
Practical Access to Dynamic Programming on
Tree Decompositions
Max Bannach
Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany
bannach@tcs.uni-luebeck.de

https://orcid.org/0000-0002-6475-5512

Sebastian Berndt
Department of Computer Science, Kiel University, Kiel, Germany
seb@informatik.uni-kiel.de

https://orcid.org/0000-0003-4177-8081

Abstract
Parameterized complexity theory has lead to a wide range of algorithmic breakthroughs within
the last decades, but the practicability of these methods for real-world problems is still not
well understood. We investigate the practicability of one of the fundamental approaches of this
field: dynamic programming on tree decompositions. Indisputably, this is a key technique in
parameterized algorithms and modern algorithm design. Despite the enormous impact of this
approach in theory, it still has very little influence on practical implementations. The reasons
for this phenomenon are manifold. One of them is the simple fact that such an implementation
requires a long chain of non-trivial tasks (as computing the decomposition, preparing it,. . .). We
provide an easy way to implement such dynamic programs that only requires the definition of the
update rules. With this interface, dynamic programs for various problems, such as 3-coloring,
can be implemented easily in about 100 lines of structured Java code.

The theoretical foundation of the success of dynamic programming on tree decompositions is
well understood due to Courcelle’s celebrated theorem, which states that every MSO-definable
problem can be efficiently solved if a tree decomposition of small width is given. We seek to
provide practical access to this theorem as well, by presenting a lightweight model-checker for a
small fragment of MSO. This fragment is powerful enough to describe many natural problems,
and our model-checker turns out to be very competitive against similar state-of-the-art tools.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases fixed-parameter tractability, treewidth, model-checking

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.6

1 Introduction

Parameterized algorithms aim to solve intractable problems on instances where some para-
meter tied to the complexity of the instance is small. This line of research has seen enormous
growth in the last decades and produced a wide range of algorithms [9]. More formally,
a problem is fixed-parameter tractable (in fpt), if every instance I can be solved in time
f(κ(I)) · poly(|I|) for a computable function f , where κ(I) is the parameter of I. While the
impact of parameterized complexity to the theory of algorithms and complexity cannot be
overstated, its practical component is much less understood. Very recently, the investigation
of the practicability of fixed-parameter tractable algorithms for real-world problems has
started to become an important subfield (see e. g. [18, 11]). We investigate the practicability
of dynamic programming on tree decompositions – one of the most fundamental techniques of
parameterized algorithms. A general result explaining the usefulness of tree decompositions

© Max Bannach and Sebastian Berndt;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannach@tcs.uni-luebeck.de
https://orcid.org/0000-0002-6475-5512
mailto:seb@informatik.uni-kiel.de
https://orcid.org/0000-0003-4177-8081
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Practical Access to Dynamic Programming on Tree Decompositions

was given by Courcelle in [8], who showed that every property that can be expressed in
monadic second-order logic is fixed-parameter tractable if it is parameterized by tree width.
By combining this result (known as Courcelle’s Theorem) with the f(tw(G)) · |G| algorithm
of Bodlaender [7] to compute an optimal tree decomposition in fpt-time, a wide range of
graph-theoretic problems is known to be solvable on these tree-like graphs. Unfortunately,
both ingredients of this approach are very expensive in practice.

One of the major achievements concerning practical parameterized algorithms was the
discovery of a practically fast algorithm for treewidth due to Tamaki [19]. Concerning Cour-
celle’s Theorem, there are currently two contenders concerning efficient implementations of it:
D-Flat, an Answer Set Programming (ASP) solver for problems on tree decompositions [1];
and Sequoia, an MSO solver based on model checking games [17]. Both solvers allow to solve
very general problems and the corresponding overhead might, thus, be large compared to a
straightforward implementation of the dynamic programs for specific problems.

Our Contributions. In order to study the practicability of dynamic programs on tree
decompositions, we expand our tree decomposition library Jdrasil with an easy to use
interface for such programs: The user only needs to specify the update rules for the different
kind of nodes within the tree decomposition. The remaining work – computing a suitable
optimized tree decomposition and performing the actual run of the dynamic program – are
done by Jdrasil. This allows users to implement a wide range of algorithms within very few
lines of code and, thus, gives the opportunity to test the practicability of these algorithms
quickly. This interface is presented in Section 3.

While D-Flat and Sequoia solve very general problems, the experimental results of Section 5
show that naïve implementations of dynamic programs might be much more efficient. In
order to balance the generality of MSO solvers and the speed of direct implementations,
we introduce a small MSO fragment, that avoids quantifier alternation, in Section 4. By
concentrating on this fragment, we are able to build a model-checker, called Jatatosk, that
runs nearly as fast as direct implementations of the dynamic programs. To show the feasibility
of our approach, we compare the running times of D-Flat, Sequoia, and Jatatosk for various
problems. It turns out that Jatatosk is competitive against the other solvers and, furthermore,
its behaviour is much more consistent (i. e. it does not fluctuate greatly on similar instances).
We conclude that concentrating on a small fragment of MSO gives rise to practically fast
solvers, which are still able to solve a large class of problems on graphs of bounded treewidth.

