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Abstract
The Metric Embedding problem takes as input two metric spaces (X,DX) and (Y,DY ), and
a positive integer d. The objective is to determine whether there is an embedding F : X →
Y such that the distortion dF ≤ d. Such an embedding is called a distortion d embedding.
In parameterized complexity, the Metric Embedding problem is known to be W-hard and
therefore, not expected to have an FPT algorithm. In this paper, we consider the Gen-Graph
Metric Embedding problem, where the two metric spaces are graph metrics. We explore the
extent of tractability of the problem in the parameterized complexity setting. We determine
whether an unweighted graph metric (G,DG) can be embedded, or bijectively embedded, into
another unweighted graph metric (H,DH), where the graph H has low structural complexity.
For example, H is a cycle, or H has bounded treewidth or bounded connected treewidth. The
parameters for the algorithms are chosen from the upper bound d on distortion, bound ∆ on the
maximum degree of H, treewidth α of H, and the connected treewidth αc of H.

Our general approach to these problems can be summarized as trying to understand the
behavior of the shortest paths in G under a low distortion embedding into H, and the structural
relation the mapping of these paths has to shortest paths in H.
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1 Introduction

Given metric spaces (X,DX) and (Y,DY ), an embedding F : X → Y is an injective
mapping from X to Y . The expansion eF and contraction cF of F are defined as eF =
maxx1,x2(6=x1)∈X

DY (F (x1),F (x2))
DX(x1,x2) and cF = maxx1,x2(6=x1)∈X

DX(x1,x2)
DY (F (x1),F (x2)) , respectively. The

distortion dF = eF · cF . Observe that dF ≥ 1. An embedding F : X → Y is non-contracting
if cF ≤ 1.

The problem of low distortion embedding of a metric space into a simple metric space has
been extensively studied in Mathematics and Computer Science (see [1, 11, 13, 14, 15]). Low
distortion embedding algorithms have also found wide applications in other problems like
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Sparsest Cut, Nearest Neighbor Search, Clustering, Multicommodity Flow,
Multicut, Small Balanced Separators (see [1, 9, 10, 13, 15]).

The need to obtain small distortion embeddings into simpler spaces naturally led to the
question of finding a minimum distortion embedding of (X,DX) into (Y,DY ) when both the
metric spaces have shortest path metrics on graphs with positive weights, and (Y,DY ) has a
simple topology as in paths, cycles, trees etc. Kenyon et al. [12] showed that this problem is
APX-hard even when both the graphs are unweighted, have the same number of vertices,
and one of the graphs is a simple wheel graph. Badoiu et al. [3] also proved APX-hardness
when both the graphs are unweighted and (Y,DY ) is the metric space of a path. Badoiu
et al. [2] showed that computing the minimum distortion is hard to approximate up to a
factor polynomial in |X|, even when (X,DX) is a weighted tree with polynomial spread and
(Y,DY ) is a path. Fellows et al. [7] showed that the problem of embedding a weighted graph
metric into a path with distortion at most d > 2 is NP-complete.

Badoiu et al. [3] gave the first algorithm for deciding if an unweighted graph metric has a
non-contracting embedding into a path with distortion d. The running time of their algorithm
was n4d+2 ·dO(1), where n denotes the number of vertices in the graph. Fellows et al. [7] gave
the first fixed parameter tractable(FPT) algorithm with running time O

(
nd4(2d+ 1)2d) for

finding a non-contracting embedding of an n vertex unweighted graph metric into a path
with distortion at most d (d is the parameter of the algorithm). They also showed that their
FPT algorithm can be extended to get an FPT algorithm for the case of non-contracting
embeddings of weighted graphs into paths, where the parameters to the algorithm are both
the distortion and the maximum weight of an edge in the graph. Nayyeri et al. [16] gave
improved exact algorithms for embedding weighted path metrics into weighted paths.

Kenyon et al. [12] gave the first FPT algorithm for finding a bijective embedding f of an
unweighted graph metric on n vertices into a tree with maximum degree bounded by ∆ in
O(n2 · 2∆µ3

) time, where µ = max {ef , cf}. Fellows et al. [7] extended this result to give an
algorithm for the problem of finding a non-contracting embedding of unweighted graphs into
bounded degree trees with distortion at most d in O(n2 · |V (T )|) · 2O((5d)∆d+1

·d) time, where
V (T ) denotes the vertex set of the tree and where the maximum degree in T is bounded by
∆. In a follow-up paper, Nayyeri et al. [17] gave the first (1 + ε)-approximation algorithm to
embed weighted graphs with spread Σ into graphs on m vertices with bounded treewidth
α and doubling dimension λ in mO(1) · nO(α) · (doptΣ)α·(1/ε)λ+2·λ·(O(dopt))2λ time, where dopt
denotes the minimum distortion.

