
Algorithmic Building Blocks for Asymmetric
Memories
Yan Gu
Carnegie Mellon University, Pittsburgh, PA, USA
yan.gu@cs.cmu.edu

Yihan Sun
Carnegie Mellon University, Pittsburgh, PA, USA
yihans@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University, Pittsburgh, PA, USA
guyb@cs.cmu.edu

Abstract
The future of main memory appears to lie in the direction of new non-volatile memory technolo-
gies that provide strong capacity-to-performance ratios, but have write operations that are much
more expensive than reads in terms of energy, bandwidth, and latency. This asymmetry can
have a significant effect on algorithm design, and in many cases it is possible to reduce writes
at the cost of more reads. This paper studies which algorithmic techniques are useful in design-
ing practical write-efficient algorithms. We focus on several fundamental algorithmic building
blocks including unordered set/map implemented using hash tables, comparison sort, and graph
traversal algorithms including breadth-first search and Dijkstra’s algorithm. We introduce new
algorithms and implementations that can reduce writes, and analyze the performance experi-
mentally using a software simulator. Finally, we summarize interesting lessons and directions in
designing write-efficient algorithms that can be valuable to share.

2012 ACM Subject Classification Theory of computation→ Models of computation, Theory of
computation → Design and analysis of algorithms

Keywords and phrases Asymmetric Memory, I/O Cost, Write-Efficient Algorithms, Hash Tables,
Graph-Traversal Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.44

Related Version The full version is available at [20], https://arxiv.org/abs/1806.10370.

Acknowledgements This work was supported by NSF grants CCF-1408940, CCF-1533858, CCF-
1629444 and CCF-1745331.

1 Introduction

The future of main memory appears to lie in the non-volatile memory technologies that
promise persistence, significantly lower energy costs, and higher density than the DRAM
technology used in today’s main memories [21, 24, 33, 43]. However, despite the advantages,
a key property of such memory technologies is their asymmetric read-write costs: compared
to reads, writes can be much more expensive in terms of latency, bandwidth, and energy.
Because bits are stored in these technologies as at rest “states” of the given material that can
be quickly read but require physical change to update, this asymmetry appears fundamental.

© Yan Gu, Yihan Sun, and Guy E. Blelloch;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yan.gu@cs.cmu.edu
mailto:yihans@cs.cmu.edu
mailto:guyb@cs.cmu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.44
https://arxiv.org/abs/1806.10370
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Algorithmic Building Blocks for Asymmetric Memories

This motivates the need for write-efficient algorithms that largely reduce the number of
writes compared to existing algorithms.

In the related work section, we review the literature on studying this read-write asymmetry
on NAND Flash chips [4, 17, 18, 35] and algorithms targeting database operators [12, 39, 40].
These works provide novel aspects on rethinking algorithm design. However, most of the
papers either treat NVMs as external memories, or are based on hardware simulators for
existing architecture, which may have many concerns that we will further discuss in the
related work section.

Blelloch et al. [5, 7, 8] formally defined and analyzed several sequential and parallel
computation models with good caching and scheduling guarantees. The models abstract
such asymmetry between reads and writes, and can be used to analyze algorithms on future
memory. The basic model, which is the Asymmetric RAM (ARAM), extends the well-known
external-memory model [1] and parameterizes the asymmetry using ω, which corresponds
to the cost of a write relative to a read to the non-volatile main memory. The cost of an
algorithm on the ARAM, the asymmetric I/O cost, is the number of write transfers to
the main memory multiplied by ω, plus the number of read transfers. This model captures
different system consideration (latency, bandwidth, or energy) by simply plugging in different
values of ω, and also allows algorithms to be analyzed theoretically. Based on this idea,
many interesting algorithms (and lower bounds) are designed and analyzed by various recent
papers [5, 6, 7, 8, 10, 25].

Unfortunately, all of the analyses of such write-efficient algorithms are asymptotic,
showing the upper and lower bounds on the complexity of these problems. Also, to prove
the bounds, the theoretical models simplify the real architecture (e.g., without considering
blocking of cache-lines or cache policies). It still remains unknown what the performance of
these algorithms are in practice. In this paper, our goal is to show such performance on a
number of fundamental algorithmic building blocks. We believe the lessons in designing and
implementing them are useful for our community to use new memory in the future.

Contribution of this paper

In this work, our goal is to bridge the gap between theory and practice. We try to study
and understand which algorithmic techniques are useful in designing practical write-efficient
algorithms. As the first paper of this kind, we focus on several of the most commonly-seen
algorithmic building blocks in modern programming. Due to the page limit, in this paper
we briefly discuss unordered set/map implemented using hash tables, and graph traversal
algorithms: breadth-first search for unweighted graphs and Dijkstra’s algorithm for
weighted graphs. In the full version of this work, we discuss more details of these algorithms,
as well as ordered set/map implemented using binary search trees and comparison sort.

Unfortunately, no non-volatile main memory is currently available, making it impossible to
get real timings. Furthermore, details about latency and other parameters of the memory and
how they will be incorporated into the architecture are also not available. This makes detailed
cycle-level simulation (e.g., PTLsim [36], MARSSx86 [34] or ZSim [38]) of questionable utility.
However, it is quite feasible to count the number of reads and write to main memory while
simulating a variety of cache configurations. For I/O-bounded algorithms, these numbers
can be used as reasonable proxies for both running time (especially when implemented in
parallel) and energy consumption.1 Moreover, conclusions drawn from these numbers can
likely give insights into tradeoffs between reads and writes among different algorithms.

