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Abstract
We consider the problem of edit distance in which block operations are allowed, i.e. we ask for
the minimal number of (block) operations that are needed to transform a string s to t. We
give O(logn) approximation algorithms, where n is the total length of the input strings, for
the variants of the problem which allow the following sets of operations: block move; block
move and block delete; block move and block copy; block move, block copy, and block uncopy.
The results still hold if we additionally allow any of the following operations: character insert,
character delete, block reversal, or block involution (involution is a generalisation of the reversal).
Previously, algorithms only for the first and last variant were known, and they had approximation
ratios O(logn log∗ n) and O(logn(log∗ n)2), respectively. The edit distance with block moves is
equivalent, up to a constant factor, to the common string partition problem, in which we are
given two strings s, t and the goal is to partition s into minimal number of parts such that they
can be permuted in order to obtain t. Thus we also obtain an O(logn) approximation for this
problem (compared to the previous O(logn log∗ n)).

The results use a simplification of the previously used technique of locally consistent parsing,
which groups short substrings of a string into phrases so that similar substrings are guaranteed to
be grouped in a similar way. Instead of a sophisticated parsing technique relying on a determin-
istic coin tossing, we use a simple one based on a partition of the alphabet into two subalphabets.
In particular, this lowers the running time from O(n log∗ n) to O(n). The new algorithms (for
block copy or block delete) use a similar algorithm, but the analysis is based on a specially tuned
combinatorial function on sets of numbers.
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33:2 Edit Distance with Block Operations

1 Introduction

In the edit distance problem, which is one of the most iconic problems in the field of string
algorithms, we are given two strings and a set of allowed operations, and we ask for the
minimum number of operations needed to transform one of the strings into the other.
Classically, we allow single-letter operations (usually: character insert, delete, and replace),
but it seems that block operations, in which the whole substrings of the input can be edited
in one operation, are as important and practical.

In the classical setting, when character operations are allowed, edit distance is computable
in quadratic time, and achieving strongly subquadratic time is unlikely [2]. Allowing block
deletion does not make the problem substantially harder, and a polynomial-time algorithm
for this variant is known [21, 20].

The variant with other block operations was first considered by Lopresti and Tomkins [13],
who showed NP-hardness of edit distance with block moves, as well as with block moves
and block deletions. The former problem was approximated within an O(logn poly(log∗ n))
factor [7], which was later improved to O(logn log∗ n) [6]. A slightly worse approximation
ratio of O(logn(log∗ n)2) is known when we allow block move, block copying, block uncopying
and block reversal [15, 16]; while all those algorithms did not explicitly allow character edits
(insert, delete, replace), it is clear from their analysis that those can also be accommodated.
A variant with block move and block delete was considered and some structural properties
were shown [20], but in the end no approximation algorithm was given.

The three mentioned approximation algorithms are all based on the locally sensitive
parsing technique, which has roots in the deterministic coin tossing by Cole and Vishkin [5]
and was used previously in the context of string algorithms in general [18] and comparing
strings in particular [17, 14, 1]. In this method, we partition the string into constant-length
blocks such that for each letter we can decide whether it begins or ends a block based only on
the O(log∗ n)-size neighbourhood of this letter. Then we label the blocks with new symbols
and iterate the process. It turns out that to approximate the edit distance between two
strings, it is enough to count the difference between the numbers of labels that appear during
this (iterated) process; this is turn can be abstracted as calculating the `1 norm between
embeddings into a vector space.

Surprisingly, allowing both block deletion and block copy makes approximation of the edit
distance simpler: there are O(1) approximation algorithms for this problem [8, 19]. Those
are based on a different approach, though: in essence they parse the target into phrases using
the LZ77 algorithm, copy the phrases from the source, and then delete the source.

The edit distance with move operations problem is equivalent (up to a constant coefficient)
to a common string partition problem, which was investigated on its own due to its connections
with the computational biology, however, often in variants that are not so well motivated
in terms of edit distance. For instance, it was shown to be fixed parameter tractable [3]
and its restricted variant is known to be NP-hard but at the same time approximable up to
a constant factor [10]; heuristics for this problem were also analysed [4].

Our contribution. We present O(logn) approximation algorithms for the edit distance
problem with the following set of (block) operations: block move; block move and block
delete; block move and block copy; block move, block copy and block uncopy. Our algorithms
work also when an arbitrary subset of the following operations is also allowed: character insert,
character delete, character replace, block involution. (Involution, also known as antimorphism,
is a generalisation of reverse: it reverses the string and then replaces each letter a with
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f(a), where f is a given bijection on the letters such that f(f(a)) = a, note that f can
be the identity.) The first algorithm improves upon the previously known O(logn log∗ n)
approximation ratio [6], while the last one – the O(logn(log∗)2n) ratio [15, 16]. The second
variant was considered to no avail [20]; to the best of our knowledge, the third variant has
not been considered before.

