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—— Abstract

We consider two optimization problems in planar graphs. In MAXIMUM WEIGHT INDEPENDENT
SET OF OBJECTS we are given a graph G and a family D of objects, each being a connected
subgraph of G with a prescribed weight, and the task is to find a maximum-weight subfamily
of D consisting of pairwise disjoint objects. In MINIMUM WEIGHT DISTANCE SET COVER we
are given an edge-weighted graph G, two sets D,C of vertices of G, where vertices of D have
prescribed weights, and a nonnegative radius r. The task is to find a minimum-weight subset of

D such that every vertex of C is at distance at most r from some selected vertex. Via simple
reductions, these two problems generalize a number of geometric optimization tasks, notably
MaxiMuM WEIGHT INDEPENDENT SET for polygons in the plane and WEIGHTED GEOMETRIC
SET COVER for unit disks and unit squares. We present quasi-polynomial time approximation
schemes (QPTASs) for both of the above problems in planar graphs: given an accuracy parameter
e > 0 we can compute a solution whose weight is within multiplicative factor of (1 + €) from the
optimum in time 2PoY(1/elogPh . nOM) " where n is the number of vertices of the input graph.
Our main technical contribution is to transfer the techniques used for recursive approximation
schemes for geometric problems due to Adamaszek, Har-Peled, and Wiese [1, 2, 4] to the setting
of planar graphs. In particular, this yields a purely combinatorial viewpoint on these methods.
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QPTASes for Packing and Covering Problems in Planar Graphs

1 Introduction

INDEPENDENT SET and DOMINATING SET are fundamental optimization problems on graphs.
Given a graph G where each vertex v has a weight w(v), in INDEPENDENT SET one seeks to
find a vertex subset I C V(@) of maximum possible weight such that no two vertices in I
are adjacent, whereas in DOMINATING SET one searches for a vertex subset D of minimum
possible weight such that each vertex v € V(G) is contained in D or adjacent to a vertex
in D. Even in the unit-weight setting, both problems are notoriously hard to approximate
and they are also WJ[1]-hard, i.e., we do not expect that they admit fized-parameter tractable
(fpt) algorithms running in time f(k) - n®M), where k is the expected solution size.

Therefore, special cases of the problems were investigated, for instance the case where the
input graph is planar. On planar graphs, classic layering techniques can be applied to show
that both problems admit EPTASSs, i.e., (1 + ¢)-approximation algorithms with a running
time of f(1/€)n®® for some function f, and fpt algorithms for the parameterization by
the solution size, i.e., for a parameter k, algorithms running in time f(k)n®® that find a
best solution among those of size at most k. Given these results, it is natural to consider
generalizations of the above problems on planar graphs.

In this paper we study the DISTANCE INDEPENDENT SET and the DISTANCE DOMINATING
SET problems. Given additionally a value r € R and weights on the edges of G, in the
DISTANCE INDEPENDENT SET problem we require that any two selected vertices in I are at
distance larger than r from each other, and in the DISTANCE DOMINATING SET problem
we require that each vertex v € V(G) is at distance at most r from some vertex of D.
Let us stress that we assume that r is part of the input and in particular not assumed
to be a constant; in fact, for constant r and unit edge weights, it is well-known that the
same layering techniques easily yield EPTASs and fpt algorithms on planar graphs. In
the parameterized setting, both problems are W[1]-hard even for unit weights; however,

the trivial n@®)

-time algorithms can be improved to n®WVk) _time algorithms [5]. These
parameterized algorithms extend a technique originally developed to design quasi-polynomial
time approximation schemes (QPTASs) for INDEPENDENT SET and DOMINATING SET in the
geometric (Euclidean) setting [1, 2, 4]. The idea is to guess a sparse separator that has only
small intersection with the optimal solution and that splits the problem into two roughly
equal-sized subproblems, and then to solve the subproblems recursively. The natural question
arises whether one can transfer the insights obtained in the parameterized setting back to
approximation algorithms, and obtain approximation schemes for DISTANCE INDEPENDENT

SET and DISTANCE DOMINATING SET in planar graphs.

Our contribution. In this paper we show that this is indeed possible and we present the
first quasi-polynomial time approximation schemes for DISTANCE INDEPENDENT SET and
DISTANCE DOMINATING SET on planar graphs when r is part of the input. In fact, we
give QPTASs for two even more general problems, which we name MAXIMUM WEIGHT
INDEPENDENT SET OF OBJECTS (MWISO) and MINIMUM WEIGHT DISTANCE SET COVER
(MWDSC). In MWISO we are given a graph G and a family D of objects, each being a
connected subgraph of G with a prescribed weight, and the goal is to find a maximum-weight
subfamily of D consisting of pairwise disjoint objects. In MWDSC we are given an edge-
weighted graph G, subsets of vertices D and C where vertices of D are weighted, and radius
r € R. The goal is to find a minimum-weight subset F C D that r-covers C in the sense that
each vertex of C is at distance at most r from some vertex of /. MWISO generalizes DISTANCE
INDEPENDENT SET by taking D to be the family {{v: dist(u,v) < r/2}: u € V(G)} of all
balls of radius r/2 in the graph, while MWDSC generalizes DISTANCE DOMINATING SET by
taking C = V(G). The following statements summarize our results.
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» Theorem 1. The MAXIMUM WEIGHT INDEPENDENT SET OF OBJECTS problem in planar
graphs admits a QPTAS with running time 2P°Y(1/elog N) . nOM) “where i is the vertex count
of the input graph and N = |D| is the number of objects in the input.

