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Abstract
Given a graph G = (V,E) where each vertex is assigned a color from the set C = {c1, c2, .., cσ}.
In the (approximate) nearest colored node problem, we want to query, given v ∈ V and c ∈ C,
for the (approximate) distance d̂ist(v, c) from v to the nearest node of color c. For any integer
1 ≤ k ≤ logn, we present a Color Distance Oracle (also often referred to as Vertex-label Distance
Oracle) of stretch 4k − 5 using space O(knσ1/k) and query time O(log k). This improves the
query time from O(k) to O(log k) over the best known Color Distance Oracle by Chechik [6].

We then prove a lower bound in the cell probe model showing that even for unweighted undir-
ected paths any static data structure that uses space S requires at least Ω

(
log logσ

log(S/n)+log logn

)
query time to give a distance estimate of stretch O(polylog(n)). This implies for the important
case when σ = Θ(nε) for some constant 0 < ε < 1, that our Color Distance Oracle has asymp-
totically optimal query time in regard to k, and that recent Color Distance Oracles for trees [23]
and planar graphs [16] achieve asymptotically optimal query time in regard to n.

We also investigate the setting where the data structure additionally has to support color-
reassignments. We present the first Color Distance Oracle that achieves query times matching
our lower bound from the static setting for large stretch yielding an exponential improvement
over the best known query time [7]. Finally, we give new conditional lower bounds proving the
hardness of answering queries if edge insertions and deletion are allowed that strictly improve
over recent bounds in time and generality.
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1 Introduction

In the static nearest colored node problem, we are given a graph G = (V,E) and a color set
C = {c1, c2, .., cσ} with a function c : V −→ C mapping each vertex to a color in C and we
want to compute and store the distance distG(u, c) denoting the distance from each vertex
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68:2 On the Complexity of the (Approximate) Nearest Colored Node Problem

Table 1 Best upper and lower bounds for static Color Distance Oracles. N denotes the weight of
the heaviest edge in the graph. The w in the second column refers to the word size and we assume
in this article that w = Θ(logn). N refers to the heaviest edge weight in the graph.

Graph Family Approximation Space Query Time Ref
Unweighted
undirected path O(polylog(n)) S Ω

(
log logσ

log(S/n)+log logn

)
New

Tree Exact O(n) O
(
log logσ

logw

)
[23]

Planar graphs 1 + ε O(n logn) O(log logn) [16]
Planar
digraphs 1 + ε O(n logn) O(log logn

log log(nN)) [16]

General graphs 4k − 5 O(knσ1/k) O(log k) New
General graphs 8(1 + ε)k O(kn1+1/k logn) O

(
log logσ

logw

)
New

u ∈ V to the nearest vertex v of color c ∈ C or more formally distG(u, c) = minv∈Vcdist(u, v)
where Vc denote the set of c-colored vertices. Clearly, if the color set C is of small cardinality,
computing distances and storing a distance matrix is an efficient measure but for large σ, i.e.
σ = Ω(nε) for some ε > 0, this solution becomes impractical for many important applications.
The problem has various applications in navigation, routing and document processing, often
in connection to locating resources or facilities, e.g. the nearest gas station, quickly.

In this article, we present a new data structure that reports for any given v ∈ V, c ∈ C
a distance estimate d̂ist(v, c) in O(log k) time such that dist(v, c) ≤ d̂ist(v, c) ≤ (4k −
5)dist(v, c) using O(knσ1/k) space for every positive integer k, improving on O(k) query
time of the previous data structure with same space consumption and stretch factor [6]. We
refer to the data structure as Color Distance Oracle. In other literature, the problem is also
studied as the vertex-to-label problem and the data structure is referred to as Vertex-label
Distance Oracle [13][6]. The term Distance Oracle originates from the classic Thorup-Zwick
Distance Oracle [22] that reports distance estimates for each pair of vertices. Thorup, Zwick
and Roddity [20] also generalized Distance Oracles by introducing source-restricted Distance
Oracles where only distances in S × V can be queried for some subset S ⊆ V and that uses
space O(n|S|1/k) for stretch 2k − 1. It is tempting to approach the nearest colored node
problem by using an auxiliary vertex for each color c ∈ C linking it to all c-colored vertices
with a zero-weight edge and let the auxiliary vertices define the set S. Unfortunately, this
might decrease some vertex-to-color distances by creating “portals” through the auxiliary
vertices. Instead the underlying sampling techniques can, together with a more advanced
analysis stemming from Compact Routing Schemes [21], be used to construct efficient and
correct Color Distance Oracles. Color Distance Oracles can also be seen as a generalization
of (source-restricted) Distance Oracles as we can choose a color set of size |S| and assign
each vertex in S a unique color.

