
Dynamic Trees with Almost-Optimal Access Cost

Mordecai Golin
Hong Kong University of Science and Technology
golin@cse.ust.hk

John Iacono1

Université libre de Bruxelles and New York University
johniacono@gmail.com

Stefan Langerman2

Université libre de Bruxelles
sl@slef.org

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo
yakov.nekrich@googlemail.com

Abstract
An optimal binary search tree for an access sequence on elements is a static tree that minimizes
the total search cost. Constructing perfectly optimal binary search trees is expensive so the
most efficient algorithms construct almost optimal search trees. There exists a long literature of
constructing almost optimal search trees dynamically, i.e., when the access pattern is not known
in advance. All of these trees, e.g., splay trees and treaps, provide a multiplicative approximation
to the optimal search cost.

In this paper we show how to maintain an almost optimal weighted binary search tree under
access operations and insertions of new elements where the approximation is an additive constant.
More technically, we maintain a tree in which the depth of the leaf holding an element ei does
not exceed min(log(W/wi), logn) + O(1) where wi is the number of times ei was accessed and
W is the total length of the access sequence.

Our techniques can also be used to encode a sequence ofm symbols with a dynamic alphabetic
code in O(m) time so that the encoding length is bounded bym(H+O(1)), whereH is the entropy
of the sequence. This is the first efficient algorithm for adaptive alphabetic coding that runs in
constant time per symbol.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases Data Structures, Binary Search Trees, Adaptive Alphabetic Coding

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.38

Related Version A full version of the paper is available at [15], https://arxiv.org/abs/1806.
10498.

1 Supported by NSF grants CCF-1319648, CCF-1533564, a Fulbright Fellowship, and by the Fonds de la
Recherche Scientifique-FNRS under Grant no MISU F 6001 1.

2 Directeur de recherches du Fonds de la Recherche Scientifique-FNRS.

© Mordecai Golin, Stefan Langerman, John Iacono, J. Ian Munro, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:golin@cse.ust.hk
mailto:johniacono@gmail.com
mailto:sl@slef.org
mailto:imunro@uwaterloo.ca
mailto:yakov.nekrich@googlemail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.38
https://arxiv.org/abs/1806.10498
https://arxiv.org/abs/1806.10498
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


38:2 Dynamic Trees with Almost-Optimal Access Cost

1 Introduction

The dictionary problem is one of the most fundamental problems in computer science. It
requires maintaining a set of elements in a data structure and being able to efficiently search
for and find them when needed. In the comparison model, balanced binary search trees (BSTs)
provide an optimal worst case solution for this problem. We consider leaf-oriented binary
search trees, where all of the data is located in leaves and internal nodes store keys needed
to guide the search to the leaves. For a set of n elements, it is well known that the perfectly
balanced search tree has height dlog(n+ 1)e and dlog(n+ 1)e comparisons3 are required to
access an element, both in the worst and average cases. In many practical applications,
some elements are known to be accessed more frequently than others; unbalancing and
restructuring the tree so that more frequently accessed elements are stored higher up, can
lead to better search times. Let di be the depth of the ith element ei (stored at a leaf), wi
the frequency of accessing that element and W =

∑
i wi the total number of accesses. The

total access cost is
∑
i diwi; normalizing gives the tree cost which is 1

W

∑
i diwi. A tree that

minimizes the tree cost minimizes the total access cost and is an optimal BST.
There is a long literature on constructing optimal BSTs, both exactly and approximately4.

In the approximate case, there are algorithms that provide both multiplicative and additive
errors. In the dynamic version of the problem the frequencies wi are not known in advance
but are calculated cumulatively as accesses are made. The problem then is to update the
tree to be optimal for the current observed frequencies. Surprisingly, while there are many
results on dynamic approximately optimal BSTs with constant multiplicative-error, prior to
this paper there was not much known about constant additive-errors.

In this paper we revisit this problem and describe how to maintain dynamic approximately
optimal BSTs with constant additive-error (this will be formally defined in the next subsection).
The cost of re-building the tree after an access operation is bounded by O(log(f) n) for any
constant f , with the additive error growing linearly with f. As in standard BSTs, our
technique permits insertions of new elements to the dictionary at any time.

A variant of our approach can also be used to obtain an almost-optimal adaptive alphabetic
code with O(1) encoding cost.

Previous and Related Work

There are a number of data structures that maintain (unweighted) dynamic trees with
O(logn) depth, starting with the classic balanced trees of Adelson-Velski and Landis [1]
and other handbook solutions [7, 16]. These data structures maintain all leaves at height
O(logn) and thus support both searches and updates, i.e., insertions and deletions, in
O(logn) time. The k-neighbor tree of Maurer et al. [22] achieves tree depth (1 + δ) logn and
update cost O((1/δ) logn) for any positive δ > 0. Andersson [4] improved this result and
showed how to maintain a tree of height logn + O(k) in O(logn) time per update. Even
tighter bounds on constant and improved update times were described by Andersson and
Lai [6] and Fagerberg [11]. We refer to [5] for an extensive survey of results in this area.

Gilbert and Moore [14] introduced an O(n3) time algorithm for constructing optimal BSTs.
This was improved in 1971 by Knuth [21] to O(n2), which is still the best known method for
solving the general case of the problem. Those two algorithms assume that frequencies for

3 Throughout this paper log denotes the binary logarithm and log(f) is the log function iterated f times.
4 In this paper the term “optimal” refers to the optimality of the tree with respect to access frequencies.