» Theorem 2. The MINIMUM WEIGHT DISTANCE SET COVER problem in planar graphs
admits a QPTAS with running time 2P°Y(1/elog N) . nOM) “yyhere n is the vertex count of the

input graph and N = |D| is the number of vertices allowed to be selected to the solution.

To obtain our QPTASs for MWISO, we extend the machinery developed in [1, 2, 4] for
optimization problems in geometric settings to problems in planar graphs. The heart of our
technical contribution is to show that for any instance of the above problems there is a set
of candidate separators of polynomial size such that one of them splits the given problem
in a balanced way and intersects only a tiny fraction of the given solution. The latter is
important since the intersected objects will be lost (in the case of MWISO) or might be paid
twice (in the case of MWDSC) and hence we need to bound their total weight by eOPT.
We state here an informal version of our separator lemma for the case of MWISO.

» Lemma 3 (Informal). In polynomial time we can compute a set X C 2P of separators such
that for every solution F C D, say of weight W, there exists X € X such that w(FNX) < eW
and in the intersection graph of D — X each connected component C satisfies w(CNF) < %W.

Using Lemma 3 as abstraction for finding separators, we can apply the same recursive scheme
as [1, 2, 4]: we guess the correct separator X € X, construct a subproblem for each connected
component of the intersection graph of D — X', and recurse in each of them up to recursion
depth O(log |D|). Thus, the only part of the reasoning that uses planarity is Lemma 3.

The proof of Lemma 3 follows the reasoning of Har-Peled [4]. The idea is to prove the
following auxiliary result: for the optimal solution F (and in fact for any feasible solution)
there exists a separator of length roughly s = (’)(% ln%) that cuts through at most an
e-fraction of the weight of F and splits the weight of F in a balanced way. Lemma 3 then
follows by enumerating all candidates for such separators. In [4], the separator was simply
a polygon with roughly s vertices. We lift this concept to planar graphs using Voronos
separators as in the work of Marx and Pilipczuk [5]. Intuitively, a Voronoi separator of length
r is an alternating cyclic sequence of r objects from D and r faces of the graph, connected
by shortest paths in order to form a closed curve; this curve splits the instance into two
subinstances. Thus, shortest paths in the graph are the analogues of segments in the plane.

The auxiliary result is proved in [4] by showing that if S is a sample of size roughly s?
from F, where each object is sampled independently with probability proportional to its
weight, then a balanced separator of length s in the Voronoi diagram of S satisfies all the
required properties with high probability. We follow the same reasoning, however again we
need to properly understand how geometric concept used in [4] — spokes and corridors —
should be interpreted in planar graphs. Here, the technical toolbox for Voronoi diagrams
and Voronoi separators developed in [5] becomes very useful. In particular, it turns out that
a fine understanding of what faces are candidates for branching points of a Voronoi diagram,
provided in [5], is essential to make the probabilistic argument work. Let us remark that
we also somewhat simplify the original argument of Har-Peled by replacing the Exponential
Decay Lemma with a direct probabilistic calculation.

To give the QPTAS for MWDSC we provide a variant of Lemma 3 suitable for this
problem and then follow a similar recursive scheme as for Theorem 1. It is nice that we can
reuse the above-mentioned auxiliary result introduced for Lemma 3 as a black-box, so the
proof of the variant is relatively short. As in [7], the difference is that in the recursion instead
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of removing the guessed separator we preserve it in all the recursive subcalls, thus allowing
double-buying objects from it. Due to space constraints, the proof of Theorem 2 is entirely
deferred to the full version, while in this extended abstract we focus on proving Theorem 1.

Geometric problems. The above recursive machinery based on balanced separators was
first introduced for obtaining a QPTAS for MAXIMUM WEIGHT INDEPENDENT SET OF
RECTANGLES in the two-dimensional plane [1] and then extended for getting QPTASs for
MAXIMUM WEIGHT INDEPENDENT SET OF POLYGONS |2, 4] and WEIGHTED GEOMETRIC
SET COVER (WGSR) for pseudo-disks [7]. We prove that Theorems 1 and 2 generalize these
results, with the exception that for WGSR we can treat only the cases of unit disks and
axis-parallel unit squares, instead of general families of pseudo-disks. In the full version we
explain how to derive the mentioned results from our theorems.

