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Abstract
A fundamental graph problem is to recognize whether the vertex set of a graph G can be bipar-
titioned into sets A and B such that G[A] and G[B] satisfy properties ΠA and ΠB , respectively.
This so-called (ΠA,ΠB)-Recognition problem generalizes amongst others the recognition of
3-colorable, bipartite, split, and monopolar graphs. A powerful algorithmic technique that can
be used to obtain fixed-parameter algorithms for many cases of (ΠA,ΠB)-Recognition, as well
as several other problems, is the pushing process. For bipartition problems, the process starts
with an “almost correct” bipartition (A′, B′), and pushes appropriate vertices from A′ to B′ and
vice versa to eventually arrive at a correct bipartition.

In this paper, we study whether (ΠA,ΠB)-Recognition problems for which the pushing
process yields fixed-parameter algorithms also admit polynomial problem kernels. In our study,
we focus on the first level above triviality, where ΠA is the set of P3-free graphs (disjoint unions
of cliques, or cluster graphs), the parameter is the number of clusters in the cluster graph G[A],
and ΠB is characterized by a set H of connected forbidden induced subgraphs. We prove that,
under the assumption that NP 6⊆ coNP/poly, (ΠA,ΠB)-Recognition admits a polynomial kernel
if and only if H contains a graph of order at most 2. In both the kernelization and the lower
bound results, we make crucial use of the pushing process.
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1 Introduction

A graph G is a (ΠA,ΠB)-graph, for two hereditary graph properties ΠA,ΠB, if V (G) can
be partitioned into two sets A,B such that G[A] ∈ ΠA and G[B] ∈ ΠB. We call (A,B) a
(ΠA,ΠB)-partition of G. The (ΠA,ΠB)-Recognition problem is to recognize whether a
given graph is a (ΠA,ΠB)-graph. This captures a wealth of famous problems, including the
recognition of 3-colorable, bipartite, co-bipartite, and split graphs, and Π-Vertex Deletion,
which asks for a partition (A,B) such that G[A] ∈ Π and G[B] has order at most k for
some given k. In the most interesting (and NP-hard) cases [2, 13, 22], ΠA and ΠB are both
characterized by a (not necessarily finite) set of forbidden connected induced subgraphs. In
other words, ΠA and ΠB are each closed under the disjoint union of graphs in these cases.

Many such (ΠA,ΠB)-Recognition problems were shown fixed-parameter tractable by
Kanj et al. [20], for example when ΠA is the class of graphs that is a disjoint union of k
cliques, using parameter k. The central algorithmic idea that was employed in [20] is the
pushing process. The algorithm empties the input graph, and adds vertices back one by one
while maintaining a valid partition. Since adding a vertex might invalidate a previously
valid partition, vertices are pushed from one part of the partition to the other part in the
hope of obtaining a valid partition again. A similar algorithmic idea, known as iterative
localization, was used earlier by Heggernes et al. [19] to show the fixed-parameter tractability
of computing the cochromatic number of perfect graphs and the stabbing number of disjoint
rectangles with axes-parallel lines (using the standard parameters). Iterative localization
was also applied in follow-up work related to the cochromatic number [21].

A crucial ingredient in applying the pushing process is to understand the avalanches
caused by this process. For (ΠA,ΠB)-Recognition, an avalanche is triggered when a vertex
is pushed to A; this may imply that several other vertices must be pushed to B, which, in
turn, triggers the pushing of yet more vertices to A, and so on. Similar effects are visible
in the aforementioned cochromatic number and rectangle stabbing number problems. The
contribution of the previous works [19, 20, 21] was to bound the depth of this process by
some function of the parameter, leading to fixed-parameter algorithms. However, such a
bound does not provide an answer to the question of which vertices trigger avalanches and
their continued rolling, and whether the number of such vertices can somehow be limited.

This question can be naturally formalized in terms of the kernelization complexity of
problems to which the pushing process applies. A kernel reduces the size of the graph and
thus directly reduces the number of vertices triggering or being affected by avalanches when
an algorithm based on the pushing process is applied to the kernelized instance. In previous
work, Kolay et al. [21] studied the kernelization complexity of computing the cochromatic
number of a perfect graph G, which is the smallest number k = r + ` such that V (G)
can be partitioned into r sets that each induces a clique and ` sets that each induces an
edgeless graph. This problem has a parameterized algorithm using iterative localization
(i.e., a pushing process) [19], but Kolay et al. [21] showed that, unless NP ⊆ coNP/poly, this
problem does not admit a polynomial kernel parameterized by r + `. This suggests that,
for this problem, one cannot control the number of vertices affected by avalanches. The
kernelization complexity of (ΠA,ΠB)-Recognition, however, has not been studied so far.
Hence, it is open whether avalanches can be controlled to affect few vertices in this case.

Our Result. We study the kernelization complexity of (ΠA,ΠB)-Recognition through
the lens of the pushing process. To this end, we consider the first level above triviality of
the problem. When ΠA is characterized by a forbidden induced subgraph of order 2, then
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(ΠA,ΠB)-Recognition can be solved in linear time [16], and thus we focus on the NP-hard
case when the forbidden induced subgraph has order 3 [2, 13, 22]. In particular, we let ΠA be
the class of so-called cluster graphs. These are the graphs that contain no P3 – the (simple)
path on three vertices – as an induced subgraph, or equivalently, graphs that are disjoint
unions of complete graphs. This leads to the following problem:

Cluster-Π-Partition
Input: A graph G = (V,E).
Question: Is there a partition (A,B) of V such that G[A] is a cluster graph
and G[B] ∈ Π?