1 The energy consumption of main memory is a key concern since it costs 25-50% energy on data
centers and servers [28, 32, 30].

Y. Gu, Y. Sun, and G. E. Blelloch 44:3

For these reasons, we propose a framework based on a software simulator that can
efficiently and precisely measure the number of read and write transfers of an algorithm
using different caching policies. We also consider variants in caching policies that might lead
to improvements when read and write are not the same.

We also note that designing write-efficient algorithms falls in a high dimensional parameter
space since the asymmetries on latency, bandwidth, and energy consumption between reads
and writes are different. Here we abstract this as a single value ω. This value together with
the cache size M and cache-line size B (set to be 64 bytes in this paper) form the parameter
space of an algorithm.

Our framework provides a simple, clean and hardware-independent method to analyze
and experiment the performance on the asymmetric memory. We investigate the algorithmic
techniques and learn lessons from the experiments that generally apply for a reasonably large
parameter space of ω, M and B. This framework also allows monitoring, reasoning and
debugging the code easily, so it can remain useful even after the new hardware is available.

With the framework, we design, implement and discuss many algorithms and data
structures and their write-efficient implementations. Although some of the implementations
are standard, like quicksort and hash tables, many others, including k-level hash tables,
sample sort and phased Dijkstra, require careful algorithmic design, analysis, and coding.
Under our measurement which is the asymmetric I/O cost and compared to the most
commonly-used ones on symmetric memories, we provide better alternatives to all problems
we studied in this paper.

With the algorithms and their experimental results, we draw many interesting algorithmic
strategies and guidance in designing write-efficient algorithms. A common theme is to trade
(more) reads for (fewer) writes (apparently it is hard to directly decrease the writes since this
can improve the performance on symmetric memory as well and should have been investigated
already). Some interesting lessons we learned and can be valuable to share are listed as
follows, which can suggest some potential directions to design and engineer write-efficient
algorithms in the future.
1. Indirect addressing is less problematic. In the classic setting, indirect addressing should

be avoided if possible, since each addressing can be a random access to the memory.
However, when writes are expensive, moving the entire data is costly, while indirect
addressing only modifies the pointers (at the cost of a possible random access per lookup).

2. Multiple candidate positions for a single entry in a data structure can help. It can be a
good option to use more reads per lookup but apply less frequent data movements, when
the size of a data structure changes significantly. This is a common strategy we have
applied in this paper to provide an algorithmic tradeoff between reads and writes.

3. It is usually worth to investigate existing algorithms that move or modify the data less.
These algorithms can be less efficient in the symmetric setting due to various reasons
(e.g., more random accesses, less balanced), but the property that they use fewer writes
can be useful in the asymmetric setting (like samplesort vs. quicksort, treap vs. AVL or
red-black tree).

4. In-cache data structures should draw more attention. Since the data structures are
kept in the cache (or small symmetric memory), the algorithm requires significantly less
writes to the large asymmetric memory, although may require extra reads to compensate
for less information we can keep within the data structure. In this paper, we discuss
Dijkstra’s algorithm on shortest-paths as an example, and such idea can also be applied
to computing minimum spanning tree, sorting, and many other problems.

ESA 2018

44:4 Algorithmic Building Blocks for Asymmetric Memories

2 Related Work

There exist a rich literature to show the read-write asymmetry on the new memories [2, 3,
7, 8, 11, 13, 15, 16, 22, 23, 26, 27, 31, 37, 41, 42, 44, 45]. Regarding adapting softwares for
such read-write asymmetry, some work has studied the system aspect. For example, there
exist many papers on how to balance the writes across the chip to avoid uneven wear-out of
locations in the context of NAND Flash chips [4, 17, 18, 35].

The early and inspirational attempts to design algorithms with fewer writes targeting
database operators: Chen et al. [12] and Viglas [39, 40] presented several write-efficient
sequential algorithms for searching, hash joins and sorting. However, their results are mainly
shown by assuming external memories rather than main memories, or on the cycle-based
simulators for existing architecture. For the latter case however, the prototypes of the new
memories are still under development, and yet nobody actually knows the exact parameters
of the new memories, or how they are incorporated into the actual architecture. As a result,
we believe that the results based on cycle-based simulator might not be very accurate. In the
meantime, the asymmetries on latency, bandwidth, and energy consumption between reads
and writes are different, and any of these constraints can be the bottleneck of an algorithm.
Hence, designing algorithms on asymmetric memory are in a multiple-dimension parameter
space, rather than just recording the running time from a simulator. Therefore, it is essential
to develop theoretical models and tools that account for, and abstract this asymmetry and
use them to analyze algorithms on future memory.

Blelloch et al. [5, 7, 8] formally defined several sequential and parallel computation models
that take asymmetric read-write costs into account. Based on the computational models,
many interesting algorithms (and lower bounds) are designed and analyzed in both sequential
and parallel settings, which includes sorting, permuting, matrix multiplication, FFT, list/tree
contraction, BFS/DFS and other graph algorithms, and many computational geometric and
dynamic programming problems [5, 6, 7, 8, 10, 25, 9, 19]. Carson et al. [11] also presented
write-efficient sequential algorithms for a similar model, as well as write-efficient parallel
algorithms (and lower bounds) on a distributed memory model with asymmetric read-write
costs, focusing on linear algebra problems and direct N-body methods. Although many
problems under the asymmetric setting have been studied, all the analyses are asymptotic
and only show the upper and lower bounds on the complexity of these problems.