We first present a Color Distance Oracle of space O(knσ1/k) that reports in O(log k)
time distance estimate of stretch at most (4k− 5). Our Color Distance Oracle matches space
and stretch of the best data structure by Chechik [6] and improves the query time from
O(k) to O(log k). This is in fact achieved by combining Chechiks result with a well-known
technique by Wulff-Nilsen [25] for general distance oracles. Our contribution is to simplify
the technique of Wulff-Nilsen by observing that a Range Minimum Query (RMQ) data
structure can be used to replace his tailor-made data structure even more efficiently resulting
in a concise and simple algorithm; and to generalize the proof technique of Wulff-Nilsen.
Recently, Chechik has also shown that classic Distance Oracles can be implemented with
constant query time [8][7] and it is natural to ask whether this improvement carries over to
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Table 2 Best upper and lower bounds for Color Distance Oracles supporting color-reassignments.
Here N denote the heaviest edge weight in the graph. The lower bound from [12] applies to update
or query time for every ε > 0. More precisely, any algorithm with update time ˜̃o(n1−ε) and ˜̃o(n2−ε)
would refute the OMv-conjecture.

Graph Family Approx-
imation Update Time Query Time Ref

Unweighted
undirected path O(polylog(n)) O(polylog(n)) Ω

(
log logσ

log(S/n)+log logn

)
New

Unweighted
tree exact O(polylog(n)) Ω

(
log(n)

log log(n)

)
[11]

Tree exact O(logn) O (logn) [11]
exact O(log1+ε n) O

(
log(n)

log log(n)

)
[11]

Planar
graphs 1 + ε

O(ε−1 log(n)
log log(n))

O(ε−1 log(n) log(nN)
log log(n)) [14]

1 + ε O
(
ε−1 log2(ε−1n)

log log(n)

)
O(ε−1 log1.51(ε−1n)) [14]

Planar
digraphs 1 + ε

O(ε−1 log(n)
log log(nN)) O(ε−1 log3(n) log(nN)) [14]

General
graphs < 3 Ω(n1−ε) Ω(n2−ε) [12]

4k − 5 O(kn1/k log1−1/k n O(k) [6]
log logn)

8(1 + ε)k O
(
ε−1kn1/k log logn

)
O (log logn) New

8(1 + ε)k O (log logn) O
(
ε−1kn1/k log logn

)
New

Color Distance Oracles. Our new lower bound rules out such an improvement and shows
that our Color Distance Oracle has essentially tight query time when σ = Θ(nε) for constant
0 < ε < 1, as the lower bound then simplifies to Ω(log(εk)) for S = n1+1/k for all values
of k = O(polylog(n)). Our result extends to prove asymptotic optimality in query time in
regard to n for the best known Color Distance Oracles for trees [11][23] and planar graphs
[16] even for data structures with higher stretch k = O(polylog(n)). This lower bound, that
is our main contribution, is thus a significant step in understanding Color Distance Oracles
and their limitations. An overview over the best upper bounds for different graph families
and our lower bound is given in table 1.

We also present a new Color Distance Oracle for the setting where the data structure
needs to handle color-reassignments, i.e. updates in which a vertex v ∈ V is assigned a new
color c ∈ C such that afterwards c(v) = c. Our Color Distance Oracle is conceptually simple,
building on some recent results in Ramsey theory[2] and can be constructed deterministically.
It strictly improves on query and update time for any approximation factor k = Ω( logn

log logn )
and dominates existing data structures in query time for k = Ω(log logn). We are also able
to show an elegant trade-off between query and update time that was unknown before. For
k = Ω( logn

log logn ) our data structure requires Õ(n) space and updates only take polylogarithmic
time. Therefore our static lower bound extends to this setting as we can start with an
uncolored graph and color vertices in n updates. This implies that our query time is tight
with regard to n. Achieving query time O(log logn) is rather surprising given that queries
for exact distances take Ω( logn

log logn ) time even on unweighted balanced trees and that for the
static setting approximation doesn’t admit any query time improvements. An overview over
upper bounds and lower bounds for the color-reassignment setting is given in table 2.

ESA 2018



68:4 On the Complexity of the (Approximate) Nearest Colored Node Problem

Finally, we prove that the dynamic version of the problem, allowing edge insertions
and deletions, cannot process updates in time ˜̃o(σ)1 and queries in time ˜̃o(n/σ) even on
unweighted path graphs for queries that ask to report given a fixed source s ∈ V whether
there is a vertex of color c in the same component, unless Online Matrix Multiplication(OMv)
has a truly subcubic time algorithm. We then show that even update time ˜̃o(σ) and query
time ˜̃o(n) is not possible if we have directed general graph or ask for distance queries of
approximation factor < 5/3. Combined they strictly improve in generality and query time
over a recent lower bound by Gawrychowski et al. [11] showing that for weighted trees, query
and update time ˜̃o(

√
n) where σ = Θ(

√
n) would imply a truly subcubic solution to tripartite

APSP. Our reduction implies an interesting connection to Pagh’s problem and the lower
bound is in fact obtained by adapting the reduction from Pagh’s problem in [12].