Splay trees, for example, can utilize other features of the access sequence in addition to frequencies.



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:3

both successful (elements in the tree) and unsuccessful (not in the tree) searches are given in
advance and optimize accordingly. If the problem is restricted to successful searches then
optimal BSTs can be constructed in in O(n logn) time using the Hu-Tucker algorithm and
its variants. [13, 18]. Klawe and Mumey [19] show that, under some general conditions as to
how the algorithms can operate, Ω(n logn) is the best possible construction time, although,
for certain restricted types of input, O(n) can be achieved [17,19].

Let pi = wi/W be the empirical probability of element i in the access sequence. The
Shannon Entropy of the sequence is H =

∑
i pi log(1/pi) which is known to be a lower

bound on the cost of tree in which all data is in the leaves5. If a tree was guaranteed
to have di ≤ c + log(1/pi) for all i then the total cost of all accesses would be at most∑
i wi(c+ log(1/pi)) = WH + cW , i.e., within a constant additive error per access. In the

static case multiple authors [2, 23,28] have provided O(n) time algorithms for constructing
such trees with c = 2.

Now consider the dynamic case, in which trees are rebuilt based on cumulative frequencies
viewed so far. Splay trees [25] and Treaps, [24] maintain static optimality, essentially keeping
element ei at depth di = O(log(1/pi)) for the current cumulative frequencies, in the amortized
sense. This guarantees constant multiplicative errors in the dynamic case. There was no
comparable result for maintaining almost optimal trees with additive errors, i.e., keeping
element ei at depth di = log(1/pi) +O(1). The best technique would be to rebuild the tree
from scratch at every step.

The dynamic (or adaptive) alphabetic coding problem is closely related to the dynamic
alphabetic tree problem just described. The coding problem is to produce an encoding for
a sequence of symbols S[1] . . . S[m] over an ordered alphabet { a1, . . . , an } so that (1) no
codeword is a prefix of any other and (2) the codeword for ai is lexicographically smaller
than the codeword for aj iff ai < aj . In the adaptive scenario the input sequence is not
known in advance; hence, we need to update the code every time a symbol is encoded.
Dynamic Huffman [20,26] and dynamic Shannon [12] algorithms solve this problem for the
non-alphabetic case. The algorithm of Gagie [12] maintains a dynamic alphabetic code, such
that the total encoding length is bounded by (H + 2)m and runs in O(m(H + 1)) time.

Alphabetic coding is related but not equivalent to the alphabetic trees problem. Any
alphabetic tree can be transformed into an alphabetic code in a straightforward way. Hence
any dynamic alphabetic tree structure provides us with an alphabetic coding method. But
this imposes a lower bound on the encoding time: if the code is represented by a tree, then
we have to encode the symbols bit-by-bit. Hence any tree-based alphabetic coding method
requires Ω(mH) time to encode the sequence. On the other hand, not every adaptive coding
method can be transformed into a method for maintaining an alphabetic tree. For example,
the method of Gagie [12] does not store the alphabetic tree and therefore can not be used to
implement a dynamic dictionary.

Notation

The weight w` of a leaf node ` is the total number of times that an element stored in ` was
accessed. We assume that every item is accessed at least once so w` ≥ 1 The weight of an
internal node u is the total weight of all leaves in the subtree of u; the weight of a subtree is
equal to the weight of its root. The total weight W of a tree T is the weight of its root node,
i.e., W =

∑
` w` where the sum is taken over all leaves `. This is also the total number of

accesses made.

5 When data can also be kept in internal nodes, as when three-way comparisons are allowed, the lower
bound decreases to H − log H [3].

ESA 2018



38:4 Dynamic Trees with Almost-Optimal Access Cost

When necessary we further denote by w(j)
` the number of accesses to ` during the first j

accesses. Thus W (t) =
∑
` w

(t)
` = t.

Relation Between Static and Dynamic Optimal Trees

Consider an optimal static binary search tree for a sequence of W accesses to n elements. As
previously noted, the average cost of such a tree is at most H + 2 where H is the entropy of
the access sequence.

I Lemma 1. Let a1, a2, . . . , aW with ai ∈ {1, 2, . . . , n} be a length W access sequence on the
elements, i.e., element eat is accessed at time t. Let H be the entropy corresponding to the
full access sequence. Then

W∑
t=1

log t

max
(
w

(t−1)
at , 1

) ≤W ·H + 2W.

The proof of this Lemma is straightforward and is therefore deferred to the full version of
this paper [15].

Suppose that we could build a tree T (t) such that the depth of ei after access t is
d

(t)
i ≤ log t

w
(t)
i

+ c. The access of at at time t would be in the previous tree T (t−1) with

cost d(t−1)
at . The only exception to the above is if time t is the first access to eat , so it was

not already in T (t−1). In that case the access cost would be d(t)
at , the depth of the location

into which ati would be inserted. Thus define d(t−1)
at = d

(t)
at . Since w

(t−1)
at = 0 and w(t)

at = 1,
d

(t−1)
at = d

(t)
at ≤ log t+ c = log t

max
(
w

(t−1)
at

, 1
) + c. The total cost of the accesses would then,

from Lemma 1, be∑
i

d(t−1)
at

≤W ·H + (2 + c)W,

i.e, within a constant additive error of optimal per access, where optimal defined as the cost
with the static optimal tree, is lower-bounded by W ·H.