Cluster-Π-Partition generalizes the recognition problem of many graph classes, such
as the recognition of monopolar graphs [6, 9, 8, 23] (Π is the set of edgeless graphs),
2-subcolorable graphs [5, 15, 18, 24] (Π is the set of cluster graphs), and several others [1, 4, 7].
Unfortunately, Cluster-Π-Partition is NP-hard in these special cases, and in general
when Π is characterized by a set of connected forbidden induced subgraphs [2, 13, 22]. Hence,
we consider the number k of clusters in the cluster graph G[A] as a parameter, and study
the pushing process with respect to this parameter.

Our result gives a complete characterization of the kernelization complexity of Cluster-
Π-Partition through a deeper understanding of the pushing process. We show that, while
for a specific Π the pushing process can be used to witness a small vertex set of size kO(1)

containing the vertices affected by avalanches, for all other Π, such a set of polynomial size
is unlikely to exist. Formally, we show that:

I Theorem 1.1. Let Π be a graph property characterized by a (not necessarily finite) set H
of connected forbidden induced subgraphs. Then unless NP ⊆ coNP/poly, Cluster-Π-
Partition parameterized by the number k of clusters in the cluster graph G[A] admits a
polynomial kernel if and only if H contains a graph of order at most 2.

The positive result corresponds to the recognition of monopolar graphs. Indeed, the graph
properties with forbidden induced subgraphs of order 2 are “being edgeless” and “being
nonedge-less”, but the latter is not characterized by connected forbidden induced subgraphs.

The pushing process and a deeper understanding of the avalanches it causes are indeed
central to both directions of the above result. In the proof of the positive result, we first
perform a set of data reduction rules to identify some vertices that are part of A or B in any
partition (A,B) of V (G) such that G[A] is a cluster graph with at most k clusters and G[B]
is edgeless. More importantly, these rules restrict the combinatorial properties of the graph
induced by the remaining vertices. With these restrictions, it becomes possible to model the
avalanches that occur using a bipartite graph. This graph enables two further reduction
rules that lead to the polynomial kernel.

For the negative result, we observe that the bipartite graph constructed in the kernel
is closely tied to the deterministic behavior of the pushing process for monopolar graphs:
when an edge in G[B] is created by pushing a vertex to B, the other endpoint of the edge
must be pushed to A (recall that G[B] must become edgeless). This limits the avalanches.
However, for more complex properties ΠB , such a simple correspondence no longer exists. In
particular, when the forbidden induced subgraphs have order at least 3, pushing a vertex
to B may create a forbidden induced subgraph in G[B] that can be repaired in at least
two different ways. Then the pushing process starts to behave nondeterministically, and
the avalanches grow beyond control. We exploit this intuition to exclude the existence of a
polynomial kernel, unless NP ⊆ coNP/poly, by providing a cross-composition.
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Other Parameterizations. One might consider two other parameters: the size of a largest
cluster in G[A] and the size of one of the sides. The size of a largest cluster in G[A] will not
lead to tractability, as Cluster-Π-Partition is NP-hard on subcubic graphs, even when Π
is the set of edgeless graphs [23]. Thus, we consider the number k of vertices in the graph
G[B], even for the broader (ΠA,ΠB)-Recognition problem, observing a general result:

I Theorem 1.2. (♠)3 (ΠA,ΠB)-Recognition has a kernel of size O(kd) parameterized by
k, the maximum size of B, when ΠA can be characterized by a collection H of forbidden
induced subgraphs, each of size at most d, and ΠB is hereditary.

We obtain the following better bound in terms of the number of vertices for Cluster-Π∆-
Partition, the restriction of Cluster-Π-Partition to the case when all graphs containing
a vertex of degree at least ∆ + 1 are forbidden induced subgraphs of Π.

I Theorem 1.3. (♠) Cluster-Π∆-Partition parameterized by k, the maximum size of B,
has an O((∆2 + 1) · k2)-vertex kernel.

Preliminaries. We follow standard graph-theoretic notation [11]. For ` ∈ N, we use [`] to
denote {1, 2, . . . , `}. Let v ∈ V (G) and X,Y ⊆ V (G). We say v is adjacent to X if v is
adjacent to at least one vertex in X. We say X is adjacent to Y if there exists x ∈ X that
is adjacent to Y . We say a partition (A,B) of V (G) is a cluster-Π partition if (1) G[A]
is a cluster graph and (2) G[B] ∈ Π. A monopolar partition of a graph G is a partition
of V (G) into a cluster graph and an independent set. Monopolar Recognition asks,
given a graph G and an integer k, whether G admits a monopolar partition (A,B) such that
the number of clusters in the cluster graph G[A] is at most k. For an instance (G, k) of
Monopolar Recognition, a monopolar partition of G is valid if the number of clusters
in the cluster graph of the partition is at most k. For relevant definitions of parameterized
complexity, e.g. polynomial problem kernels, see [12, 10]. Let Q be a language and (P, κ)
a parameterized problem, i.e., P is a language and κ : Σ∗ → N a parameterization. An
or-cross-composition from Q into (P, κ) is a polynomial-time algorithm that, given t instances
q1, . . . , qt ∈ Σ∗ of Q, computes an instance r ∈ Σ∗ such that κ(r) ≤ poly (log t+ maxt

i=1 |qi|) ,
and r ∈ P if and only if qi ∈ Q for some i ∈ [t]. If there is an or-cross-composition from
an NP-hard language into (P, κ), then there is no polynomial-size problem kernel for (P, κ)
unless NP ⊆ coNP/poly [17, 3].