2 Preliminaries

We denote by dist(u, v) for u, v ∈ V the shortest-path distance from u to v and by dist(u, c)
with u ∈ V, c ∈ C the shortest-path distance between u and the nearest vertex of color c. When
the context is clear, we often only refer to the nearest colored vertex instead of the nearest
vertex of color c and let c denote the color under consideration. We let v = Nearest(u, c)
denote the nearest vertex of color c to u, i.e. dist(u, c) = dist(u,Nearest(u, c)). We also
make use of the following data structures.

Predecessor Search Problem. In the predecessor search problem, we are given a universe
U = {0, ..,m− 1} = [m] and a subset S ⊆ U of size n = |S|. Given an element x ∈ U , we
ask for the largest element in S that is smaller than x or more formally, we ask for the
predecessor of x, Pred(x) = max{y ∈ S|y < x}. We let the successor of x be Succ(x) =
min{y ∈ S|y > x}. Pǎtraşcu and Thorup present in [18] a predecessor search data structures
that solves queries and updates (insertions and deletions into/from S) in O(log logn) time
and linear space and give a lower bound of Ω(log logn/ log log logn) if m ≤ poly(n) and only
almost linear-space is given.

Range Minimum Query (RMQ). A RMQ is a structure augmenting an array A[1..n]
answering queries of the form Rmq(i, j) = mink∈[i,j] A[k] by returning the index of field with
the minimal value, for any 1 ≤ i ≤ j ≤ n. RMQ can be solved with O(n) preprocessing time,
taking O(n) space and O(1) query time [5][10].

Least Common Ancestor (LCA). The LCA problem is the problem of finding the least
common ancestor in T , which we denote Lca(x, y) T , of any two nodes x, y ∈ V(T ). The
LCA problem can be reduced to RMQ and can therefore be implemented within the same
bounds.

Hash table. Given a universe U = [m] and a (dynamic) subset S ∈ U , with n = |S|, we
can query for any x ∈ U whether x is in S. In [9], a data structure is presented that can run
deterministic queries in constant time and updates of the set S, i.e. insertions and deletions,
in constant amortized time.

1 We use the ˜̃o(f(n))-notation as introduced by Henzinger et al. [12] to denote that the running
time is in O(f(n)1−ε) for some ε > 0. For multiple parameters we let ˜̃o(n1n2n3) be equivalent to
O(n1−ε

1 n2n3 + n1n
1−ε
2 n3 + n1n2n

1−ε
3 ) for some ε > 0.
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3 Static Color Distance Oracle

We construct our Color Distance Oracle as in [6] with the classic techniques by Thorup and
Zwick [22]: For a given positive integer k, we construct the vertex sets V = A0 ⊇ A1 ⊇
A2 ⊇ · · · ⊇ Ak−1, where Ai is obtained by sampling each vertex in Ai−1 with probability
σ−1/k, for 1 ≤ i ≤ k − 1, and define the set Ak = ∅. For each vertex v in V , we store for
each set Ai with 0 ≤ i ≤ k − 1 the closest neighbour in Ai denoted by pi(v), where we
break ties arbitrarily. For every v ∈ V , we define ∆i(v) = dist(v, pi+1(v))− dist(v, pi), for
0 ≤ i < k − 1. We then store all such distances in a consecutive array Pv[0..k − 2] with
Pv[i] = ∆i(v) for all i and augment Pv by a RMQ-structure that returns the maximum value
in a subarray. We denote a query on the RMQ structure over Pv in the range a to b by
Rmqv(a, b) for any 0 ≤ a ≤ b < k − 1. We define a bunch B(v) for every vertex v in V as
follows

B(v) =
k−1⋃
i=0
{u ∈ Ai \Ai+1|dist(v, u) < dist(v, pi+1(v))}

and construct for every color c ∈ C a bunch B(c) =
⋃
v∈Vc

B(v). With each B(c), we store
in a hash table the vertices v ∈ B(c) and associate with their key the distance dist(v, c).
This completes our construction. The following lemma bounds space and construction time,
but we defer the proof to the full version since it only differs by bounding the space of the
RMQ data structures from the proof in [6].

I Lemma 1. We use at most space O(knσ1/k) to represent the Color Distance Oracle and
construction time O(mσ).

Note that the construction cost can be slightly improved for σ > nk/(2k−1) using the
construction of Hermelin et al. [13] but our query time improvement doesn’t carry over to
their construction. We give the following query algorithm for color c ∈ C and vertex v ∈ V :

Listing 1 Query(v,c)
lower_bound← 0
upper_bound← k − 1
While upper_bound 6= lower_bound
Do

i← d(lower_bound+ upper_bound)/2e
// Compute index j such that ∆j(v) = maxa∈{lower_bound,..,i−1}∆a(v)
j ← Rmqv(lower_bound, i− 1)
If pj(v) 6∈ B(c)
Then

lower_bound← i

Else
upper_bound← j

End
End
Return plower_bound(v)

We claim that the query procedure returns a colored vertex wc = plower_bound(v) whose
distance to v is dist(v, c) ≤ dist(v, wc) ≤ (4k − 5)dist(v, c). For the rest of the section, we
let wbest = Nearest(v, c).