The algorithms for the cases when only block move or block move, copy and uncopy are
allowed, are similar as before [6, 15, 16], but instead of the sophisticated locally consistent
parsing based on the deterministic coin tossing, we use a simpler one which is based on
a partition of the alphabet into two parts. Such approaches were recently investigated [11, 9].

The presented version of the parsing is much simpler than previously used and allows
for the removal of the multiplicative log∗ n factors from the approximation ratios. It also
enables a more general treatment of involution instead of reversal.

The algorithm for block moves and block delete is almost the same as in the case when
only block moves are allowed. However, the analysis employs complex combinatorial functions
defined on sets of lengths of letter repetitions. Unlike the previously used embedding to `1
spaces, this function depends on both strings and cannot be computed separately for each of
them. The algorithm for the variant with block move and block copy uses the same function
in the analysis, but in contrast to other presented algorithms (as well as the previously known
ones), it is no longer a simple greedy algorithm. It constructs the sequence of operations in
two steps: in the second one, the earlier copy operations may be revoked and move operations
may be forced.

Our algorithms can be generalised to the case when the input is given in a grammar-
compressed form: then its running time becomes O(n logN), when n is the compressed size
of the input and N the sum of lengths of the decompressed strings.

To streamline the presentation, in the extended abstract we give the algorithms in the
variant when the involution is not allowed. The generalisation to the case with involution is
natural, though tedious.

2 Definitions and basic reductions

A string is a sequence of elements, called letters, from a finite set, called alphabet and usually
denoted by Σ, and it is denoted as w = w1w2 · · ·wk, where each wi is a letter; the length
|w| of such a string w is k. For any two strings w = w1 · · ·wk and w′ = wk+1 · · ·wk+`, their
concatenation is ww′ = w1 · · ·wk+`. A string v is a substring of w if there exist strings w′, w′′
such that w = w′vw′′, it is a prefix if w = vw′′ and a suffix if w = w′v. The empty string, i.e.
the one of length 0, is denoted by ε. For a letter a and a string w, the number of occurrences
of a in w is denoted |w|a.

Given two strings s, t their edit distance is the minimum number of operations needed
to transform s to t. The usual operations are insert (ins) and delete (del): the former turns
a string s = s1s2 to s1as2 and the latter s′ = s1as2 to s1s2 for arbitrary letter a and strings
s1, s2. Replace, which replaces a single letter with another, is usually considered as well, but
it can be simulated by insert and delete, so we ignore it later on. Other operations include
block copy (called copy for short, cp), block move (called move for short, mv) and block
delete (b-del), which can transform s = s1s2s3s4 to, respectively, s1s2s3s2s4 or s1s3s2s3s4,
s1s3s2s4 and s1s3s4, for arbitrary strings s1, s2, s3, s4. The block uncopy (called uncopy for
short, uncp) is the inverse operation to copy, i.e. it can transform any s1s2s3s2s4 to s1s2s3s4
or s1s3s2s4 for arbitrary strings s1, . . . , s4. By EDOp(s, t) we denote the minimal number of
operations from the set Op that transform s to t, where Op ⊆ {ins, del, cp,mv, uncp, b-del},
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33:4 Edit Distance with Block Operations

and the edit distance with operations Op problem asks, for given strings s and t, to find
the sequence of EDOp(s, t) operations that transforms s to t. Note that the “edit distance”
is a distance only when block deletion is not allowed and for each operation its inverse is
also allowed. Nevertheless, in each case ED does satisfy the (directed) triangle inequality:
EDOp(s, t) + EDOp(t, `) ≥ EDOp(s, `). Still, we use the name distance for historic reasons.

For two strings s and t, their common partition with operations is a representation
s = s1s2 · · · sds

and t = t1t2 · · · tdt
with two sets of indices Is ⊆ [1 . . ds] and It ⊆ [1 . . dt]

(equal to [1 . . ds] and [1 . . dt], respectively, unless otherwise stated), and a bijection f : Is → It

such that si = tf(i) for each i ∈ Is; we say that parts si and tf(i) are matched. The size of
such a partition is ds + dt. Depending on the allowed operations, we may relax some of those
requirements and give new ones:
delete If deletion of single letters is allowed (del), then we allow Is 6= [1 . . ds] but require

that |si| = 1 for i /∈ Is. We say that such letters are deleted.
insert If insertion of single letters is allowed (ins), then we allow It 6= [1 . . dt] but require

that |ti| = 1 for i /∈ It. We say that such letters are inserted.
block-delete If block-deletion is allowed (b-del), then we allow Is 6= [1 . . ds]. This operation

supersedes deletion. We say that such blocks are deleted.
By CPOp(s, t) for Op ⊆ {del, ins, b-del}, we denote the minimal size of the common partition
with operations Op for s and t. In the minimum common string partition with operations
Op problem, we want to compute, for the given strings s and t, their partition of minimal
size and the corresponding function f .

Note that the different names for deletion and insertion of letters are chosen for consistency
between the common partition and the edit distance problems. In the later sections, we will
consider a common string partition (without operations) problem generalised to two sets of
strings, which is defined in the obvious way.