2 A Polynomial Kernel for Monopolar Recognition Parameterized by
the Number of Clusters

The outline of the kernelization algorithm is as follows. First, we compute a decomposition
of the input graph into sets of vertex-disjoint maximal cliques which we call a clique
decomposition. This decomposition is used and updated throughout the data-reduction
procedure. We also maintain sets of vertices that are determined to belong to A or B. We
first apply a sequence of reduction rules whose aim is roughly to bound the number of
cliques and the number of edges between the cliques in the decomposition, and to restrict
the structure of edges between cliques. Then, we build an auxiliary graph to model how the
placement of a vertex in A or B implies an avalanche of placements of vertices in A and B. If
this avalanche creates too many clusters in A, then this determines the placement of certain

3 Due to lack of space, proofs of statements marked with (♠) are omitted.
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vertices in A or B, and triggers another reduction rule. If this reduction rule does not apply
anymore, then the size of the auxiliary graph is bounded, which in turn, helps bounding the
size of the instance.

Clique Decompositions. Say that a clique C is a large clique if |C| ≥ 3, an edge clique if
|C| = 2 (i.e., C is an edge), and a vertex clique if |C| = 1 (i.e., C consists of a single vertex).
Let (G, k) be an instance of Monopolar Recognition. Suppose that Atrue ⊆ V (G) and
Btrue ⊆ V (G) are subsets of vertices that have been determined to be in A and B, respectively,
in any valid monopolar partition of (G, k). We define a decomposition (C1, . . . , Cr) of
V (G) \ (Atrue ∪ Btrue), referred to as a nice clique decomposition, that partitions this set
into vertex-disjoint cliques C1, . . . , Cr, r ≥ 1, such that the tuple (C1, . . . , Cr) satisfies the
following properties:
(i) In the decomposition tuple (C1, . . . , Cr), the large cliques appear before the edge cliques,

and the edge cliques, in turn, appear before the vertex cliques; that is, for each large
clique Ci and for each edge or vertex clique Cj we have i < j, and for each edge clique
Ci and for each vertex clique Cj we have i < j.

(ii) Each clique Ci, i ∈ [r− 1], is maximal in
⋃r

j=i Cj ; that is, there does not exist a vertex
v ∈

⋃r
j=i+1 Cj such that Ci ∪ {v} is a clique.

(iii) The subgraph of G induced by the union of the edge cliques and vertex cliques does
not contain any large clique.

The following fact is implied by property (ii) above:

I Fact 2.1. The vertex cliques in a nice clique decomposition form an independent set in G.

I Lemma 2.2. (♠) A nice clique decomposition of G can be computed in O(nm) time.

Let (G, k) be an instance of Monopolar Recognition. We initialize Atrue = Btrue = ∅,
V ′ = V (G) \ (Atrue ∪Btrue), and we compute a nice clique decomposition (C1, . . . , Cr) of V ′.
We will then apply reduction rules to simplify the instance (G, k). During this process, we
may identify vertices in V ′ to be added to Atrue or Btrue. At any point in the process, we will
maintain a partition (Atrue, Btrue, C1, . . . , Cr) of V (G) such that (1) Atrue ⊆ A and Btrue ⊆ B
for any valid monopolar partition (A,B) of V (G), and (2) (C1, . . . , Cr) is a nice clique
decomposition of V ′ = V (G) \ (Atrue ∪Btrue); we call such a partition (Atrue, Btrue, C1, . . . , Cr)
a normalized partition of V (G).

Basic Reduction Rules. We now describe our basic set of reduction rules. After the
application of a reduction rule, a normalized partition may change as the result of moving
vertices from

⋃r
i=1 Ci to Atrue∪Btrue, and we will need to compute a nice clique decomposition

of the resulting (new) set V (G) \ (Atrue ∪Btrue). However, a vertex that has been moved to
Atrue (resp. Btrue) will remain in Atrue (resp. Btrue). When a reduction rule is applied, we
assume that no reduction rule preceding it is applicable. The following rule is straightforward:

I Reduction Rule 2.3. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
Atrue is not a cluster graph with at most k clusters, or Btrue is not an independent set, then
reject the instance (G, k).

The following rule is correct because, for every monopolar partition (A,B) of G, Btrue ⊆ B
and B is an independent set.

I Reduction Rule 2.4. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G)\ (Atrue∪Btrue) that is adjacent to Btrue then set Atrue = Atrue∪{v}.

ESA 2018
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The following rule is correct, since Atrue ⊆ A for every monopolar partition (A,B) of G:

I Reduction Rule 2.5. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G) \ (Atrue ∪ Btrue) that is either (1) adjacent to two clusters in
Atrue, or (2) adjacent to a cluster C in Atrue but not to all the vertices in C, then set
Btrue = Btrue ∪ {v}.

The proof of the following reduction rule is straightforward, after recalling that the vertex
cliques induce an independent set in G (Fact 2.1), and observing that no two vertices of an
independent set can belong to the same cluster in a cluster graph:

I Reduction Rule 2.6. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G) \ (Atrue ∪Btrue) with more than k neighbors that are vertex cliques,
then set Atrue = Atrue ∪ {v}.

The next two reduction rules restrict the number and type of edges incident to large cliques.

I Reduction Rule 2.7. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there exists a vertex v ∈ V (G)\(Atrue∪Btrue) and a large clique Ci such that 1 < |N(v)∩Ci| ≤
|Ci| − 1, then set Atrue = Atrue ∪ (N(v) ∩ Ci).