2 Preliminaries

All graphs considered in this paper are undirected, that is, they consists of a set of vertices V
and of a symmetric edge-relation E ⊆ V ×V . We assume the reader to be familiar with basic
graph theoretic terminology, see for instance [10]. A tree decomposition of a graph G = (V,E)
is a tuple (T, ι) consisting of a rooted tree T and a mapping ι from nodes of T to sets of
vertices of G (which we call bags) such that (1) for all v ∈ V there is a node n in T with
v ∈ ι(n), (2) for every edge {v, w} ∈ E there is a node m in T with {v, w} ⊆ ι(m), and (3)
the set {x | v ∈ ι(x) } is connected in T for every v ∈ V . The width of a tree decomposition
is the maximum size of one of its bags minus one, and the treewidth of G, denoted by tw(G),
is the minimum width any tree decomposition of G must have.

In order to describe dynamic programs over tree decompositions, it turns out be helpful
to transform a tree decomposition into a more structured one. A nice tree decomposition
is a triple (T, ι, η) where (T, ι) is a tree decomposition and η : V (T) → {leaf, introduce,

M. Bannach and S. Berndt 6:3

forget, join} is a labeling such that (1) nodes labeled “leaf” are exactly the leaves of T ,
and the bags of these nodes are empty; (2) nodes n labeled “introduce” or “forget” have
exactly one child m such that there is exactly one vertex v ∈ V (G) with either v 6∈ ι(m) and
ι(n) = ι(m) ∪ {v} or v ∈ ι(m) and ι(n) = ι(m) \ {v}, respectively; (3) nodes n labeled “join”
have exactly two children x, y with ι(n) = ι(x) = ι(y). A very nice tree decomposition is a nice
tree decomposition that also has exactly one node labeled “edge” for every e ∈ E(G), which
virtually introduces the edge e to the bag – i. e., whenever we introduce a vertex, we assume
it to be “isolated” in the bag until its incident edges are introduced. It is well known that
any tree decomposition can efficiently be transformed into a very nice one without increasing
its width (essentially traverse through the tree and “pull apart” bags) [9]. Whenever we
talk about tree decompositions in the rest of the paper, we actually mean very nice tree
decompositions. However, we want to stress out that all our interfaces also support “just”
nice tree decompositions.

We assume the reader to be familiar with basic logic terminology and give just a brief
overview over the syntax and semantic of monadic second-order logic (MSO), see for
instance [13] for a detailed introduction. A vocabulary (or signature) τ = (Ra1

1 , . . . , Ran
n) is a

set of relational symbols Ri of arity ai ≥ 1. A τ -structure is a set U – called universe – together
with an interpretation RUi ⊆ Rai of the relational symbols. Let x1, x2, . . . be a sequence of
first-order variables and X1, X2, . . . be a sequence of second-order variables Xi of arity ar(Xi).
The atomic τ -formulas are xi = xj for two first-order variables and R(xi1 , . . . , xik), where R
is either a relational symbol or a second-order variable of arity k. The set of τ -formulas is
inductively defined by (1) the set of atomic τ -formulas; (2) Boolean connections ¬φ, (φ ∨ ψ),
and (φ ∧ ψ) of τ -formulas φ and ψ; (3) quantified formulas ∃xφ and ∀xφ for a first-order
variable x and a τ -formula φ; (4) quantified formulas ∃Xφ and ∀Xφ for a second-order variable
X of arity 1 and a τ -formula φ. The set of free variables of a formula φ consists of the variables
that appear in φ but are not bounded by a quantifier. We denote a formula φ with free
variables x1, . . . , xk, X1, . . . , X` as φ(x1, . . . , xk, X1, . . . , X`). Finally, we say a τ -structure S
with an universe U is a model of an τ -formula φ(x1, . . . , xk, X1, . . . , X`) if there are elements
u1, . . . , uk ∈ U and relations U1, . . . , U` with Ui ⊆ Uar(Xi) with φ(u1, . . . , uk, U1, . . . , U`)
being true in S. We write S |= φ(u1, . . . , uk, U1, . . . , U`) in this case.

I Example 1. Graphs can be modeled as {E2}-structures with a symmetric interpretation
of E. Properties such as “is 3-colorable” can then be described by formulas as:

φ̃3col = ∃R∃G∃B (∀xR(x) ∨G(x) ∨B(x)) ∧ (∀x∀y E(x, y)→
∧

C ∈ {R,G,B}
¬C(x) ∨ ¬C(y)).

For instance, we have |= φ̃3col and 6|= φ̃3col. We write φ̃ whenever a more refined
version of φ will be given later on.

The model-checking problem asks, given a logical structure S and a formula φ, if S |= φ

holds. A model-checker is a program that solves this problem and outputs an assignment to
its free and bounded variables if S |= φ holds.

3 An Interface for Dynamic Programming on Tree Decompositions

It will be convenient to recall a classical viewpoint of dynamic programming on tree de-
compositions to illustrate why our interface is designed the way it is. We will do so by the
guiding example of 3-coloring: Is it possible to color vertices of a given graph with three
colors such that adjacent vertices never share the same color? Intuitively, a dynamic program

ESA 2018

6:4 Practical Access to Dynamic Programming on Tree Decompositions

for 3-coloring will work bottom-up on a very nice tree decomposition and manages a
set of possible colorings per node. Whenever a vertex is introduced, the program “guesses”
a color for this vertex; if a vertex is forgotten we have to remove it from the bag and
identify configurations that become eventually equal; for join bags we just have to take the
configurations that are present in both children; and for edge bags we have to reject colorings
in which both endpoints of the introduced edge have the same color. To formalize this vague
algorithmic description, we view it from the perspective of automata theory.