Our Contributions. In this paper, we further investigate the problem of embedding a general
graph metric (G,DG) into a low complexity graph metric (H,DH) with distortion at most d.
We will denote by n and N the number of vertices in graphs G and H, respectively. Also, we
denote distortion by d, and the maximum degree of H by ∆. We denote by `g the length of
a largest induced cycle, or geodesic cycle, in H. We approach the metric embedding problem
by trying to understand the behavior of the shortest paths in G under a low distortion
embedding into H, and what relation the mapping of these paths has to shortest paths in H.
Careful analysis of this connection helps us solve a number of problems in this area, in the
parameterized setting. All the algorithmic results mentioned below are regarding
non-contracting bounded distortion embeddings. However, all these results can
be extended to find bounded distortion embeddings, without the assumption on
non-contraction. For all the results, if the running time of the stated algorithm
is T , then the running time of finding a bounded distortion embedding will be
(nN)O(1) · T .
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We first begin by proving the following open question in [7]. Independently, a similar
result on the same problem was obtained in same time by Carpenter et al. [4].

I Theorem 1.1. Given an undirected unweighted graph G on n vertices, a cycle C and
a distortion parameter d, there exists an algorithm that either finds a non-contracting
distortion d embedding of G into C or decides that there does not exist such an embedding in
O(n3 · d2d+3 · (4d(2d+ 2))4d+4) time.

Due to the existence of the large geodesic cycle that is the graph H, techniques from the
previous papers, like pushing embeddings [7], do not work and some new ideas are required
to solve this problem. Moreover, our FPT algorithm can be extended to the case when the
input graph G is a weighted graph, and we can parameterize by the distortion d and the
maximum edge weight in G. We also show that the problem is NP-Complete when we do
not take the maximum edge weight as a parameter for any distortion d > 2.

Observe that the treewidth of a cycle is 2, but the connected treewidth of a cycle is Ω(n)
(see the definitions of treewidth and connected treewidth in Section 2). These two parameters
(treewidth and connected treewidth of graphs) play important roles in this paper. In this
direction, we first extend the result of Kenyon et al. [12] for bijection into bounded degree
trees.

I Theorem 1.2. Let G,H be two given graphs such that |V (G)| = |V (H)| = n, the maximum
degree of H is ∆ and the graph H has treewidth tw(H) ≤ α. Then there exists an algorithm
that either finds a bijective non-contracting distortion d embedding of G into H or decides
no such embedding exists in O(α2nα+3) ·∆d+1 · (α∆d+1)∆O(αd2) time.

Note that the algorithm in Theorem 1.2 is not an FPT algorithm if tw(H) is an input
parameter to the problem. Therefore, it is natural to ask if we can still get FPT algorithms
for a more general case, where tw(H) is considered as a parameter instead of a constant. In
this context, we prove the following result:

I Theorem 1.3. Let G,H be two given graphs with n and N vertices, respectively, such
that the maximum degree of H is ∆, treewidth tw(H) ≤ α and the length of the longest
geodesic cycle in H is `g. Then there exists an algorithm that either finds a non-contracting
distortion d embedding of G into H or decides no such embedding exists in running time
O(n2 ·N) · (α ·∆d+1)∆O(µ·d+d2) · 2O((4(µ+d))α

2·∆d+1
), where µ = 4(α+

(
α
2
)
(`g(α− 2)− 1)).

This result crucially uses the result in [6] that a graph has bounded connected treewidth if
and only if the graph has bounded treewidth and no long geodesic cycle. It is to be noted
that a wheel graph has constant connected treewidth, and by a result in [12], embedding into
wheel graphs is NP-hard even when the distortion d = 2. However, when the wheel graph
has bounded degree, then the number of vertices in the wheel graph becomes bounded, and
we obtain a trivial FPT algorithm parameterized by the degree and the distortion d. This
motivated us to consider the above variant of metric embedding. Our FPT algorithm extends
the result of Fellows et al. [7] for embedding into trees with bounded degree. Controlling
the behavior of shortest paths in the graph G under a low distortion embedding into the
class of graphs with bounded degree and bounded connected treewidth is algorithmically
considerably harder than the case of bounded degree trees.

We also investigate bounded distortion embedding into generalized theta graphs: defined
by the union of k internally vertex-disjoint paths all of which have common endpoints s and
t. We prove the following result for generalized theta graphs.

ESA 2018
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I Theorem 1.4. Metric Embedding into generalized theta graphs is FPT parameterized
by distortion d and number k of s− t paths. The algorithm runs in time O(N) + n5 · k2k+1 ·
(kd+ 1)(2d)O(kd) · dO(d2), where n and N are the number of vertices in the input and output
graph metrics, respectively.

As mentioned earlier, it was shown in [6] that a graph has bounded connected treewidth if and
only if the graph has bounded treewidth and no long geodesic cycle. In general, embedding
into graphs with large geodesic cycles is not amenable to known algorithmic techniques in
the parameterized settings. Intuitively, all known techniques for designing FPT algorithms
in this area used the fact that if a low distortion embedding F exists, then the embedding of
a shortest path between two vertices u, v ∈ V (G) and the shortest path in H between F (u)
and F (v) are somewhat structurally related. With the presence of large geodesic cycles this
structural relation may completely break down: although the two paths have similar lengths,
structurally they could be completely different. This poses a problem for designing dynamic
programming algorithms, a staple for FPT algorithms in this area. The class of generalized
theta graphs has treewidth 2, but may have large geodesic cycles. Hence, these graphs
are more general than cycles and have constant treewidth, but they do not have bounded
connected treewidth. Even for this very structured graph class, by virtue of the graphs
having long geodesic cycles, we needed to develop completely new ideas in order to find
low distortion embeddings into generalized theta graphs via FPT algorithms. The problem
arises from the fact that any two geodesic cycles of a generalized theta graph intersect at at
least two vertices, and there are many pairs of geodesic cycles with large intersections. Our
algorithm is still a dynamic programming algorithm, but a more involved one. The way to
work around the apparent barriers is to investigate more closely the structural properties of
an input graph G that can be embedded with small distortion into a generalized theta graph.
Independently, a generalization of this result was obtained in same time by Carpenter et al.
[4]. We would like to mention that our algorithms for embedding into cycles and generalized
theta graphs have better time complexity.