It is folklore knowledge that edit distance with move operations corresponds to a common
partition; more precisely, it is within constant factor of the minimal common partition.
Moreover, the same holds when block deletion and/or character operations are allowed.

I Lemma 1. For any set of operations Op ⊆ {del, ins, b-del}, there is a constant cOp such
that for any strings s, t:

ED{mv}∪Op(s, t) ≤ CPOp(s, t) ≤ cOp ED{mv}∪Op(s, t) .

Moreover, this correspondence is effective: given a sequence of d operations from Op that
transform s to t, we can compute the common partition with Op of s and t of size at most
cOpd, and given a common partition with Op of size d, we can compute a sequence of d
operations from Op that transform s to t.

As approximation algorithms given in this work have approximation factors O(log |st|),
due to Lemma 1 we will content ourselves with considering one or the other problem of edit
distance or common partition, depending on whichever is easier to argue about.

3 Locally consistent parsing

A parsing of a string s is a sequence s1, . . . , sk such that s = s1s2 · · · sk; the strings s1, . . . , sk

are called phrases, the integer k is the size of this parsing, and we say that s is parsed into
s1, . . . , sk. Given a substring t of s, we say that it is parsed into si, . . . , sj when si · · · sj

contain this occurrence of t while si+1 · · · sj and si · · · sj−1 do not. A parsing scheme is a
way of producing parsings for strings. We consider parsing schemes given by a pair of disjoint
alphabets Σ0,Σ1 ⊆ Σ. This defines a parsing in the following way:
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repetitions We group into a phrase each maximal repetition a` with a ∈ Σ and ` > 1.
pairs We group each ab ∈ Σ0Σ1 into a phrase.
All the remaining letters form length-1 phrases.

Next, we construct a new alphabet which has a letter for each constructed phrase.
Using the new alphabet, a parsing of w gives raise to a new string w′, which is obtained

by replacing phrases of length greater than 1 by their new symbols. This is called a signature
of the string w and denoted by sig(w). Note that the signature depends on the parsing
scheme (i.e. Σ0 and Σ1) as well as on the chosen symbols; the former is always clear from the
context and the latter is ignored as the exact choice is irrelevant as long as it is consistent.

Given a letter a, its expansion exp(a) is the phrase that it replaced and its full expansion
Exp(a) is the substring of the original text that it represents, which is obtained by iterative
application of exp. This is generalised to strings in the obvious way.

Given two strings, we can find in linear time a parsing scheme which replaces those string
with signatures that are shorter by a constant fraction.

I Lemma 2. Given two strings s, t over an alphabet Σ we can find in time O(|s|+ |t|+ |Σ|)
a parsing scheme of size at most 11

12 |st|+
1
3 and produce the corresponding signatures.

The proof is a variant of a known construction [11, 9]. The idea is that when Σ is randomly
partitioned into Σ0 and Σ1, then among every two consecutive letters, with constant probab-
ility at least one is going to be parsed into a phrase of length two or more. Case inspection
shows that the claim holds in expectation, and we can derandomise the procedure using the
conditional expectations.

We call the parsing from Lemma 2 the parsing for s, t; given that there could be many
such parsings, we choose one arbitrarily. We iterate the parsing process for two strings
until they are reduced to single letters: an iterated parsing scheme is a sequence of parsing
schemes (Σ0,1,Σ1,1), (Σ0,2,Σ1,2), . . . , (Σ0,`,Σ1,`); its height is `. Given a string s, an iterated
parsing scheme defines a sequence of signatures s = sig0(s), sig1(s), sig2(s), . . . , sig`(s), in
which sigi(s) is the signature of sigi−1(s) according to parsing scheme (Σ0,i−1,Σ1,i−1), where
sigi−1(s) is a string over Σi−1 = Σ0,i−1 ∪ Σ1,i−1. Note that Σi and Σj for i 6= j are not
necessarily disjoint and in constructions they are usually not: not all letters from a string
are replaced with their signatures, and so we want to replace them later on. We say that a
letter a is from the ith level, or simply an i-letter, if a ∈ Σi \

⋃
j<i Σj .

I Lemma 3. Given two strings s, t, there is an iterated parsing scheme of height O(log |st|)
such that sig`(s) and sig`(t) are letters.

We call this parsing scheme the parsing scheme for s, t.
A parsing scheme is locally consistent if different occurrences of v (in the same or different

strings) are parsed into the same phrases, possibly except O(1) beginning and ending phrases.
Formally, if different occurrences of v are parsed into s1, . . . , si and s′1, . . . , s′i′ , then there
are b, b′, e, e′ ∈ O(1) such that the sequences of phrases s1+b, . . . , sj−e and s′1+b′ , . . . , s′j′−e′

are equal (in particular they have the same length).

I Lemma 4. A parsing scheme defined by a partition of the alphabet are locally consistent.