2 Proof of the Separator Lemma for MWISO

In this section we prove the Separator Lemma for MWISO, which was informally stated
as Lemma 3 and is formally stated below. For a family D of objects, IntGraph(D) denotes
the intersection graph of D: graph with vertex set D where two objects are adjacent iff they
intersect. The reader may think of F being the optimal solution and of W being its weight.

» Lemma 4 (Separator Lemma for MWISO). Let G be an n-vertex planar graph and D be a

weighted family of N objects in G. Let 0 < € < %0 and denote s = 103 - éln % Then there

exists a family X consisting of subsets of D with the following properties:

(A1) |X| < 6%*N'* and X can be computed in time N©©) . n®W : and

(A2) for every real W > 0 and subfamily F C D of pairwise disjoint objects such that w(F) <
W and w(p) < s72W for each p € F, there exist X € X such that w(F N X) < eW
and for every connected component C of IntGraph(D) \ X we have w(C N F) < SW.

The plan is as follows. We first recall the toolbox of Voronoi separators, introduced by
Marx and Pilipczuk [5]. This allows us to state a stronger lemma, phrased as the existence
of a short Voronoi separator appropriately breaking F. We then show how Lemma 4 follows
from this stronger result and subsequently prove the stronger result.

Before we proceed, let us set up the notation and basic assumptions about the input.
Let G be the input graph. We assume the edges of G are assigned positive weights® so
that we have the shortest-path metric in G: dist(u,v) denotes the shortest length of a path
connecting v and v in G. We may assume that G is given with an embedding in a sphere %
and that it is triangulated; that is, every face of G is a triangle. Indeed, adding edges of
infinite weight to triangulate the graph neither distorts the metric nor spoils the connectivity
of the objects. Also, for every face f of G we fix any its internal point ¢ to be its center, and
for each vertex u of f we fix some curve within f with endpoints u and ¢ to be the segment
connecting u and ¢ so that segments connecting vertices of f with ¢ pairwise do not cross.

We assume that shortest paths are unique and the distances between pairs of vertices are
pairwise different: for every pair of vertices u, v there is a unique shortest path connecting u
and v and for {u, v} # {v/,v'} we have dist(u, v) # dist(u’,v"). This can be ensured by using
lexicographic tie-breaking rules and it increases the running time only by polynomial factors.

3 Obviously, edge weights are immaterial for the MWISO problem. However, it is convenient to think of
G as edge-weighted so that we can define Voronoi diagrams. Furthermore, many results of this section
will be reused for the MWDSC problem, where edge weights play a role in the problem.
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We are given a family D of objects in G, where each object p € D is a nonempty, connected
subgraph of G. For any vertex u of G and any object p € D, let dist(u,p) be the length
of the shortest path connecting u with any vertex of p. For each object p € D, we fix any
spanning tree T'(p) of p. We also assume that the family D is weighted: every object p € D
is assigned a nonnegative real weight w(p). For F C D we denote w(F) = >_ > w(p).

2.1 Basic toolbox

Voronoi partitions and diagrams. A subfamily F C D is independent if objects in F are
pairwise vertex-disjoint. Such an independent subfamily F induces the Voronoi partition
Mz, which is a partition of the vertex set of G into |F| parts according to the closest object
from F. Precisely, for p € F, we say that a vertex u belongs to the Voronoi cell Mz (p)
if dist(u,p) < dist(u,p’) for any p’ € F, p’ # p. Observe that ties do not happen due to
distinctness of distances in G. We note that Marx and Pilipczuk consider in [5] a more
general notion of a normal subfamily, but we do not need this generality here.

Assuming |F| > 4, we define the Voronoi diagram induced by Mz as follows. First,
observe that every Voronoi cell Mz (p), for p € F, induces a connected subgraph of G that
contains p entirely (see Lemmas 4.1 and 4.2 in [5]). Extend T'(p) to a spanning tree T(p) of
G[Mx(p)] by adding, for each vertex u of Mz(p) that is not in p, the shortest path from u

to p. Take the dual of G and remove all the edges dual to the edges of f(p), for all p € F.

Then exhaustively remove vertices of degree one, and finally replace each maximal path with
internal vertices of degree 2 (so-called 2-path) by a single edge; the embedding of this edge is
defined as the union of embeddings of edges of G comprising the original 2-path. Thus, we
obtain a connected, 3-regular plane multigraph, called the Voronoi diagram of F, whose faces
bijectively correspond to the cells Mz (p) for p € F. More precisely, every face of the Voronoi
diagram of F is associated with a different object p € F so that all the vertices of Mz (p) are
contained in this face. The 3-regularity of the diagram follows from the assumption that G
is triangulated. From Euler’s formula it follows that if |F| = k, then H has k faces, 2k — 4
vertices, and 3k — 6 edges. See Lemmas 4.4 and 4.5 of [5] for a formal verification of these
assertions, and Section 4.4 of [5] for a detailed description of the construction.