This is an extended abstract. For full details please refer to the full version of the
paper [8].

2 Preliminaries

General Notation. We denote {1, . . . , t} as [t]. For a set S, |S| denotes the number of
elements present in S. Given a function f : U ′ → D′ and a function F : U → D, where
U ′ ⊆ U and D′ ⊆ D, we say that F extends f if for all x ∈ U ′, F (x) = f(x). For a set
of functions Π = {fi : Ai → Bi, i ∈ [t]} such that for any i, j ∈ [t], x ∈ Ai ∩ Aj implies

fi(x) = fj(x), we define ΦΠ :
t⋃
i=1

Ai →
t⋃
i=1

Bi such that ΦΠ(x) = fi(x) for i ∈ [t], x ∈ Ai.

A graph is denoted by G while its vertex set and edge set are denoted by V (G) and E(G),
respectively. We denote the set of neighbours of a vertex v ∈ V (G) as NG(v). The degree of
a vertex v ∈ V (G) is denoted as degG(v). We also define ∆(G) = max

v∈V (G)
degG(v). We also

define the set B(v, r) = {u ∈ V (H) | DH(u, v) ≤ r}, and refer to it as an r-ball around v.
For a subgraph G′ of G, v ∈ V (G) \ V (G′) is said to be a neighbour of G′ if there is a vertex
u ∈ V (G′) such that (u, v) ∈ E(G). A subgraph G′ of G is said to be an induced subgraph if
E(G′) = {(u, v) ∈ E(G)|u, v ∈ V (G′)}. An induced cycle in a graph is also called a geodesic
cycle.
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A generalized theta graph is the union of k paths P = {P1, P2, . . . Pk} such that the
endpoints of all the paths are two vertices s and t, while every pair of paths are internally
vertex and edge disjoint. Such a graph will also be referred to as a generalized theta graph
defined at s,t, and the family P is said to define the generalized theta graph.

Treewidth. A tree decomposition [5] of a graph G is a tuple T = (T, {Xu}u∈V (T )), where
T is a tree in which each vertex u ∈ V (T ) has an assigned set of vertices Xu ⊆ V (G)
(called a bag) such that the following properties hold: (i)

⋃
u∈V (T )Xu = V (G), (ii) for any

(x, y) ∈ E(G), there exists a u ∈ V (T ) such that x, y ∈ Xu, (iii) if x ∈ Xu and x ∈ Xv, then
x ∈ Xw for all w on the path from u to v in T .

The treewidth twT of a tree decomposition T is the size of the largest bag of T minus one.
A graph may have several distinct tree decompositions. The treewidth tw(G) of a graph G
is defined as the minimum of treewidths over all possible tree decompositions of G. Note
that for the tree T of a tree decomposition, we denote a vertex of V (T ) in bold font.

A tree decomposition T = (T, {Xu}u∈V (T ))) is called a nice tree decomposition if T is
a tree rooted at some node r where Xr = ∅, each node of T has at most two children, and
each node is of one of the following kinds: (i) Introduce node: a node u that has only one
child u′ where Xu ⊃ Xu′ and |Xu| = |Xu′ | + 1, (ii) Forget vertex node: a node u that
has only one child u′ where Xu ⊂ Xu′ and |Xu| = |Xu′ | − 1, (iii) Join node: a node u with
two children u1 and u2 such that Xu = Xu1 = Xu2 , (iv) Leaf node: a node u that is a leaf
of T , and Xu = ∅.

One can show that a tree decomposition of width w can be transformed into a nice tree
decomposition of the same width w and with O(w|V (G)|) nodes, see e.g. [5]. For a node
u ∈ V (T ), let Tu denote the subtree rooted at u and Hu denote the subgraph induced by⋃
v∈V (Tu)

Xv. The set B(u, r) =
⋃

x∈Xu

B(x, r)

A connected tree decomposition is a tree decomposition where the vertices in every bag
induce a connected subgraph of G [6]. The connected treewidth ctw(G) of a graph G is
defined as the minimum of treewidths over all possible connected tree decompositions of G.

Given a graph G, the function DG : V (G)× V (G)→ R is the shortest distance function
defined on G; for any pair u, v ∈ V (G), DG(u, v) is the length of the shortest path between
u and v in the graph G. When we talk of a graph metric, then we denote it as the tuple
(G,DG). In this paper, unless otherwise mentioned, a graph metric is that of an unweighted
undirected graph.

