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Abstract
Consider the following Stochastic Score Classification Problem. A doctor is assessing a patient’s
risk of developing a certain disease, and can perform n tests on the patient. Each test has a binary
outcome, positive or negative. A positive result is an indication of risk, and a patient’s score is
the total number of positive test results. Test results are accurate. The doctor needs to classify
the patient into one of B risk classes, depending on the score (e.g., LOW, MEDIUM, and HIGH
risk). Each of these classes corresponds to a contiguous range of scores. Test i has probability
pi of being positive, and it costs ci to perform. To reduce costs, instead of performing all tests,
the doctor will perform them sequentially and stop testing when it is possible to determine
the patient’s risk category. The problem is to determine the order in which the doctor should
perform the tests, so as to minimize expected testing cost. We provide approximation algorithms
for adaptive and non-adaptive versions of this problem, and pose a number of open questions.
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36:2 The Stochastic Score Classification Problem

1 Introduction

We consider the following Stochastic Score Classification (SSClass) problem. A doctor wants
to assess a patient’s risk of developing a certain disease, and can perform n tests on the patient.
Each test has a binary outcome, positive or negative. A positive result is an indication of risk,
and a patient’s score is the total number of positive test results. Test results are accurate.
The doctor needs to classify the patient into one of B risk classes, depending on the score
(e.g., LOW, MEDIUM, and HIGH risk). Each of these classes corresponds to a contiguous
range of scores. Test i has probability pi of being positive, and it costs ci to perform. To
reduce costs, instead of performing all tests, the doctor will perform them sequentially and
stop testing when it is possible to determine the risk category for the patient.

To reduce costs, instead of performing all tests and computing an exact score, the doctor
will perform them sequentially, stopping when the class becomes a foregone conclusion. For
example, suppose there are 10 tests and the MEDIUM class corresponds to a score between
4 and 7 inclusive. If the doctor performed 8 tests, of which 5 were positive, the doctor
would not perform the remaining 2 tests, because the patient’s risk class will be MEDIUM
regardless of the outcome of the 2 remaining tests. The problem is to determine the optimal
(adaptive or non-adaptive) order in which to perform the tests, so as to minimize expected
cost.

Formally, the Stochastic Score Classification problem is as follows. Given B + 1 integers
0 = α1 < α2 < . . . < αB < αB+1 = n + 1, let class j correspond to the scoring interval
[αj , αj + 1, . . . , αj+1 − 1]. The αj define an associated pseudo-Boolean score classification
function f : {0, 1}n → {1, . . . , B}, such that f(X1, . . . , Xn) is the class whose scoring interval
contains the score

∑
i Xi. Thus B is the number of classes. Each variable Xi is independently

1 with given probability pi, where 0 < pi < 1, and is 0 otherwise. The value of Xi can
only be determined by asking a query (or performing a test), which incurs a given positive,
real-valued cost ci.

An evaluation strategy for f is a sequential adaptive or non-adaptive order in which to
ask the queries. Querying must continue until the value of f can be determined, i.e., until the
value of f would be the same, no matter how the remainder of the n queries were answered.
In an adaptive evaluation strategy, the choice of the next query can depend on the outcomes
of previous queries. An adaptive strategy corresponds to a decision tree, although we do
not require the tree to be output explicitly (it may have exponential size). A non-adaptive
strategy is a permutation of the queries. With a non-adaptive strategy, querying proceeds in
the order specified by the permutation until the value of f can be determined.

Repeated queries always receive the same response, so it is never useful to ask a particular
query more than once. The goal is to design an evaluation strategy for f with minimum
expected total query cost. We consider both adaptive and non-adaptive versions of the
problem, in which we are restricted to adaptive or non-adaptive strategies respectively.

We also consider a weighted variant of the problem, where query i has given integer weight
ai, the score is

∑
i aiXi, and α1 < α2 < . . . < αB < αB+1 where α1 equals the minimum

possible value of the score
∑

i aiXi, and αB+1 − 1 equals the maximum possible value. We
refer to the standard version of the problem, with score

∑
i Xi, as the unweighted version.

While we have described the problem above in the context of assessing disease risk, score
classification is also used in other contexts, such as assigning letter grades to students, giving
a quality rating to a product, or deciding whether a person charged with a crime should
be released on bail. In Machine Learning, the focus is on learning the score classification
function [25, 23, 15, 27, 26]. In contrast, here our focus is on reducing the cost of evaluating



D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:3

the classification function. We note that the SSClass problem differs from many other
stochastic probing problems previously considered (e.g. [22, 14]) because of the requirement
that testing must continue until the unique interval containing the score has been determined.

Restricted versions of the weighted and unweighted SSClass problem have been studied
previously. In the algorithms literature, Deshpande et al. presented two approximation
algorithms solving the Stochastic Boolean Function Evaluation (SBFE) problem for linear
threshold functions [8]. The general SBFE problem is similar to the adaptive SSClass
problem, but instead of evaluating a given score classification function f defined by inputs
αj , you need to evaluate a given Boolean function f . The SBFE problem for linear threshold
functions is equivalent to the weighted adaptive SSClass problem. One of the two algorithms
of Deshpande et al. achieves an O(logW )-approximation factor for this problem using the
submodular goal value approach; it involves construction of a goal utility function and
application of the Adaptive Greedy algorithm of Golovin and Krause to that function [10].
Here W is the sum of the magnitudes of the integer weights ai. The other algorithm achieves
a 3-approximation by applying a dual greedy algorithm to the same goal utility function.