Branching points. If H is the Voronoi diagram of an independent subfamily F C D, then
H is constructed from a subgraph of the dual of G by contracting maximal 2-paths. Hence,
vertices of H correspond to faces of G. These primal faces, equivalently dual vertices, are
called the branching points of the diagram H; intuitively, these are faces where the boundaries
of Voronoi cells meet nontrivially. A priori, every face of G could be a branching point of the
Voronoi diagram of some independent subfamily 7 C D. However, in [5] it is proved that
the number of candidates for branching points can be bounded polynomially in |D|.

» Theorem 5 (Theorem 4.7 of [5]). There exists a family I of faces of G with |I| < |D|* such
that the following holds: for every independent subfamily of objects F C D, all branching
points of the Voronoi diagram of F are contained in I. Moreover, I can be computed in time
polynomial in |D| and n.

We fix the family I provided by Theorem 5 and call its members D-important faces of G.

Voronoi separators. We now recall the concept of Voronoi separators. A Voronoi separator
is a sequence of the form

S = <p1,u1, f1,v1,p2,u2, fo,V2, ..., Dp, Uy, fr;vr>7
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where p; are pairwise disjoint objects from D, f; are faces of G, and u;, v; are distinct vertices
lying on the face f;. For each i € {1,...,r}, define P; to be the shortest path from w; to p;
and @; to be the shortest path from v; to p;11, where indices behave cyclically. For a Voronoi
separator S as above, its length is r and its set of traversed objects is D(S) = {p1,...,pr}-

In the notation above, an object ¢ € D is banned by the separator S if either ¢ intersects
some object p € D(S), or there is a vertex w on some path P; such that dist(w, ¢) < dist(w, p;),
or there is a vertex w on some path Q; such that dist(w, q) < dist(w, p;11). In particular,
D(S) is banned by S. Let Ban(S) denote the set of objects in D banned by S. Intuitively,
the banned objects are those that are intersected by the separator and are lost when we
recurse (in MWISO) or that might be selected and paid twice (in MWDSC). Therefore, we
will later ensure that their total weight is small.

The following result is the aforementioned key step toward the proof of Lemma 4. It may
be regarded as a lift of Theorem 4.22 from [5] or of Lemma 4.1 from [4] to our setting.

» Lemma 6. Let W be a positive real, 0 < € < 1—10, and s = 103 - %ln % Suppose F C D is
an independent subfamily of objects such that | F| > 4, w(F) < W, and w(p) < s~ 2W for
all p € F. Then there exist a Voronoi separator S satisfying the following:

(B1) D(S) C F and all faces traversed by S are D-important;

(B2) the length of S is at most 3s;

(B3) the total weight of objects of F banned by S is at most eW;

(B4) for every connected component C of IntGraph(D) — Ban(S), we have w(C) <

|

LW,

o

It is not hard to see that Lemma 4 follows from Lemma 6: we simply enumerate all
candidates for a Voronoi separator S satisfying 1 and 2, a straightforward estimate using
Theorem 5 shows that there are at most 63° N5 of them, and for each candidate S we add
Ban(S) to the constructed family X. Details can be found in the full version.

Thus, we are left with proving Lemma 6. The idea, borrowed from Har-Peled [4], is that
we construct a sufficiently large random sample from F, where the probability of picking each
object is proportional to its weight. Then we inspect the Voronoi diagram induced by the
sample and we argue that with non-zero probability it has a short separator giving rise to the
sought Voronoi separator S. To implement this plan we need two ingredients: an appropriate
lift of the sampling idea from [4] and the analysis of how separators in the Voronoi diagram
give rise to Voronoi separators in the graph, which is essentially taken from [5] with some
technical details added. These two ingredients are explained in the next two subsections.

2.2 Sampling

Spokes and diamonds. We first adjust technical notions used by Har-Peled [4] in the
geometric context to our setting. Suppose we have an independent family of objects F and
its Voronoi diagram H = Hr. Let f be any branching point of H and let u be any vertex of
f. Let p € F be the object of F such that u € Mx(p). The spoke of u in H is the shortest
path from u to p in G; note all the vertices of this shortest path belong to the cell M z(p).
Consider any subfamily S C F and let Hg be the Voronoi diagram induced by S; in the
following, we consider spokes in the diagram Hgs. For any spoke P in Hg, say connecting a
vertex u with the object p € S satisfying u € Mg(p), we say that P is in conflict with an
object p’ € F if there is a vertex v on P such that dist(v,p’) < dist(v,p). Note that this
implies p’ ¢ S, because the spoke P has to be entirely contained in Mg (p). Define the weight
of P with respect to F as the total weight of objects from F that are in conflict with P.
Further, suppose e is an edge of Hg, with endpoints f1, fo (not necessarily different). Let
p1, P2 be the objects of S corresponding to the faces of Hgs incident to e (possibly p1 = po).
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Let wq,1,u1,2 be the vertices of f; such that u;; € Ms(p1), u1,2 € Ms(p2), and the edge
uj1u1,2 of G crosses the edge e of Hg. Similarly pick vertices ug 1, u2 2 of fa. The diamond
induced by e is the closed curve Ag(e) on ¥ formed by the union of: segments connecting
the center of f; with u; ; and w; 2, the unique path between u; » and us 2 in f(pg), segments
connecting the center of f, with ug 2 and us 1, and the unique path between us 1 and u; ; in
T(p1). The interior of As(e) is the unique region of ¥\ Ag(e) that contains e. The weight
of As(e) with respect to F is the total weight of objects of F that are entirely contained in
the interior of Ag(e); note that these objects do not belong to S.