Metric Embedding. A metric embedding of a graph metric (G,DG) into a graph metric
(H,DH) is a function F : V (G)→ V (H). When the graph metrics are clear, we also use the
terminology that the metric embedding is that of G into H, or that G is embedded into H.
We also denote (G,DG) as the input metric space and (H,DH) as the output metric space.
A non-contracting distortion d metric embedding implies that the expansion is at most d.
Therefore, for any pair u, v ∈ V (G), DG(u, v) ≤ DH(F (u), F (v)) ≤ d ·DG(u, v).

We consider the following two problems in this paper.

Gen-Graph Metric Embedding
Input: Two graph metrics (G,DG) and (H,DH), where G is a connected graph, and a
positive integer d
Question: Is there a distortion d metric embedding of (G,DG) into (H,DH)?

ESA 2018
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Graph Metric Embedding
Input: Two graph metrics (G,DG) and (H,DH), where G is a connected graph, and a
positive integer d
Question: Is there a non-contracting distortion d metric embedding of (G,DG) into
(H,DH)?
The bijective versions of the above problems takes the same input but aims to determine

whether the distortion d embedding is a bijective function. The Gen-Graph Metric
Embedding problem or the Graph Metric Embedding problem for a graph class G is
a variant where the output metric space (H,DH) is such that H ∈ G. In this extended
abstract, we present results for the Graph Metric Embedding problem.

Parameterized Complexity. The instance of a parameterized problem/language is a pair
containing the problem instance of size n and a positive integer k, which is called a parameter.
The problem is said to be in FPT if there exists an algorithm that solves the problem in
f(k)nO(1) time, where f is a computable function. Readers are requested to refer [5] for
more details on Parameterized Complexity.

3 Graph Metric Embedding for Generalized Theta graphs

In this section, we design an FPT algorithm for embedding unweighted graphs into generalized
theta graphs. Our FPT algorithm is parameterized by the distortion d and the number k
of paths in the generalized theta graph. The strategy for the algorithm is still the same:
that of putting together partial embeddings to obtain a non-contracting distortion d metric
embedding. For this algorithm, we also observe structural properties of graphs that are
embeddable into generalized theta graphs. We exploit these properties to obtain an FPT
algorithm to compute a set of partial embeddings, and then use a dynamic programming
algorithm to put together partial embeddings from the set to obtain the solution metric
embedding. This makes the notion of partial embeddings more involved in this algorithm.

Let (G,DG) be the graph metric that we want to embed into the graph metric (H,DH).
Here H is a generalized theta graph defined at s,t and let P be the family of s − t paths
that define H. To begin with, we try to guess the non-contracting distortion d embedding of
(G,DG) into (H,DH), when restricted to a d-ball around s and around t.

I Definition 3.1. Let F be a non-contracting distortion d embedding of G into H. Define
Bs = {v ∈ V (H) |DH(v, s) ≤ d} and Bt = {v ∈ V (H) |DH(v, t) ≤ d}. For an embedding F :
V (G)→ V (H), define DomF

s = {u ∈ V (G) | F (u) ∈ Bs} and DomF
t = {u ∈ V (G) | F (u) ∈

Bt}.

The following observation talks about the degree bound on the vertices of a graph that is
embeddable into a generalized theta graph.

I Observation 3.2. If there exists a non-contracting distortion d embedding F of G into H,
then:
(i) Each vertex in DomF

s can have degree at most (k+ 1)d. Similarly, each vertex in DomF
t

can have degree at most (k + 1)d,
(ii) All other vertices of G can have degree at most 2d.

I Observation 3.3. The number of possible non-contracting distortion d embeddings of
some U ⊆ V (G) into Bs ∪Bt is at most n2 · (kd+ 1)(2d)O(kd) .
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We prove several properties of graphs that are embeddable into generalized theta graphs.
For the given input graph G, let F be a non-contracting distortion d embedding and
Ψ : DomF

s ∪ DomF
t → Bs ∪Bt be the restriction of F to Bs ∪Bt. Let C1, C2, . . . Ca be the

components of G \ (DomF
s ∪ DomF

t ).
I Remark. For simplicity of the presentation, we will assume the following:
1. For all i ∈ [a], we have |Ci| > 2kd2 + 1, and
2. for all j ∈ [k], we have |Pj | > 2k(2kd2 + 1) + 3d.
The details of the general case is handled in the full version [8].

We will derive certain properties of G with the help of the embedding F . For each i ∈ [k],
let P ′i = Pi \ (Bs ∪Bt). If P ′i is a non-empty path, let si be the endpoint of P ′i that has an
edge to Bs while ti be the endpoint of P ′i that has an edge to Bt. Let Si (Ti) denote the set
of vertices of DomF

s (DomF
t ) that are mapped into Pi.

I Observation 3.4. Let F be a non-contracting distortion d embedding, Ψ : DomF
s ∪

DomF
t → Bs ∪Bt be the restriction of F to Bs ∪Bt, and C1, C2, . . . Ca be the components

of G \ (DomF
s ∪DomF

t ). Then each component of G \ (DomF
s ∪DomF

t ) can have it’s vertices
mapped into exactly one P ′i , i ∈ [k]. One the other hand, each P ′i , i ∈ [k], can have at
most 2 connected components of G \ (DomF

s ∪DomF
t ) mapped into it, in the non-contracting

distortion d embedding F .

Thus, there can be at most 2k components of G \ (DomF
s ∪ DomF

t ).