A k-of-n function is a Boolean function f such that f(x) = 1 iff x1 + . . . + xn ≥ k.
The SBFE problem for evaluating k-of-n functions is equivalent to the unweighted adaptive
SSClass problem, with only two classes (B = 2). It has been studied previously in the VLSI
testing literature. There is an elegant algorithm for the problem that computes an optimal
strategy [19, 4, 20, 6].

The unweighted adaptive SSClass problem for arbitrary numbers of classes was studied
in the information theory literature [7, 1, 17], but only for unit costs. The main novel
contribution there was to establish an equivalence between verification and evaluation, which
we discuss below.

2 Results and open questions

We give approximation results for adaptive and non-adaptive versions of the SSClass problem.
We describe most of our results here, but leave description of some others to the full version
of our paper [9]. Omitted proofs also appear there. A table with all our bounds can be found
at the end of this paper.

We begin by using the submodular goal value approach of Deshpande et al. to obtain
an O(logW ) approximation algorithm for the weighted adaptive SSClass problem. This
immediately gives an O(logn) approximation for the unweighted adaptive problem. We also
present a simple alternative algorithm achieving a B − 1 approximation for the unweighted
adaptive problem, and a 3(B−1)-approximation algorithm for the weighted adaptive problem,
again using an algorithm of Deshpande et al.

We then present our two main results, which are both for the case of unit costs. The first
is a 4-approximation algorithm for the adaptive and non-adaptive versions of the unweighted
SSClass problem. The second is a ϕ-approximation for a special case of the non-adaptive
unweighted version, where the problem is to evaluate what we call the Unanimous Vote
function. Here ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio. The Unanimous Vote function outputs
POSITIVE if X1 = . . . = Xn = 1, NEGATIVE if X1 = . . . = Xn = 0, and UNCERTAIN
otherwise. Equivalently, it is a score classification function with B = 3 and scoring intervals
{0}, {1, . . . , n − 1} and {n}. The proofs of our two main results imply upper bounds of 4
and ϕ for the adaptivity gaps of the corresponding problems.

ESA 2018



36:4 The Stochastic Score Classification Problem

We use both existing techniques and new ideas in our algorithms. We use the submodular
goal value approach of Deshpande et al. to get our O(logW ) bound for the weighted adaptive
SSClass problem. This approach cannot yield a bound better than O(logn) for SSClass
problems, since they involve evaluating a function of n relevant Boolean variables [3].

For some of our other bounds, we exploit the exact algorithm for k-of-n evaluation, and
the ideas used in its analysis. To obtain non-adaptive algorithms for the unit-cost case, we
perform a round robin between 2 subroutines, one performing queries in increasing order of
ci/pi, while the second performs them in increasing order of ci/(1− pi). For arbitrary costs,
instead of standard round robin, we use the modified round robin approach of Allen et al [2].
As has been repeatedly shown, the ci/pi ordering and the ci/(1− pi) ordering are optimal
for evaluation of the Boolean OR (1-of-n) and AND (n-of-n) functions respectively (cf. [24]).
Intuitively, the first ordering (for OR) favors queries with low cost and high probability of
producing the value 1, while the second (for AND) favors queries with low cost and high
probability of producing the value 0. The proof of optimality follows from the fact that given
any ordering, swapping two adjacent queries that do not follow the designated increasing
order will decrease expected evaluation cost.

While the algorithm for our first main result is very simple, the proof of its 4-approximation
bound is not. It uses ideas from the existing analysis of the k-of-n algorithm, but that analysis
is simpler because B = 2. We perform a new, careful analysis to obtain our 4-approximation
result. Unlike the analysis of the k-of-n algorithm, our analysis only works for unit costs.

To develop our ϕ-approximation for the Unanimous Vote function, we first note that
for such a function, if you perform the first query and observe its outcome, the optimal
ordering of the remaining queries can be determined by evaluating a Boolean OR function,
or a Boolean AND function. We then address the problem of determining an approximately
optimal permutation, given the first query. A standard round robin alternating between
the ci/pi = 1/pi ordering, and the 1/(1− pi) ordering, yields a factor of 2 approximation.
To obtain the ϕ factor, we stop the round robin at a carefully chosen point and commit to
one of the two orderings, abandoning the other. Our full algorithm for the Unanimous Vote
function works by trying all n possible first queries. For each, we generate the approximately
optimal permutation given that first choice, and algebraically compute its expected cost.
Finally, out of these n permutations, we choose the one with lowest expected cost.

We note that although our algorithms are designed to minimize expected cost for in-
dependent queries, the goal value function used to achieve the O(logW ) approximation
result can also be used to achieve a worst-case bound, and a related bound in the Scenario
model [10, 12, 16].