3 Our Model and Simulator

To start with, we discuss how to measure the performance of algorithms on asymmetric
memories. We begin with the computational model that estimates the cost of an algorithm.
This model requires the numbers of read and write transfers between the non-volatile memory
and the cache, so later we introduce how the numbers of an algorithm can be simulated.

The Cost Model for Asymmetric Memory. The most commonly-used cost measure of an
algorithm is the time complexity based on the RAM model, which is the overall number of
instructions and memory accesses executed in this algorithm. Nowadays, since the latency of
an memory access is at least two orders of magnitudes more expensive than a CPU instruction,
the I/O cost based on the external-memory model [1] is widely used to analyze the cost of
an I/O-bounded algorithm. This model assumes a small-memory (cache) of size M ≥ 1,
and a unbounded-size large-memory. Both memories are organized in blocks (cache-lines)
of B words. The CPU can only access the small-memory (with no cost), and it takes unit

Y. Gu, Y. Sun, and G. E. Blelloch 44:5

cost to transfer one block between the small-memory and the large-memory. This cost
measure estimates the running time reasonably well for I/O-bounded algorithms, especially
in multi-core parallelism. An efficient algorithm in practice should achieve optimality in both
time complexity and I/O cost.

To account for more expensive writes on future memories, here we adopt the idea of an
(M,ω)-Asymmetric RAM (ARAM) [8]: similar to the external-memory model, transferring a
block from large-memory to small-memory takes unit cost; on the other direction, the cost is
either 0 if this block is clean and never modified, or ω � 1 otherwise. The asymmetric I/O
cost Q of an algorithm is the overall costs for all memory transfers. We abbreviate such
cost Q as the I/O cost throughout the paper, unless stated otherwise explicitly. Theoretical
results on this new model have been studied in [5, 6, 7, 8, 10, 25, 9, 19].

Cache Policies. Either the classic external-memory model or the new ARAM assumes
that we can explicitly manipulate the cache in the algorithm. This largely simplifies the
analysis, and in many cases is provably within a constant factor of a more realistic cache’s
performance. For example, the standard least-recent used (LRU) policy is 2-competitive
against the optimal offline cache-replacement sequence. However, the competitive ratio does
not hold in the asymmetric setting in the worst case. The overhead is proportional to ω,
which can be significant and problematic. In the full version of this paper [20], we discuss
several alternative solutions with worst-case performance guarantees. In this conference
version we show our experiment results based on the LRU policy, and the comparison to
other policies are covered in the full version of this paper.

The Cache Simulator. To capture the number of reads and writes to the main memory,
we developed a software simulator that can adapt to different cache policies. The cache
simulator is composed of an ordered map that keeps tracks of the time stamp of the last
visit to each cache-line in the current cache, and an unordered map that stores the mapping
from each cache-line to the corresponding location in the ordered map if this cache-line is
currently in the cache. Interestingly, the implementation of this cache simulator is a natural
application of the techniques discussed in this paper.

The cache simulator encapsulates a new structure Array that is used in coding algorithms
in this paper. It is like a regular array that can be dynamically allocated and freed, and
supports two functions: Read and Write to a specific location in this array. The Arrays
are responsible for reporting the memory accesses of the algorithm to the cache simulator,
and the cache simulator will update the state of the cache accordingly. Therefore, coding
using the Arrays is not different from regular programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as
the call stack. This is because the number of such variables is small in all of the algorithms
in this paper (usually no more than 10). Meanwhile, the call stack of all algorithms in this
paper has size O(logn). The overall amount of uncaptured space is orders of magnitudes
smaller than the amount of fast memory in our experiments.

The cache simulator maintains two counters: the number of read transfers, and the
number of write transfers. When testing each algorithm on a specific input instance, the
cache is emptied at the beginning and flushed at the end. A read or write is free if the
location is already in the cache; otherwise, the corresponding cache-line is loaded, the counter
of read transfer increments by 1, and the least-recently-used cache-line in this pool is evicted.
Also, a write will mark the dirty-bit of the cache-line to be true. When evicting a dirty
cache-line, the counter of write transfer increments by 1. Notice that memory reads can
cause write transfers, and memory writes can lead to read transfers.

ESA 2018

44:6 Algorithmic Building Blocks for Asymmetric Memories

When simulating the Classic policy (i.e., the standard one), we also verified our simulated
results to ZSim (cycle-level simulator for current architecture), and the numbers always differ
by no more than 10% when the parameters are set correctly.

4 Unordered Sets and Maps

Sets and maps are two of the most commonly-used data types in modern programming. Most
programming languages either have them built in as basic types (e.g., python) or supply
them as standard libraries (C++, C#, Java, Scala, Haskell, ML). In this section, we discuss
efficient implementations of unordered sets and maps implemented using hash tables.