I Definition 3.5. Let F be a non-contracting distortion d embedding. An empty subpath of
F is a subpath of the generalized theta graph where none of the vertices have any preimage.
If a path P ′i , i ∈ [k], has an empty subpath with one endpoint at ti, then such a subpath is
called a t-empty subpath. Similarly, if a path P ′i has an empty subpath with one endpoint at
si, then such a subpath is called a s-empty subpath. If a path P ′i contains an empty subpath
that coincides with neither si nor ti, then such a subpath is called an internal-empty subpath.
Finally, it is possible that the path P ′i itself is an empty subpath and then P ′i is called a
fully-empty subpath.

Note that a path P ′i can have at most one empty subpath with respect to F . Similarly,
we classify the components of G \ (DomF

s ∪ DomF
t ).

I Definition 3.6. Let F be a non-contracting distortion d embedding. A component in
G\ (DomF

s ∪DomF
t ) is called an s-component if it has neighbours to DomF

s and not to DomF
t .

Similarly, we define a t-component. A full component is a component that has neighbours to
both DomF

s and DomF
t .

Since F is a non-contracting distortion d embedding, the following observation is true.

I Observation 3.7. Let F be a non-contracting distortion d embedding. Any path Pi,
P ′i 6= ∅, can be one of the following forms: (i) form-1: It has an s-component mapped into it
by F , and a t-empty subpath, (ii) form-2: It has a t-component mapped into it by F , and
an s-empty subpath, (iii) form-3: It has an s-component and a t-component mapped into it
by F , and an internal-empty subpath, (iv) form-4: It has a full component mapped into it
by F , and (v) form-5: It contains a fully-empty subpath.

If we refer Pi to be of form- st , then Pi is of form-1 or form-2 or form-3. The objective
is to find a non-contracting distortion d embedding F , if it exists. Although we do not know
about F , we want to store a snapshot of F .

ESA 2018
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I Definition 3.8. A configuration X is a tuple (Ψ,P ′, P̂) where:
(i) Let U ⊆ V (G) be such that G\U creates a set of components {C1, C2, . . . , Ca}, a ≤ 2k.

Ψ : U → Bs ∪Bt is a non-contracting distortion d embedding of U .
(ii) P ′ ⊆ P,
(iii) P̂ is a family of |P \ P ′| tuples such that for each path Pi ∈ P \ P ′, there is a tuple

(formi, CPi , compi) with the following information: (a) formi assigns the name of a form
to Pi, (b) The set CPi is a set of at most 2 components of G \U that are assigned to P ′i
and to no other P ′j , j 6= i, (c) The function compi indicates for each C ∈ CPi whether it
is an s-component or a t-component or full-component, with respect to Ψ.

(iv)
⋃
Pi∈P\P′ CPi has all the components of G \ U .

For any fixed Ψ, the total number of configurations is O(k2k). Next, we define feasible
configurations that can be associated with metric embeddings.

I Definition 3.9. A configuration X = (Ψ,P ′, P̂) is said to be feasible with respect to a
non-contracting distortion d embedding F of G into H if the following hold:
(i) Ψ : DomF

s ∪ DomF
t → Bs ∪Bt is the restriction of F to DomF

s ∪ DomF
t .

(ii) P ′i = Pi \ (Bs ∪Bt) is empty for each Pi ∈ P ′ ⊆ P. ,
(iii) For each Pi that is non-empty with respect to F , P̂ contains a tuple (formi, CPi , compi)

with the following information: (a) formi is the form of Pi in F , (b) The set CPi is the
set of at most 2 components of G \U that are embedded into P ′i by F , (c) The function
compi indicates for each C ∈ CPi whether it is an s-component or a t-component or
full-component, with respect to F .

(iv)
⋃
Pi∈P\P′ CPi has all the components of G \ (DomF

s ∪ DomF
t ).

We denote a configuration feasible with respect to F as X (F ).

Next, we define the notion of a last vertex for a component of G \ (DomF
s ∪ DomF

t ) with
respect to the embedding F .

I Definition 3.10. Let F be a non-contracting distortion d embedding. Let C be a j-
component, j ∈ {s, t}. A vertex ` in C is the last vertex of C with respect to embedding F
if DH(j, F (`)) ≥ DH(j, F (x)) for all x ∈ C.

The following Lemma gives a bound on the potential last vertices of a component of
G \ (DomF

s ∪ DomF
t ) if G is embeddable into H.

I Lemma 3.11. Let F be a family of non-contracting distortion d embedding of G into H
such that X (F1) = X (F2) for any F1, F2 ∈ F . Then for any form- st path Pi and any
s(t)-component C ∈ CPi , there are dO(d2) vertices that are candidates for being the last vertex
of C with respect to some F ∈ F .

Next, we define the notion of a shortest embedding of a component in a path of P.

I Definition 3.12. Let Y be a feasible configuration such that Y = X (F ) for a non-
contracting distortion d embedding F . Let Pi be a form- st path, C ∈ CPi be a s-component
of G \ (DomF

s ∪ DomF
t ) and ` ∈ C be a candidate to be the last vertex of C with respect F .