Proof. Since 1 < |N(v) ∩ Ci| ≤ |Ci| − 1, v has at least two neighbors u,w ∈ Ci and at
least one nonneighbor x ∈ Ci. If a vertex z ∈ N(v) ∩ Ci is in B, for any valid monopolar
partition (A,B) of V (G), then since B is an independent set, it follows that Ci − {z} ⊆ A.
In particular, v is in A, at least one of u,w, say u, is in A, and x is in A. But this implies
that (v, u, x) forms an induced P3 in A, contradicting that A is a cluster graph. J

I Reduction Rule 2.8. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
and let Ci, Cj, i < j, be two cliques such that Ci is a large clique and Cj is either a large
clique or an edge clique. If there are at least two edges between Ci and Cj then one of the
following reductions, considered in the listed order, is applicable:
Case (1) There are two edges uu′ and vv′, where u, v ∈ Ci and u′, v′ ∈ Cj, such that u 6= v

and u′ 6= v′. Let w ∈ Ci be such that w /∈ {u, v} (note that w exists because
|Ci| ≥ 3). Set Atrue = Atrue ∪ {w}.

Case (2) N(Cj) ∩ Ci = {v}. Set Btrue = Btrue ∪ {v}.
We can now bound the number of large cliques and edge cliques in yes-instances.

I Reduction Rule 2.9. (♠) Let (G, k) be an instance of Monopolar Recognition, and
let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If in (C1, . . . , Cr) either the
number of large cliques is more than k, or the number of large cliques plus the number of
edge cliques is more than 2k, then reject the instance (G, k).

I Reduction Rule 2.10. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
let C be a cluster in Atrue, and let Ci, i ∈ [r], be a large clique. If v ∈ Ci is such that: (1) v
is the only vertex in Ci that is adjacent to C, or (2) v is the only vertex in Ci that is not
adjacent to C, then set Btrue = Btrue ∪ {v}.

I Reduction Rule 2.11. (♠) Let (G, k) be an instance of Monopolar Recognition, and
let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If either (1) Btrue contains
more than k + 1 vertices or (2) there exists a cluster in Atrue that is not a singleton,
then reduce the instance (G, k) to an instance (G′, k) with G′ constructed as follows. Let
V (G′) = V1 ∪ V2 ∪ V3, where V1 = {uC | C is a cluster in Atrue}, V2 = {v1, . . . , vk+1}, and
V3 = C1 ∪ · · · ∪ Cr; and E(G′) = {vuC | v ∈ V2 ∧ uC ∈ V1} ∪ {vuC | v ∈ V3 ∧ uC ∈
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V1 ∧ v is adjacent to C}. That is, G′ is constructed from G by introducing k+ 1 new vertices,
replacing each cluster C in Atrue (if any) by a single vertex uC whose neighborhood is the
neighborhood of C in C1, . . . , Cr plus the k+ 1 new vertices, and keeping C1, . . . , Cr the same.

If Reduction Rule 2.11 is applied, then after its application, we set Atrue to V1 and Btrue
to {v1, . . . , vk+1}. Note that in any valid monopolar partition (A,B) of the graph resulting
from the application of Reduction Rule 2.11, each vertex in V1 must be in A, being adjacent
to the k + 1 independent set vertices v1, . . . , vk+1, whereas the vertices v1, . . . , vk+1 can be
safely assumed to be in B since their only neighbors are in V1 ⊆ A.

Modeling the Pushing Process by a Bipartite Graph. We now have bounded the number
of large and edge cliques, and the size of Atrue and Btrue. It remains to bound the size of the
large cliques and the number of vertex cliques. The challenge here is that we need to identify
vertices such that putting them in A or B will eventually, after a series of pushes, lead either
to the creation of too many clusters in A, or to the addition of two adjacent vertices in B.
To model the avalanche of pushes to A or B, we introduce the following auxiliary graph.

I Definition 2.12. For a normalized partition (Atrue, Btrue, C1, . . . , Cr) of V (G), we define
the auxiliary bipartite graph Λ as follows. The vertex set of Λ is V (Λ) = VC ∪VI , where VC is
the set of all vertices in the large cliques in C1, . . . , Cr, and VI is the set of all vertices in the
vertex cliques in C1, . . . , Cr. The edge set of Λ is E(Λ) = {uv ∈ E(G) | u ∈ VC and v ∈ VI};
that is, E(Λ) consists of precisely the edges in E(G) that are between VC and VI .

Recall that VI is an independent set in G by Fact 2.1. For a vertex v ∈ V (Λ), we write
NΛ(v) for the set of neighbors of v in Λ. We have the following lemma:

I Lemma 2.13. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G) and consider
the graph Λ = (V (Λ), E(Λ)). Then the maximum degree of Λ, ∆(Λ), is at most k.

Proof. For every vertex v ∈ VC , we have |NΛ(v)| ≤ k because Reduction Rule 2.6 is
inapplicable. By property (ii) of a nice decomposition and the inapplicability of Reduction
Rule 2.7, every vertex clique that is adjacent to a large clique C is adjacent to exactly one
vertex in C. Since by Reduction Rule 2.9 the number of large cliques is at most k, every
vertex in VI , which is a vertex clique by definition of VI , has at most k neighbors in VC .
Therefore, for every vertex v ∈ VI , we have |NΛ(v)| ≤ k. J

For two vertices u, v ∈ V (Λ), write distΛ(u, v) for the length of a shortest path between
u and v in Λ. For a vertex v ∈ V (Λ) and i ∈ {0, . . . , n}, define N i(v) = {u ∈ V (Λ) |
distΛ(u, v) = i}. Write 0̄n (resp. 1̄n) for the set of even (resp. odd) integers in {0, . . . , n}.