Our implementation of unordered sets and maps is based on hash tables that support
lookup, insertion, and deletion. The hash tables discussed in this section use open
addressing and linear probing, since the goal of the data structure is to try to minimize the
I/O cost focusing on smaller entries (accessing and reading larger entries are costly anyway so
different hash-table implementations make minor differences). For simplicity, we assume no
duplicate keys, and it is straightforward to handle the duplicates with minor modifications.
In this setting, each operation of the hash table reads a small number of cache-lines, and an
insertion or deletion will modify exactly one cache-line that contains the location of the key
and will be eventually written back to the large-memory.

The challenge emerges when the set size changes dynamically. For an efficient implement-
ation, we hope the overall size of the hash table to be neither too large nor too small. If the
load factor passes 80%, linear probing’s performance drastically degrades. On the other hand,
we want the hash table size to be reasonably small to better utilize the small-memory (cache),
since each cache-line holds more entries in this case. In practice, some implementations
keep the load factor up- and lower-bounded by some constant. For example, a typical
implementation keeps the occupancy of the hash table between 1/8 and 1/2, and the size
doubles or shrinks by half if the number of entries exceeds this range. Such resizing reinserts
p entries after at least p/2 insertions and deletions (where p is the set/map size). When
reads and writes have approximately the same cost, the extra cost for such resizing is small
compared to the query and update costs (e.g., the queries read from lots of memory locations).
In the asymmetric setting however, the reads cost much less, but the extra writes in resizing
can be significant: the resizing can incur at most twice (p/(p/2) = 2) the writes compared
to the initial insertions (3× writes in total). Hence, our goal is to discuss an alternative
approach that optimizes such extra writes.

4.1 The k-level Hash Table
Instead of keeping one hash table, our main idea is to maintain a small number k of hash
tables simultaneously, where k is a pre-determined parameter. In particular, the k-level hash
table HashTable is initialized with k arrays HashTable1,··· ,k with size 2c′+i for 1 ≤ i ≤ k (or
smaller in specific applications) and a constant c′. In practice we set c′ to be 5.

For insertions, when the overall load factor exceeds some threshold r, we allocate a new
chunk of memory with the double size of the largest current array, and the smallest hash
table is discarded after all elements in it have been reinserted back. Similarly for deletions, if
the occupancy of the hash tables drops below a threshold l, a small array with half size of
the current smallest hash table is allocated, and the largest table is freed after the entries in
it being reinserted. For instance, a valid k-level hash table may contain two arrays of size
215 = 32768 and 216 = 65536, when k = 2 and 30000 entries in the current configuration.
We show the pseudocode of the k-level hash table in Algorithm 1. The occupancy range

Y. Gu, Y. Sun, and G. E. Blelloch 44:7

Algorithm 1: The k-level hash table.
Input: Parameter k, occupancy range l and r

1 function Lookup(x)
2 for i← 1 to k do
3 p← HashTablei.Lookup(x)
4 if p 6= null then return (i, p)
5 return null

6 function Insert(x) // x is not in HashTable
7 for i← 1 to k do
8 if HashTablei.occupancy < r then
9 HashTablei.Insert(x)

10 return
11 Allocate HashTablek+1 of size 2 ·HashTablek.size
12 Relabel the hash tables with indices from 0 to k
13 foreach y ∈ HashTable0 do
14 Insert(y)
15 Free HashTable0

16 function Delete(x; i, p) // x is located p-th in HashTablei

17 HashTablei.Delete(x, p)
18 if Overall occupancy is less than l (and HashTable1.size > 1) then
19 Allocate HashTable0 of size HashTable1.size/2
20 Relabel the hash tables with indices between 1 to k + 1
21 foreach y ∈ HashTablek+1 do
22 Insert(y)
23 Free HashTablek+1

0 < l < r < 1 indicates when the resizing happens (an example of l and r can be 1/8 and
1/2). A classic implementation can be viewed as the special case of the k-level hash table
when k = 1.

We now analyze the I/O cost Q of the k-level hash table. Here we assume that the size
of the k-level hash table is larger than the small-memory and 1− r < 1/B, so on average,
one lookup, insertion or deletion in a single level in the hash table requires no more than
c < 2 cache-line loads to locate the position.

Lookup. In a k-level hash table, a lookup requires ck instead of c read transfers (c is the
constant just defined) in the worst case (can quit earlier once the entry is found). The cost
increases by a factor of k at most.

Insert. There are two definitions of insertions: an insertion that the key is known to be not
in the set/map, or an insertion that it is unknown whether the key is in this set/map. Both
cases are commonly-used. In this paper, we take the first definition and analyze the cost of
this type of insertions. The second type of insertion can be viewed as a lookup first, then an
insert if the lookup fails.

When inserting an element in a k-level hash table, we always try the smaller tables first.
Once all tables are full, we resize it. More details can be found in Algorithm 1.

The I/O cost Q of an insertion comes in two parts: the cost of the initial insertion to the
hash table, and the cost of this entry in future hash-table resizings. The cost of the initial
insertion is no more than c+ω, where c is the number of cache-line reads to find the position
to insert, plus ω, one cache-line write for the actual insertion. The cost of resizing is more
complicated to analyze.