As in [25], we let I be the sequence 0, .., k − 1. We call an index j ∈ I, (v, c)-terminal if
pj(v) ∈ B(c). We say that a subsequence i1, .., i2 of I is (v, c)-feasible if (1) dist(v, pi1(v)) ≤
2i1dist(v, c), and (2) i2 is (v, c)-terminal. Using these definitions we are ready to prove our
claim in the ensuing two lemmas.

ESA 2018



68:6 On the Complexity of the (Approximate) Nearest Colored Node Problem

I Lemma 2. Let i1, .., i2 ⊆ I, with |I| > 1, be (v, c)-feasible and let i = d(i1 + i2)/2e. Let I ′
be the sequence i1, .., i− 1. Let j be the index in I ′, that maximizes ∆j(v). Then if j 6∈ B(c)
the subsequence i, .., i2 is (v, c)-feasible. Otherwise, the subsequence i1, .., j is (v, c)-feasible.
The obtained subsequence is of size at most 2

3I.

Proof. If pj(v) ∈ B(c), then j is (v, c)-terminal. Hence i1, ..j is (v, c)-feasible. As j ≤
d(i1 + i2)/2e − 1 < (i1 + i2)/2 and |I| > 1 the subsequence is of size at most 1

2I. Now,
consider the case where pj(v) 6∈ B(c). Then

dist(wbest, pj+1(wbest)) < dist(wbest, pj(v))

We can now employ the analysis from [21]:

dist(v, pj+1(v)) ≤ dist(v, pj+1(wbest)) ≤ dist(wbest, v) + dist(wbest, pj+1(wbest))
< dist(wbest, v) + dist(wbest, pj(v)) ≤ 2dist(wbest, v) + dist(v, pj(v)) (1)

Therefore ∆j(v) = dist(v, pj+1(v))− dist(v, pj(v)) ≤ 2dist(wbest, v). Since i1, .., i2 is (v, c)-
feasible, we have dist(v, pi1(v)) ≤ 2i1dist(v, c). By choice of j,

dist(v, pi(v)) = 2i1dist(v, wbest) +
∑
j′∈I′

∆j′(v)

≤ 2i1dist(v, wbest) + |I ′|max
j′∈I′

∆j′(v)

= 2i1dist(v, wbest) + (i− i1)∆j(v)
= 2idist(v, wbest) (2)

As i2 is (v, c)-terminal, we therefore get that i, .., i2 is (v, c)-feasible. It is now easy to see
that by choice of i and as |I| > 1 the derived sequence is smaller 2

3 |I|. J

I Lemma 3. The algorithm given in procedure Query(v, c) reports a distance estimate with
stretch at most (4k − 5) in time O(log k).

Proof. By lemma 2 the number of potential indices reduces by factor 2
3 by every iteration of

the loop. Therefore, we have at most log 3
2
k iterations. As querying the RMQ data structure

takes constant time the overall running time is O(log k).
To show stretch of at most 4k − 5, we observe that the final sequence has only a single

index j ≤ k − 1, and as the sequence is still (v, c)-feasible, we get by property (1) that
dist(v, pj(v)) ≤ 2jdist(v, wbest) ≤ 2(k − 1)dist(v, wbest). By property (2), we get that
pj(v) ∈ B(c) and we can bound

dist(pj(v), c) = dist(pj(v), wbest) ≤ dist(v, wbest) + dist(v, pj(v))
≤ dist(v, wbest) + 2(k − 1)dist(v, wbest) (3)

giving an overall distance of dist(v, pj(v)) + dist(pj(v), c) ≤ (4k− 3)dist(v, wbest). This can
be slightly improved to stretch 4k − 5 by using the technique from [21](Lemma A.2) even
without changing the overall approach. We only have to adapt property (1) in the definition
of (v, c)-feasible sequences i1, .., i2 to dist(v, pi1(v)) ≤ (2i1 − 1)dist(v, c), and adapt lemma
2 to directly get the improvement. J

We point out that the technique presented to query the Color Distance Oracle extends to
Compact Routing Schemes as described by Thorup and Zwick [21] such that paths can be
computed in O(log k) time. By using a recently devised succinct RMQ structure that is only
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allowed to query intervals where both indices are multiples of log k by Tsur [23], we can
adapt our approach to reduce the intervals as described in lemma 2 down to size O(log k)
and then test each remaining index in O(log k) overall time. The data structure only requires
O
(
k log log k

log k

)
= o(k) additional bits compared to O(k logn) bits required for our preceding

structure. This is an important improvement for routing schemes as the RMQ structure
needs to be appended to each label in order to achieve the query time improvement.