We remark that while spokes were used in [4] in the form roughly as above, diamonds
correspond to the notion of a corridor from [4].

Sampling lemma: statement. We now state the crucial technical result: there is a bounded-
size subfamily of the optimum solution that induces a Voronoi diagram where every spoke and
every diamond has small weight. We will prove it using a probabilistic sampling argument.

» Lemma 7 (Sampling lemma). Suppose W is a positive real and F is an independent,
weighted family of objects in G such that |F| > 4 and w(F) < W. Let £ > 10 be an integer
such that w(p) < % for each p € F. Then there exists a subfamily S C F with 4 < |S| < 2¢
such that in the Voronoi diagram Hg, the weight with respect to F of every spoke and of
every diamond is at most 101n ¢ - %

Later, we will use Lemma 7 with £ = O((£ In %)2) The reader may imagine that we then
apply a balanced planar graph separator on the Voronoi diagram Hg of size O(\/Z) along
which we partition F into two parts, yielding the Voronoi separator claimed by Lemma 6.
Since the weight with respect to F of every spoke and every diamond is at most 101n ¢ - %,
the total weight of the objects of F banned by S will be bounded by eW.

Lemma 7 is a roughly an analogue of Lemma 3.3 from [4]. The main difference is that
in the geometric setting, spokes and corridors have a simpler structure due to the fact that
each branching point of the Voronoi diagram is defined by three objects from the solution —
the three ones equidistant from it — so that the branching point is the meeting point of the
three corresponding Voronoi regions. This is no longer the case in planar graphs, as observed
in [5]. More precisely, out of the three regions around a branching point of the diagram, two
or even three may be equal; this happens when there are bridges in the diagram, which is
never the case in the geometric setting.

As part of their proof of Theorem 5, to understand these additional situations Marx and
Pilipczuk define singular faces, which come in three types. The first one corresponds to
“standard” branching points incident to three different regions, while the second and the
third one correspond to branching points incident only to two, respectively one region.

Singular faces. For an independent triple of objects Fy = {p1,p2,p3} C D, a face f of
G is called a singular face of type 1 for (p1,p2,ps3) if in Mz, all the vertices of f belong
to different cells (note that there are three cells in Mg,). For an independent triple of
objects Fo = {p1,p2,p3} C D, a face f is called a singular face of type 2 for (p1,p2,ps3) if
in Mz, one vertex vy of f belongs to Mg, (p1), the other two vertices v, v3 of f belong to
Mz, (p2), and the closed walk W obtained by taking the union of the unique path in T (p2)
between vy and v3 and the edge vov3 on the boundary of f divides the plane into two regions,
one containing p; and one containing ps. Finally, for an independent quadruple of objects
Fo = {po,p1,p2,p3} C D, a face f is called a singular face of type 3 for (po, p1,p2,ps) if in
Mz, all the vertices of f belong to Mz, (po), but the boundary of face f plus the minimal
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subtree of f(po) spanning the vertices of f divides the plane into four regions: the face f
itself, one region containing p;, one region containing ps, and one region containing ps. See
Figure 8 in [5] for a visualization.

It appears that for a fixed triple or quadruple of objects, there are only few singular faces.

» Lemma 8 (Lemmas 4.8, 4.9, and 4.10 of [5]). For each independent triple of objects
(p1,p2,p3), there are at most 2 singular faces of type 1 for (p1,p2,p3), and at most 1 singular
face of type 2 for (p1,p2,ps). For each independent quadruple of objects (po,p1,p2,p3), there
is at most 1 singular face of type 3 for (po,p1,p2,P3)-

The next statement explains the connection between branching points and singular faces.

» Lemma 9 (Lemma 4.12 of [5]). Let F C D be an independent subfamily of objects, and let
H be the Voronoi diagram of F. Then every branching point of H is either a type-1 singular
face for some triple of objects from F, or a type-2 singular face for some triple of objects
from F, or a type-3 singular face for some quadruple of objects from F.

Actually, the two results above may be combined into a proof of Theorem 5. Lemma 9
shows that every branching point of the Voronoi diagram of an independent subfamily of D
is among type-1, type-2, and type-3 singular faces for triples or quadruples of objects in D,
while using Lemma 8 we can bound their total number by |D|%.

Sampling lemma: proof. We now have all the tools needed to prove Lemma 7. Contrary to
Har-Peled [4] we do not use the Exponential Decay Lemma, but direct probability calculations;
this makes the proof somewhat conceptually easier. The main complications are due to the
need to handling different types of singular faces, instead of just one.