ESA 2018

44:8 Algorithmic Building Blocks for Asymmetric Memories

We note that although a specific entry can be reinserted multiple times during different
resizing processes, the overall number of element reinsertion is bounded, and thus we can
a amortize the work. A resizing occurs when an insertion comes in and the hash table
contains exactly r · 2p(2k − 1) elements for some positive integer p. In this case, at most
r · 2p entries (the size of the smallest hash table), are reinserted during the resizing. The
total number of insertions from the last resizing is at least r · 2p−1(2k − 1) (assuming
4l ≤ r), so the amortized I/O cost Q of reinsertion for each insertion is upper bounded by

(c+ ω)r · 2p

r · 2p−1(2k − 1) = (c+ ω) · 2/(2k − 1).

In the asymmetric setting when ω � 1, the I/O cost of each insertion is approximately
ω · (1 + 2/(2k − 1)), indicating that compared to the classic implementation where k = 1, in
the worst-case the improvement when k = 2, 3, 4 is about 44%, 57% and 62% respectively.
The asymptotic improvement when k → +∞ is 67% (2

3).

Delete. A deletion in the k-level hash table is similar to an insertion except that a lookup
for the location is required (details in Algorithm 1). The cost of the initial deletion is ck + ω.
A resizing of the hash table can occur after at least l · 2p(2k − 1) deletions for some positive
integer p, and the current hash table keeps l · 2p(2k − 1) entries. However, it is possible that
all of these entries are in the last hash table so they are all reinserted. We note that when
reinserting the elements from the discarded array, we always try smaller arrays first. This
means that a reinserted entry, if not being deleted in the future, will not be reinserted again
in the next min(k − 1, log2 r/2l) shrinking resizings. Namely, the amortized extra cost of a
deletion in future resizings is about ω/k if l is set to be about 2−kr. The overall I/O cost for
a deletion is Q = ck + ω(1 + 1/k).

We have bounded of the I/O cost of each lookup, insertion or deletion, and the overall
cost Q can be estimated by summing the amount of each operation multiplied by the cost
of this operation. In practice, insertions and deletions can interleave. For example, when a
deletion comes after an insertion, the number of entries remains the same, which leads to no
further cost for these two updates afterward. The exact cost is also affected by the pattern
of the sequence of the operations, and we will show by experiments.

4.2 Experiments
We provide the full experiment of our k-level hash table in the full version of this paper [20].
We test the performance on various update/query patterns, and report the numbers of read
transfers and write transfers, as well as I/O costs. We also justify our result by comparing to
the wall-clock running time (in the full paper [20]). Due to the space limit, in this conference
version we only show one of the experiments here that contains insertions and queries.

In all experiments, we insert 1 million elements to an empty hash table. Each of the
element is a 4-byte integer, and we vary the number of queries. The simulated cache contains
10,000 cache-lines. The occupancy rate is set to be l = 0.2 and r = 0.8. We have tried other
parameters (r between 0.6 and 0.8 and l = r/4). The results slightly vary, but all general
conclusions in this section still hold.

Many applications, like webpage caching or the breadth-first searches, only insert but
never delete elements in a hash table. Our experiment starts with this simpler case. We
first show the relationship between k (the number of hash tables) and the numbers of read
transfers and write transfers for a variety of insertion/query ratios, and the results are shown
in Table 1. We fix the number of insertions to be one million, and query α times after each
insertion. We vary α from 0, 1/8, to 8 (α < 1 indicates one query per 1/α insertions). About

Y. Gu, Y. Sun, and G. E. Blelloch 44:9

Table 1 Numbers of read and write transfers of the k-level hash tables with different query/insert
ratios. Numbers of read and write transfers are divided by 106 (i.e., per insertion).

106 insertions, α× 106 queries where α is from 0 to 8, the cache contains 10,000 cache-lines.

α 0 1/8 1/4 1/2 1 2 4 8
RT WT RT WT RT WT RT WT RT WT RT WT RT WT RT WT

k=1 1.35 1.17 1.44 1.18 1.52 1.19 1.69 1.21 2.02 1.24 2.68 1.27 4.00 1.31 6.64 1.34
k=2 0.85 0.79 1.06 0.84 1.23 0.87 1.54 0.91 2.09 0.96 3.11 1.00 5.07 1.03 8.94 1.05
k=3 0.76 0.72 1.08 0.80 1.32 0.85 1.73 0.90 2.44 0.95 3.76 0.99 6.31 1.02 11.32 1.05
k=4 0.70 0.67 1.11 0.78 1.40 0.82 1.89 0.88 2.74 0.93 4.30 0.97 7.33 1.00 13.31 1.03

Table 2 The I/O costs of the k-level hash tables with different query/insert ratios. The write-read
ratio ω are selected to be typical projected values 10 (latency, bandwidth) and 100 (energy). Results
are based on the numbers in Table 1. The numbers in red with underlines indicate the best choice
of k that minimizes the I/O cost in this setting, and numbers in blue indicate better I/O costs
compared to the classic hash table implementation (i.e., k = 1).

The I/O costs of the k-level hash tables with the same configurations in Table 1.

ω = 10 ω = 100
α 0 1/8 1/4 1/2 1 2 4 8 0 1/8 1/4 1/2 1 2 4 8

k=1 13.0 13.2 13.4 13.8 14.4 15.4 17.1 20.0 117.9 119.3 120.5 122.7 125.8 129.9 134.8 140.5
k=2 8.8 9.5 10.0 10.7 11.7 13.1 15.4 19.5 79.9 85.1 88.4 92.8 97.7 102.9 108.2 114.4
k=3 8.0 9.1 9.8 10.7 11.9 13.7 16.5 21.8 73.1 81.4 85.8 91.3 97.0 102.7 108.7 116.3
k=4 7.4 8.9 9.6 10.7 12.0 14.0 17.4 23.6 67.9 78.6 83.8 89.6 95.5 101.3 107.7 116.1

(a) ω = 10

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

(b) ω = 100

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

Figure 1 Relative I/O cost of k-level hash table with different values of k. The I/O costs are
divided by the k = 1 case, so every data point below 1 indicates an improvement in such case.
Numbers are from Table 2.