3.1 The Tree Automaton Perspective
Classically, dynamic programs on tree decompositions are described in terms of tree auto-
mata [13]. Recall that in a very nice tree decomposition the tree T is rooted and binary; we
assume that the children of T are ordered. The mapping ι can then be seen as a function
that maps the nodes of T to symbols from some alphabet Σ. A naïve approach to manage
ι would yield a huge alphabet (depending on the size of the graph). We thus define the
so called tree-index, which is a map idx : V (G)→ {0, . . . , tw(G)} such that no two vertices
that appear in the same bag share a common tree-index. The existence of such an index
follows directly from the property that every vertex is forgotten exactly once: We can simply
traverse T from the root to the leaves and assign a free index to a vertex V when it is
forgotten, and release the used index once we reach an introduce bag for v. The symbols
of Σ then only contain the information for which tree-index there is a vertex in the bag.
From a theoreticians perspective this means that |Σ| depends only on the treewidth; from
a programmers perspective the tree-index makes it much easier to manage data structures
that are used by the dynamic program.

I Definition 2 (Tree Automaton). A nondeterministic bottom-up tree automaton is a tuple
A = (Q,Σ,∆, F) where Q is a set of states with a subset F ⊆ Q of accepting states, Σ is an
alphabet, and ∆ ⊆ (Q ∪ {⊥})× (Q ∪ {⊥})×Σ×Q is a transition relation in which ⊥ 6∈ Q is
a special symbol to treat nodes with less than two children. The automaton is deterministic
if for every x, y ∈ Q ∪ {⊥} and every σ ∈ Σ there is exactly one q ∈ Q with (x, y, σ, q) ∈ ∆.

I Definition 3 (Computation of a Tree Automaton). The computation of a tree automaton
A = (Q,Σ,∆, F) on a labeled tree (T, ι) with ι : V (T) → Σ and root r ∈ V (T) is an
assignment q : V (T)→ Q such that for all n ∈ V (T) we have (1) (q(x), q(y), ι(n), q(n)) ∈ ∆
if n has two children x, y; (2) (q(x),⊥, ι(n), q(n)) ∈ ∆ or (⊥, q(x), ι(n), q(n)) ∈ ∆ if n has
one child x; (3) (⊥,⊥, ι(n), q(n)) ∈ ∆ if n is a leaf. The computation is accepting if q(r) ∈ F .

Simulating Tree Automata. A dynamic program for a decision problem can be formulated
as a nondeterministic tree automaton that works on the decomposition, see the left side
of Figure 1 for a detailed example. Observe that a nondeterministic tree automaton A

will process a labeled tree (T, ι) with n nodes in time O(n). When we simulate such an
automaton deterministically, one might think that a running time of the form O(|Q| · n) is
sufficient, as the automaton could be in any potential subset of the Q states at some node of
the tree. However, there is a pitfall: For every node we have to compute the set of potential
states of the automaton depending on the sets of potential states of the children of that
node, leading to a quadratic dependency on |Q|. This can be avoided for transitions of the
form (⊥,⊥, ι(x), p), (q,⊥, ι(x), p), and (⊥, q, ι(x), p), as we can collect potential successors
of every state of the child and compute the new set of states in linear time with respect to
the cardinality of the set. However, transitions of the form (qi, qj , ι(x), p) are difficult, as we
now have to merge two sets of states. In detail, let x be a node with children y and z and let

M. Bannach and S. Berndt 6:5

Qy and Qz be the set of potential states in which the automaton eventually is in at these
nodes. To determine Qx we have to check for every qi ∈ Qy and every qj ∈ Qz if there is a
p ∈ Q such that (qi, qj , ι(x), p). Note that the number of states |Q| can be quite large even
for moderately sized parameters k, as |Q| is typically of size 2Ω(k), and we will thus try to
avoid this quadratic blow-up.

I Observation 4. A tree automaton can be simulated in time O(|Q|2 · n).

Unfortunately, the quadratic factor in the simulation cannot be avoided in general, as the
automaton may very well contain a transition for all possible pairs of states. However, there
are some special cases in which we can circumnavigate the increase in the running time.

I Definition 5 (Symmetric Tree Automaton). A symmetric nondeterministic bottom-up tree
automaton is a nondeterministic bottom-up tree automaton A = (Q,Σ,∆, F) in which all
transitions (l, r, σ, q) ∈ ∆ satisfy either l = ⊥, r = ⊥, or l = r.

Assume as before that we wish to compute the set of potential states for a node x with
children y and z. Observe that in a symmetric tree automaton it is sufficient to consider the
set Qy ∩Qz and that the intersection of two sets can be computed in linear time if we take
some care in the design of the underlying data structures.

I Observation 6. A symmetric tree automaton can be simulated in time O(|Q| · n).