I Lemma 2.14. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G), let Λ =
(V (Λ), E(Λ)) be the associated auxiliary graph, and let (A,B) be any valid monopolar partition
of G.
(i) For each v ∈ VC : If v ∈ B then NΛ(v) ⊆ A.
(ii) For each v ∈ VI : If v ∈ A then NΛ(v) ⊆ B.
(iii) For each v ∈ VC : If v ∈ B then N i

Λ(v) ⊆ B for i ∈ 0̄n, and N i
Λ(v) ⊆ A for i ∈ 1̄n.

(iv) For each v ∈ VI : If v ∈ A then N i
Λ(v) ⊆ A for i ∈ 0̄n, and N i

Λ(v) ⊆ B for i ∈ 1̄n.

Proof. (i): This trivially follows because B is an independent set.
(ii): Suppose that v ∈ VI is in A, and let u ∈ NΛ(v). Then u ∈ VC because Λ is bipartite,

and hence, by definition, u belongs to a large clique Ci for some i ∈ [r]. Suppose, to get
a contradiction, that u ∈ A. Since Ci is a large clique, and hence |Ci| ≥ 3, there exists a

ESA 2018



51:8 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

vertex w 6= u in Ci such that w ∈ A. By property (ii) of the nice decomposition (C1, . . . , Cr)
and the inapplicability of Reduction Rule 2.7, {v, w} /∈ E(G). But this implies that (v, u, w)
is an induced P3 in A, contradicting that A is a cluster graph. It follows that NΛ(v) ⊆ B.

(iii): This follows by repeated alternating applications of (i) and (ii) above.
(iv): This follows by repeated alternating applications of (ii) and (i) above. J

I Reduction Rule 2.15. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
and let Λ = (V (Λ), E(Λ)) be the associated auxiliary graph.
(i) For any vertex v ∈ VC : If either

⋃
i∈0̄n

N i
Λ(v) contains two adjacent (in G) vertices or

|
⋃

i∈1̄n
N i

Λ(v)| > k, then set Atrue = Atrue ∪ {v}.
(ii) For any vertex v ∈ VI : If either |

⋃
i∈0̄n

N i
Λ(v)| > k or

⋃
i∈1̄n

N i
Λ(v) contains two

adjacent (in G) vertices, then set Btrue = Btrue ∪ {v}.

Proof. (i) Let v ∈ VC , and suppose that either
⋃

i∈0̄n
N i

Λ(v) contains two adjacent vertices
or |

⋃
i∈1̄n

N i
Λ(v)| > k. If v ∈ B for any valid partition (A,B) of G, then by part (iii) of

Lemma 2.14, it would follow that
⋃

i∈0̄n
N i

Λ(v) ⊆ B and
⋃

i∈1̄n
N i

Λ(v) ⊆ A. In either case
this contradicts that (A,B) is valid partition of G: If

⋃
i∈0̄n

N i
Λ(v) contains two adjacent

vertices, then B is not an independent set, and if |
⋃

i∈1̄n
N i

Λ(v)| > k then A contains more
than k clusters since

⋃
i∈1̄n

N i
Λ(v) induces an independent set in G.

(ii) The proof follows along the same lines as the proof of (i) (♠). J

I Definition 2.16. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G), and let
Λ = (V (Λ), E(Λ)) be the associated auxiliary graph. From each large clique Ci, i ∈ [r], fix
three vertices ui, vi, wi; define Vfixed = {ui, vi, wi | Ci is a large clique} to be the set of all
fixed vertices. Define Vedge = {u | u is contained in some edge clique Ci} to be the set of
vertices of the edge cliques, define Nedge = N(Vedge) ∩ V (Λ) to be the neighbors of Vedge in
V (Λ), and define N∪edge =

⋃
v∈Nedge

⋃
i≤n N

i
Λ(v) to be the set of all vertices in V (Λ) that are

reachable in Λ from the vertices in Nedge. Define Vinter = {u, v | u ∈ Ci∧v ∈ Cj ∧ i 6= j∧uv ∈
E(G) ∧ (Ci, Cj are large cliques)} to be the set of endpoints of edges between large cliques,
and define N∪inter =

⋃
v∈Vinter

⋃
i≤n N

i
Λ(v) to be the set of all vertices in V (Λ) that are reachable

in Λ from the vertices in Vinter. Finally, let Vrep = Atrue ∪Btrue ∪ Vfixed ∪N∪inter ∪ Vedge ∪N∪edge.

I Reduction Rule 2.17. (♠) Let (G, k) be an instance of Monopolar Recognition,
and let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). Let Vrep be as defined in
Definition 2.16. Set G = G[Vrep].

We now give the polynomial kernel whose existence was promised in Theorem 1.1.

I Theorem 2.18. Monopolar Recognition has a kernel of size at most 9k4 + 9k + 1
which can be computed in O(n2m) time.