50% query keys are in the hash table (this ratio affects the I/O cost since a successful query
can terminate earlier). The number of levels k varies from 1 to 4. In Table 2, we show the
overall I/O costs, which are the weighted sums assuming two typical values of the write-read
ratio ω, 10 and 100.

We first look at the number of write transfers. When there is no query (i.e., the first
column, just inserting 1 million entries), the numbers of writes are consistent with our
analysis for insertions in Section 4.1. The only exception here is that cache can hold a
constant fraction of the elements, which batches the writes and reduces the number of
memory transfers. However, the relative trend in each column remains unchanged. Namely,
the number of writes always decreases with the increase of k regardless of the ratio between
queries and updates. The number of writes is reduced by 33%, 40% and 43% when k = 2, 3, 4
respectively. Such improvement also shows up in the overall I/O cost in Table 2.

ESA 2018

44:10 Algorithmic Building Blocks for Asymmetric Memories

We note that more queries cause more reads, and larger k also leads to more reads. Since
these reads flush the cache-lines, the numbers of writes in these cases also marginally increase.
The optimal choice of k is decided by the update/query distribution as well as the write-read
ratio ω. In general, more queries lead to worse performance with larger k, and larger ω
prefers larger k. In Table 2, we underline the numbers indicating the best choice of k in that
specific setting. The experiment results indicate that picking k to be 2 or 3 is always a good
choice when ω = 10, and 3 or 4 when ω = 100.

4.3 Conclusions
We proposed a new data structure, the k-level hash table, to implement unordered set and
map that has the same space utilization compared to the classic open-addressing hash tables.
The key idea is to keep multiple instead of one level of hash tables. As a result, the algorithm
uses fewer writes during resizings, at the cost of more reads in other operations.

The best choice of k is decided by the ratio of updates and queries. Our experiment
shows that k = 2 always leads to a lower or similar I/O cost when the query/insert ratio is
no more than 8, compared to the classic k = 1 setting. For the ratio of write/read cost is
larger (like 100), larger values of k, like 3 or 4, are even more preferable than the k = 2 case.

5 Graph Traversal Algorithms

In this paper, we discuss two of the most commonly-used graph traversal algorithms: breadth-
first search (BFS), and Dijkstra’s algorithm. We show that using the new implementations
discussed in this paper, these algorithms use much fewer writes in most cases, compared to
the classic ones. Due to the page limit, we abstract our approaches and conclusions here in
this section, and provide the full details in the full version of this paper [20].

Given a graph G = (V,E), we assume n = |V | is the number of vertices, and m = |E| is
the number of edges.

5.1 Breadth-First Search
We discuss our implementations and experiment results on breadth-first searches (BFS) on
undirected graph traversing or searching. Our algorithms compute the single-source shortest
paths (SSSP) or pairwise shortest-paths (given the specific source and target) on unweighted
graphs, which can further apply to graph radii estimation, eccentricity estimation and
betweenness centrality, and act as a basic building block for other graph algorithms like graph
connectivity, reachability, biconnected components, and strongly connected components.

Implementations. The classic implementation of BFS keeps a vertex queue of size n, and
an array of boolean flags of size n indicating whether each vertex is visited or not during
the search. This implementation requires at most 2 writes per vertex, and the overall I/O
cost of BFS Q(n,m) = O(ωn+m) [8]. This bound is asymptotically optimal for arbitrary
graphs since the output size of BFS is Θ(n). However, a number of applications (e.g., s-t
shortest-path or connectivity, graph radii estimation or eccentricity estimation) have output
size O(1), which allows utilizing the small-memory and reducing the number of writes.

The key observation to improve the write-efficiency is that, at any time, we only need
the information of three consecutive frontiers (a frontier is the set of vertices with the same
distance to the source node). We hence use the k-level hash table discussed in Section 4 to
implement the frontiers. This avoids the writes to mark the visited flag of each vertex. We

Y. Gu, Y. Sun, and G. E. Blelloch 44:11

(a) ω = 10, sparse graphs

 0

 10

 20

 30

 40

 50

 60

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(b) ω = 10, social networks

 0
 10
 20
 30
 40
 50
 60
 70
 80

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(c) ω = 100, sparse graphs

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(d) ω = 100, social networks

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

Figure 2 The trends of the I/O costs of four different implementations of BFS. The new
implementations shown in this paper are the BFS and bidirectional BFS based on rotating arrays
(red and yellow bars). The graphs used in the experiment are shown in full paper [20] and categorized
into sparse (almost planar) graphs and social networks. We show the relative I/O cost based on
varied cache sizes, and each number is geometric mean of the four graphs in that category. We can
see the consistent advantages of the new BFS implementation on sparse graphs, and the improvement
of the new bidirectional version in all cases. Notice that in (b) and (d) some values exceed the
ranges of vertical axis.

note that once the frontier size fits into the small-memory, the algorithm does not require
any writes to traverse the newly visited vertices. In the full paper [20] we show the average
and maximum frontier sizes of the experiment graphs, which will help to understand the
performance on these graph instances. To the best of our knowledge, we are unaware of
any graph invariant to capture and predict the average and maximum frontier sizes, and we
believe that it can be an interesting topic for further study. This algorithm is referred to as
the BFS on RA (rotating arrays) in Figure 2, and more details of the implementation are
given in the full paper [20].