Proof of Lemma 7. Denote n = 10In¢ - Y. First observe that if w(F) < n, then setting
S = F satisfies all the required properties, since no spoke may have larger weight than the
whole of F. Therefore, from now on we assume that w(F) > .

Construct S by including every object p € F independently with probability g, = w(p)- %;
note that this value is at most 1 by the assumption of the lemma. Let X be the random
variable equal to the cardinality of S; then X = Zpe £ Xy, where X, are indicator random
variables, taking value 1 if p is included in F and 0 otherwise. Note that E[X,] = ¢, and
EX] =3 s E[Xp] = ¢ % < /. Since X is a sum of independent indicator variables,
standard concentration inequalities yield the following.

» Claim 10 (&*). The probability that |S| > 2¢ or |S| < 100 is at most 75.

Call a spoke in the Voronoi diagram Hg heavy if its weight with respect to F is more
than n. We now estimate the probability that there is a heavy spoke in Hgs.

» Claim 11 (W). The probability that there is a heavy spoke in Hg is at most .

Proof sketch. Fix any triple of objects p1,p2, p3s € F and face f and consider the following
event AP1P2:P3:f: 1 po ps are all included in S, f is a branching point of Hs with vertices
u1, Uz, ug belonging to the cells of py, pa, p3, respectively, and moreover the spoke P of u;
(which is the shortest path from u; to p1) is heavy. Let Z C F be the family of those objects
from F that are in conflict with P; then w(Z) > 1. In order for AP*"*2:P3:f to happen, all of

4 Proofs of claims or lemmas marked with a & are deferred to the full version.
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{p1,p2, p3} have to be included in S and none of Z may be included in S. Since objects are
included in S independently, we have
£3
P(APPd) < wipy)w(pa)w(ps) - 1 - [[(1-wl@) <
qeZ

w(p)w(p2)w(ps) 7.
w3 ’

this follows from simple calculations using the lower bound on w(Z). By Lemma 8, for each
triple p1, p2, p3s € F there are at most two singular faces of type 1, hence at most two faces f
for which AP1P23:f has a non-zero probability, each with three vertices. Summing through
all the triples p1, p2, ps € F, we see that the probability that there is a heavy spoke in Hg
incident to a type-1 branching point is at most 6 - ¢~7 < 10~%. Applying a similar reasoning
to the other two types of branching points yields the claim. 1

We are left with diamonds. Call a diamond Ag(e) in Hg heavy if its weight with respect
to F is larger than 7. The next check follows by essentially the same estimation as Claim 11.

» Claim 12 (#). The probability that there is a heavy diamond in Hg is at most %.

Concluding, assertion 4 < |S| < 2¢ does not hold with probability at most 1—72,

heavy spoke in Hg with probability at most %, and there is a heavy diamond in Hg with
probability at most %. Hence, with probability at least 1—12 neither of the above holds, so
there exists a subfamily S satisfying all the postulated conditions. <

there is a

2.3 Balanced nooses

We proceed with the proof of Lemma 6 by explaining the second ingredient: balanced
separators in Voronoi diagrams. In general, short embedding-respecting separators in the
Voronoi diagram — so-called nooses — correspond to Voronoi separators we are looking for.
We start by defining nooses and showing how the existence of a sphere-cut decomposition
of small width — a hierarchical decomposition of the diagram using nooses — implies the
existence of a short noose that breaks the instance in a balanced way.

We remark that in [4], this part of the reasoning is essentially done by considering the
radial graph of the Voronoi diagram and applying the weighted balanced separator theorem
of Miller [6] to it. Such approach would be also applicable in our case, but we find the
approach via sphere-cut decompositions more explanatory regarding how separators in the
(radial graph of the) diagram correspond to separators in the instance.

Sphere-cut decompositions. We now recall the framework of sphere-cut decompositions,
which are embedding-respecting hierarchical decompositions of planar graphs.

A branch decomposition of a graph H is a pair (T,n) where T is a tree with all internal
nodes having degree 3, and 7 is a bijection between the edge set of H and the leaf set of T'
(for clarity, we always use the term node for a vertex of a decomposition tree). Take any edge
e of T and consider removing it from 7'; then T breaks into two subtrees, say T7,T5. Let
A1, Ay be the preimages of the leaf sets of T7,T» under 7, respectively; then (A1, As) is a
partition of the edge set of H. The width of the edge e is the number of vertices of H incident
to both an edge of A; and to an edge of Ay, and the width of the branch decomposition
(T, n) is the maximum among the widths of the edges of T. The branchwidth of H is the
minimum possible width of a branch decomposition of H.