The right side of Figure 1 illustrates the deterministic simulation of a symmetric tree
automaton. The massive time difference in the simulation of tree automata and symmetric
tree automata significantly influenced the design of the algorithms in Section 4, in which we
try to construct an automaton that is 1) “as symmetric as possible” and 2) allows to take
advantage of the “symmetric parts” even if the automaton is not completely symmetric.

3.2 The Interface
We introduce a simple Java-interface to our library Jdrasil, which originally was developed
for the computation of tree decompositions only. The interface is build up from two
classes: StateVectorFactory and StateVector. The only job of the factory is to generate
StateVector objects for the leaves of the tree decomposition, or with the terms of the
previous section: “to define the initial states of the tree automaton”. The StateVector class
is meant to model a vector of potential states in which the nondeterministic tree automaton
is at a specific node of the tree decomposition. Our interface does not define at all what a
“state” is, or how a collection of states is managed (although most of the times, it will be
a set). The only thing the interface requests a user to implement is the behaviour of the
tree automaton when it reaches a node of the tree-decomposition, i. e., given a StateVector
(for some unknown node in the tree decomposition) and the information that the automaton
reaches a certain node, how does the StateVector for this node look like? To this end, the
interface contains the methods shown in Listing 1.

Listing 1 The four methods of the interface describe the behaviour of the tree automaton. Here
“T” is a generic type for vertices. Each function obtains as parameter the current bag and a tree-index
“idx”. Other parameters correspond to bag-type specifics, e. g. the introduced or forgotten vertex v.

StateVector <T> introduce (Bag <T> b, T v, Map <T, Integer > idx);
StateVector <T> forget (Bag <T> b, T v, Map <T, Integer > idx);
StateVector <T> join(Bag <T> b, StateVector <T> o, Map <T, Integer > idx);
StateVector <T> edge(Bag <T> b, T v, T w, Map <T, Integer > idx);

ESA 2018

6:6 Practical Access to Dynamic Programming on Tree Decompositions

∅−2

{2}−3

{2, 3, 4, 5}join

{2, 3, 4, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{5, 7}−8

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

∅−2

{2}−3

{2, 3, 4, 5}join

{2, 3, 4, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{5, 7}−8

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

Figure 1 The left picture shows a part of a tree decomposition of the grid graph with vertices
{0, . . . , 9}. The index of a bag shows the type of the bag: a positive sign means “introduce”, a
negative one “forget”, a pair represents an “edge”-bag, and text is self explanatory. Solid lines
represent real edges of the decomposition, while dashed lines illustrate a path (i. e., there are some
bags skipped). On the left branch of the decomposition a run of a nondeterministic tree automaton
with tree-index

(
0 1 2 3 4 5 6 7 8
2 3 0 1 2 3 0 1 0

)
for 3-coloring is illustrated. To increase readability, states of

the automaton are connected to the corresponding bags with gray lines, and for some nodes the
states are omitted. In the right picture the same automaton is simulated deterministically.

This already rounds up the description of the interface, everything else is done by Jdrasil.
In detail, given a graph and an implementation of the interface, Jdrasil will compute a
tree decomposition1, transform this decomposition into a very nice tree decomposition,
potentially optimize the tree decomposition for the following dynamic program, and finally
traverse through the tree decomposition and simulate the tree automaton described by the
implementation of the interface. The result of this procedure is the StateVector object
assigned to the root of the tree decomposition.

3.3 Example: 3-Coloring
Let us illustrate the usage of the interface with our running example of 3-coloring. A State
of the automaton can be modeled as a simple integer array that stores a color (an integer)
for every vertex in the bag. A StateVector stores a set of State objects, i. e., essentially a
set of integer arrays. Introducing a vertex v to a StateVector therefore means that three
duplicates of each stored state have to be created, and for every duplicate a different color
has to be assigned to v. Listing 2 illustrates how this operation could be realized in Java.

1 See [6] for the concrete algorithms used by Jdrasil.

M. Bannach and S. Berndt 6:7

Listing 2 Exemplary implementation of the introduce method for 3-coloring.
StateVector <T> introduce (Bag <T> b, T v, Map <T, Integer > idx) {

Set <State > newStates = new HashSet < >();
for (State state : states) { // ’states ’ is the set of states

for (int color = 1; color <= 3; color ++) {
State newState = new State(state); // copy the state
newState . colors [idx.get(v)] = color;
newStates .add(newState);

}
}
states = newStates ;
return this;

}

The three other methods can be implemented in a very similar fashion: in the forget-method
we set the color of v to 0; in the edge-method we remove states in which both endpoints of
the edge have the same color; and in the join-method we compute the intersection of the
state sets of both StateVector objects. Note that when we forget a vertex v, multiple states
may become identical, which is handled here by the implementation of the Java Set-class,
which takes care of duplicates automatically.

A reference implementation of this 3-coloring solver is publicly available [4], and
a detailed description of it can be found in the manual of Jdrasil [5]. Note that this
implementation is only meant to illustrate the interface and that we did not make any effort
to optimize it. Nevertheless, this very simple implementation (the part of the program that
is responsible for the dynamic program only contains about 120 lines of structured Java-code)
performs surprisingly well, as the experiments in Section 5 indicate.