4 Color Distance Oracle supporting color-reassignments

In this section, we let (V,dist) denote a n-point metric space and let the metric be denoted
by ρ. We say that ρ is an ultrametric for V if it is a metric that ensures the strong
triangle inequality ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} for all x, y, z ∈ V . It is well-known, that a
finite ultrametric can be represented by a rooted hierarchically well-separated tree (HST)2
T = (VT , ET ) with a value assigned to each vertex in VT by the function ∆ : VT → (0,∞)
whose leaf set is V and where ∆(v) < ∆(Parent(v)) for any v ∈ VT . Then given x, y ∈ V ,
ρ(x, y) = ∆(lcaT (x, y)). Thus, working with ultrametrics is very convenient as they allow
to reduce problems to problems on trees which are normally well-understood.

In 2005, Mendel and Naor [15] showed a Las Vegas algorithm that given a metric space
(V,dist) finds a ultrametric ρ such that for a subset U ⊆ V of size |U | ≥ |V |1−1/k the
distortion of the ultrametric would be low, i.e. that for each u ∈ U, v ∈ V,dist(u, v) ≤
ρ(u, v) ≤ 128kdist(u, v). They then showed that given this algorithm, a collection of
ultrametrics R = {φ1, φ2, .., φs} with E[s] = O(kn1/k) can be found together with a function
home : V → [1, s] such that for each u, v ∈ V with i = home(v)

dist(u, v) ≤ ρi(u, v) ≤ 128kdist(u, v)

Recently, Abraham et al. [2] gave a deterministic algorithm that improves this result to
stretch 8(1 + ε)k by increasing the size of the collection R by factor O(ε−1). Thus, for fixed
ε the space only differs by a constant factor.

For our Color Distance Oracle, we find a collection of ultrametrics R and build for each
ultrametric ρi ∈ R an HST Ti. Additionally, we store with each v ∈ V a pointer to Thome(v).
We observe that taking

minu∈Vc∆(LcaThome(v)(u, v))

always gives a 8(1 + ε)k approximation on dist(v, c) as we take the smallest distance estimate
among all estimates to colored vertices and each of them is at least 8(1 + ε)k approximate in
the represented metric ρhome(v). Let a be the least common ancestor of v and the nearest
colored node in Thome(v), i.e. a = LcaThome(v)(v,Nearest(v, c)). Then, there cannot be any
vertex a′ on the path from v to a in Thome(v) with a colored vertex in its subtree as otherwise
a′ would be the least common ancestor of v and the colored node and by the property of
HSTs that ∆(x) < ∆(Parent(x)) for all x ∈ V , we would thus derive a contradiction on the
minimality of ∆(a). We conclude that to derive a distance estimate on dist(v, c), we only
need to find the nearest ancestor of v that has a colored node in its subtree. We therefore
construct the data structure described in the following lemma 4 over each HST, whose proof
is deferred to the full version.

2 A good introduction to HSTs and metric representations can be found in [3].

ESA 2018
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I Lemma 4. We can maintain a data structure over a tree T = (V,E) with function
c : V → C as defined before, that given v ∈ V, c ∈ C finds the nearest ancestor of v in T that
has a c-colored vertex in its subtree and that is able to process color-reassignments. Both
operations take O(log logn) worst-case time and the data structure requires O(n) space.

As every HST requires at most O(n) space and s = O(ε−1kn1/k), our data structure
requires space O(ε−1kn1+1/k). To achieve the data structure with fast query time, we answer
a query for d̂ist(v, c) by querying the data structure described in lemma 4 on tree Thome(v)
returning the nearest colored ancestor a and we return ∆(a). Thus only a single invocation
of the tree structure is required which can be implemented in time O(log logn). For updates,
we iterate over all s tree data structures and invoke the color-reassignment on the same
parameters. This takes O(log logn) time per tree and as we have s trees, the running time is
bound by O(ε−1 log lognkn1/k).

For fast update times, we can process a color-reassignment v ∈ V, c ∈ C by changing
the color in Thome(v) only leaving v without a color in all other trees. If we run our query
for v ∈ V, c ∈ C on every of the s HSTs, we also know that our distance estimate is a
8(1 + ε)k approximation as we check every ultrametric and we are sure that for each vertex
u ∈ V, c(u) = c we once queried the HST Thome(u) where u is colored and ∆(Lca(v, u))
is a 8(1 + ε)k approximation. By standard techniques [15], we can also reduce the space
consumption to O(ε−1n1+1/k) for the data structure with fast updates. The data structure
from lemma 4 can easily be adapted to give a c-colored witness û such that dist(v, û) ≤
8(1 + ε)kdist(v, c). Finally, if we are only interested in queries, we can for each vertex v of
color c in a tree color all its ancestors with c where we allow multiple colors. As HSTs can
be balanced, we get an additional factor of O(logn) in our data structures. We can then for
each color use a succinct nearest marked ancestor structure as presented by Tsur [23] with
O(log logσ

logw ) query time.