Let H be a connected plane graph embedded in a sphere Y. A noose in H is a closed,
directed curve v on ¥ without self-crossings that meets H only at its vertices and visits every
face of H at most once. Note that removing ~ from the sphere 3 breaks it into two open
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disks: for one of them < is the clockwise traversal of the perimeter, and for the other it is
the counter-clockwise traversal (fixing an orientation of ). The first disk shall be called
enc(y) while the second shall be called exc(y) (for enclosed and excluded). Two nooses =, '
are equivalent if they are homotopic on ¥ with a homotopy that fixes the embedding of H;
in other words, 7’ can be obtained from ~ by continuous transformations within faces of H.
A sphere-cut decomposition of H is a triple (T, n,d) where (T, n) is a branch decomposition
of H and ¢ maps ordered pairs of adjacent nodes of T to nooses on ¥ (w.r.t. H) such that
the following conditions are satisfied for each pair of adjacent nodes of T
d(z,y) is equal to §(y, x) reversed (in particular enc(d(z,y)) = exc(d(y, z)));
enc(d(x,y)) contains all the edges of H mapped to the component of T'— zy containing ¥,
while exc(d(y, x)) contains all the edges of H mapped to the other component of T — xy.
The following result follows from [3, 8] and was formulated in exactly this way in [5].

» Theorem 13. Every n-vertex sphere-embedded multigraph that is connected and bridgeless
has a sphere-cut decomposition of width at most v/4.5n.

We note that in Theorem 13, the assumption that the multigraph is bridgeless is necessary,
as multigraphs with bridges do not have sphere-cut decompositions at all.

Suppose (T, 7,9) is a sphere-cut decomposition of G. It is straightforward to see that we
may adjust the nooses 6(x,y) for x,y ranging over adjacent nodes of T so that the following
condition is satisfied: if node x has neighbors y1,y9,ys in T, then enc(d(yq,z)) is the
disjoint union of enc(8(x,y2)), enc(§(x,y3)), and (6(z,y2) Nd(x,y3)) \ 6(y1,x). Sphere-cut
decompositions satisfying this condition will be called faithful. It is easy to see that any
sphere-cut decomposition can be made faithful by changing each noose to an equivalent one.

Separator theorem for nooses. We now state a separator theorem for nooses drawn from a
sphere-cut decomposition of a given sphere-embedded multigraph. The theorem is weighted
with respect to a measure defined as follows. Suppose R is a finite family of pairwise disjoint
objects on a sphere X, where each object p € R is a nonempty arc-connected subset of %
with associated nonnegative weight w(p). For an open disk A C 3, define its R-measure
uwr(A) as the total weight of objects from R that are entirely contained in A.

» Lemma 14 (WN). Let H be a connected, bridgeless multigraph embedded on a sphere X.
Let R be a weighted family of pairwise disjoint objects on X and let W = w(R). Suppose
further (T,n,9) is a faithful sphere-cut decomposition of H such that for every pair (x,y)
of adjacent nodes in T such that x is a leaf, we have pg(enc(d(y,z))) < 55W. Then there
exists a noose v w.r.t H, which is one of the nooses in the sphere-cut decomposition (T,n,9),
such that the following hold:

9

< — .
=T w.

pr(enc(y)) < 55W and  pg(exe(y)) <

9
10
The proof of Lemma 14 is standard: we find a balanced edge (z,y) in the decomposition
(T,n,0) and 6(z,y) is the sought noose. The fact that nooses appearing in (7,7,d) may
intersect objects from R requires some technical attention. Details are in the full version.

Proof sketch of Lemma 6. The proof of Lemma 6 now essentially follows by combining
Theorem 13, Lemma 7, and Lemma 14 as follows. Applying Lemma 7 to F with ¢ = s
yields a suitable subfamily S C F. We investigate the Voronoi diagram Hgs induced by S.
Applying Theorem 13 to Hg yields a sphere-cut decomposition of width at most 3s, which
we can feed to Lemma 14 to obtain a balanced noose . This noose naturally corresponds to
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a Voronoi separator S(7), obtained by essentially tracing v and marking the parts of the
Voronoi diagram of S that it visits. The connection between nooses in the Voronoi diagram
and Voronoi separators was largely explored in [5]. Then properties asserted by Lemma 7, in
particular the fact that every spoke in Hs has small weight, imply that S(v) satisfies all the
requested conditions. There is one technical caveat in that the Voronoi diagram Hgs may
have bridges, so a priori we cannot apply Theorem 13 to it; this requires special technical
treatment. The detailed proof of Lemma 6 can be found in the full version.

3 A QPTAS for Maximum Weight Independent Set of Objects

In this section we use Lemma 4 to design a QPTAS for MWISO, that is, we prove Theorem 1.
Recall that the setting is as follows. The input is (G, D), where G is a graph embedded in a
sphere 3 together with a family of objects D, each being a connected subgraph of G with a
prescribed positive weight. Moreover, we are given an accuracy parameter ¢ > 0 and we may
assume w.l.o.g. that € < %. The goal is to find an independent subfamily F C D with the
largest possible weight; more precisely, the algorithm shall compute a solution of weight at
least (1 — €) times the optimum. Let n = |V(G)| and N = |D|; w.l.o.g. we assume N > 2.