Our approach to building almost optimal trees is therefore to maintain such trees T (t)

over the access sequences.

Our Results

Let f ≥ 1 be any fixed integer. In this paper we describe a dynamic tree structure that can
be maintained under access operations and insertions. The depth of the leaf that holds ei is
bounded by min(log(W/wi), logn) +O(f) where wi is the number of times ei was accessed
so far and W is the total length of the access sequence. Hence we can access any element ei
using at most min(logn, log(W/wi)) +O(1) comparisons. We can also insert new elements
into the tree. When an element is accessed (resp. when a new element is inserted), only
O(log(f) n) worst-case time will be needed to update the tree; this update procedure does not
require any comparisons. Thus our data structure enjoys the advantages of both the weighted
alphabetic tree and the perfect binary tree. At the same time, the cost of maintaining the
data structure is low.

This result is obtained by a combination of two ideas. First, our construction is based on
approximate weights of elements instead of exact weights. Second, we maintain an unweighted
binary tree T s with leaves “representing” approximate weights. Our dynamic tree is a subtree
of T s. We define the approximate weights in Section 3 and describe the tree T s in Section 4.



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:5

Next, we show how updates of our data structure can be implemented by leaf insertions in T s

in Section 5. We reduce the update cost and make all time bounds worst-case in Sections 6
and 7 respectively.

Our second result, concerns the adaptive alphabetic coding problem. Our method enables
us to encode the sequence of m symbols with an adaptive alphabetic code in O(m) time,
constant time per symbol (in contrast to O(m(H + 1)) time in [12]). The length of encoding
is bounded by m(H + 1) +O(m) bits. Our solution is based on the same approach as our
dynamic tree structure, but we employ a different method to maintain the underlying tree.
This method is based on the list maintenance problem [8, 9, 27]. The full details of this
result are omitted from this extended abstract but are presented in the full version of this
paper [15], in section on alphabetic coding.

2 Preliminaries

An efficient solution for the unweighted search tree problem was presented by Maurer et
al. [22]. Their data structure, called a k-neighbor tree, is a tree of height (1 + δ) logn, where
δ denotes an arbitrarily small positive constant. A k-neighbor tree is a binary tree T such
that (1) all leaves in T have the same depth and (2) if a node u ∈ T has only one child,
then u has at least one right neighbor (on the same level), and (3) if a node u has l right
neighbors, then min(k, l) nearest right neighbors of u have two children.

Since this will be used later, we give a sketch of the insertion into such a tree below.

When a new leaf x is inserted into the tree, we find the node p such that the x must be
inserted below p and call a recursive procedure Insert(p, x). First, we make x a new child
of p. If p has two children, the insertion procedure is completed. If p has three children, we
look for a neighbor node q of p such that the distance between p and q is at most k and q
has only one child. If q is found, we call the procedure Move(p, q). If q is not found, we
create a new node p′ that has one child; the only child of p′ is the leftmost child of p. If p is
not the root node, then we call the procedure Insert(parent(p), p′); otherwise we create a
new root node rn and make both p and p′ the children of rn.

The arguments of the procedure Move(p, q) are two neighbor nodes, p and q, such that p
has three children and q has only one child. All nodes u between p and q have two children.
The procedure is applied to the children of all nodes u between p and q; every child node is
shifted by one position to the right or to the left. At the end p, q, and all nodes u have two
children. Thus Move(p, q) consists of d shifts, where d is the distance from p to q. Procedure
Move(p, q) needs O(k) time because every node shift takes O(1) time. When a new leaf is
inserted, we execute Move(p, q) only one time. Excluding the cost of Move(p, q), we spend
O(1) time on every tree level. Therefore a new leaf can be inserted into a tree in O(logn+ k)
time. A more detailed description of an insertion can be found in [4]. We can delete a leaf
using a symmetric procedure.

The height of a k-neighbor tree with n leaves does not exceed
⌊

logn
log(2− 1

k+1 ) + 1
⌋
. Using the

fact that for any k ≥ logn the height of the tree is bounded by logn+O(1), Andersson [4]
showed how, by using an appropriate value of k the tree height can be bounded by height
logn+ 2 using only O(logn+ k) = O(logn) time per operation. It is this version of the data
structure that we will use later.

ESA 2018



38:6 Dynamic Trees with Almost-Optimal Access Cost

e1ε1 e1 e2 e2

ε2

e2 e2 e3 e3

ε3

e3 e3 e3 e3 e3 e3

ε4

e4 ε1

ε2

ε3

ε4

Figure 1 Left: Balanced tree of approximate weights w′
1 = 1, w′

2 = 2, w′
3 = 4, and w′

4 = 1.
Elements e1, . . ., e4 are stored in nodes ε1, . . ., ε4 respectively. Pseudo-leaves are shown with dashed
lines. Internal nodes of T s that are not nodes of T are also drawn with dashed lines. Leaves of T are
shown with solid lines and internal nodes of T are depicted by filled circles. Right: Almost-optimal
tree corresponding to the tree on Fig. 1.

3 Approximate Weights

Consider an ordered weighted set of elements E = { e1 < e2 < . . . < en } let wi denote the
weight of ei and W =

∑n
j=1 wj . Define the approximate (or quantized) weight of an element

ei as w′i = dwi/τe for τ = W
n . Thus all approximate weights are integers between 1 and n.