4 Approximation via embedding into normed vector spaces

Idea. While different occurrences of the same substring in s, t may be parsed differently by
an iterated parsing scheme, the same symbol always fully expands to the same substring of
the original strings s, t. This leads to a natural meta-algorithm for the common partition
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(and the edit distance with block moves) for s, t, which was first proposed by Cormode and
Muthukrishnan [6] (earlier work [7] used a similar though more involved approach): given
s, t calculate their iterated parsing scheme and set of signatures s0, . . . , sk and t0, . . . , tk,
where k = O(log(st)), and then iteratively look at i-symbols for i = k, k − 1, . . .. If there are
common symbols in si and ti, then make corresponding full expansions in s, t as parts and
match them to each other. For the remaining symbols, expand them to phrases in si−1 and
ti−1. The algorithm depends only on the number of occurrences of each i-symbol in si an
ti; thus, we can represent s, t as vectors of counts of occurrences of letters in appropriate
signatures. Amortised analysis shows that the size of the resulting partition (the number
of edit moves) is within a constant factor of the `1 norm of the difference of the vectors for
s and t. As a last step, one argues that this difference is at most O(k) times the size of
the minimal common partition (the edit distance), which is shown by induction on the edit
distance value. Adding insertion and deletion as allowed operations keeps the whole scheme
more or less the same; in particular, we still use the `1 norm.

Unfortunately, allowing more operations (and in particular their combinations) distorts
this approach. The needed modifications are explained at appropriate places.

Embedding to normed vector spaces. Given a string s and an iterated parsing scheme
(Σ0,i,Σ1,i)k

i=1, let s = s0, . . . , sk be the sequence of its signatures and let Σi = Σ0,i ∪ Σ1,i.
We embed s into a vector space whose coordinates are indexed with elements of

⋃k
i=0 Σi:

for an i-letter a, we set V (s)[a] = |si|a, i.e. the number of occurrences of the letter a in
the appropriate signature of s (the first one to use letter a). Define a symmetric difference
V (s)4 V (t) of such vectors as

(V (s)4 V (t))[a] = d|V (s)[a]− V (t)[a]|e .

Note that taking the ceiling is not needed, as coordinates are natural numbers, but it is used
for vectors defined later on. We also define the support sup(v) of a vector, in which every non-
zero component of v is replaced with 1, i.e. sup(v)[a] ∈ {0, 1} and sup(v)[a] = 0 ⇐⇒ v[a] = 0.
Lastly, the standard `1 norm is the sum of its coordinates (which are all non-negative):
‖V (s)‖1 =

∑
a V (s)[a]. Define also Vi(s) that restricts V (s) to coordinates in

⋃
j≤i Σj

Algorithms. We now give the algorithms for several variants of the edit distance with
operations and bound their sizes in terms of vectors related to input strings. The basic case
is when the move operation is allowed; it serves as a model for other algorithms.

Common partitions for repetitions. Our algorithms try to match identical symbols in two
signatures, yet it is more beneficial to match long repetitions instead of single letters, i.e.
partition repetitions into subrepetitions such that those of larger lengths can be matched
using less parts. It turns out that this is a variant of the original common partition problem;
we state the simple result for later reference.

I Lemma 5. For two sets S, T of a repetitions with, respectively, nS and nT repetitions and
having the same sum of lengths of repetitions, there exists a common partition between S

and T of size at most 2nS + 2nT .

It is enough to match any repetition from one set to a prefix in the other.



M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:7

Move. AlgMove works as follows: We compute the iterated parsing scheme for s, t, the
corresponding signatures s0, . . . , sk and t0, . . . , tk, and the vectors V (s) and V (t). In the
same time bounds, we can also create the list of occurrences of a in si and ti for each i-letter
a. Also, for each letter in the signature, we compute the beginning and the end of the
corresponding full expansions in the original string.

During the algorithm, we consider the strings si, ti for i = k, . . . , 1, 0. We colour some
letters of si, ti black, such that the multisets of black coloured letters in si, ti are the same.

Initially, there are no coloured letters in sk, tk. For each i we proceed as follows: first, we
consider si, ti with the coloured letters removed, which yields two sets of strings, called S
and T , respectively. For each i-letter a, take the sets of all maximal a-repetitions in S and T
(which includes those of length 1, i.e. single letters a). Let their total sum of lengths be `s, `t,
respectively, and let ` = min(`s, `t). Choose among those two sets (sub)repetitions with total
length ` (we take all repetitions from one of the sets, while in the other we may need to
split one repetition). Let the numbers of the chosen repetitions be ns, nt, respectively. Using
Lemma 5, we find a common partition for them of size at most 2(ns + nt). We then colour
those letters black, remove them from S, T and declare their full expansions in s and t as
parts and map the ones in s to t. If the removal happens in the middle of some string in
S ∪ T , then this string is split into two strings and both are added back to the appropriate
set. After that, we expand each i-letter to the corresponding phrase in si−1 or ti−1; the
expansion is black coloured if and only if this letter is black coloured.

After processing 0-letters, the final actions depend on the allowed operations: if there
are any uncoloured letters in s0 = s, then we delete them or reject if deletion is not allowed;
similarly, if there are any uncoloured letters in t0 = t, then we insert them or reject if
insertion is not allowed.