The previous algorithm works well on graphs with larger diameters, but not on small-
diameter graphs like social networks. We then introduce the bidirectional version (Bidir. BFS
on RA) when the queries are s-t (pairwise) shortest paths, that overcomes the disadvantages
of the previous algorithm. More analysis and details of this version are given in full version.

Experiment. Our experiment is based on eight graphs that are synthesized or from
SNAP [29]. We show a significant improvement on all eight graphs with various cache
sizes, compared to the classic queue-based implementations. Figure 2 is the bar charts that
show the trends of the four implementations. When ω = 10, our implementation shows an up-
to 8-fold improvement on SSSP, and an up-to 43-fold improvement on s-t shortest-paths. For
ω = 100, the improvement is more stable, which is 69 on SSSP and 71 on s-t shortest-paths.

ESA 2018

44:12 Algorithmic Building Blocks for Asymmetric Memories

(a) ω = 10, sparse
graphs

 0
 10
 20
 30
 40
 50
 60
 70
 80

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(b) ω = 10, social
networks

 0
 50

 100
 150
 200
 250
 300
 350
 400

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(c) ω = 100, sparse
graphs

 0

 100

 200

 300

 400

 500

 600

 700

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(d) ω = 100, social
networks

 0

 500

 1000

 1500

 2000

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

Figure 3 The trends of the I/O costs of classic Dijkstra (grey) and phased Dijkstra (red) on
different graphs with varied cache sizes. The graphs used in the experiment are shown in the full
paper [20] and categorized into sparse (almost planar) graphs and social networks. Each number
of the I/O cost is geometric mean of the four graphs in that category. Phased Dijkstra performs
consistently better in all cases except when both the cache size and the asymmetry ω are small.

Conclusions. We discuss how to efficiently implement BFS in the asymmetric setting and
experiment the I/O performance for four implementations on a variety of undirected graphs.
We show that for s-t (pairwise) distance queries, our bidirectional BFS using rotating arrays
shows a significant advantage in all cases we tested. For single-source shortest-paths, the
unidirectional BFS using rotating arrays has a significant improvement when the cache can
hold every single frontier during the search.

5.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm [14] computes single-source shortest paths on non-negative weighted
graphs. The classic heap-based implementation requires O(m log(nB/M)) reads and writes.

For the sake of write-efficiency, Blelloch et al. [8] discussed a variant called Phased Dijkstra.
This algorithm only requires linear writes, but the algorithm is just explained at a high level
and without much details. In this paper, we supplement the pseudocode, data structure
design, and implementation details (in the full paper [20]).

Based on our implementation, we conduct various experiment to show the asymmetric
I/O efficiency. In Figure 3, we show the trend of the relative I/O costs of the classic Dijkstra
and phased Dijkstra with various cache sizes on different graphs. We show that phased
Dijkstra outperforms classic Dijkstra in most cases except for the only case on social networks
with very small cache size, and the improvement on I/O cost in all cases is up to 3 and 7.6
when ω is 10 and 100. We also consider various cache policies and sets of parameters and
show that the improvement is consistent among all settings.

Summaries. We discuss phased Dijkstra and test its performance on a variety of graphs.
The high-level idea is to fit the heap of Dijkstra’s algorithm within the small-memory (i.e.,
the cache) and thus the algorithm applies no intermediate writes to the large asymmetry
memory to maintain the heap. The extra cost is that, the algorithm is run in multiple phases
each requiring O(m) reads, but we show that such price is worthwhile in most cases. The
experiments show that phased Dijkstra consistently outperforms the binary-heap version
on I/O costs, except for the combination of small ω (= 10), small cache size, and on social
networks. Although phased Dijkstra contains several parameters, we also show that they can
be chosen from a reasonably wide range and do not affect the superiority of phased Dijkstra.
The same conclusion also holds for different cache policies.

Y. Gu, Y. Sun, and G. E. Blelloch 44:13

We note that the idea of fitting the data structure or the computation in the small-memory
can also be applied to computing minimum spanning tree, sorting, and many other problems.

References
1 Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988. doi:10.1145/48529.48535.
2 Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajech K. Gupta, and Steven Swanson.

Onyx: A prototype phase change memory storage array. In USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2011.

3 Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross.
Path processing using solid state storage. In International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures (ADMS), 2012.

4 Avraham Ben-Aroya and Sivan Toledo. Competitive analysis of flash-memory algorithms.
In European Symposium on Algorithms (ESA), 2006.

5 Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu,
Charles McGuffey, and Julian Shun. Parallel algorithms for asymmetric read-write costs.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

6 Naama Ben-David, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan Gu,
Charles McGuffey, and Julian Shun. Implicit decomposition for write-efficient connectiv-
ity algorithms. In Proc. IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2018.

7 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Sorting
with asymmetric read and write costs. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2015.