Note that
∑ wi

τ = n
W

∑
i wi = n. Hence W ′ =

∑⌈
wi

τ

⌉
≤
∑
i
wi

τ + n = 2n ≤ 2W .

I Lemma 2. Suppose that the depth of a leaf `i in a tree T ′ does not exceed log(W ′/w′i) + c.
Then the depth of `i in T ′ does not exceed min(log(W/wi), logn) + c+ 1.

Proof. Since w′i ≥ 1 for all i, log(W ′/w′i) ≤ logW ′ ≤ logn+ 1. Furthermore W ′ · τ ≤ 2W
and w′i · τ ≥ wi. Hence W ′

w′
i

= W ′·τ
w′

i
·τ ≤

2W
wi

and log W ′

w′
i
≤ log W

wi
+ 1.

In summary log W ′

w′
i
≤ min(log W

wi
, logn) + 1. J

The problem of maintaining an almost-optimal tree T ′ for quantized weights {w′1, . . . , w′n }
is thus equivalent to the problem of maintaining an almost-optimal tree for exact weights
{w1, . . . , wn }. The tree T ′ has another important property: the depths of all leaves in T ′
are bounded by dlogne+O(1).

4 Warm-Up: Almost-Optimal Static Trees

In this section we introduce our approach and basic notions that will be used in the following
sections. By way of introduction we describe a method that produces an almost-optimal tree
for a static set of elements with fixed weights.

We keep weights of elements as entries in an array B of size m = 2W ′ ≤ 2n so that there
are two entries for each unit of weight. The first 2w′1 entries of B are assigned to e1, the
following 2w′2 entries are assigned to e2, and so on. In general we assign entries B[li], . . .,
B[ri] to the element ei where li = (2

∑i−1
j=1 w

′
i) + 1 and ri = 2

∑i
j=1 w

′
i. Let T s denote a

conceptual perfectly balanced tree on B. The i-th leaf of T s corresponds to the entry B[i]
of B, every internal node has two children, and the height of T is logm = logn+ 16. The
leaves of T s will be called pseudo-leaves. Leaves corresponding to entries in B[li..ri] will be
called pseudo-leaves of the element ei (or pseudo-leaves associated to ei).

6 To avoid tedious details, we assume in this section that m and n are powers of 2.



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:7

I Fact 3. Consider a node u of height h ≥ blog rc for some r ≥ 1. Suppose that r leftmost
(rightmost) pseudo-leaves in the subtree of u are pseudo-leaves of ei. Then there is at least
one node v of height blog rc such that all pseudo-leaves in the subtree of v are pseudo-leaves
of ei.
Consequentially, if 2x entries are assigned to some element ei, then there is at least one node
v of height blog xc, such that all pseudo-leaves in the subtree of v are assigned to ei.

We define an almost-optimal tree T as a subtree of T s. Let εi denote an arbitrary node
of height blog(w′i)c such that all leaves in the subtree rooted at εi are i-nodes. Since we
assigned 2w′i pseudoleaves to ei, such a node εi always exists. All pseudoleaves below εi
correspond to some array entries in B[li..ri]. The tree T is a subtree of T s pruned at nodes
εi. That is, the nodes εi are the leaves of T and all proper ancestors of all εi are internal
nodes of T . We keep keys in the internal nodes of T that can be used for routing.

The depth of the leaf εi does not exceed log W ′

w′
i
by more than a constant: every leaf of

T s has depth at most logW ′ + 1. The depth of εi is then at most

log(W ′) + 1− (log(w′i) + 1) = log W
′

w′i
+ 2 ≤ log W

wi
+ 3.

Hence each εi has an almost-optimal depth in T . In addition T s is a perfectly balanced
tree with 2n nodes and the depth of any node in T s does not exceed logn+ 1. Summing up,
the depth of any leaf εi that holds the element ei does not exceed min(log(W/wi), logn) + 3.

An example tree T s and the corresponding almost-optimal tree T are shown on Fig. 1.
An interesting property of our method is that the tree T is not necessarily a full tree: it is
possible that some internal nodes have only one child. In the following sections we will show
how the tree T s can be dynamized.

5 Almost-Optimal Dynamic Trees

Our dynamic data structure maintains a balanced tree T s on a dynamic set B of pseudo-leaves.
This first version of the algorithm will work in phases. A phase will end when the total

weight W is increased by a factor of 2 or when the total number of elements is increased by
a factor of 2.

Unlike in the previous section, these pseudo leaves are not kept in an array. Instead, T s

is maintained as a k-neighbor tree data structure with k = logn [22] as described in Section
2. This method guarantees that all leaves of T s have the same depth and , since the total
number of pseudoleaves can at most double within a phase, the height of the tree is bounded
by log(4W ′) + 1 ≤ logn+ 4. An update of T s takes O(log2 n) time.

Each phase starts with a correct T s that had just been built from scratch using the
approach of Section 4. Set τ̄ = τ = W

n . This value stays constant within the phase.
During a phase, for every element ei we keep track of its weight wi and its approximate

weight w′i = dwi/τ̄e. Note that this implies that during a phase w′i can be increased
(incremented by 1 at a step) but not decreased.