5 Lower bound for static Color Distance Oracles

In this section we prove the following lower bound.

I Theorem 5. Consider an unweighted path G = (V,E) with coloring c : V → C and
σ ≤ O(n1−ε) for any ε > 0. Then, any data structure, using space S on a machine with
word size w = Θ(lgn), reporting nearest colored node distance estimates of approximation
k = O(polylog(n)) has query time

Ω
(

log log σ
log S

n + log logn

)

The theorem applies to deterministic and randomized queries, admitting a constant error
probability.

Our proof extends recent results by Gawrychowski et al. [11] who proved a similar
statement for the exact version of the problem. Before we prove our result, we review their
lower bound and then show how to extend it.

The lower bound for the exact version of the problem is based on a reduction from
the colored predecessor problem which was used to establish hardness of the predecessor
problem [18, 19] in the cell-probe model. Belazzougui and Navarro showed in [4] that colored
predecessor search can be reduced to the rank query problem using partial sum data structures
and clever mapping. In the rank query problem, a sequence S[1, n] and an alphabet [1, σ]
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v15v16v17v18v19v20v21v22v23v24v25v26v27v28v29v30v31v32v33v34

Figure 1 The weight of the edges on our constructed path P where we chose k = 4. We illustrate
heavy edge weight by increased boldness of the edge. For example the edge between vertices v16 and
v17 has weight k2 because 16 | k2 but 16 - k3.

is given with each S[i] ∈ [1, σ] and after the preprocessing, given an index i ∈ [1, n] and
a symbol c ∈ [1, σ] the data structure has to report the number of occurrences of c in the
subsequence S[1, i). Finally, Gawrychowski et al. [11] observed that the rank query problem
can be reduced to the nearest colored node problem as follows: Given the sequence S, we
build a path P = (v1, .., vn) where c(vi) = S[i] for every i ∈ [1, n]. With each vertex v ∈ P ,
we store its rank. Consider a rank query of form i ∈ [1, n], c ∈ [1, σ]. Using a Color Distance
Oracle, we query for the nearest colored vertex vj and if j < i, we return the rank stored at
vj . Otherwise, j ≥ i and we can return the rank stored with vj decreased by 1. Let us now
take the proof for theorem 5.

Proof. We first consider the (approximate) nearest colored node problem on a weighted
path and extend our proof later to the unweighted setting. We assume w.l.o.g. that the
approximation factor is k ≥ logn and that n is an exact power of k. We use the simple
construction of the path P = (v1, .., vn) from the sequence S as before. We assume that
the nearest colored vertex vj = Nearest(vi, c) to vi has j ≥ i. This is sufficient as we can
reverse the path and run a second query giving the nearest colored vertex vj′ with j′ ≤ i

and then take the closer one (in fact one procedure might not find a colored node but we
always ensure that the nearest colored node is found in one of those two queries). We let
P [vi, vj ] denote the subpath of P between the vertices vi and vj and sometimes refer to it as
interval [i, j] of the path.

The intuition behind our proof is that we can choose the edge weights so that we can
find the nearest colored node vj = Nearest(vi, c) to vi even if we are only given a distance
estimate d̂ist(vi, c) of approximation factor k. Therefore, we partition the path into intervals
of size kl for every 0 ≤ l ≤ logk n and refer to them as level-l intervals. We assign edge
weights to delimit intervals. By construction, if an edge delimits two level-l intervals then it
also delimits two level-l′ intervals for all l′ ≤ l. Let an edge (vx, vx+1) be assigned weight kl if
it delimits two level-l intervals but doesn’t delimit two level-l+ 1 intervals. More formally, an
edge (vx, vx+1) is assigned the weight kl for the largest kl such that kl | x. This is depicted in
figure 1. Let us now observe that the heavy edges on the path dominate the path weight. A
level-l interval contains kl−l′ level-l′ intervals for l′ < l and therefore there are kl−l′ − kl−l′−1

edges of weight kl′ . Thus the path from the first node to the last node in the level-l interval
has weight

l−1∑
l′=0

(kl−l
′
− kl−l

′−1)kl
′
<

l−1∑
l′=0

kl−l
′
k
′

=
l−1∑
l′=0

kl = lkl ≤ logk nkl ≤ kl+1.

It follows that if we have l = blogk(dist(vi, vj))c for i 6= j, then the path P [vi, vj ] contains
an edge delimiting two level-(l − 1), i.e. of weight at least kl−1, as otherwise the path costs
would be strictly less than kl ≤ dist(vi, vj).