4 A Lightweight Model-Checker for a Small MSO-Fragment

Experiments with the coloring solver of the previous section have shown a huge difference in
the performance of general solvers as D-Flat and Sequoia against a concrete implementation of
a tree automaton for a specific problem (see Section 5). This is not necessarily surprising, as
a general solver needs to keep track of way more information. In fact, a MSO-model-checker
can probably (unless P = NP) not run in time f(|φ|+tw) ·poly(n) for any elementary function
f [14]. On the other hand, it is not clear (in general) what the concrete running time of such
a solver is for a concrete formula or problem (see e. g. [16] for a sophisticated analysis of
some running times in Sequoia). We seek to close this gap between (slow) general solvers
and (fast) concrete algorithms. Our approach is to concentrate only on a small fragment of
MSO, which is powerful enough to express many natural problems, but which is restricted
enough to allow model-checking in time that matches or is close to the running time of a
concrete algorithm for the problem. As a bonus, we will be able to derive upper bounds on
the running time of the model-checker directly from the syntax of the input formula.

Based on the interface of Jdrasil, we have implemented a publicly available prototype
called Jatatosk [3]. In Section 5, we perform various experiments on different problems on
multiple sets of graphs. It turns out that Jatatosk is competitive against the state-of-the-art
solvers D-Flat and Sequoia. Arguably these two programs solve a more general problem and
a direct comparison is not entirely fair. However, the experiments do reveal that it seems
very promising to focus on smaller fragments of MSO (or perhaps any other description
language) in the design of treewidth based solvers.

ESA 2018

6:8 Practical Access to Dynamic Programming on Tree Decompositions

4.1 Description of the Fragment
We only consider vocabularies τ that contain the binary relation E2, and we only consider
τ -structures with a symmetric interpretation of E2, i. e., we only consider structures that
contain an undirected graph (but may also contain further relations). The fragment of MSO
that we consider is constituted by formulas of the form φ = ∃X1 . . . ∃Xk

∧n
i=1 ψi, where the

Xj are second-order variables and the ψi are first-order formulas of the form

ψi ∈ {∀x∀y E(x, y)→ χi, ∀x∃y E(x, y) ∧ χi, ∃x∀y E(x, y)→ χi,

∃x∃y E(x, y) ∧ χi, ∀x χi, ∃x χi }.

Here, the χi are quantifier-free first-order formulas in canonical normal form. It is easy
to see that this fragment is already powerful enough to encode many classical problems as
3-coloring (φ̃3col from the introduction is part of the fragment), or vertex-cover (we will
discuss how to handle optimization in Section 4.4): φ̃vc = ∃S∀x∀y E(x, y)→ S(x) ∨ S(y).

4.2 A Syntactic Extension of the Fragment
Many interesting properties, such as connectivity, can easily be expressed in MSO, but not
directly in the fragment that we study. Nevertheless, a lot of these properties can directly
be checked by a model-checker if it “knows” what kind of properties it actually checks. We
present a syntactic extension of our MSO-fragment which captures such properties. The
extension consist of three new second order quantifiers that can be used instead of ∃Xi.

The first extension is a partition quantifier, which quantifies over partitions of the universe:

∃partitionX1, . . . , Xk ≡ ∃X1∃X2 . . . ∃Xk

(
∀x

k∨
i=1

Xi(x)
)
∧
(
∀x

k∧
i=1

∧
j 6=i
¬Xi(x) ∧ ¬Xj(x)

)
.

This quantifier has two advantages. First, formulas like φ̃3col can be simplified to

φ3col = ∃partitionR,G,B ∀x∀y E(x, y)→
∧

C ∈ {R,G,B}
¬C(x) ∨ ¬C(y),

and second, the model-checking problem for them can be solved more efficiently: the solver
directly “knows” that a vertex must be added to exactly one of the sets.

We further introduce two quantifiers that work with respect to the symmetric relation
E2 (recall that we only consider structures that contain such a relation). The ∃connectedX

quantifier guesses an X ⊆ U that is connected with respect to E (in graph theoretic terms),
i. e., it quantifies over connected subgraphs. The ∃forestF quantifier guesses a F ⊆ U that is
acyclic with respect to E (again in graph theoretic terms), i. e., it quantifies over subgraphs
that are forests. These quantifiers are quite powerful and allow, for instance, to express that
the graph induced by E2 contains a triangle as minor:

φtriangle-minor =∃connectedR ∃connectedG∃connectedB �(
∀x (¬R(x) ∨ ¬G(x)) ∧ (¬G(x) ∨ ¬B(x)) ∧ (¬B(x) ∨ ¬R(x))

)
∧
(
∃x∃y E(x, y) ∧R(x) ∧G(y)

)
∧
(
∃x∃y E(x, y) ∧G(x) ∧B(y)

)
∧
(
∃x∃y E(x, y) ∧B(x) ∧R(y)

)
.

We can also express problems that usually require more involved formulas in a very natural way.
For instance, the feedback-vertex-set problem can be described by the following formula
(again, optimization will be handled in Section 4.4): φ̃fvs = ∃S ∃forestF ∀x S(x) ∨ F (x).