I Lemma 6 (cf. [6]). Given an iterated parsing scheme for strings s and t, AlgMove constructs
in linear time a common partition of size O(‖V (s)4 V (t)‖1).

Proof.

I Claim. When the algorithm processes si, for each a the number of black coloured letters a
in si and ti is the same.

This is true when there are no coloured letters; we show that this number changes in the
same way for s and t. When we expand the letters, by the inductive assumption the multiset
of black-coloured letters is the same in si and ti. Each such letter is replaced with the same
expansion, so the claim holds also after the expansion. When we colour letters, we do it on
the same (multi)sets of letters in si, ti.

Claim 4 implies that after processing an i-letter a, but before the expansion, the number
of uncoloured a’s in si, ti is exactly (V (s)4 V (t))[a]: those uncoloured letters are exactly in
one of si, ti and the coloured letters have the same number of occurrences in si and ti.

Concerning the cost, we assume that the creation of one part in the common partition
consumes one unit of credit. We keep the invariant that right before processing i-letters,
each repetition in S and T (including length-1 repetitions) has 2 units of credit. The credit
is spent when the partition is formed: The common partition of repetitions costs on average
2 per paired repetition, which is paid by the credit on this repetition. After the processing,
the unused credit on the repetitions of i-letters is discarded and 4 fresh units of credit are
issued to each i-level symbol that has not been removed (i.e., coloured black). Recall that a
fixed i-letter a has exactly (V (s)4 V (t))[a] such occurrences, so in in total 4 ‖V (s)4 V (t)‖1
units of credit are issued.

ESA 2018



33:8 Edit Distance with Block Operations

If i > 0, this credit freshly assigned to an i-letter a is then reassigned to letters in the
expansion of a: if exp(a) is a repetition, 4 units are reassigned to this repetition, if it is a
pair, 2 units of credit is given to each of those letters.

In case of i = 0, we observe that each remaining symbol is a 0-letter and has 4 units of
fresh credit, which can be used to pay for the final operations of delete and insert. J

The second step of the analysis is to show that ‖V (s)4 V (t)‖1 indeed upper bounds the
edit distance (multiplied by O(logn)).

I Lemma 7 (cf. [6]). Let s, t be two strings and let {mv} ⊆ Op ⊆ {ins, del,mv}. Fix
an iterated parsing scheme of height k. Then ‖V (t)4 V (s)‖1 = O(d(k + 1)), where d =
EDOp(s, t).

Proof. As ‖· 4 ·‖1 satisfies the triangle inequality, it is enough to give the proof for d = 1.
Let s = s0, . . . , sk and t = t0, . . . , tk be the consecutive signatures for s, t according to the

parsing scheme and V0(s), . . . , Vk(s) and V0(t), . . . , Vk(t) be the corresponding vectors. We
first show by induction on k a stronger claim for move and then adapt it to other operations:

I Claim. There are at most 3 substrings in sk and at most 3 substrings in tk, called difference
strings, of total length `k, such that the multisets of substrings of sigk(s) and sigk(t) obtained
after the removal of the difference strings are equal and 4`k + ‖Vk(s)4 Vk(t)‖1 = O(k + 1).

For the base of the induction, if s = w1w2w3w4 is turned to t = w1w3w2w4, let the
difference substrings be length-2 substrings on the boundary between each wi and subsequent
wj . We merge the chosen substrings if they overlap or are adjacent, which results in
at most 3 such substrings in s0 and t0; their total length is at most `0 = 12. Clearly,
(V0(s)4 V0(t))[a] = 0 as no letters are removed nor added.

For the induction step, consider how sk and tk are parsed. Define the difference strings in
sk+1 and tk+1 as those whose expansions are contained in the difference strings in sk, tk or
form the O(1) phrases around the difference substrings that may be parsed differently; see
Lemma 4. So the increase `k+1 from `k is upper bounded by O(1), but it can also decrease
if there are phrases in the difference strings that are longer than 1.

Consider the multisets of strings obtained from sk+1, tk+1 after the removal of the
difference strings. By the choice of the difference strings, their expansions were parsed
in the same way (see Lemma 4), and thus those multisets are identical. Consider now
Vk+1(s)4 Vk+1(t) and new letters (compared to Vk(s)4 Vk(t)). Those are (k + 1)-letters
and they are in the difference strings of sk+1, tk+1. Either they are one of the O(1) letters
that replaced phrases that were parsed differently or letters whose phrases consists of the
letters in the difference strings for sk, tk. But each of the latter letters decreases `k+1 when
compared to `k by at least 1: difference strings for sk, tk did not include any (k + 1)-letters
and each such a letter corresponds to a phrase of length at least 2.