When w′i is incremented by 1, the tree T s is updated: we identify the rightmost pseudo-
leaf `i associated to ei and insert two new pseudo-leaves, `n and `n+1, immediately after `i.
When a new element ef is inserted into a tree, we insert two new pseudo-leaves, `f and `f+1,
into T s. The leaf `f is inserted after the leaf `p, where ep is the largest element satisfying
ep < ef and `p is the rightmost leaf associated to ep. Every insertion of a pseudo-leaf results
in a modification of the tree T s.

ESA 2018



38:8 Dynamic Trees with Almost-Optimal Access Cost

. . .. . .

Macro Tree TM

TS
1 TS

2
TS
3 TS

4 TS
5

TS
6

Macro leaf
corresponding to
mini-tree TS

3

T S

Figure 2 The partition of T S into macro tree T M and mini-trees T s
j . The leaves of T m are the

roots of the T s
j . All the T s

j have between log2 n and 2 log2 n pseudoleaves. T M and all of the T s
j are

maintained as dynamic almost-optimal trees for their sets of leaves using the technique of Section 5.

We maintain the almost-optimal tree T as a subset of T s using the approach of Section 4.
An internal node εi is an internal node of T s of height blog(w′i)c such that all leaves in its
subtree are associated to an element ei. Using the same calculations as in Section 4 the depth
of εi is then at most log W

w′
i

+ 4 (and not 3 because the calculation is using τ̄ and not τ .)
After an update of T s, some nodes of T s (and, hence, some nodes of T ) can be moved. If

all leaves of a moved internal node u are associated to ej , we also update the internal node
εj , if necessary. Suppose that a node u was moved by one position to the left and the node
u′ to the right of u was also moved by one position to the left. If all leaf descendants of u
are associated with an element ei and all leaf descendants of u′ are associated with some
ej 6= ei, then we may have to update εi. If εi is an ancestor of u, we find the immediate left
neighbor ε′i of εi. Since there are 2w′i leaves associated to ei and the height of εi is log(w′i),
all leaf descendants of ε′i are associated to ei. Hence we can set εi := ε′i. We can find the εi
and ε′i for every moved node u in O(logn) time. At most O(logn) nodes of T s are moved
during every update [4]; hence, the total update cost is O(log2 n).

When the total weight W is increased by a factor 2 or when the total number of elements
is increased by a factor 2, we update the value of τ = W

n , compute the new values w′i and as
noted, re-build the tree from scratch. The amortized cost of rebuilding T s from scratch is
O(1) per step since the balanced tree can be built in linear time. When we re-build the tree
T s, we use the new value of k = logn.

I Lemma 4. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O(log2 n) amortized time. If an element ei was
accessed wi times over a sequence of W operations, then the depth of the leaf holding ei does
not exceed min(log(W/wi), logn) +O(1).

6 Faster Updates

We can reduce the update time by grouping pseudo-leaves in the tree T s. All pseudo-leaves
are divided into Θ(n/ log2 n) groups so that each group contains at least log2 n and at most
2 log2 n pseudo-leaves.

The tree T s is divided into two components: a macro-tree TMwith O(n/ log2 n) leaves
and O(n/ log2 n) mini-trees T s

j . See Fig. 2. Mini-trees correspond to groups of pseudo-leaves:



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:9

all pseudo-leaves in the group Gj are stored in a mini-tree T s
j . The j’th leaf of macro-tree

TM is the root of mini-tree T s
j . As before, the almost-optimal tree T is a subtree of T s. An

element ei is assigned to a node εi of T , such that the height of εi in T s is log(w′i) (up to
an additive constant error) and all leaves in the subtree of εi are associated to ei. T is the
subtree of T s induced by nodes εi and their ancestors. The division of a tree into macro-trees
and mini-trees is a standard data structuring technique; see e.g., [6].

We now find the node εi for any element ei either in a mini-tree or in the macro-tree.
Recall that there are 2w′i pseudo-leaves associated to ei. Let g = 2 log2 n.

First suppose that w′i ≤ g; then the pseudo-leaves of ei are distributed among O(1)
subtrees. If all pseudo-leaves are in one subtree T s

j , then T s
j has at least one node u of height

blog(w′i)c such that all leaves below u are associated to ei. If pseudo-leaves of ei are in two
subtrees, T s

j and T s
j+1, then either w′i rightmost pseudo-leaves in T s

j are associated to ei or
w′i leftmost leaves in T s

j+1 are associated to ei. Hence either T s
j or T s

j+1 contains a node that
can be chosen as εi. If pseudo-leaves of ei are distributed among more than two mini-trees,
then there is at least one mini-tree T s

j with all pseudo-leaves associated to ei. In the latter
case we can choose the root of T s

j as εi.
Now suppose that kg ≤ w′i < (k + 1)g for some k ≥ 1. Then there are at least 2k − 1

mini-trees with all pseudo-leaves associated to ei. The roots of these mini-trees are macro-
leaves `j , . . ., `j+2k. There is at least one node u of height blog kc in the macro-tree, such
that all macro-leaves below u are among `j , . . ., `j+2k.