M. Bannach and S. Berndt 6:9

4.3 Description of the Model-Checker
We describe our model-checker in terms of a nondeterministic tree automaton that works on a
tree decomposition of the graph induced by E2 (note that, in contrast to other approaches in
the literature, we do not work on the Gaifman graph). We define any state of the automaton
as bit-vector, and we stipulate that the initial state at every leaf is the zero-vector. For any
quantifier or subformula, there will be some area in the bit-vector reserved for that quantifier
or subformula and we describe how state transitions effect these bits. The “algorithmic idea”
behind the implementation of these transitions is not new, and a reader familiar with folklore
dynamic programs on tree decompositions (for instance for vertex-cover or steiner-tree)
will probably recognize them. An overview over common techniques can be found in the
standard textbooks [9, 13].

The Partition Quantifier. We start with a detailed description of the partition quantifier
∃partitionX1, . . . , Xq (we do not implement an additional ∃X quantifier, as we can easily state
∃X ≡ ∃partitionX, X̄): Let k be the maximum bag-size of the tree decomposition. We reserve
k · log2 q bit in the state description, where each block of length log2 q indicates in which
set Xi the corresponding element of the bag is. On an introduce-bag (e. g. for v ∈ U), the
nondeterministic automaton guesses an index i ∈ {1, . . . , q} and sets the log2 q bits that are
associated with the tree-index of v to i. Equivalently, the corresponding bits are cleared
when the automaton reaches a forget-bag. As the partition is independent of any edges, an
edge-bag does not change any of the bits reserved for the partition quantifier. Finally, on
join-bags we may only join states that are identical on the bits describing the partition (as
otherwise the vertices of the bag would be in different partitions) – meaning this transition
is symmetric with respect to these bits (in terms of Section 3.1).

The Connected Quantifier. The next quantifier we describe is ∃connectedX which has to
overcome the difficulty that an introduced vertex may not be connected to the rest of the bag
in the moment it got introduced, but may be connected to it when further vertices “arrive”.
The solution to this dilemma is to manage a partition of the bag into k′ ≤ k connected
components P1, . . . , Pk′ , for which we reserve k · log2 k bit in the state description. Whenever
a vertex v is introduced, the automaton either guesses that it is not contained in X and
clears the corresponding bits, or it guesses that v ∈ X and assigns some Pi to v. Since v is
isolated in the bag in the moment of its introduction (recall that we work on a very nice tree
decomposition), it requires its own component and is therefore assigned to the smallest empty
partition Pi. When a vertex v is forgotten, there are four possible scenarios: 1) v 6∈ X, then
the corresponding bits are already cleared and nothing happens; 2) v ∈ X and v ∈ Pi with
|Pi| > 1, then v is just removed and the corresponding bits are cleared; 3) v ∈ X and v ∈ Pi
with |Pi| = 1 and there are other vertices w in the bag with w ∈ X, then the automaton
rejects the configuration, as v is the last vertex of Pi and may not be connected to any other
partition anymore; 4) v ∈ X is the last vertex of the bag that is contained in X, then the
connected component is “done”, the corresponding bits are cleared and one additional bit is
set to indicate that the connected component cannot be extended anymore. When an edge
{u, v} is introduced, components might need to be merged. Assume u, v ∈ X, u ∈ Pi, and
v ∈ Pj with i < j (otherwise, an edge-bag does not change the state), then we essentially
perform a classical union-operation from the well-known union-find data structure. Hence, we
assign all vertices that are assigned to Pj to Pi. Finally, at a join-bag we may join two states
that agree locally on the vertices that are in X (i. e., they have assigned the same vertices to
some Pi), however, they do not have to agree in the way the different vertices are assigned to

ESA 2018

6:10 Practical Access to Dynamic Programming on Tree Decompositions

Pi (in fact, there does not have to be an isomorphism between these assignments). Therefore,
the transition at a join-bag has to connect the corresponding components analogous to the
edge-bags – in terms of Section 3.1 this transition is not symmetric. The description of the
remaining quantifiers and subformulas is very similar.

4.4 Extending the Model-Checker to Optimization Problems
As the example formulas from the previous section already indicate, performing model-
checking alone will not suffice to express many natural problems. In fact, every graph is a
model of the formula φ̃vc if S simply contains all vertices. It is therefore a natural extension to
consider an optimization version of the model-checking problem, which is usually formulated
as follows [9, 13]: Given a logical structure S, a formula φ(X1, . . . , Xp) of the MSO-fragment
defined in the previous section with free unary second-order variables X1, . . . , Xp, and weight
functions ω1, . . . , ωp with ωi : U → Z; find S1, . . . , Sp with Si ⊆ U such that

∑p
i=1
∑
s∈Si

ωi(s)
is minimized under S |= φ(S1, . . . , Sp), or conclude that S is not a model for φ for any
assignment of the free variables. We can now correctly express the (actually weighted)
optimization version of vertex-cover as follows: φvc(S) = ∀x∀y E(x, y)→

(
S(x) ∨ S(y)

)
.

Similarly we can describe the optimization version of dominating-set if we assume the
input does not have isolated vertices (or is reflexive), and we can also fix the formula φ̃fvs:

φds(S) = ∀x∃y E(x, y) ∧
(
S(x) ∨ S(y)

)
, φfvs(S) = ∃forestF ∀x

(
S(x) ∨ F (x)

)
.