For del and ins, the difference strings on the 0-th level include the deleted (or inserted)
letter and otherwise the proof is only simpler (as there are fewer substrings after the removal
of the difference strings and they are in the same order). J

I Theorem 8. AlgMove gives an O(logn) approximation of common partition problem with
a set of operations which is any subset of insert, delete. Its running time is linear assuming
integer sorting runs in linear time. The same applies to the edit distance with set of operations
that include block move and any subset of operations of insert, delete.
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Move and block delete. We now investigate the case in which we allow move as well as
block delete operation. This makes the situation asymmetric with respect to s and t. The
algorithm is almost the same as AlgMove, though the analysis becomes more involved.

The differences between AlgBdel and AlgMove are as follows: the first is the treatment
of the remaining uncoloured letters in s0 after processing level-0 letters: we delete each
maximal string of such letters using block delete. The second is that we make the common
partition for repetitions in a more clever way (though it is still a valid one for AlgMove): for
a fixed letter a, consider the a-repetitions in S, T (recall that those are the sets of uncoloured
a-repetitions in si, ti, respectively); let them have lengths M = {mi}i∈I and N = {ni}i∈J .
We make the common partition for a-(sub)repetitions in a two-step process. First, we match
the a-repetitions of length 1: Consider the 1’s that are common in M and N ; we colour
the corresponding a’s in S, T black, remove them from S, T and make their full expansions
parts in common partition, and update N,M by removing the common 1’s. Note, that now
M ∩N = ∅: if there is a` in both of them, then this a` was expanded from the same letter
in si+1 and ti+1. But this is not possible, as we colour all such letters black.

For the remaining a-repetitions in S, T , let `s be the total length of a-repetitions in
S (i.e. `s =

∑
p∈M p), let `t be the corresponding total length of a-repetitions in T , and

let ` = min(`s, `t). Choose a-repetitions in S with a total length `, preferring the longer
repetitions. We make the common partition between the chosen repetitions in S and the
ones in T of length `.

Concerning the analysis, it is clear that ‖V (s)4 V (t)‖1 cannot be used, as for t = ε

it is useless; ‖V (t) \ V (s)‖1 is a natural candidate, but it is not subtle enough: consider
s = (ab)` and t = a`. It is clear that at least ` operations are needed to transform s to t, yet
‖V (t) \ V (s)‖1 = O(1). The problem is that several short a-repetitions from s are needed to
form one long a-repetition in t. On the other hand, identical a-repetitions should be “for
free”: when s = t, then we should not impose any cost.

Motivated by those examples, we define a new cost function for s, t. It is somehow related
to Wassersteiner (“earth mover”) distance, but it is directed and applies to sets with different
sums as well. Let us first define it on multisets of natural numbers: given two such multisets
{xi}i∈I and {yi}i∈J , we first exclude from those sets their common part and look for the
smallest number of elements in {xi}i∈I whose sum is at least the sum of {yi}i∈J ; if {xi}i∈I

is not enough, we pad it with an arbitrary number of 1’s. Formally, let I ′ ⊆ I and J ′ ⊆ J be
such that {xi}i∈I′ = {xi}i∈I \({xi}i∈I ∩{yi}i∈J ) and {yi}i∈J′ = {yi}i∈J \({xi}i∈I ∩{yi}i∈J ),
define x =

∑
i∈I′ xi, y =

∑
i∈J′ yi. Then the SD({xi}i∈I′ , {yi}i∈J′) is defined as follows:

if x < y, then it is (y − x) + |I ′|; otherwise, it is the smallest m such that the sum of
the largest m elements in {xi}i∈I′ is at least y. Lastly, we set SD({xi}i∈I , {yi}i∈J) as
SD({xi}i∈I′ , {yi}i∈J′).

I Lemma 9. SD satisfies the directed triangle inequality.

Then for the input strings s, t and a j-letter a, we define SD(s, t)[a] as SD({xi}i∈I , {yi}i∈J ),
where {xi}i∈I , {yi}i∈J are the multisets of lengths of a-repetitions in sj and tj , respectively.
Note that, unlike embedding to vectors, SD(s, t) cannot be computed for s and t separately;
it is defined for a pair s, t.

The following two lemmata are the counterparts of Lemma 6 and Lemma 7 in case when
block delete is allowed; their proofs are similar.

I Lemma 10. Let {b-del,mv} ⊆ Op ⊆ {b-del,mv, del, ins, uncp}. Given an iterated parsing
string for strings s and t, AlgBdel construct a partition of size O(‖V (t) \ V (s)‖1+‖SD(s, t)‖1).
Moreover, it runs in linear time.
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I Lemma 11. Let s, t be two strings and let {b-del,mv} ⊆ Op ⊆ {mv, b-del, ins, del, uncp}.
Fix an iterated parsing scheme of height k. Then ‖V (t) \ V (s)‖1, ‖SD(s, t)‖1 ∈ O(d(k + 1)),
where d = EDOp(s, t).

I Theorem 12. AlgBdel is an O(logn) approximation of edit distance for a set of operations
that include block move, block delete, and any subset of block uncopy, insert, delete. Its
running time is linear assuming integer sorting running time is linear.

Move and copy. We now give an algorithm that deals with the scenario in which both
block move and block copy are allowed. As a simple example, consider s = an and t = am,
where m ≥ n; the easiest way to obtain t is to repeatedly “square” the string dlog(m/n)e
times.