Recall that Si is the set of vertices of DomF
s that are mapped into Pi. Let A be a family

of non-contracting and distortion d embedding of C ∪ Si into Pi such that the following
conditions hold: (i) f1|Si = f2|Si for any f1, f2 ∈ A, (ii) For each f ∈ A, f(x) is a vertex
of P ′i for any x ∈ C, (iii) For each f ∈ A, F |C∪Si = f and ` is the last vertex of C with
respect to F , and (iv) For each f ∈ A, for any x ∈ DomF

s ∪ DomF
t , the path between f(`)

and f(x) is non-contracting with expansion at most d.
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Then the shortest embedding of C ∪ Si into Pi with respect to Y and `, is an embedding
f ∈ A such that DH (s, f(`)) ≤ DH (s, f ′(`)) for all f ′ ∈ A. If C is a t-component, Ti is
taken to be the set of vertices of DomF

t that are mapped into Pi and we can define the
shortest embedding of C ∪ Ti with respect to Y and ` in a similar way.

We can extend the notion of shortest embedding of a component into a path of P to that
of a non-contracting distortion d embedding of G into H that has shortest embeddings for
all s-components and t-components.

I Definition 3.13. Let us consider a non-contracting distortion d embedding F of G into
H. We say F is a special embedding with respect to feasible configuration X (F ) if for every
path Pi of form- st and s (t)-component C ∈ CP , the following holds: F |C∪Si (F |C∪Ti) is
the shortest embedding of C ∪ Si (C ∪ Ti) into Pi with respect to the feasible configuration
X (F ) and the last vertex of C with respect to F .

The next lemma shows that it is enough to look for a special embedding of G into H.

I Lemma 3.14. If there exists a non-contracting distortion d embedding of G into H, then
there exists a special embedding of G into H with respect to some configuration.

Therefore, we have shown that if G is embeddable into H then it is enough to find a
special embedding. We design an FPT algorithm for finding a special embedding.

Proof Sketch of Theorem 1.4. By Lemma 3.14, it is sufficient to look for special embedding
with respect to some configuration. We find ∆(G) and if ∆(G) > (k + 1)d, then we report
NO. This is correct by Observation 3.2.

We first compute DH(s, u) and DH(t, u) for all u ∈ V (H). We store this distance
information in a matrix Dst, such that the look-up time for the distance from any u ∈ V (H)
to s or t is O(1). Next, let us fix a non-contracting distortion d embedding Ψ of U ⊆ V (G)
into Bs ∪ Bt and a configuration Y containing Ψ. If the degree of any vertex in G \ U is
more than 2d, then we decide that there does not exist any desired embedding with respect
to Y. Otherwise, we proceed as follows. Let F be the special embedding of G into H with
respect to Y that we want to find, if one exists. Note that U = DomF

s ∪ DomF
t .

(i) If a path Pi is of form-5, we don’t have to do anything for that.
(ii) Let a path Pi be of form-4, and suppose C ∈ CPi is the only full component mapping

into Pi. Then we find a non-contracting distortion d embedding fC , if possible, of
C ∪ Si ∪ Ti into Pi such that fC |Si = Ψ|Si and fC |Ti = Ψ|Ti . Such an algorithm is
described in the full version of the paper. If we cannot find such an embedding, then
there does not exist any special embedding of G into H with respect to Y.

(iii) Let Pi be a form- st path and C ∈ CPi be an (a) s (t)-component. Without loss of
generality, assume that C is an s-component. Here, our objective is to find the shortest
embedding f of C ∪ Si into Pi with respect to Y and some `, where ` is the last vertex
of C with respect to F . We guess a vertex ` ∈ C, as the last vertex. By Lemma 3.11,
the total number of candidates for the last vertex of C with respect to F is dO(d2). It
is easy to see that |C ∪ Si| ≤ DH(f(`), f(a)) ≤ 2d. |C ∪ Si|. Thus, the length of the
shortest embedding of C ∪ Si, where ` is the last vertex, is also in this range. For
each possible length |C ∪ Si| ≤ len ≤ 2d. |C ∪ Si|, we try to find a non-contracting
distortion d embedding flen of C ∪ Si into a path Plen = {1, 2, . . . , len} such that flen
restricted to the first |Si| vertices is same as the mapping by Ψ, and for each u ∈ C ∪Si,
DPlen(1, flen(u)) ≤ DPlen(1, flen(`)). Such an algorithm is described in the full version of

ESA 2018



35:10 FPT Algorithms for Graphic Embeddings

the paper. If the algorithm returns no for all lengths, for every candidate ` for the last
vertex, then there does not exist any special embedding of G into H with respect to Y .
Otherwise, assume that for the current guess `, fC is an embedding that the algorithm
returns for the shortest length.

Let F = ΦΠ be the function such that Π = {Ψ} ∪ {fC | C is a component of G \U}. We
verify whether the obtained F is a non-contracting distortion d embedding from G to H. If
yes, we are done. If not, then there does not exist any special embedding with respect to Y.
Observe that the distance between two given points in H, can be computed in O(1) time
using Dst.