We can also maximize the term
∑p
i=1
∑
s∈Si

ωi(s) by multiplying all weights with −1 and,
thus, express problems such as independent-set: φis(S) = ∀x∀y E(x, y) →

(
¬S(x) ∨

¬S(y)
)
. The implementation of such an optimization is straightforward: essentially there is

a partition quantifier for every free variable Xi that partitions the universe into Xi and X̄i.
We assign a current value of

∑p
i=1
∑
s∈Si

ωi(s) to every state of the automaton, which is
adapted if elements are “added” to some of the free variables at introduce nodes. Note that,
since we optimize an affine function, this does not increase the state space: even if multiple
computational paths lead to the same state with different values at some node of the tree, it
is well defined which of these values is the optimal one. Therefore, the cost of optimization
only lies in the partition quantifier, i. e., we pay with k bits in the state description of the
automaton per free variable – independently of the weights.

4.5 Handling Symmetric and Non-Symmetric Joins
In Section 4.3 we have defined the states of our automaton with respect to a formula, the left
side of Table 1 gives an overview of the number of bits we require for the different parts of
the formula. Let bit(φ, k) be the number of bits that we have to reserve for a formula φ and a
tree decomposition of maximum bag size k, i. e., the sum over the required bits of each part of
the formula. By Observation 4 this implies that we can simulate the automaton (and hence,
solve the model-checking problem) in time O∗

(
(2bit(φ,k))2 · n

)
; or by Observation 6 in time

O∗
(
2bit(φ,k) ·n

)
if the automaton is symmetric2. Unfortunately, this is not always the case, in

fact, only the quantifier ∃partitionX1, . . . , Xq, the bits needed to optimize over free variables,
as well as the formulas that do not require any bits, yield an symmetric tree automaton.
That means that the simulation is wasteful if we consider a mixed formula (for instance, one
that contains a partition and a connected quantifier). To overcome this issue, we partition

2 The notation O∗ supresses polynomial factors.

M. Bannach and S. Berndt 6:11

Table 1 The left table shows the precise number of bit we reserve in the description of a state
of the tree automaton for different quantifier and formulas. The values are with respect to a tree
decomposition with maximum bag size k. The right table gives an overview of example formulas φ
used here, together with values symmetric(φ, k) and asymmetric(φ, k), as well as the precise time
our algorithm will require for that particular formula.

Quantifier / Formula Number of Bit

free variables X1, . . . , Xq q · k
∃partitionX1, . . . , Xq k · log2 q

∃connectedX k · log2 k + 1
∃forestX k · log2 k

∀x∀y E(x, y)→ χi 0
∀x∃y E(x, y) ∧ χi k

∃x∀y E(x, y)→ χi k + 1
∃x∃y E(x, y) ∧ χi 1

∀x χi 0
∃x χi 1

φ symmetric(φ, k)
asymmetric(φ, k)

Time

φ3col k · log2(3)
0

O∗(3k)

φvc(S) k

0
O∗(2k)

φds(S) k

k

O∗(8k)

φtriangle-minor 0
3k · log2(k) + 3

O∗(k6k+6)

φfvs(S) k

k · log2(k)
O∗(2kk2k)

the bits of the state description into two parts: first the “symmetric” bits of the quantifiers
∃partitionX1, . . . , Xq and the bits required for optimization, and in the “asymmetric” ones
of all other elements of the formula. Let symmetric(φ, k) and asymmetric(φ, k) be defined
analogously to bit(φ, k). We implement the join of states as in the following lemma, allowing
us to deduce the running time of the model-checker for concrete formulas. The right side of
Table 1 provides an overview for formulas presented here.

I Lemma 7. Let x be a node of T with children y and z, and let Qy and Qz be sets of states
in which the automaton may be at y and z. Then the set Qx of states in which the automaton
may be at node x can be computed in time O∗

(
2symmetric(φ,k)+2·asymmetric(φ,k)).

Proof. To compute Qx, we first split Qy into B1, . . . , Bq such that all elements in one Bi share
the same “symmetric bits”. This can be done in time |Qy| using bucket-sort. Note that we
have q ≤ 2symmetric(φ,k) and |Bi| ≤ 2asymmetric(φ,k). With the same technique we identify for
every elements v in Qz its corresponding partition Bi. Finally, we compare v with the elements
in Bi to identify those for which there is a transition in the automaton. This yields a running
time of |Qz| ·maxqi=1 |Bi| ≤ 2bit(φ,k) · 2asymmetric(φ,k) = 2symmetric(φ,k)+2·asymmetric(φ,k). J

5 Applications and Experiments

To show the feasibility of our approach, we have performed experiments for widely investig-
ated graph problems: 3-coloring, vertex-cover, dominating-set, independent-set,
and feedback-vertex-set. All experiments were performed on an Intel Core processor
containing four cores of 3.2 GHz each and 8 Gigabyte RAM. Jdrasil was used with Java 1.8
and both Sequoia and D-Flat were compiled with gcc 7.2. The implementation of Jatatosk
uses hashing to realize Lemma 7, which works well in practice. We use a data set assembled
from different sources containing graphs with 18 to 956 vertices and treewidth 3 to 13. The
first source is a collection of transit graphs from GTFS-transit feeds [15] that was also used
for experiments in [12], the second source are real-world instances collected in [2], and the
last one are those of the PACE challenge [18] with treewidth at most 11. For 3-coloring,
the results are shown in Experiment 1.