A recurring theme in work on SSClass problems has been the relationship between the
evaluation problems and their associated verification problems. In the verification problem,
you are given the output class (i.e., the value of the score classification function) before
querying, and just need to perform enough tests to verify that the given output class is
correct. Thus optimal expected verification cost lower bounds optimal expected evaluation
cost. Surprisingly, the result of Das et al. [7] showed that for the adaptive SSClass problem in
the unit-cost case, optimal expected verification cost equals optimal expected evaluation cost.
Prior work already implied this was true for evaluating k-of-n functions, even for arbitrary
costs (cf. [5]). We give a counterexample in the full paper [9] showing that this relationship
does not hold for the adaptive SSClass problem with arbitrary costs. Thus algorithmic
approaches based on optimal verification strategies may not be effective for this problem.

There remain many intriguing open questions related to SSClass problems. The first, and
most fundamental, is whether the (adaptive or non-adaptive) SSClass problem is NP-hard.
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This is open even in the unit-cost case. It is unclear whether this problem will be easy to
resolve. It is easy to show that the weighted variants are NP-hard: this follows from the
NP-hardness of the SBFE problem for linear threshold functions, which is proved by a simple
reduction from knapsack [8]. However, the approach used in that proof is to show that the
deterministic version of the problem (where query answers are known a-priori) is NP-hard,
which is not the case in the SSClass problem. Further, NP-hardness of evaluation problems
is not always easy to determine. The question of whether the SBFE problem for read-once
formulas is NP-hard has been open since the 1970’s (cf. [13]).

Another main open question is whether there is a constant-factor approximation algorithm
for the weighted SSClass problem. Our bounds depend on n or B. Other open questions
concern lower bounds on approximation factors, and bounds on adaptivity gaps.

3 Further definitions and background

A partial assignment is a vector b ∈ {0, 1, ∗}n. We use f b to denote the restriction of function
f(x1, . . . , xn) to the bits i with bi = ∗, produced by fixing the remaining bits i according
to their values bi. We call f b the function induced from f by partial assignment b. We use
N0(b) to denote |{i|bi = 0}|, and N1(b) to denote |{i|bi = 1}|.

A partial assignment b′ ∈ {0, 1, ∗}n is an extension of b, written b′ � b, if b′i = bi for all i
such that bi 6= ∗. We use b′ � b to denote that b′ � b and b′ 6= b.

A partial assignment encodes what information is known at a given point in a sequential
querying (testing) environment. Specifically, for partial assignment b ∈ {0, 1, ∗}n, bi = ∗
indicates that query i has not yet been asked, otherwise bi equals the answer to query i. We
may also refer to query i as test i, and to asking query i as testing or querying bit xi,

Suppose the costs ci and probabilities pi for the n queries are fixed. We define the
expected costs of adaptive evaluation and verification strategies for f : {0, 1}n → {0, 1}
or f : {0, 1}n → {1, . . . , B} as follows. (The definitions for non-adaptive strategies are
analogous.) Given an adaptive evaluation strategy A for f , and an assignment x ∈ {0, 1}n,
we use C(A, x) to denote the sum of the costs of the tests performed in using A on x. The
expected cost of A is

∑
x∈{0,1}n C(A, x)p(x), where p(x) =

∏n
i=1 p

xi(1− p)1−xi . We say that
A is an optimal adaptive evaluation strategy for f if it has minimum possible expected cost.

Let L denote the range of f , and for ` ∈ L, let X` = {x ∈ {0, 1}n : f(x) = `}. An adaptive
verification strategy for f consists of |L| adaptive evaluation strategies A` for f , one for each
` ∈ L. The expected cost of the verification strategy is

∑
`∈L

(∑
x∈X`

C(A`, x)p(x)
)
and it

is optimal if it minimizes this expected cost.
If A is an evaluation strategy for f , we call

∑
x∈X`

C(A, x)p(x) the `-cost of A. For ` ∈ L,
we say that A is `-optimal if it has minimum possible `-cost. In an optimal verification
strategy for f , each component evaluation strategy A` must be `-optimal.

A function g : {0, 1, ∗}n → Z≥0 is monotone if g(b′) ≥ g(b) whenever b′ � b. It is
submodular if for b′ � b, i such that b′i = bi = ∗, and k ∈ {0, 1}, we have g(b′i←k)− g(b′) ≤
g(bi←k)− g(b). Here bi←k denotes the partial assignment produced from b by setting bi to k,
and similarly for b′i←k.

4 Algorithms for the weighted adaptive SSClass problem

Our first algorithm solves the weighted adaptive SSClass Problem using the goal value
approach of Deshpande et al., a method of designing approximation algorithms for SBFE
problems [8]. The approach can easily be extended to problems of evaluating pseudo-Boolean

ESA 2018
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functions. It requires construction of a utility function g : {0, 1, ∗}n → Z≥0, called a goal
function, associated with the function f being evaluated. Function g must be monotone and
submodular. The maximum value of g must be an integer Q ≥ 0 such that g(b) = Q iff f(x)
has the same value for all x ∈ {0, 1}n such that x � b. We call Q the goal value of g.