Using Lemma 4, we maintain the mini-tree T s
j for every group Gj . Since each mini-tree

has O(log2 n) leaves, updates on a mini-tree take O((log logn)2) time. The macro-tree is
updated only when a new mini-tree is inserted or a mini-tree is deleted. Hence the cost
of updating the macro-tree can be distributed among O(log2 n) insertions of pseudo-leaves.
Suppose that a new pseudo-leaf corresponding to an element ei is inserted. As in Section 5
we find the rightmost pseudo-leaf `′i corresponding to an element ei. The new pseudo-leaf `i
is inserted into the same mini-tree as `′i immediately to the right of `′i. Since every mini-tree
has O(log2 n) pseudo-leaves, we can insert a new pseudo-leaf in O((log logn)2) time. If
the number of pseudo-leaves in T s

j is equal to 2 log2 n, we split the mini-tree T s
j into two

mini-trees of size log2 n; then we insert a new macro-leaf into Tm. The cost of an insertion
into Tm is O(log2 n). We can also split a mini-tree into two mini-trees in O(log2 n) time.
Hence the amortized cost of maintaining the macro-tree is O(1).

The total height of a tree does not exceed the height of the macro-tree plus the maximum
height of a mini-tree. Since the number of mini-trees is bounded by 2W ′

(log2 n)/2 , the height
of the macro-tree does not exceed log(W ′) − 2 log logn + 3. The height of a mini-tree is
bounded by 2 log logn+ 1 +O(1) because it contains at most 2 log2 n pseudo-leaves. Hence
the total height of our tree does not exceed log(W ′) + 4. We already showed that the
height of a sub-tree rooted at the node εi is blog(w′i)c; hence the depth of εi in T is at most
log(W ′/w′i) +O(1).

I Lemma 5. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O((log logn)2) amortized time. If an element ei
was accessed wi times over a sequence of W operations, then the depth of the leaf holding ei
does not exceed min(log(W/wi), logn) +O(1).

The result of Lemma 5 can be further improved by bootstrapping. For any integer f ≥ 1
the following statement can be proved.

I Lemma 6. Suppose there exists a binary search tree T f , such that (1) the depth of a leaf
holding an element ei in T f does not exceed min(log(W/wi), logn) + O(1) + O(f) (2) the
amortized cost of updating T f after an element access or an insertion is O((log(f) n)2).

ESA 2018



38:10 Dynamic Trees with Almost-Optimal Access Cost

Then there is a binary search tree T f+1, such that (1) the depth of a leaf holding an element
ei in T f+1 does not exceed min(log(W/wi), logn) +O(1) +O(f + 1) (2) the amortized cost
of updating T f+1 after an element access or an insertion is O((log(f+1) n)2).

Proof. We divide the tree T s into the macro-tree and mini-trees in the same way as in
the proof of Lemma 5. Every mini-tree is implemented using the tree T f . Hence each
mini-tree can be updated in O((log(f)(logn))2) = O((log(f+1) n)2) time. The amortized
cost of maintaining the macro-tree is O(1). Hence the total amortized cost of updates is
O((log(f+1) n)2).

Suppose that εi is stored in the macro-tree. The depth of a node εi in the macro-tree is
bounded by log(min(W ′/w′i, n)) + O(1). Now suppose that εi is stored in some mini-tree.
The depth of εi in the mini-tree is bounded by log(min(W ′g/w′i, ni)) +O(f) +O(1), where
W ′g is the total sum of all quantized weights in the mini-tree and ng is the total number
of elements in the subtree. By the same argument as in Lemma 5, the depth of εi in T is
bounded by log(min(W ′/w′i, n)) +O(f + 1) +O(1). J

Our main result is obtained when we apply Lemma 6 f + 1 times for a parameter f ≥ 0.

I Theorem 7. For any f ≥ 1 there exists a binary search tree T f , such that the depth of
a leaf holding an element ei in T f does not exceed min(log(W/wi), logn) + O(f) and the
amortized cost of updating T f after an element access or an insertion is O(log(f) n+ f).

We remark that when we insert a new element ei, we need to update the search path for one
leaf. This may incur an additional cost of logn+O(1) operations.

Our data structure can also support two symmetric operations. We can decrement the
weight of an element and delete an element of weight 1. These operations can be implemented
in the same way as incrementing the weight of an element and an insertion of a new element.

7 Worst-Case Updates

Our construction can be modified to support updates with worst-case time guarantees. We
start by showing how the data structure from Section 5 can be changed. We run several
processes in the background; these processes adapt the tree structure to the changing value of
the parameter τ and maintain the correct number of pseudo-leaves for each element ei. The
value of τ is changed every time the total weight W for the number of elements is changed
by a constant factor (described below). Two background processes guarantee that the value
of τ used in T s is within a constant factor of its current value. Moreover pseudo-leaves are
stored in a k-neighbor tree data structure, but the parameter k = Θ(logn) must be changed
when the number of elements is increased or decreased by too much. We run another process
that modifies the tree when the parameter k needs to be changed.