ESA 2018

6:12 Practical Access to Dynamic Programming on Tree Decompositions

Experiment 1 3-coloring.

D-Flat Jdrasil-Coloring Jatatosk Sequoia

Average Time 478.19 36.52 42.63 714.73
Standard Deviation 733.90 77.8 81.82 866.34
Median Time 3.5 21 24.5 20.5

(a) Average, standard deviation, and median of the time (in seconds) each solver needed to solve
3-coloring over all instances of the data set. The best values are highlighted.

400

800

1,200

1,600 D-Flat Jdrasil-Coloring Jatatosk Sequoia

(b) Comparison of solvers for the 3-coloring problem on the complete data set.

−100

−50

0

50

100

D
iff

er
en

ce
in

se
co

nd
s

0

5

10

15

20

|V
|a

nd
|E

|(
·1
0−

2
)

2

4

6

8

10

12

14

tw

0 100 200 300 400 500 600

30

40

50

60

Time in seconds

#
In

st
an

ce
s

so
lv

ed
in

x
se

co
nd

s

(c) The left picture shows the difference of Jatatosk against D-Flat and Sequoia. A positive bar means
that Jatatosk is faster by this amount in seconds, and a negative bar means that either D-Flat or Sequoia
is faster by that amount. The bars are capped at 100. On every instance, Jatatosk was compared against
the solver that was faster on this particular instance. The image also shows for every instance the size and
the treewidth of the input. The right image shows the number of instances that can be solved by each of
the solvers in x seconds, i. e., faster growing functions are better. The colors in this image are as in (b).

6 Conclusion and Outlook

We investigated the practicability of dynamic programming on tree decompositions, which is
arguably one of the corner stones of parameterized complexity theory. We implemented a
simple interface for such programs and used it to build a competitive graph coloring solver
with just a few lines of code. We hope that this interface allows others to implement and
explore various dynamic programs. The whole power of these algorithms is well captured
by Courcelle’s Theorem, which states that there is an efficient version of such a program
for every problem definable in monadic second-order logic. We took a step towards practice
by implementing a “lightweight” version as model-checker for a small fragment of the logic.
This fragment turns out to be powerful enough to express many natural problems.

M. Bannach and S. Berndt 6:13

References
1 Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, Markus Hecher,

and Stefan Woltran. D-flat: progress report. DBAI, TU Wien, Tech. Rep. DBAI-TR-2014–
86, 2014.

2 Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran. Improving the
efficiency of dynamic programming on tree decompositions via machine learning. In Proc.
IJCAI, pages 275–282, 2015.

3 M. Bannach. Jatatosk. https://github.com/maxbannach/Jatatosk, 2018. [Online; ac-
cessed 22-04-2018].

4 M. Bannach. Jdrasil for Graph Coloring. https://github.com/maxbannach/Jdrasil-
for-GraphColoring, 2018. [Online; accessed 22-04-2018].

5 M. Bannach, S. Berndt, and T. Ehlers. Jdrasil. https://github.com/maxbannach/
Jdrasil, 2017. [Online; accessed 22-04-2018].

6 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In 16th International Symposium on Experimental Al-
gorithms, SEA 2017, June 21-23, 2017, London, UK, pages 28:1–28:21, 2017. doi:
10.4230/LIPIcs.SEA.2017.28.

7 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

8 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 M. R. Fellows. Parameterized complexity for practical computing. http://www.mrfellows.
net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf, 2018. [On-
line; accessed 22-04-2018].

12 Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. Sat-based local improvement for
finding tree decompositions of small width. In Theory and Applications of Satisfiability
Testing - SAT, pages 401–411, 2017.

13 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006. doi:10.1007/3-540-29953-X.

14 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of pure and applied logic, 130(1-3):3–31, 2004.

15 gtfs2graphs - A Transit Feed to Graph Format Converter. https://github.com/daajoe/
gtfs2graphs. Accessed: 2018-04-20.

16 Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem – a game-
theoretic approach. Discrete Optimization, 8(4):568–594, 2011. doi:10.1016/j.disopt.
2011.06.001.

17 Alexander Langer. Fast algorithms for decomposable graphs. PhD thesis, RWTH Aachen,
2013.

18 The Parameterized Algorithms and Computational Experiments Challenge (PACE). https:
//pacechallenge.wordpress.com/. Accessed: 2018-04-20.

19 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Proc. ESA,
pages 68:1–68:13, 2017.

ESA 2018

https://github.com/maxbannach/Jatatosk
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil
https://github.com/maxbannach/Jdrasil
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.1007/978-3-319-21275-3
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://dx.doi.org/10.1007/3-540-29953-X
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1016/j.disopt.2011.06.001
https://pacechallenge.wordpress.com/
https://pacechallenge.wordpress.com/

	Introduction
	Preliminaries
	An Interface for Dynamic Programming on Tree Decompositions
	The Tree Automaton Perspective
	The Interface
	Example: 3-Coloring

	A Lightweight Model-Checker for a Small MSO-Fragment
	Description of the Fragment
	A Syntactic Extension of the Fragment
	Description of the Model-Checker
	Extending the Model-Checker to Optimization Problems
	Handling Symmetric and Non-Symmetric Joins

	Applications and Experiments
	Conclusion and Outlook