An adaptive strategy for evaluating f can then be obtained by applying the Adaptive
Greedy algorithm of Golovin and Krause to solve the Stochastic Submodular Cover problem
on goal function g [10]. This algorithm greedily chooses the test with highest expected
increase in utility, as measured by g, per unit cost. It follows from the bound of Deshpande
et al. on applying Adaptive Greedy to the Stochastic Submodular Cover problem, that this
strategy is an O(logQ)-approximation to the optimal adaptive strategy for evaluating f [8].2

We construct g as follows. Let r(x) = a1x2 + . . .+ anxn. Consider an associated score
classification function f defined by α1, . . . , αB+1 and the ai. For simplicity, we assume
here that the ai are non-negative. (The general case is similar.) We refer to the values
α2, . . . , αB as cutoffs. For each cutoff αj , let fj denote the Boolean linear threshold function
fj : {0, 1}n → {0, 1} where fj(x) = 1 if r(x) ≥ αj , and fj(x) = 0 otherwise.

Consider a fixed cutoff αj . Let ω = (
∑

i ai) − αj + 1. For b ∈ {0, 1, ∗}n, let r1(b) =
min{αj ,

∑
i:bi=1 ai} and r0(b) = min{ω,

∑
i:bi=0 ai}. Note that r1(b) = αj iff fj(x) = 1 for

all x � b, and r0(b) = ω iff fj(x) = 0 for all x � b. As shown in [8] the following function gj

is a goal function for linear threshold function fj , with goal value ωαj :

gj(b) = ωαj − (αj − r1(b))(ω − r0(b)). (1)

We combine the B − 1 goal functions gj using the standard “AND construction” for
utility functions (cf. [8]), which yields a goal function g for score classification function f ,
where g(x) =

∑B−1
i=1 gi(x). Its goal value is at most (B − 1)W 2 where W =

∑
i ai.

To evaluate f , we apply the Adaptive Greedy algorithm to g. By the O(logQ) approxi-
mation bound on Adaptive Greedy, this constitutes an algorithm for the weighted adaptive
SSClass problem with approximation factor O(logBW 2), which is O(logW ) since B ≤W .
In the unweighted adaptive SSClass problem, W = n, so the approximation factor is O(logn).

We now describe our simple B − 1 approximation algorithm for the adaptive unweighted
SSClass problem, which takes a very different approach. It runs the k-of-n function evaluation
algorithm B−1 times, each time setting k to be a different cutoff αj . The resulting evaluations
are sufficient to determine the correct output class. The proof that this algorithm achieves
a B − 1 approximation bound is based on the observation that any strategy solving the
adaptive SSClass problem is implicitly a strategy for solving each of the B− 1 induced k-of-n
problems. Since we use an optimal algorithm for solving each of those problems, this implies
the B−1 approximation bound. We note that although we could easily modify this algorithm
to use binary search, we do not know how to prove that it results in an approximation bound
that is better than B − 1.

When B is small, as for, e.g., k-of-n functions and the Unanimous Vote function, B− 1 is
a good approximation. Otherwise, the O(logn) approximation achieved with the goal value
approach may be better.

By similar arguments, the following is a 3(B−1) approximation for the weighted adaptive
problem. For each cutoff αj , use the 3-approximation algorithm of Deshpande et al. to
evaluate linear threshold function fj .

2 Golovin and Krause originally claimed an O(log Q) bound for Stochastic Submodular Cover [10], but the
proof was recently found to have an error [18]. They have since posted a new proof with an O(log2 Q)
bound [11]. Deshpande et al. proved an O(log Q) bound using a different proof technique [8].
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Combining the above results, we have the following theorem.

I Theorem 1. There are two different polynomial-time approximation algorithms, achieving
approximation factors of O(logW ) and 3(B − 1) respectively, for the weighted adaptive
SSClass problem. There is a polynomial-time algorithm that achieves a B − 1-approximation
for the unweighted adaptive SSClass problem.

5 Constant-factor approximations for unit-cost problems

We begin by reviewing relevant existing techniques.

5.1 Adaptive Evaluation of k-of-n Functions
An optimal adaptive strategy, when f is a k-of-n function, was given by Salloum, Ben-Dov,
and Breuer [19, 4, 20, 6, 21]. The difficulty in finding an optimal strategy is that you do not
know a-priori whether the value of f will be 1 or 0. If 1, then (ignoring cost) it seems it
would be better to choose tests with high pi, since you want to get k 1-answers. Similarly, if
0, it seems it would be better to choose tests with low pi. The algorithm of Salloum et al. is
based on showing that when f is a k-of-n function, a 1-optimal strategy is to test the bits
in increasing order of ci/pi until getting k 1’s, while a 0-optimal strategy is to test them in
increasing order of ci/(1− pi) until getting n− k + 1 0’s.

Since the 1-optimal strategy must perform at least the first k tests before terminating,
these can be reordered within this strategy without affecting its optimality. Similarly, the
first n− k+ 1 queries of the 0-optimal strategy can be reordered without affecting optimality.