Let W0 and n0 denote the total weight and the number of elements at some time t0.
Let τ0 = W0/n0 and let the delayed weight of an element ei be defined as wi = dwi/τ0e.
We maintain the invariant that w′i differs from wi by at most a constant factor. In the
worst-case construction delayed weights wi are used instead of w′i, i.e., an element ei is
assigned wi pseudo-leaves. Our re-building processes guarantee that W0 ≤ W ≤ (4/3)W0
and n0 ≤ n ≤ (4/3)n0. Therefore τ = (W/n) ≤ (4/3)τ0 and τ ≥ (3/4)τ0. For any element
ei, wi = wi

τ0
≤ (4/3)w′i and wi ≥ (3/4)w′i. Thus we have W

wi
≤ (16/9)W

′

w′
i
where W =

∑
i wi

and log(W/wi) < log(W ′/w′i) + 1 ≤ log(W/wi) + 2.
We move among three re-building processes. Each process is executed in the background

during at most n/18 insertions or accesses. The first process updates the value of W0. If



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:11

v

u u1 u2 u3 u′

v

⇒
u1 u2 u3 u′

Figure 3 Example of procedure Consolidate(u, u′). Left: nodes u and u′ have one child. Right:
node u and its ancestors, up to a node v that has two children, are removed. Children of u1, u2, u3

are shifted one position to the right. Only relevant nodes and their children are shown.

W ≥ (7/6)W0, we set W1 = W , n1 = n, and compute τ1 = W1/n1. For every ei, we compute
the new value of wi = wi/τ1 and update the tree T s by removing some pseudo-leaves if
necessary. When the number of pseudo-leaves for all elements is adjusted in this way, we set
W0 = W1 and n0 = n1. The second process updates the value of n0. If n ≥ (7/6)n0, we also
compute the new τ1 = W1/n1 for W1 = W and n1 = n. Then for every element ei we set
wi = wi/τ1 and update the tree T s. The tree always contains O(n) leaves. Every time when
we access an element or insert a new element, our background process inserts or removes
O(1) pseudo-leaves. We can choose the constant in such a way that adjusting the value
of τ0 is distributed among n/18 update or access operations. Suppose that W ≥ (7/6)W0
or n ≥ (7/6)n0; the value of τ0 will be adjusted after at most n/6 operations. Hence
W ≤ (4/3)W0 and n ≤ (4/3)n0 at any time.

The third background process updates the parameter k in the k-neighbor tree. We set
k0 = 2(log(W0) + 1) and maintain a k0-neighbor tree on pseudo-leaves. When the number
of leaves in T s is increased by factor 2, we start the process of adjusting k. Internal nodes
on every level of the tree are divided into pieces, so that every piece consists of k0 + 2
consecutive nodes. We process pieces on the same level in the left-to-right order. Since T s

is already a k0-neighbor tree, the distance between any two 1-nodes (a 1-node is a node
with one child) is at least k0 + 1. Hence each piece contains at most two 1-nodes. If there
are two 1-nodes in the same piece P , then they are the leftmost and the rightmost nodes
in P . In this case, we execute the procedure Consolidate(u, u′), where u and u′ are
the 1-nodes in P . This procedure, that will be described below, removes the node u and
adds one additional child to u′. If P contains one 1-node, then we examine the preceding
piece P ′. If P ′ also contains a 1-node and the distance between the 1-nodes in P and P ′
is equal to k0 + 2, we start the procedure Consolidate(u′, u), where u is the 1-node in
P and u′ is the 1-node in the slide that precedes P . After all pieces on a tree level are
processed, every piece contains at most one 1-node and the distance between 1-nodes is at
least k + 2. We will show below that Consolidate requires O(k logn) move operations and
can be executed in O(k log2 n) = O(log3 n) time. Hence the third background process needs
O((n/k) log3 n) = O(n log2 n) time. Since an update takes O(log2 n) time, we can distribute
the third process among n/18 tree updates or accesses.

It remains to describe the procedure Consolidate(u, u′). Consolidate(u, u′) considers
the children of nodes u, u′, and the children of all nodes between u and u′. Every such node
is moved by one position to the left. As a result, the node has no children and all other
considered nodes have two children. Next, let v be the lowest ancestor of u that has two
children. The node u and all its ancestors that are below v have no leaf descendants now.
We remove the node u and all nodes between v and u. Now the node v is a 1-node. If v is
the root node, then we remove v. Otherwise, we check whether v has a neighbor v′, such

ESA 2018



38:12 Dynamic Trees with Almost-Optimal Access Cost

that the distance between v and v′ does not exceed k0 + 1 and v′ is a 1-node. If v′ exists,
we recursively call the procedure Consolidate(v, v′) (respectively (Consolidate(v′, v)).
There is at most one recursive call of our procedure per tree level. Our procedure shifts
O(k0) nodes by one position to the right and recursively calls itself on some higher tree level;
every time when some node in T s is shifted, we may have to move some leaf εi of T . Hence
the total time of Consolidate(u, u′) is O(k0 log2 n) = O(log3 n).

I Lemma 8. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O(log2 n) time. If an element ei was accessed wi
times over a sequence of W operations, then the depth of the leaf holding ei does not exceed
min(log(W/wi), logn) +O(1).

7.1 Fast Updates
Now we show how the data structure from Section 6 can be changed to support updates in
worst-case time. As in Section 6 the tree T s is divided into the macro-tree and mini-trees.
Each mini-tree contains O(log3 n) pseudo-leaves.