Our second idea is that given two vertices vi, vj with i < j and path interval [i, j]
containing no node of color c, then the nearest colored vertex to vj is also the nearest colored
vertex to vi, i.e. Nearest(vi, c) = Nearest(vj , c). We want to provide some special vertices
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(k − 4)kl (k − 3)kl (k − 2)kl (k − 1)kl kl+1

((k − 4)kl, ι((k − 4)kl, l + 1)]

((k − 3)kl, ι((k − 4)kl, l + 1)]

((k − 2)kl, ι((k − 4)kl, l + 1)]

((k − 1)kl, ι((k − 4)kl, l + 1)]

Figure 2 The drawing shows a subinterval of [1, n]. We see that for every number x that is
divisible by kl, we take the interval from x to the closest number that is divisible by kl+1 which is
illustrated by the red interval.

that can return the nearest colored vertex but we need to do so carefully in order to retain
near-linear space as our lower bound otherwise becomes meaningless. We therefore only
cover intervals starting at special points. To simplify the presentation, we let ι(x, l) be the
function that for any integer x gives the next larger integer divisible by kl. We store with
each vertex vj where j|kl a data structure that can return Nearest(vj , c) for all colors c
that are on the path interval [j, ι(j, l + 1)]. We then say that vj covers [j, ι(j, l + 1)] and
observe that if j is divisible by kl, we cover all level-l intervals starting at vj up to the end
of the current level-(l + 1) interval. This is also depicted in figure 2. In order to have fast
look-ups, we store with each such vertex vj a hash map with an entry for each color c ∈ C
that occurs on the path and the corresponding vertex that is closest to vj .

It is straight-forward to see that given a vertex vj , we can use the function ι to find
logk n special vertices vι(j,l) for 0 ≤ l ≤ logk n such that the union of all covered intervals by
those special vertices is

⋃
0≤l≤logk n

[ι(j, l), ι(j, l + 1)] = [j, n] because ι(j, l) is divisible by kl
by definition hence the hash map at vertex vι(j,l) covers the interval [ι(j, l), ι(j, l + 1)]. Thus,
we could already query the hash maps at these special vertices to extract the nearest colored
node even without any distance estimate but it would incur logk n look-ups.

Let us now combine both ideas to achieve that only a constant number of the associated
hash maps at those special vertices need to be queried. Given a distance estimate d̂ist(vi, c)
with l = blogk d̂ist(vi, c)c, vj = Nearest(vi, c). By our approximation guarantee

dist(vi, vj) ≤ d̂ist(vi, c) ≤ kdist(vi, vj)

we get that kl−1 ≤ dist(vi, vj) ≤ kl+1. We conclude that it suffices to check the hash maps at
the special vertices vι(i,l′) from l′ ∈ {l− 1, l, l+ 1} because j ∈ [ι(i, l− 1), ι(i, l+ 2)]. Consider
that this would not be the case, we know that the path from the interval [i, ι(i, l − 1)] has
path weight strictly less than kl−1. If j would be in interval (ι(i, l + 2), n] then as the edge
(vι(i,l+2), vι(i,l+2)+1) has weight kl+2 and every path to from vi to a vertex with index in that
interval has to include this edge. In both cases, we derive a contradiction.

It remains to prove that the space taken by the hash maps is near-linear. We therefore
observe that the number of entries in each hash map is bounded by the size of the interval is
has to cover as every node in the path interval has only one color. It is easy to see that we
have klogk n−j vertices with indices divisible by kj and each covers an interval of size kj+1.

Thus the number of total entries in all hash maps can be bounded by

logk n∑
l=0

klogk n−jkj+1 =
logk n∑
l=0

klogk n+1 = kn logk n
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As hash maps take space linear in the number of entries and k = O(polylog(n)), we can
bound the space by Õ(n) incurring only a log logn term in the lower bound as required.
Thus, if the space is not dominated by the data structure for distance estimates, we still
ensure the stated bounds.

Finally, we observe that the path P [v1, vn] has total weight at most logk nklogk n = n logk n
as it is a level-logk n interval. We can thus replace edges of weight x with a path of x− 1
dummy vertices and unit weight edges. J

6 Lower bounds for the dynamic setting

During the last years, several techniques were presented to prove conditional lower bounds
for dynamic problems by reducing to problems that are conjectured to be hard [17, 24, 1, 12].
We use the framework given by Henzinger et al. [12] who reduce their problems from a
contrived version of Online-Vector-Multiplication defined as follows.

I Definition 6 (γ-OuMv problem (c.f. Definition 2.6 [12])). Let γ > 0 be a fixed constant. An
algorithm for the γ-OuMv problem is given parameters n1, n2, n3 as its input with the promise
that n1 = bnγ2c. Next, it is given a matrix M of size n1 × n2 that can be preprocessed. Let
p(n1, n2) denote the preprocessing time. After the preprocessing, a sequence of vector pairs
(u1, v1), .., (un3 , vn3) is presented one vector pair after another and the task is to compute
(ut)ᵀMvt, before the pair (ut+1, vt+1) arrives. Let c(n1, n2, n3) denote the computation time
over the whole sequence. The special case where n3 = 1 is called the γ-uMv problem.