The strategy of Salloum et al. is as follows. If n = 1, test the one bit. Else let S1
denote the set of the k bits with smallest ci/pi values. Let S0 denote the set of the
n − k + 1 bits with smallest ci/(1 − pi) values. Since |S0| + |S1| = n + 1, by pigeonhole
S0∩S1 6= ∅. Test a bit in S0∩S1. If it is 1, the problem is reduced to evaluating the function
f1 : {0, 1}n−1 → {0, 1} where f1(x) = 1 iff N1(x) ≥ k − 1. If it is 0, the problem is reduced
to evaluating f0 : {0, 1}n−1 → {0, 1} where f0(x) = 1 iff N1(x) ≥ k. Recursively evaluate f1

or f0 as appropriate. Optimality follows from the fact that the chosen bit is an optimal first
bit to test in both 0-optimal and 1-optimal strategies.

5.2 Modified Round Robin
Allen et al. [2] presented a modified round robin protocol, which is useful in designing
non-adaptive strategies when test costs are not all equal. Suppose that in a sequential
testing environment with n tests, we have M conditions on test outcomes, corresponding
to M predicates on the partial assignments in {0, 1, ∗}n. For example, in the k-of-n testing
problem, we are interested in the following M = 2 predicates on partial assignments: (1)
having at least k 1’s and (2) having at least n− k + 1 0’s. Suppose we are given a testing
strategy for each of the M predicates; a strategy stops testing when its predicate is satisfied
(by the partial assignment representing test outcomes), or all tests have been performed. Let
Alg1, . . . ,AlgM denote those M strategies. The modified round robin algorithm of Allen
et al. interleaves execution of these strategies. We present a version of their algorithm in
Algorithm 1; the difference is that their algorithm terminates as soon as one of the predicates
is satisfied, while Algorithm 1 terminates when all are satisfied.

Allen et al. showed that the modified round robin incurs a cost on x that is at most M
times the cost incurred by Algj on x. We will use variations on this algorithm and this
bound to derive approximation factors for our SSClass problems.

ESA 2018



36:8 The Stochastic Score Classification Problem

Algorithm 1 Modified Round Robin of M Strategies.
Let Ci ← 0 for i = 1, . . . ,M ; let d← (∗n)
while at least one of the M testing strategies has not terminated do
Let j1, . . . , jM be the next tests of Alg1, . . . ,AlgM respectively
Let i∗ ← arg min

i∈{1,...,M}
(Ci + cji

)

Let t← ji∗ ; let Ci∗ ← Ci∗ + ct

Perform test t and set dt to the newly determined value of bit t
end while

Algorithm 2 Non-adaptive Round Robin Algorithm for SSClass.
Let C0 ← 0, C1 ← 0
Let d← ∗n

repeat
Let j0 ← next bit from Alg0
Let j1 ← next bit from Alg1
Let j∗ ← arg mini∈{0,1} Ci + cji

Query bit i∗ and set dj∗ to the discovered value
until induced function fd is a constant function
return The constant value of fd

5.3 A Round Robin Approach to Non-adaptive Evaluation
We now present an algorithm for the unit-cost case of the non-adaptive, unweighted SSClass
problem. The pseudocode is presented in Algorithm 2, with Alg1 denoting the strategy
performing tests in increasing order of ci/pi and Alg0 denoting the strategy performing tests
in increasing order of ci/(1− pi). We prove the following theorem.

I Theorem 2. When all tests have unit cost, the expected cost incurred by the non-adaptive
Algorithm 2 is at most 4 times the expected cost of an optimal adaptive strategy for the
unweighted adaptive SSClass problem.

By Theorem 2, Algorithm 2 is a 4-approximation for the adaptive and non-adaptive
versions of the unit-cost unweighted SSClass problem. The theorem also implies an upper
bound of 4 on the adaptivity gap for this problem. A simpler analysis shows that for arbitrary
costs, Algorithm 2 achieves an approximation factor of 2(B − 1) for the non-adaptive version
of the problem. Since the k-of-n functions are essentially equivalent to score classification
functions with B = 2, the 2(B − 1)-approximation is a 2-approximation for non-adaptive
k-of-n function evaluation.

5.4 The Unanimous Vote Function: Adaptive Setting
Adaptive evaluation of the Unanimous Vote function can be done optimally using the following
simple idea. Recall that querying the bits in increasing ci/pi order is optimal for evaluating
OR, while querying in increasing ci/(1− pi) is optimal for AND. Now consider the problem
of adaptively evaluating the Unanimous Vote function. Suppose we know the optimal choice
for the first test. After the first test, we have an induced SSClass problem on the remaining
bits. If the first test has value 0, the induced function is equivalent to Boolean OR (mapping
UNCERTAIN to 1, and NEGATIVE to 0). The subtree rooted at the root node’s 0-child
should be the optimal tree for evaluating OR. Specifically, the remaining bits should be tested
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x0

x1

x2

...

xn−1

xn−1

xn−2

...

x1

Figure 1 Decision tree T representing optimal adaptive strategy with root x0.

in increasing order of ci/pi. If, instead, the first bit is 1, the induced function is equivalent
to AND (mapping UNCERTAIN to 0 and POSITIVE to 1) and the remaining bits should
be queried in increasing order of ci/(1− pi).