Proof. Given an instance (G, k) of Monopolar Recognition, we apply Reduction Rules
2.3–2.17 exhaustively to (G, k). Clearly, the above rules can be applied in polynomial
time. Let (G′, k′) be the resulting instance, let (Atrue, Btrue, C1, . . . , Cr) be a normalized
partition of V (G′) with respect to which none of Reduction Rules 2.3–2.17 applies, and let
Λ = (V (Λ), E(Λ)) be the auxiliary graph. Note that, by Reduction Rule 2.17, V (G′) =
Vrep = Atrue ∪ Btrue ∪ Vfixed ∪ N∪inter ∪ Vedge ∪ N∪edge. By Reduction Rule 2.9, the number of
large cliques is at most k, and the number of edge cliques is at most 2k. It follows that
|Vfixed| ≤ 3k and |Vedge| ≤ 4k. For a vertex v ∈ Vedge, by Reduction Rule 2.6, v has at most
k neighbors in VI . Moreover, by Reduction Rule 2.8, v can have at most k neighbors in
VC , and therefore, |NΛ(v)| ≤ 2k, and |Nedge| ≤ 4k · 2k = 8k2. Since Reduction Rule 2.15
does not apply and ∆(Λ) ≤ k by Lemma 2.13, we have that, for any v ∈ V (Λ), we have
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|
⋃

i≤n N
i
Λ(v)| ≤ ∆(Λ) · k ≤ k2. This implies that |N∪edge| ≤ 8k2 · k2 ≤ 8k4. Now since the

number of large cliques is at most k, by Reduction Rule 2.8, it follows that |Vinter| ≤
(

k
2
)
< k2.

Since for a vertex v ∈ V (Λ) we have |
⋃

i≤n N
i
Λ(v)| ≤ k2 as argued above, it follows that

|N∪inter| ≤ k4. Since |Atrue| ≤ k and |Btrue| ≤ k + 1, putting everything together, we conclude
that the number of vertices in V (G′), |Vrep|, is at most k+k+1+3k+k4+4k+8k4 ≤ 9k4+9k+1.
The running time proof is omitted (♠). J

3 Kernel-size lower bound

This section is dedicated to proving the “only if” direction of Theorem 1.1, which, together
with Theorem 2.18, completes its proof. In particular, we prove the following:

I Theorem 3.1. Let Π be a graph property characterized by a (not necessarily finite) set H of
connected forbidden induced subgraphs, each of order at least 3. Then unless NP ⊆ coNP/poly,
Cluster-Π-Partition parameterized by the number k of clusters in the cluster graph G[A]
does not admit a polynomial kernel.

Throughout, let Π be any graph property satisfying the conditions of Theorem 3.1. We
show Theorem 3.1 by giving a cross-composition from the NP-hard problem Colorful
Independent Set [14]. Herein, we are given a graph G = (V,E), k ∈ N, and a proper
k-coloring c : V → {1, . . . , k}; the question is whether there is an independent set with k

vertices in G that contains exactly one vertex of each color. In the remainder of this section,
we explain the construction behind the cross-composition and prove its correctness. We start
by describing the intuition behind the construction, and why the avalanches in this case
cannot be contained.

In contrast to Monopolar Recognition, the avalanches caused by the pushing process
for the general Cluster-Π-Partition problem are much more uncontrollable: If some push
to the Π-side B creates a forbidden induced subgraph M for Π in G[B], we can repair the
partition and “break” M by moving any vertex of M to the cluster graph side A. However,
each move of a vertex in M may lead – through further necessary pushes from A to B – to
distinct forbidden induced subgraphs in G[B], again with multiple possible ways of breaking
them in order to repair the partition. These avalanches cannot be contained, and lead to
many possible paths along which they can be repaired, which can be modeled using a tree-like
structure.

It is precisely the above-described behavior of avalanches that we exploit to obtain a
cross-composition: The main gadgets select a Colorful Independent Set instance and
independent-set vertices within that instance. Each such selection gadget has a trivial
cluster-Π partition with one caveat: It has one (singleton) cluster too many in G[A], and
only this vertex can be pushed into the Π-side B. We call this vertex the activator vertex
of the gadget. Pushing the activator vertex into B creates a forbidden induced subgraph
for Π, requiring further pushes that propagate along a root-leaf path in a binary-tree-like
structure. In the end, exactly one vertex corresponding to a leaf in this structure will be
pushed from A to B, transmitting the choice to further gadgets.

Setup. Let t instances of Colorful Independent Set be given, with graphs G1, . . . , Gt,
respectively. Below, we use an instance and its index in [t] interchangeably. Without loss
of generality, assume that the following properties hold; they can be achieved by simple
padding techniques. Each instance asks for an independent set of size k, each color class in
each graph has n vertices and n as well as t are powers of two. In the following, let m be the
maximum number of edges over all graphs Gi.
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We construct an instance of Cluster-Π-Partition as described below. The instance
consists of the graph G and asks for a cluster-Π partition (A,B) with at most d clusters
in G[A] (we specify d below). The graph G is constructed by first adding d vertices which we
call anchors (see below). The clusters in any cluster-Π partition (A,B) of G with d clusters
in G[A] will extend these anchor vertices into larger cliques. We then successively add gadgets
that are attached to these anchors. We first construct an instance-selection gadget that
selects one of the given t instances. Then we add a vertex-selection gadget for each instance
which selects k vertices in its corresponding instance if it has been selected. Finally, we add
verification gadgets that ensure that the selected vertices are pairwise nonadjacent in the
graph of the selected instance.

Throughout, we use the following notation. We denote by (A,B) an arbitrary fixed
cluster-Π partition of G. We fix M to be a forbidden induced subgraph of Π with minimum
number of vertices. By assumption, M contains at least three vertices. The vertices that
we introduce will be in three disjoint categories: helper vertices, dial vertices, and volatile
vertices. Their meaning is as follows. Helper vertices will always be contained in B and only
serve to impose certain properties on other vertices. Dial vertices are normally in A and
belong to a cluster extending around an anchor; some of these vertices may be pushed to B
by an avalanche. On the other hand, volatile vertices are normally in B and may be pushed
to A by an avalanche.

