 less instances at
negligible accuracy improvement, both versions provide at least the precision that Cachet
offers. Figure 5 (top) illustrates runtime results on weighted model counting instances of
width between 0 and 30 as cactus plot. When we directly compare gpusat(i) and gpusat(p),
gpusat(i) solved 18 instances, which could not be solved by gpusat(p), and 70 instances vice
versa. gpusat(i) was on 120 instances faster than gpusat(p) and 815 vice versa.

Solved Instances, Runtime, and Error (#SAT)

Table 3 gives an overview on the number of solved counting instances. gpusat(p) solved
the most instances in interval 0–30. Considering all instances gpusat(p) solved the sixth
most instances and surprisingly many instances in the interval 31–50. The double4 precision
versions solved 52 (p) and 74 (i) less instances. In our experiments we observed on average an
error of 4 · 10−13 for double and 2 · 10−32 for double4 when comparing to sharpSAT. Hence,
we consider the precision error negligible. Without using a uniform weight for gpusat, we
ran 80 (p) and 56 (i) times into a double overflow at similar runtime. Figure 5 (bottom)
illustrates runtime results (in seconds) on instances of interval 0–30 as cactus plot.
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Figure 5 (Top): Runtime on WMC instances (Cachet) of primal treewidth at most 30 as cactus
plot. (Bottom): Runtime on counting instances (c2d, fre/meel) of primal treewidth at most 30 as a
cactus plot. vbest refers to the virtual best solver, i.e., the best runtime result among all solvers.
The x-axis labels consecutive integers that identify instances. The instances are ordered by running
time, individually for each solver. Hence, the figure does not provide insights on the solving time of
the individual instances and solvers might solve instances fast, which is usually indicated by the
virtual best solver. The y-axis labels the runtime (in seconds).

Runtime deviation

We tested gpusat with five different TDs (computed via htd [1]) to draw conclusions about
runtime stability. The results indicate that the best, the average, and the median among
those five tree decomposition still yield good runtime results. Regarding the number of tested
instances it is practically quite unlikely to obtain the worst case behavior.
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Discussion and Summary

Our results on upper bounds of the primal and incidence treewidth of WMC and #Sat
benchmark instances, show that more than half of the instances have treewidth below 30
and more than two third have treewidth below 40. We observed that table splitting was
necessary at width above 26. Since gpusat solved the vast majority of the instances in
interval 0–30 (only 22 of the 670 WMC instances and 23 of the 721 #Sat instances were not
solved), gpusat is highly suitable for the majority of the instances. It turns out that instances
in interval 30–40 are still in reach for our solver, even certain instances of width upper
bound 45 were solved. Overall gpusat was the fastest virtually exact solver in interval 0–30
for considered WMC and #Sat instances. Our results show that gpusat(p) solves more
instances than gpusat(i) and instances often faster, which indicates that gpusat(p) benefits
from its simpler algorithms. Using data types of higher precision does obviously not pay off.
However, relaxing a #Sat instance into a WMC instance with uniform weights gives almost
no precision loss. From our analysis, gpusat is not yet a general propose solver, but highly
competitive if the treewidth is below 30. Since we can often find tree decompositions of small
width in well below a second, it makes gpusat perfectly suitable for a portfolio approach.

5 Conclusion & Future Work

We introduced the OpenCL-based solver gpusat, which allows for solving #Sat and WMC
using dynamic programming on tree decompositions running on consumer GPUs. Our
solver parallelizes the computation of each table, vaguely speaking, a partial model count is
represented by a pixel. Further, we provide insights on tuning parameterized algorithms for
the GPU, including balancing VRAM utilization. We carried out rigorous experimental work,
including establishing upper bounds for treewidth of commonly used benchmarks and compar-
ing to most recent solvers. Our findings indicate that a majority of benchmark instances have
treewidth below 30. Then, we can also heuristically compute tree decompositions in less than
a second. Since gpusat is competitive on those instances, we show that implementations of
parameterized algorithms on the GPU are a promising attempt to solve WMC. Hence, those
algorithms are not just an interesting theoretical research direction, but its implementations
are also competitive in practice. In our opinion, a wide range of applications [8, 15], even
suggests to establish dedicated #Sat or WMC competitions, in particular, to obtain a wider
picture on which method pays off for which domain.

The results of this paper give rise to several research questions. For instance, it would be
interesting to determine the effect of formula preprocessing [32, 31] on the treewidth and
solver runtimes. We conducted initial experiments, which suggest that preprocessors might
drastically reduce the treewidth and hence increase the applicability of gpusat. Further, it
might be fruitful to investigate on obtaining decompositions that have smaller width [21]
or that are customized to improve efficiency of the dynamic programming algorithm [1].
An interesting further research direction is to study whether efficient data representation
techniques can be combined with dynamic programming similar to techniques for QBF [9]
and even be run in parallel on the GPU. Concerning potential overflows of counters for
counting-only problems, we aim at analyzing and implementing further improvements as for
example storing logarithmic counters [23]. At the same time we want to elaborate on ways
to provide high-precision counter (libraries). Finally, parameterized algorithmics suggests
recent parameters similar to treewidth [39], which can however be arbitrarily smaller than
treewidth. We also aim for implementing these algorithms in OpenCL.
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