Thus, if copy is allowed, we need also to take into the account the lengths of maximal
repetitions. To model this in the analysis,1 given an iterated parsing scheme, we define
a vector LMax(s), indexed by letters of

⋃
i Σi, so that LMax(s)[a] for an i-letter a is the

logarithm of the longest a-repetition in si; we set LMax(s)[a] = 0 if there is no such repetition.
As a second part of the intuition, we note that having copied a symbol, after some

expansions we may realise that it would be better to perform moves instead. Imagine that an
i-letter a occurs twice in ti and we declare one occurrence to be a copy of the other. Later
on, a is expanded to bc, and it turns out that in si−1 there are two uncoloured copies of b
and c. In this case, it is better to cancel the copying and move two b’s and two c’s into ti−1.

AlgBcp proceeds similarly as AlgMove: for i = k, k − 1, . . . , 0, we consider si, ti. We
construct move and copy operations: the move operations are performed in the order in
which AlgBcp constructs them, their sources are always in si and targets in ti; we copy only
within ti and those operations are performed in the reverse order (compared to how the
algorithm constructs them) after all the other operations. This should be intuitively clear:
when in ti we declare one occurrence of a substring t′ to be a copy of another occurrence,
then it may be that we still do not know how t′ is constructed from the substrings of s.

The target of a copy operation is coloured grey and this colour is preserved by expansions.
However, we may always change our mind and uncolour any grey substring. To simulate this,
we split the target into (at most 3) shorter blocks, replacing the original copy operation by
more such operations, and we cancel one of them. In fact, we uncolour only to make room for
the target of a move operation, so the uncoloured symbols are immediately coloured black.

Let the multisets of uncoloured letters in si, ti be S, T , respectively. For each i-letter a,
we list all a-repetitions in S, T : let `s and `t be the total length of a-repetitions in S and T .

If `s ≥ `t, then we use Lemma 5 to make a common partition of repetitions from S

of total length `t and all repetition in T , colour those letters black, remove them from
S, T , and move their full expansions from s0 to t0. If there are repetitions of a left in
si, then we look whether there are any grey a-repetitions in ti and we proceed as in
Lemma 10, but in the other direction: we first match single a-repetitions in S and single
a-repetitions coloured grey (so in T ). After this operation, it cannot be that a repetition
ak has an uncoloured occurrence in si and a grey one in ti, as this would mean that the
(i+ 1)-letter representing ak had such occurrences in si+1 and ti+1, which is not possible.
Then we take the longest grey a-repetitions, enough to make the common partition with
the repetitions in S, or all grey a-repetitions, if there are not enough of them. We make
a common partition for those repetitions, recolouring the matched grey letters black and
move the corresponding full expansions from s to t.

1 This can be also solved by ensuring that the symbol that replaced ak is not grouped in the next log k
phases of the iterated parsing scheme [15]; this moves the burden from the analysis to the algorithm.



M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:11

If `s < `t, then we choose repetitions in T of total length `s, including the longest
repetition of T or, if it is longer than `s, including its prefix of length `s. We colour
the corresponding letters black and then move their full expansions from s to t. Next,
we make sure that the longest repetition in ti is fully coloured (except the first letter
if `s = 0). For this, we iteratively copy its longest coloured prefix to its following part,
colouring the latter grey, which doubles the length of the coloured prefix of this repetition;
if the longest repetition is fully uncoloured (i.e., if `s = 0), then we begin with copying
its first letter to the second. Finally, if there is any other uncoloured (sub)repetition left
in T , then we colour it grey and mark it as a copy of the prefix of the longest repetition.

After processing all 0-letters, we perform the final operations as in AlgMove: when
insertion is allowed, we insert all remaining letters in t (or reject, when insertion is not
allowed) and delete all remaining letters in s, (or reject, when deletion is not allowed).

As before, the analysis has two steps: on one hand we estimate the cost in terms of
various functions based on V (s), V (t) (see Lemma 13) and on the other we show that those
functions are bounded by O(d(k + 1)), where k is the height of the parsing scheme for s, t.
When the appropriate functions are known, the proofs follow similarly as in Lemma 6 and 7
(recall that for a vector v the sup(v) changes each v’s non-zero component to 1).

I Lemma 13. Let {cp,mv} ⊆ Op ⊆ {cp,mv, ins, del}. Given an iterated parsing scheme for
strings s and t, AlgBcp returns a sequence of O(‖V (s) \ V (t)‖1 + ‖sup(V (t)) \ sup(V (s))‖1 +
‖LMax(t) \ LMax(s)‖1 + ‖SD(t, s)‖1) operations from Op that transform s to t. Moreover,
it runs in linear time.

I Lemma 14. Let s, t be two strings and let {cp,mv} ⊆ Op ⊆ {cp,mv, ins, del} with
a fixed iterated parsing scheme of height k. Then ‖V (s) \ V (t)‖1, ‖sup(V (t)) \ sup(V (s))‖1,
‖LMax(s)4 LMax(t)‖1 and ‖SD(t, s)‖1 are in O(d(k + 1)), where d = EDOp(s, t).