First, we introduce d anchor vertices, divided into 5 + 2k groups: a1
1, a

1
2; a2

1, . . . , a
2
2 log t;

a3
1, . . . , a

3
k+1; for each i ∈ [k], a3+i

1 , . . . , a3+i
log n; for each i ∈ [k], a3+k+i

1 , . . . , a3+k+i
n ; and

a5+2k
1 , . . . , a5+2k

m . Hence, we put d := 2 + 2 log(t) + k + k logn + kn + 2m. The groups of
anchors correspond to the gadgets constructed below in which they are used. Each anchor
vertex is a dial vertex. We fix each of the anchors into A by introducing, for each anchor aj

i ,
d+ 1 copies of M and, for each copy, identifying an arbitrary vertex of that copy with aj

i .
The vertices different from aj

i in the copies of M are helper vertices. If aj
i ∈ B, then out of

each of the d incident copies of M , at least one vertex is in A, and since these vertices are
pairwise nonadjacent, G[A] would contain at least d+ 1 clusters, which is a contradiction.
Thus, each anchor must be in A. When we construct cluster-Π partitions in the following we
always tacitly assume that anchors are in A and all helper vertices are in B.

We associate each anchor aj
i with a vertex set Dj

i that contains aj
i and induces a clique

in G (throughout the construction). We say that Dj
i is the dial of aj

i . Initially, D
j
i = {aj

i}.
Later on, other vertices may join Dj

i ; by saying a vertex v joins Dj
i , we mean that we put

v into Dj
i and make v adjacent to all other vertices in Dj

i . Intuitively, the set of anchors
corresponds to the clusters in G[A]. These clusters are divided into two types: Either an
anchor’s dial contains at least two vertices and the cluster consists only of vertices in the
anchor’s dial, or the anchor’s dial contains only the anchor, and a single volatile vertex may
join the anchor’s cluster. We use the following notation.

I Definition 3.2. Let (A,B) be a cluster-Π partition for G and D be a set of dials. Parti-
tion (A,B) is friendly with respect to D if each singleton dial in D is a singleton cluster
in G[A].

Next, we introduce the operation of making three vertices exclusive. Intuitively, this
operation is our main tool to fan out the possible pushes in avalanches according to a binary
tree: When u is pushed to B, either v or w can be pushed to A to repair the partition. We
use this construction extensively in the selection gadgets described below.
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Given three vertices u, v, w ∈ V (G), by making u, v, and w exclusive we mean: (i) intro-
ducing a copy of M into G, (ii) identifying three distinct vertices of M with u, v, and w,
respectively, and (iii) fixing all remaining vertices ofM (if any) into B by making each of them
adjacent to both a1

1 and a1
2. The vertices in V (M) \ {u, v, w} are helper vertices. Observe

that V (M) \ {u, v, w} ⊆ B, because, otherwise, there would be a P3 in G[A] involving a1
1 and

a1
2. Furthermore, not all three u, v, w ∈ B since otherwise G[B] contains a copy of M . When

constructing cluster-Π partitions we will always tacitly assume that V (M) \ {u, v, w} ⊆ B
and ignore the vertices in V (M) \ {u, v, w}. Furthermore, to simplify showing that the
constructed partition (A,B) is a cluster-Π partition we will show that G[A] is a cluster graph,
that G[B]− {u, v, w} ∈ Π, that at least one of u, v, w is in A and that {u, v, w} ∩B do not
have any neighbors in G[B] other than {u, v, w}. Since Π is characterized by connected
forbidden induced subgraphs and the helper vertices will not receive further neighbors, this
suffices to prove that G[B] ∈ Π.

Instance Selection. The inner workings of the generic selection gadget described below use
the necessary pushes along a binary-tree-like structure outlined above.

For use as an instance-selection gadget, we need to take special care so that the number
of clusters used is roughly logarithmic in the number of instances. We achieve this by using
only two clusters (represented by anchors and their dials) per level in the binary-tree-like
structure of pushes. For use as a vertex-selection gadget, to bound the number of clusters
in the size of the largest instance, we need to ensure that all the vertex-selection gadgets
share their corresponding clusters. We achieve this by grouping the gadgets according to
the groups of anchors above; each gadget uses only anchors in their corresponding group
and shares these anchors with all other gadgets in this group. Essentially, the operation of
vertices joining dials makes it possible to define the selection gadgets in a relatively local way.

We will use the following (generic) construction both for selecting an instance and for
selecting the independent-set vertices in that instance. For this purpose, fix two construction
parameters p, q ∈ N, where p specifies which anchors (and dials) we use when constructing
the gadget and q specifies how many possible choices shall be modeled. Herein, we require
that q be a power of two. For the instance-selection gadget we will set p = 2 and q = t.

We introduce a new vertex v∗. Our goal is to construct a structure in which, starting
from a trivial cluster-Π partition (A,B), putting v∗ ∈ B triggers an avalanche of pushes
according to a path in a binary-tree-like structure. To this end, fix a rooted binary tree T
with q leaves (corresponding to the q = t instances of Colorful Independent Set for
the instance-selection gadget). Say a vertex in T is on level i ∈ [log q] if its distance from
the root is i. For i ∈ [log q], Li denotes the set of vertices at level i. The tree T will not be
part of the constructed graph, we use it only as a scaffold to define the actual vertices in the
graph.