Since we don’t actually know the first bit, we can just try each bit as the root and build
the rest of the tree according to the optimal OR and AND strategies. We can then calculate
the expected cost of each tree, and output the tree with minimum expected cost.

For succinctness, the optimal OR and AND strategies can be represented by paths,
because each performs tests in a fixed order. Figure 1 shows an example of the strategy
computed by the algorithm, where the root is labeled x0 and the OR permutation is the
reversal of the AND permutation (which occurs, for example, with unit costs).

5.5 A Non-adaptive ϕ-approximation for the Unanimous Vote Function
A simple modification of the round robin makes the algorithm from the previous section
non-adaptive, yielding a 2-approximation. But we now show how to achieve a non-adaptive
ϕ-approximation in the unit-cost case, where ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio. We
call the algorithm Truncated Round Robin. We describe the algorithm by describing a
subroutine which generates a permutation of input bits to query, given an initial (root) bit.
The algorithm then tries all possible bits for the root and chooses the resulting permutation
that achieves the lowest expected cost.

Without loss of generality, assume the first bit (the root node) is x0, and the rest are
x1, . . . , xn−1, and 1 > p1 ≥ p2 ≥ · · · ≥ pn−1 > 0. Fix c to be a constant such that 0 < c < 1

2 .

The subroutine is shown in Algorithm 3. “Evaluation unknown” means tests so far
were insufficient to determine the output of the Unanimous Vote function. (The output,
POSITIVE, NEGATIVE, or UNCERTAIN, is not shown.)

Given x0 as the root, the optimal adaptive strategy continues with the OR strategy
(increasing 1/pi) when x0 = 0, and the AND strategy (increasing 1/(1− pi)) when x0 = 1.
This is shown in Figure 1, where x0 = 0 is the left branch and x0 = 1 is the right. On the
left, we stop querying when we find a bit with value 1 (or all bits are queried). On the right,
we stop when we find a bit with value 0.

Let “level l” refer to the tree nodes at distance l from the root; namely, xl and xn−l.
When all costs are 1, the standard round robin technique of the previous section in effect
tests, for l = 1 . . . dn−1

2 e, the bit xl followed by xn−l. Note that the algorithm will terminate
by level dn−1

2 e because at this point all bits will have been queried. Thus in the algorithm,
pl ≥ pn−l.
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Algorithm 3 Truncated Round Robin Subroutine for Unanimous Vote Fn.
Require: 1 > p1 ≥ p2 ≥ · · · ≥ pn−1
Query bit x0
Let level l← 1
while pn−l < 1− c and pl > c and evaluation unknown do

if |pl − 0.5| < |pn−l − 0.5| then
Query xl followed by xn−l

else
Query xn−l followed by xl

end if
l← l + 1

end while{first phase: alternate branches of tree}
while evaluation unknown do

if pl ≥ pn−l ≥ 1− c then
Query xn−l

else if c ≥ pl ≥ pn−l then
Query xl

end if
l← l + 1

end while{second phase: single branch in tree}

In the Truncated Round Robin, we proceed level by level, in two phases. The first phase
concludes once we reach a level l where pl > pn−l ≥ 1− c or c ≥ pl > pn−l. Let ` denote this
level. In the first phase, we test both xl and xn−l, testing first the variable whose probability
is closest to 1

2 . In the second phase, we abandon the round robin and instead continue down
a single branch in the adaptive tree. Specifically, in the second phase, if pl > pn−l ≥ 1− c,
then we continue down the right branch, testing the remaining variables in increasing order of
pi. If c ≥ pl > pn−l, then we continue down the left branch, testing the remaining variables
in decreasing order of pi. Fixing c = 3−

√
5

2 ≈ 0.381966 in the algorithm, the following holds.

I Theorem 3. When all tests have unit cost, the Truncated Round Robin Algorithm achieves
an approximation factor of ϕ for non-adaptive evaluation of the Unanimous Vote function.

Proof. Consider the optimal adaptive strategy T . It tests a bit x0 and then follows the
optimal AND or OR strategy depending on whether x0 = 1 or x0 = 0. Assume the other
bits are indexed so p1 ≥ p2 ≥ . . . ≥ pn−1. Thus T is the tree in Figure 1. Let C∗adapt be
the expected cost of T . Let C∗non−adapt be the expected cost of the optimal non-adaptive
strategy. Let Ci,T RR be the cost of running the TRR subroutine in (Algorithm 3) with
root xi. We use x0 to denote the root of T . Since the TRR algorithm tries all possible
roots, its output strategy has expected cost mini Ci,T RR. We will prove the following claim:
C0,T RR ≤ ϕC∗adapt. Since the expected cost of the optimal adaptive strategy is bounded
above by the expected cost of the optimal non-adaptive strategy, the claim implies that
mini Ci,T RR ≤ C0,T RR ≤ ϕC∗adapt. Further, C∗adapt ≤ C∗non−adapt, which proves the theorem.