We will also assume that all objects in D have weights between 1 and M = 2¢~!N. This
assumption is easy to achieve as follows: guess the heaviest object p from the optimum
solution, remove all objects of weight less w(p)/M from D, rescale the weights to the interval
[1, M], and then look for an (1 — €/2)-approximate solution. To see that this is correct,
observe that in the optimum solution, objects of weight less than w(p)/M in total constitute
at most an e/2-fraction of the weight of p alone, so by removing them we lose at most an €/2
fraction of the optimum. A formal reasoning is presented in the full version.

Before we proceed to the algorithm, we fix the following parameters:

€

dmax = 10In(MN), é= s=10%-Z1In

| =
N> | =

)
dmax

Parameter dpax is the maximum recursion depth of the algorithm; note that dp.x =
O(log(N/e)). Next, é = O(e/log(N)) is the refined accuracy parameter which will be
used throughout the recursion instead of e. Similarly as in [1, 2, 4], intuitively we lose
a factor of 1 — € in each recursion level which yields an overall approximation ratio of
(1 — &)dmax = (1 — ¢/log(N))PUsN)) = 1 — O(e). Let us stress that although the algorithm
uses recursion and the number of objects changes in subsequent recursive calls, the values of
dmax, €, s are fixed as above and their definitions always refer to the initial number of objects.

We now explain the algorithm; it is also summarized using pseudocode as Algorithm 1
Let us fix an optimum solution Fopr and denote W = w(Fopr). We shall analyze Fopr,
which will lead to the formulation of the algorithm as a recursive search for Fopr.

We would like to use Lemma 4 to guess a Voronoi separator that breaks Fopr in a
balanced way. However, we first need make sure that every object in question constitutes
only a small fraction of W. This is done by a standard method of guessing exactly “heavy”
objects in the solution, whose number is small, and proceeding only with the “light” ones.

More precisely, call an object p € Fopt heavy if w(p) > s~2W. Observe that the number
of heavy objects in Fopr is at most s2, hence there are at most N s® possible ways to select
those heavy objects from D. The algorithm branches into all possible such ways, in each
branch fixing a different candidate for the set of heavy objects. Hence, by increasing the
number of subproblems by a multiplicative factor N s we may assume that the algorithm
fixes the set Fy,, consisting of all heavy objects in Fopr. Let D’ be obtained from D by
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Algorithm 1: Algorithm A1gMWISO.
Input: An instance (G, D), recursion depth d
Output: An independent family F C D

if d > dyax then
L return ()
F 0

forall F,,: independent subfamily of D with |F,| < s? do
D’ + D — (all objects that intersect any object of Fiy)

X ¢ family computed for D" using Lemma 4

forall X € X do
D1, ..., Dy < vertex sets of the connected components of

IntGraph(D’) — X
for i =1to k do
| Fi < AlgMWISO(G, D;,d + 1)
fcand <_-F‘hVULJf:lJ__.i
if w(Fcana) > W(F) then
L F ¢ Feand

return F

removing Fy, and all objects intersecting any object from Fi,, and let F(yppr = Fopr — Fhy-
Note that w(F\pp) < W and w(p) < s72W for all p € Fjpr.

We may now apply Lemma 4 to F,pp € D’ with W being the upper bound on its
weight. Thus, in time N°®) . n®1) we may compute a family X consisting of subsets of
D’ with |X| < 63°*N'5% and satisfying the following property: there exists X € X such that
w(Foprp \ X) < e and within each connected component of the graph IntGraph(D’) — X
the total weight of objects from F{pp does not exceed %W. By branching into all the
members of X, via increasing the number of subproblems by a multiplicative factor [X| we
may henceforth assume that the algorithm fixes X with properties as above.

For a fixed choice of Fy, and X as above, let us inspect the connected components of
IntGraph(D’) — X; let their vertex sets be Dy, ..., Dy. We apply the algorithm recursively to
the instances (G,D;) for i = 1, ...k, yielding independent families Fi, ..., Fy with F; C D;.
We record the family F = Fp, U Ule F; as a candidate for the solution; it is straightforward
to see from the construction that this family is independent. Finally, as the final solution we
output the heaviest among the recorded candidates; that is, the heaviest solution found for
all choices of Fj,y and X. We remark that if for some choice of Fj,, it turned out that D’ = (),
i.e., every object intersects some objects from Fi,y, then X contains only one choice of X being
(), hence we include F = Fy, among the candidates without invoking any recursive calls.

The base case of the recursion is provided by trimming it at level dy,ax. More precisely,
all subcalls at depth larger than d,.x return empty solutions. This concludes the description
of the algorithm; as mentioned, it is summarized using pseudocode as Algorithm 1.

The above algorithm runs in time 2PW(/&N) . nOM) " hecause at each node of the
recursion tree the algorithm uses polynomial time and calls itself on NV 0(s*) subinstances,
where s = poly(1/e,log N). Together with the bound of dyax = O(log(N/e€)) on the recursion
depth this yields the promised running time. As mentioned, the claimed approximation
ratio follows as intuitively in each of the dpyax recursion levels we lose a factor of 1 — ¢,
accumulating to (1 — ¢)%max = 1 — O(e) overall. Formal proofs are in the full version.
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