A new pseudo-leaf is inserted into a mini-tree; the cost of an insertion is O((log logn)2)
time by Lemma 8. We run an additional background process that maintains the sizes of
mini-trees. During each iteration we identify the largest mini-tree Tl among all subtrees
of size at least (7/4) log3 n. We split Tl into two mini-trees of almost-equal size. We also
identify the smallest mini-tree Tk of size at most (3/4) log3 n; we merge Tk with one of its
direct neighbors (i.e., with the mini-tree immediately to the left or immediately to the right
of Tk). If the resulting mini-tree is larger than , then we split it into two almost-equal parts.
We show in the full version [15] how a mini-tree can be split into two almost-equal parts
or merged with another mini-tree in less than O(log2 n) time. When we split or merge two
mini-trees, we also have to perform O(1) updates on the macro-tree. The cost of updates is
O(log2 n), hence each iteration takes O(log2 n(log logn)2) time. By Theorem 5 from [10], we
can organize our background process so that each mini-tree has no more than 2 log3 n and
no less than log3 n/2 pseudo-leaves.

I Lemma 9. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O((log logn)2) amortized time. If an element ei
was accessed wi times over a sequence of W operations, then the depth of the leaf holding ei
does not exceed min(log(W/wi), logn) +O(1).

We can recursively apply Lemma 9 in the same way as described in Section 6. To obtain the
main result of this paper with worst-case guarantees, we apply Lemma 9 k + 1 times for a
parameter k > 1.

I Theorem 10. For any k ≥ 1 there exists a binary search tree T k, such that the depth of a
leaf holding an element ei in T k does not exceed min(log(W/wi), logn) +O(k) and the cost
of updating T k after an element access or an insertion is O(log(k) n+ k).

References
1 Georgy Adelson-Velsky and Evgenii Landis. An algorithm for the organization of informa-

tion. Soviet Mathematics – Doklady, 3:1259–1262, 1962.
2 Rudolf Ahlswede and Ingo Wegner. Search Problems. John Wiley and Sons, Chichester,

1987.
3 Brian Allen. On the costs of optimal and near-optimal binary search trees. Acta Informatica,

18:255–263, 1982.



M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:13

4 Arne Andersson. Optimal bounds on the dictionary problem. In Proc. International Sym-
posium on Optimal Algorithms, pages 106–114, 1989.

5 Arne Andersson, Rolf Fagerberg, and Kim S. Larsen. Balanced binary search trees. In
Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications.
Chapman and Hall/CRC, 2004.

6 Arne Andersson and Tony W. Lai. Comparison-efficient and write-optimal searching and
sorting. In (Proc. 2nd International Symposium on Algorithms (ISA ’91), pages 273–282,
1991.

7 Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
Informatica, 1(4):290–306, Dec 1972.

8 Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito.
Two simplified algorithms for maintaining order in a list. In Proc. 10th Annual European
Symposium on Algorithms (ESA 2002), pages 152–164, 2002.

9 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and Pablo Montes.
File maintenance: When in doubt, change the layout! In Proc. 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 1503–1522, 2017.

10 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 365–372.
ACM, 1987.

11 Rolf Fagerberg. Binary search trees: How low can you go? In Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT ’96), pages 428–439, 1996.

12 Travis Gagie. Dynamic shannon coding. In Proc. 12th Annual European Symposium on
Algorithms (ESA 2004), pages 359–370, 2004.

13 Adriano M. Garsia and Michelle L. Wachs. A New Algorithm for Minimum Cost Binary
Trees. SIAM Journal on Computing, 6(4):622–642, 1977.

14 E.N. Gilbert and E.F. Moore. Variable-length binary encodings. Bell System Technical
Journal, 38(4):933–967, 1959.

15 Mordecai Golin, John Iacono, Stefan Langerman, J. Ian Munro, and Yakov Nekrich. Dy-
namic trees with almost-optimal access cost. arXiv:1806.10498.

16 Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
19th Annual Symposium on Foundations of Computer Science (FOCS 1978), pages 8–21,
1978.

17 T. C. Hu, Lawrence L Larmore, and J David Morgenthaler. Optimal Integer Alphabetic
Trees in Linear Time. In 13th Annual European Symposium on Algorithms (ESA’05),
volume 3669, pages 226–237, 2005.

18 T. C. Hu and A. C. Tucker. Optimal Computer Search Trees and Variable-Length Alpha-
betical Codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

19 Maria Klawe and Brendan Mumey. Upper and Lower Bounds on Constructing Alphabetic
Binary Trees. SIAM Journal on Discrete Mathematics, 8(4):638–651, 1995.

20 D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.
21 Donald E. Knuth. Optimum binary search trees. Acta informatica, 1(1):14–25, 1971.
22 Hermann A. Maurer, Thomas Ottmann, and Hans-Werner Six. Implementing dictionaries

using binary trees of very small height. Information Processing Letters, 5(1):11–14, 1976.
23 Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees.

SIAM Journal on Computing, 6(2):235–239, 1977.
24 Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica, 16(4):464–

497, 1996.
25 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Jour-

nal of the ACM (JACM), 32(3):652–686, 1985.

ESA 2018

http://arxiv.org/abs/1806.10498


38:14 Dynamic Trees with Almost-Optimal Access Cost

26 J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,
1987(4):825–845, 1987.

27 Dan E. Willard. A density control algorithm for doing insertions and deletions in a sequen-
tially ordered file in good worst-case time. Inf. Comput., 97(2):150–204, 1992.

28 R.W. Yeung. Alphabetic codes revisited. IEEE Transactions on Information Theory,
37(3):564–572, may 1991.


	Introduction
	Preliminaries
	Approximate Weights
	Warm-Up: Almost-Optimal Static Trees
	Almost-Optimal Dynamic Trees
	Faster Updates
	Worst-Case Updates
	Fast Updates