We now prove the claim. We will write the expected cost of the TRR (with root x0) as
C0,T RR = 1 + E1 + (1− P1)E2. Here, E1 is the expected number of bits tested in T in the
first phase (i.e. in levels l < `), E2 is the expected number of variables tested among levels in
T in the second phase (levels l ≥ `), given that the second phase is reached, and P1 is the
probability of ending during the first phase. Note that the value of ` is determined only by
the values of the pi, and it is independent of the test outcomes.
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We will write the expected cost of T (the adaptive tree which is optimal w.r.t all trees
with root x0) as C∗adapt = 1 + E′1 + (1 − P ′1)E′2 where E′1 is the expected number of bits
queried in T before level `, P ′1 is the probability of ending before level `, and E′2 is the
expected number of bits queried in levels ` and higher, given that ` was reached.

To prove our claim, we will upper bound the ratio α := 1+E1+(1−P1)E2
1+E′1+(1−P ′1)E′2

. Recall that since
c < 1/2, we have c < 1 − c. Also, the first phase ends if all bits have been tested, which
implies that for all l in the first phase, l ≤ d(n− 1)/2e so pn−l ≤ pl. We break the first phase
into two parts: (1) The first part consists of all levels l where pn−l ≤ c < 1− c ≤ pl. (2) The
second part consists of all levels l where pl ∈ (c, 1− c) or pn−l ∈ (c, 1− c), or both.

Let us rewrite the expected cost E1 as E1 = E1,1 + (1 − P1,1)E1,2. where E1,1 is the
expected cost of the first part of phase 1, E1,2 is the expected cost of the second part of phase
1, and P1,1 is the probability of terminating during the first part of phase 1. Analogously
for the cost on tree T , we can rewrite E′1 = E′1,1 + (1− P ′1,1)E′1,2. Then, the ratio we wish
to upper bound becomes α = 1+E1,1+(1−P1,1)E1,2+(1−P1)E2

1+E′1,1+(1−P ′1,1)E′1,2+(1−P ′1)E′2
which we will upper bound by

examining the three ratios

θ1 := 1 + E1,1

1 + E′1,1
θ2 := (1− P1,1)E1,2

(1− P ′1,1)E′1,2
θ3 := (1− P1)E2

(1− P ′1)E′2
For ratio θ1, notice that the TRR does at most two tests for every tree level, so E1,1 ≤

2E′1,1, and thus 1+E1,1
1+E′1,1

≤ 1+2E′1,1
1+E′1,1

. Also, d
d x

(
1+2x
1+x

)
= 1

(1+x)2 > 0 for x > 0. For each path in
tree T , for the levels in the first part of the first phase, the probability of getting a result that
causes termination is at least 1− c. This is because in the first part, pl ≥ 1− c > c ≥ pn−l.
If we are taking the left branch (because x0 = 0) we terminate when we get a test outcome
of 1, and on the right (x0 = 1), we terminate when we get a test outcome of 0. Each bit
queried is an independent Bernoulli trial, so E′1,1 ≤ 1

1−c . Because
1+2x
1+x is increasing, we can

assert that

θ1 = 1 + E1,1

1 + E′1,1
<

1 + 2(1− c)−1

1 + 1(1− c)−1 = 3− c
2− c .

Next we will upper bound the second ratio θ2. Let P (l) represent the probability of
reaching level l in the TRR. Further, let ql represent the probability of querying the second
bit in level l given that we have reached level l. Then, observe that (1− P1,1)E1,2 can be
written as the sum over all levels l in phase 1, part 2 of P (l)(1 + ql). Note that in phase 1,
the first bit queried is the bit xi such that pi is closest to 0.5. Notice also that in the second
part of the first phase, each level has at least one variable xi such that pi ∈ (c, 1− c). This
also means that 1 − pi ∈ (c, 1 − c). This means that the first test performed in any given
level in phase 1, part 2 will cause the TRR to terminate with probability at least c. This
means that for each level l in this part of the TRR, we will have ql ≤ 1− c.

Similarly, (1− P ′1,1)E′1,2 is the sum over all levels l which comprise phase 1, part 2 in the
TRR of P ′(l). Here, P ′(l) is defined as the probability of reaching level l in tree T . We do
not multiply by 1 + ql since in the evaluation of T we only perform one test at each level.

Consider the evaluation of tree T on an assignment. If the evaluation terminates upon
reaching level l in the tree, for l < `, then the evaluation using the TRR must terminate at a
level l′ ≤ l. That is, the TRR will terminate at level l or earlier for the same assignment.
Thus, we get that P (l) ≤ P ′(l). Using this, we can achieve the following bound on the second
ratio (letting S2 denote the set of all levels included in the second part of phase 1):

θ2 = (1− P1,1)E1,2

(1− P ′1,1)E′1,2
=
∑

l∈S2
P (l)(1 + ql)∑

l∈S2
P ′(l) ≤

∑
l∈S2

P (l)(1 + 1− c)∑
l∈S2

P (l) = 2− c.
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Finally, we wish to upper bound the last ratio, θ3 = (1−P1)E2
(1−P ′1)E′2

. Let l∗ = ` denote the
first level included in the second phase of the TRR. Without loss of generality, assume that
c ≥ pl∗ ≥ pn−l∗ so that in the TRR, the second phase queries the remaining bits in decreasing
order of pi. Thus, all bits xi queried in the second phase satisfy pi ≤ c. (The argument is
symmetric for the case where pl∗ ≥ pn−l∗ ≥ 1− c).