I Theorem 15. AlgBcp gives an O(logn) approximation of the edit distance for operations
that include block copy and move and any operations from: insert, delete. Its running time is
linear assuming integer sorting runs in linear time.

Copy and uncopy. We now investigate the case in which both copy and uncopy operations
are allowed. Although the move can be simulated by them, we still use the move operation as
it makes the description of the algorithm and the analysis more similar to those of previous
algorithms. As previously, AlgBcpuncp can deal also with letter insertions and deletions.

AlgBcpuncp, as AlgBcp, colours the letters grey or black to represent that they are already
dealt with. Initially all letters are uncoloured. When we expand a letter, its expansion
gets coloured if and only if the letter was coloured. While we construct the sequences of all
operations in parallel, we in fact perform first all uncopy operations, then all moves and
lastly all copy operations. Uncopying is always done witin si, those operations are performed
in order of their construction. In such a case, we colour the uncopied grey letters. We move
elements from si to ti and those operations are performed in the order in which the algorithm
constructs them; we colour both the source and target letters of this operation black. We
copy only within ti and those operations are performed in the reverse order (compared to
how the algorithms constructs them). Targets of the copy (uncopy) operation are coloured
grey. Concerning other operations, insertion and deletions are done all at once, after all
uncopy and move operations but before copy operations.

We compute the iterated parsing scheme and process the strings si, ti in phases for
i = k, k − 1, . . . , 0. In the ith phase, we consider each i-letter a and introduce some move,
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copy, and uncopy operations to make sure that if a occurs in both si and ti, then all the
occurrences are coloured; otherwise, exactly one occurrence shall be uncoloured. Let the
lengths of the longest a-repetition in si and ti be `s and `t, respectively (these values can be
equal to 0 if a does not occur in si or ti). Fix some occurrences of those longest a-repetitions,
preferring black, then uncoloured, and then grey. We uncopy each uncoloured a-repetition in
si (except the chosen one) from the chosen one and, symmetrically, copy each uncoloured
a-repetition in ti (except the chosen one) from the chosen one; the targets of those operations
are coloured grey. Now the actions depends on whether those chosen repetitions are coloured.
To streamline the argument for min(`s, `t) = 0, we assume that an empty repetition is black.

If they are both coloured, then we do nothing: all a-repetitions in both si, ti are coloured.
If they are both uncoloured, then we move min(`s, `t) letters a from si to ti. If `s > `t,
then using dlog(`s/`t)e uncopy operations we colour the rest of the chosen repetition in
si; if `t > `s, then, symmetrically, the rest of this longest a-repetition in ti is coloured
grey using dlog(`t/`s)e copy operations.
If the one in si is coloured and the one in ti is not, then the one in si must be black by
the choice of the longest repetition (grey last): it is impossible that all repetitions a`s in
si are grey. Furthermore, it can be shown that there is a black repetition a`s in ti. Since
we chose uncoloured repetition in ti, by the choice strategy (black first) it holds that
`t > `s. If `s > 0, we copy the chosen uncoloured repetition a`t from the black repetition
a`s in t, using 1 + dlog(`t/`s)e copy operations. Otherwise, we leave the first character of
a`t uncoloured and colour the remaining letters grey using dlog `te copy operations.
If the one in ti is coloured and the one in si is not, the algorithm is symmetric to the
previous case.

I Lemma 16 (cf. [15, 16]). Let {cp, uncp} ⊆ Op ⊆ {cp, uncp,mv, ins, del}. Given an iter-
ated parsing scheme for strings s and t, one can construct in linear time a sequence of
O(‖LMax(s)4 LMax(t)‖1 + ‖sup(V (s))4 sup(V (t))‖1) operations from Op that transform
s to t.

The bound of O(d(k + 1)) on ‖sup(V (t))4 sup(V (s))‖1 and ‖LMax(t)4 LMax(s)‖1
follows already from Lemmata 7, 11, and 14.

I Theorem 17. AlgBcpuncp is an O(logn) approximation of the edit distance with set of
operations that include block copy and uncopy and any subset of insert, delete, block move.
Its running time is linear assuming integer sorting runs in linear time.

5 Compressed Input

A Straight-Line Programme (SLP) is a context-free grammar that produces exactly one string
and is treated as a compressed representation of this string. Its size is the sum of lengths of
the right-hand sides of the productions.

The presented algorithms can be also implemented, when the input (i.e. strings s, t)
are given as SLPs. In such a case, the running time increases to O(n logN) and the
approximation ratio is O(logN), where n is the size of the SLPs representing s, t in the input
and N = max(|s|, |t|) is the maximum of the lengths of strings defined by those SLPs.

The algorithms require only an implementation of the iterated parsing scheme for strings
given as SLPs, which is known; see for instance [9, 12]. This is no surprise, as such techniques
were introduced and are developed mostly in the context of grammar-compressed data.
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