For each vertex v ∈ V (T ) except the root, introduce two vertices α(v), β(v) into G. Let i
be the level of v. Connect α(v) to both ap

2i−1 and β(v). Make β(v) join Dp
2i. Furthermore,

for each vertex u ∈ Li, i ∈ {0, . . . , log q}, let v, w be the two children of u in T and make
β(u), α(v), α(w) exclusive. If i = 0, then let v, w be the two vertices in level 1 in T and make
v∗, α(v), α(w) exclusive instead. This completes the construction of the selection gadget.
Vertex v∗ is a volatile vertex, as is α(v) for v ∈ V (T ). Each β(v), v ∈ V (T ), is a dial vertex.
Call the constructed gadget selection(p, q), and say that v∗ is the activator vertex, and that
the vertices in {β(v) | v ∈ Llog q} are the choice vertices. We fix an arbitrary order of the
choice vertices, so that we may speak of the ith choice vertex without confusion.
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I Lemma 3.3. (♠) Let G′ be the graph before applying selection(p, q) and G the graph
afterwards.
(i) If cluster-Π partition (A,B) has at most d clusters in G[A] and the activator vertex is

in B, then at least one choice vertex is in B.
(ii) If there is a cluster-Π partition (A′, B′) for G′ with d clusters in G′[A′], then there is

a cluster-Π partition (A,B) for G with d+ 1 clusters, where the activator vertex is a
singleton cluster and each choice vertex is in A. If (A′, B′) is friendly with respect to
the dials Dp

i , then (A,B) is friendly with respect to the dials Dp
i .

(iii) If G′ has a cluster-Π partition (A′, B′) that is friendly with respect to the dials Dp
i and

such that G′[A′] contains at most d clusters, then, for each i ∈ [q], there is a cluster-Π
partition (A,B) of G, such that graph G[A] contains at most d clusters, and out of all
choice vertices only the ith one is in B (and, necessarily, the activator vertex is in B).
Moreover, the choice vertex that is contained in B is isolated in G[B].

As mentioned, to construct the instance-selection gadget, we carry out selection(2, t). For
further reference, fix a bijection φ from the set of instances [t] to the choice vertices produced
by the construction. We use φ later to denote the choice vertex corresponding to an instance.

Vertex Selection. We now use the above construction selection(·, ·) to create vertex-selection
gadgets for each instance and each color. Each vertex-selection gadget selects one vertex of
the gadget’s color into an independent set when activated by putting the activator vertex
into B (which will be effected by the instance-selection gadget). The vertex-selection gadgets
for each instance are distinct, but they use dials which are shared by all instances.

In the first part of the construction of the vertex-selection gadgets, for each instance
r ∈ [t] and color i ∈ [k], carry out selection(3 + i, n). Let ψ∗r,i be the corresponding activator
vertex and fix a bijection ψr,i from the vertices V (Gr) of color i to the choice vertices. Make
ψ∗r,i join D3

1+i. Intuitively, if the activator vertex ψ∗r,i is put into B, the subgraph constructed
by selection(3 + i, n) enforces the push of a choice vertex into B, which by bijection ψr,i

correspond one-to-one to the vertices of color i in instance r. In this way, we model the
selection of an independent-set vertex.

In the second part of the construction of the vertex-selection gadgets, we introduce a
way to activate the vertex-selection gadgets of all colors if some instance r ∈ [t] has been
chosen. For this, carry out the following steps for each r ∈ [t]. Introduce two vertices ur, vr.
Make φ(r), ur, and vr exclusive. Fix ur ∈ B by making it adjacent to both a1, a2. Make vr

adjacent to a3
1 and, for each i ∈ [k], make vr adjacent to ψ∗r,i. Vertex ur is a helper vertex

and vr is a volatile vertex. This concludes the construction of the vertex-selection gadgets.
Intuitively, the selection of instance r is indicated by the fact that φ(r) ∈ B. Since ur ∈ B

and φ(r), ur, and vr are exclusive, vr ∈ A. Vertex vr forms a P3 with a3
1 and each ψ∗r,i.

Hence, the activator vertices ψ∗r,i of each vertex-selection gadget for instance r are in B. This
enforces the selection of an independent-set vertex of each color.

By iteratively applying Lemma 3.3, we can show that the above-constructed graph has
the properties that, if there is a cluster-Π partition (A,B) with d clusters in G[A], then there
is an instance for which the vertex-selection gadget for each color has one choice vertex in B
(that is, the corresponding vertex is selected); and, vice-versa, for each possible selection of
one vertex of each color in an instance, there is a corresponding cluster-Π partition.

Verification. For the verification gadgets it is again crucial to share clusters (anchors)
between many gadgets to keep the overall number of clusters in A small. For this, we use
|V | = k · n anchors that each represents, for each instance, one fixed vertex, and m pairs of
anchors that each represents, for each instance, one fixed edge.
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Due to space constraints, the details of the construction are not given here, but the
working principle is as follows. Selecting a vertex v via a vertex-selection gadget will make it
necessary to push a vertex corresponding to v into the cluster of its associated anchor. This
push creates a P3 in A for each incident edge e, necessitating a further push. Namely, we
are required to push a vertex out of the cluster in A corresponding to one anchor associated
with e. Pushing the corresponding vertex for the other endpoint of e into B will complete
a forbidden induced subgraph, yielding that no two endpoints of an edge are selected. For
the other direction of the correctness proof, we show that it is possible to configure the
gadgets accordingly if one of the input instances is positive, which then concludes the proof
of Theorem 3.1.
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