In this case, any assignments that do not cause termination in the TRR during the first
phase, and that have x0 = 0 (i.e., they would go down the left branch of T ), will follow the
same path through the nodes in left branch, for levels l∗ and higher, that they would have
followed in the optimal strategy T . (In fact, tests from the right branch of the tree that were
previously performed in phase 1 of the TRR do not have to be repeated.)

The numerator of the third ratio θ3 is equal to the sum, over all assignments x reaching
level l∗ in the TRR, of Pr(x)C2(x), where C2(x) is the total cost of all bits queried in phase
2 for assignment x. Let Q0 be the subset of assignments reaching level l∗ in the TRR which
have x0 = 0 and let Q1 be the subset of assignments reaching level l∗ in the TRR which
have x0 = 1. Let D0 represent the sum over all assignments in Q0 of Pr(x)C2(x) and let D1
represent the sum over all assignments in Q1 of Pr(x)C2(x). Then, letting Sl∗ represent the
set of assignments reaching level l∗ in the TRR, we can rewrite the numerator of the third
ratio as

∑
x∈Sl∗

Pr(x)C2(x) =
∑

x∈Q0
Pr(x)C2(x) +

∑
x∈Q1

Pr(x)C2(x) = D0 +D1.
The denominator of the third ratio is the sum, over all assignments x reaching level l∗ in

the tree, of Pr(x)C ′2(x), where C ′2(x) is the total cost of all bits queried in tree T at level l∗ and
below. Let S′l∗ denote the set of assignments x reaching level l∗ in tree T . Next, observe that
Sl∗ ⊆ S′l∗ since any assignment that reaches level l∗ in the TRR must also reach level l∗ in the
tree. We can again rewrite the denominator as

∑
x∈S′

l∗
Pr(x)C ′2(x) ≥

∑
x∈Sl∗

Pr(x)C ′2(x) =
B0 +B1 where B0 =

∑
x∈Q0

Pr(x)C ′2(x) and B1 =
∑

x∈Q1
Pr(x)C ′2(x). The third ratio θ3

can thus be upper bounded by θ3 ≤ (1−P1)E2
(1−P1)E2

≤ D0+D1
B0+B1

.
For any x ∈ Q0, the number of bits queried in level l∗ or below in the TRR is less than

or equal to the number of bits queried on x in level l∗ or below in the tree. Thus D0 ≤ B0.
For x ∈ Q1, the number of bits queried at level l∗ or below is at least one. Thus B1 ≥ J1,

where J1 is the probability that a random assignment x has x0 = 1 and reaches level l∗.
Note that TRR will terminate on an assignment with x0 = 1 when it first tests a bit that

has value 0. Also note that each bit xi in level l∗ and below has probability pi ≤ c of having
value 1 and thus probability 1− pi ≥ 1− c of having value 0 and ending the TRR. Since each
bit queried is an independent trial, the expected number of bits queried before termination
is at most (1 − c)−1. Thus, D1 ≤ (1 − c)−1J1. Together with the fact that D0 ≤ B0, we
get D0+D1

B0+B1
≤ B0+(1−c)−1J1

B0+J1
. Finally, we observe that since B0

B0
= 1 and (1−c)−1J1

J1
≤ 1

1−c , it
follows from our earlier upper bound on θ3, namely θ3 ≤ D0+D1

B0+B1
, that

θ3 ≤
D0 +D1

B0 +B1
≤ 1

1− c .

Thus, we have three upper bounds: (1) θ1 ≤ 3−c
2−c , (2) θ2 ≤ 2− c, and (3) θ3 ≤ 1

1−c . This
gives us an upper bound on the ratio of the expected cost of the TRR to the tree T , and thus
an upper bound on the approximation factor. This bound is simply the maximum of the three
upper bounds: 1+E1+(1−P1)E2

1+E′1+(1−P ′1)E′2
≤ max

{
3−c
2−c , 2− c,

1
1−c

}
. Setting c = 3−

√
5

2 ≈ 0.381966 causes

all three upper bounds to equal ϕ. Thus, running the TRR algorithm with c = 3−
√

5
2 produces

an expected cost of no more than ϕ times the expected cost of an optimal strategy. J
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Table 1 Results for the Adaptive SSClass Problem.

unit costs arbitrary costs
weighted O(log W )-approx [Section 4];

3(B − 1) [Section 4]
O(log W )-approx [Section 4];

3(B − 1) [Section 4]
unweighted 4-approx [Section 5.3];

(B − 1)-approx [Section 4]
O(log n)-approx;

(B − 1)-approx [Section 4]
k-of-n function exact algorithm [known] exact algorithm [known]

Unanimous Vote function exact algorithm [Section 5.4] exact algorithm [Section 5.4]

Table 2 Results for the Non-Adaptive SSClass Problem.

unit costs arbitrary costs
weighted open open

unweighted 4-approx [Section 5.3] 2(B − 1)-approx [Section 5.3]
k-of-n function 2-approx [Section 5.3] 2-approx [Section 5.3]

Unanimous Vote function ϕ-approx [Section 5.5] 2-approx [Section 5.5]
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