Note that in the worst case, we have to run the above steps for all possible configurations.
If we decide that there does not exist a special embedding with respect to all configurations,
then we report that G does not admit the desired embedding of G into H. The correctness
of the algorithm follows from Lemma 3.14. J

4 Graph Metric Embedding and connected treewidth

In this Section, we will look at the Graph Metric Embedding problem with respect to
the added parameters of treewidth and longest geodesic cycle of the output graph metric.
Let (G,DG) be the input connected graph metric to be embedded into (H,DH). We
show that this problem is FPT, when parameterized by the distortion d, the treewidth
tw(H) = α, the length `g of the longest geodesic cycle of H, and the maximum degree
∆(H) = ∆. From [6] it can be shown that for a graph with longest geodesic cycle `g, a tree
decomposition of treewidth α′ can be converted into a connected tree decomposition of width
α′ +

(
α′

2
)
(`g(α′ − 2)− 1) in polynomial time. Since trees have constant connected treewidth,

our algorithm is a generalization of the FPT algorithm for Graph Metric Embedding for
trees, parameterized by distortion d and maximum degree ∆ [7]. As before, we employ a
dynamic programming to build a non-contracting distortion d metric embedding using a set
of partial embeddings that are computed in FPT time.

Before we give the details of the algorithm, we want to make the following remark about
bijective Graph Metric Embedding. We extended the algorithm of Kenyon et al [12] for
bijective embedding of unweighted graphs into bounded maximum degree trees to the case
of graphs with bounded maximum degree and bounded treewidth (see Theorem 1.2). The
techniques we use for the results in this section are a generalization of the techniques used to
prove Theorem 1.2. For the details of the proof, please refer to the full version of the paper
[8].

Let (G,DG) be a graph metric to be embedded into (H,DH). Here the parameters are
the treewidth α of H, the length of the longest geodesic cycle `g in H, the distortion d and
the maximum degree ∆ of H. Let T be a nice tree decomposition of H with width µ. Since
from [6] H has a connected tree decomposition of width µ, we may assume that the nice
tree decomposition is derived from the connected tree decomposition [5] and therefore the
maximum distance between any two vertices inside a bag in T is Γ ≤ µ.

Ensuring non-contraction for a non-contracting distortion d metric embedding F is more
elaborate. Local non-contraction no longer implies global non-contraction. This problem
was dealt with in [7] by introducing the notion of types. For our algorithm too, for a vertex
u ∈ V (T ) we need to define a type for every vertex of V (G) that is mapped into the subgraph
Hu, to indicate how it behaves with the rest of the graph. Informally, the types store
information of the interaction of vertices of the graph seen so far with the boundary vertices,
and this is enough to ensure global non-contraction.
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I Definition 4.1. Let u ∈ V (T ), fu be a feasible partial embedding and Xu = {u1, . . . , uk},
1 ≤ k ≤ αc. Then:
(i) For v ∈ NT (u) and ui ∈ Xu, [fu,v, ui] type is a function tui : Domfu(v) → {∞, 2Γ +

3d+ 3,Γ + d+ 1, . . . ,−(Γ + d+ 1)},
(ii) A [fu,v] type t is a tuple (tui , . . . , tuk), where tui is a [fu,v, ui] type, and
(iii) A [fu,v] type-list is a set of [fu,v] types.

Intuitively, we want to define a type corresponding to each vertex mapped into Hu.
However, this blows up the number of types. In order to handle this, it can be shown that
we do not need to remember the type of each vertex, and that it is enough to only remember
the type of vertices “close to” the vertices in Xu. Now we present the formal arguments.
To bound the total number of possible types, we define a function β as follows: β(k) = k if
k < 2Γ + 3d+ 3, and β(k) =∞ otherwise. In the following definitions, treat β(k) = k and
the definition of β will be clear while we prove our claims.

I Definition 4.2. Let us consider u ∈ V (T ), v ∈ NT (u). Let fu be a feasible partial
embedding and L be a [fu,v] type-list. Then L is said to be compatible with Domfu(v) if
the following condition is satisfied: For each x ∈ Domfu(v) there exists a type t ∈ L, such
that for each y ∈ Domfu(v), for all ui ∈ Xu DH(fu(x), ui)−DG(x, y) = tui(y).

I Definition 4.3. Let u ∈ V (T ) and fu be a feasible partial embedding. Also consider
v,w ∈ NT (u) along with a [fu,v] type-list L1 and a [fu,w] type-list L2 such that v 6= w.
Then L1 and L2 agree if the following condition is satisfied for all ui ∈ Xu: For every t1 ∈ L1
and t2 ∈ L2, there exists x ∈ Domfu(v) and y ∈ Domfu(w) such that tui1 (x) + tui2 (y) ≥
DG(x, y) for all ui ∈ Xu.

Next, we define a state with respect to a vertex in T .

I Definition 4.4. Let u ∈ V (T ). A u-state constitutes of a feasible partial embedding fu, a
[fu,v] type-list L[fu, v] for each v ∈ NT (u).

Notice that it is no longer enough to consider feasibility and succession of partial embed-
dings. We also need to take care of the types of vertices. Therefore, we define feasibility and
succession of states.

I Definition 4.5. A u-state is said to be feasible if the following conditions are satisfied:
(i) L[fu,v] is compatible with Domfu(v), for each v ∈ NT (u), and
(ii) L[fu,v] agrees with L[fu,w], for any v,w ∈ NT (u) and v 6= w.