8 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Ef-
ficient algorithms with asymmetric read and write costs. In European Symposium on Al-
gorithms (ESA), pages 14:1–14:18, 2016.

9 Guy E Blelloch, Phillip B Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. The
parallel persistent memory model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2018.

10 Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallel write-efficient algorithms
and data structures for computational geometry. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). ACM, 2018.

11 Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,
Oded Schwartz, and Harsha Vardhan Simhadri. Write-avoiding algorithms. In IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 648–658, 2016.

12 Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for
phase change memory. In Conference on Innovative Data Systems Research (CIDR), 2011.

13 Sangyeun Cho and Hyunjin Lee. Flip-N-Write: A simple deterministic technique to improve
PRAM write performance, energy and endurance. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2009.

14 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 1959.

15 Xiangyu Dong, Norman P. Jouupi, and Yuan Xie. PCRAMsim: System-level performance,
energy, and area modeling for phase-change RAM. In ACM International Conference on
Computer-Aided Design (ICCAD), 2009.

16 Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai H. Li, and Yiran Chen. Circuit
and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal
memory replacement. In ACM Design Automation Conference (DAC), 2008.

ESA 2018

http://dx.doi.org/10.1145/48529.48535

44:14 Algorithmic Building Blocks for Asymmetric Memories

17 David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into one basket. In ACM
International Symposium on Experimental Algorithms (SEA), 2014.

18 Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37(2), 2005.

19 Yan Gu. Write-Efficient Algorithms (draft). PhD Thesis, 2018.
20 Yan Gu, Yihan Sun, and Guy E. Blelloch. Algorithmic building blocks for asymmetric

memories (full version). In arXiv preprint:1806.10370, 2018.
21 HP, SanDisk partner on memristor, ReRAM technology. http://www.bit-tech.net/news/

hardware/2015/10/09/hp-sandisk-reram-memristor, 2015.
22 Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, Shouzhen Gu, and Ed-

win Sha. Scheduling to optimize cache utilization for non-volatile main memories. IEEE
Transactions on Computers, 63(8), 2014.

23 www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.
24 Intel and Micron produce breakthrough memory technology. http://newsroom.intel.com/

community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-
memory-technology, 2015.

25 Riko Jacob and Nodari Sitchinava. Lower bounds in the asymmetric external memory
model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
247–254, 2017.

26 Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chu. Evaluating phase
change memory for enterprise storage systems: A study of caching and tiering approaches.
In USENIX Conference on File and Storage Technologies (FAST), 2014.

27 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In ACM International Symposium on Computer
Architecture (ISCA), 2009.

28 Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and
Tom W Keller. Energy management for commercial servers. Computer, 36(12):39–48, 2003.

29 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,
2014.

30 Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-
millisecond quality-of-service. In European Conference on Computer Systems, page 4. ACM,
2014.

31 Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Nadathur Satish, Jeff Jack-
son, and Willy Zwaenepoel. Exploiting NVM in large-scale graph analytics. In Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads. ACM, 2015.

32 Krishna T Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C Lee, and Mark
Horowitz. Rethinking DRAM power modes for energy proportionality. In IEEE/ACM
International Symposium on Microarchitecture, pages 131–142, 2012.

33 Jagan S. Meena, Simon M. Sze, Umesh Chand, and Tseung-Yuan Tseng. Overview of
emerging nonvolatile memory technologies. Nanoscale Research Letters, 9, 2014.

34 MARSSx86. http://marss86.org.
35 Hyoungmin Park and Kyuseok Shim. FAST: Flash-aware external sorting for mobile data-

base systems. Journal of Systems and Software, 82(8), 2009. doi:10.1016/j.jss.2009.
02.028.

36 PTLsim. http://www.ptlsim.org.
37 Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change

Memory: From Devices to Systems. Morgan & Claypool, 2011.

http://dx.doi.org/10.1016/j.jss.2009.02.028
http://dx.doi.org/10.1016/j.jss.2009.02.028

Y. Gu, Y. Sun, and G. E. Blelloch 44:15

38 Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural simula-
tion of thousand-core systems. In ACM SIGARCH Computer Architecture News, volume 41,
pages 475–486. ACM, 2013.

39 Stratis D. Viglas. Adapting the B+-tree for asymmetric I/O. In East European Conference
on Advances in Databases and Information Systems (ADBIS), 2012.

40 Stratis D. Viglas. Write-limited sorts and joins for persistent memory. VLDB Endowment,
7(5), 2014.

41 Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. Design implications of
memristor-based RRAM cross-point structures. In IEEE Design, Automation and Test
in Europe (DATE), 2011.

42 Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-
Gon Yu. A low power phase-change random access memory using a data-comparison write
scheme. In IEEE International Symposium on Circuits and Systems (ISCAS), 2007.

43 Yole Developpement. Emerging non-volatile memory technologies, 2013.
44 Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main

memory using phase change memory technology. In ACM International Symposium on
Computer Architecture (ISCA), 2009.

45 Omer Zilberberg, ShlomoWeiss, and Sivan Toledo. Phase-change memory: An architectural
perspective. ACM Computing Surveys, 45(3), 2013.

ESA 2018

	Introduction
	Related Work
	Our Model and Simulator
	Unordered Sets and Maps
	The k-level Hash Table
	Experiments
	Conclusions

	Graph Traversal Algorithms
	Breadth-First Search
	Dijkstra's Algorithm