I Definition 4.6. Let u ∈ V (T ) and v ∈ CT (u). Let Su,Sv be feasible u-state and v-state,
respectively. Sv is said to succeed Su if the following properties hold.
(i) fv succeeds fu.
(ii) For every w ∈ NT (v) \ u and a type t1 ∈ L[fv,w] there exists a type t2 ∈ L[fu,v]

satisfying the following conditions: (a) ∀x ∈ Domfu(v) ∩ Domfv(w) and a ∈ Xu ∩
Xv, ta2(x) = ta1(x). (b) ∀x ∈ Domfu(v) ∩ Domfv(w) and a ∈ Xu \ Xv, ta2(x) =
β( min
b∈Xv

(DH(a, b) + tb1(x))). (c) ∀x ∈ Domfu(v) \ Domfv(w) and a ∈ Xu ∩Xv, ta2(x) =
β( max
y∈Domfv (w)

(ta1(y))−DG(x, y))). (d) ∀x ∈ Domfu(v) \ Domfv(w) and a ∈ Xu \Xv,

ta2(x) = β( max
y∈Domfv (w)

( min
b∈Xv

(DH(a, b) + tb1(y))−DG(x, y))).

(iii) For everyw ∈ NT (u)\v and a type t1 ∈ L[fu,w] there exists a type t2 ∈ L[fv,u] satisfy-
ing the following conditions: (a) ∀x ∈ Domfv(u)∩Domfu(w) and a ∈ Xu∩Xv, ta2(x) =
ta1(x). (b) ∀x ∈ Domfv(u) ∩ Domfu(w) and a ∈ Xv \Xu, ta2(x) = β min

b∈Xu
(DH(a, b) +
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tb1(x)). (c) ∀x ∈ Domfv(u) \ Domfu(w) and a ∈ Xu ∩ Xv, ta2(x) = ta1(x). (d)
∀x ∈ Domfv(u) \ Domfu(w) and a ∈ Xv \Xu, ta2(x) = β( max

y∈Domfu (w)
( min
b∈Xu

(DH(a, b) +

tb1(y))−DG(x, y))).

Now, we define the embeddability of a set of feasible states.

I Definition 4.7. For u ∈ V (T ), let Su denote a u-state. The set {Su : u ∈ V (T )} is said to
be an embeddable set of feasible states if the following conditions are satisfied: (i) For each
u ∈ V (T ), Su is a feasible state, and (ii) For u ∈ V (T ) and v ∈ CT (u), Sv succeeds Su.

The above definitions are enough to show the relation between the existence of a non-
contracting distortion d embedding of G into H and the existence of an embeddable set
of feasible states. This is proved over the following two Lemmas. Lemma 4.9 is the most
important structural Lemma for the design of this algorithm. We give a brief sketch of this
Lemma and refer to the full details in the full version. For the proof of Lemma 4.8 refer to
the full version.

I Lemma 4.8. Let F be a non-contracting and distortion d embedding of G into H. Then
there exists an embeddable set of feasible states.

I Lemma 4.9. Let Π = {fu : u ∈ V (T )} be an embeddable set of feasible states. Then there
exists a non-contracting and distortion d embedding of G into H.

Proof Sketch. To prove this lemma we first show the following:
1. For every x ∈ V (G), there exists a feasible u-state such that x ∈ Domfu , and
2. The subgraph of T induced by Ax = {u ∈ V (T ) : x ∈ Domfu} is connected. Moreover,

x ∈ Domfu ∩ Domfv implies fu(x) = fv(x).

Next, using the family Π, we construct an embedding F that satisfies the following (Please
refer to the full version for this construction):
(i) F is a metric embedding with expansion at most d,
(ii) Consider a path P = u1u2 . . .uk from u = u1 to v = vk in T . Then for every

x ∈ Domfv , at least one of the following properties hold.
Prop-1: There exists a uj ∈ P and y ∈ Domfuj

such that DH(F (x), u′)−DG(x, y) ≥
2Γ + 3d+ 3 for all u′ ∈ Xuj .

Prop-2: There exists a type tx ∈ L[fu,u2] such that tu
′

x (y) = DH(F (x), u′)−DG(x, y)
for all y ∈ Domfu(u2) and u′ ∈ Xu.

(iii) Consider a path P = u1u2 . . .uk from u to v in T , where u = u1 and v = uk. Then F
restricted to

⋃
ui∈P

Domfui
is non-contracting.

Now we will be done if we prove that F is a non-contracting embedding for any two vertices
x, y ∈ V (G). Note that each of F (x) and F (y) is in some bag. Fix u,v ∈ V (T ) such
that F (x) ∈ Xu and F (y) ∈ Xv. Consider the path P = u1u2 . . .uk from u to v in T ,
where u = u1 and v = uk. We can show that the shortest path between F (x) to F (y) is
non-contracting as x, y ∈

⋃
ui∈P

Domfui
. J

Proof Ideas for Theorem 1.3. A graph that is embeddable into the given H must have
bounded maximum degree. This helps in proving bounds for the total number of feasible
partial embeddings and the total number of feasible states. After this, the proof of Theorem
1.3 uses the standard dynamic programming approach over a bounded tree-decomposition of
a graph. J
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5 Open Questions

The parameterized complexity of embedding into trees of unbounded degree, asked in [7], still
remains open. A generalization of that question is to determine the parameterized complexity
of Graph Metric Embedding for bounded treewidth graphs, and this is also open.
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