They then show that any algorithm solving the γ-OuMv problem in ˜̃o(n1n2n3) time would
give a truly subcubic algorithm to solve Online Vector Multiplication(c.f. Theorem 2.2 [12]).

As stated in the introduction, we consider in this section the existential version of nearest
colored node that is we only ask whether there exists a colored vertex in the same component
as a vertex v. As shown by Abboud and Williams [1] it suffices to prove lower bounds on the
worst-case update and query time for a partially-dynamic version of a problem to establish
amortized lower bounds for the fully-dynamic version. We thus only prove hardness of the
partially-dynamic settings where we reduce from the γ-uMv problem where we are given a
n1 × n2 matrix M to preprocess and only a single pair of vectors (u,v) arrives.

I Lemma 7. Given any algorithm A that is able to process updates in u(n, σ) = ˜̃o(σ) and
queries in q(n, σ) = ˜̃o(n/σ) amortized time, we can solve γ-OuMv in time ˜̃o(n1, n2, n3). The
same lower bounds extend to the worst-case update and query times of the partially-dynamic
version of the problem.

Proof. We first focus on the decremental setting and extend the proof for the fully-dynamic
and incremental version. Recall that we are given a n1 × n2 matrix M. We treat the ith row
of M as a subset of [1, n2], i.e. M[i, j] = 1 iff j ∈M[i]. We create a graph G with a coloring
function c : V → C, with color set C = {c1, .., cn2}, as follows: We first create a special
vertex s. For every row i, we create for each j ∈M[i] a vertex with c cj ∈ C and connect
the vertices by linking every two consecutive vertices created. The created component for
the ith row forms a simple path and is denoted from hereon by Pi. We also include an edge
from s to the first vertex on the path Pi for every i. This completes the preprocessing phase.
Clearly, the graph G has at most O(n1n2) vertices and as the construction forms a tree, we
also have at most O(n1n2) edges. The complete set-up is depicted in figure 3.

Consider that a vector pair (u,v) arrives. For each i where u[i] = 0, we remove the edge
from the first vertex in Ri to vertex s. This incurs at most n1 updates. We have uᵀMv = 1
if and only if there exists a j with v[j] = 1 where s is still connected to the color cj . To
check these connections, we need at most n2 queries.
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c1 c2 c4 c6

c1 c3 c4 c5

c3 c5

c1

c2 c3 c4 c5 c6

s

Figure 3 Depiction of the set-up of a graph from a 5× 6 matrix. The point s is used as query
point and in the decremental case all dashed red edges are initially in the graph and can be deleted
depending on u.

As shown by Abboud and Williams [1], we can run our algorithm on a machine that
records all changes and reverts them after a single pair (u,v) is processed to the original
state in time proportional to the running time since the original state was left. Our graph
has at most σ = n2 different colors. It is now straight-forward to see that we can solve
γ-OuMv in time O(n3(n1u(n1σ, σ) + σq(n1σ, σ)) thus the stated bound follows.

In the incremental setting, we omit the edges adjacent to s initially. Then, when (u,v)
arrives, let u have the indices u1, u2, .. set to 1. Then, we join the first vertices in Ri and
Ri+1 for even i and the last vertices of Ri and Ri+1 for odd i. Thus, we only construct a
path. Connecting s to the end of the path, allows us to run queries as in the decremental
setting. For the fully-dynamic setting, we can use the same set-up as in the incremental
setting but instead of rolling the edge insertions back in each phase, we can simply run edge
deletions to recover the original state implying that we get an amortized bound. J

We underline the generality of our lower bound which establishes that even on path graphs
the amortized fully-dynamic problem remains hard. To strengthen our lower bound, we
observe that we can decrease the graph size to O(n1) for directed graphs or if we are given
distance estimates of approximation < 5/3 implying that the query bound in the theorem
can be replaced by ˜̃o(n). We therefore create σ = n2 vertices Vc, one of each color. Instead
of constructing an entire row Ri for the i’th set, we construct a single vertex vi and connect
it with edges to vertices in Vc that match elements in vi. We can then run the algorithm
as before. If we direct the edge from s to each vi and from each vi towards the vertices in
Vc our algorithm works as before. For undirected graphs, we have that dist(vi, cj) = 3 iff
uᵀMv = 1 and otherwise dist(vi, cj) ≥ 5. Thus any approximation of factor smaller 5/3
is still sufficient to distinguish the two cases. Clearly the graph has O(n1 + n2) = O(n1)
vertices as σ ≤ n.

We point out that the underlying OMv-conjecture even applies in case of error probability
1/3 thus our lower bound applies even to Monte-Carlo algorithms. Interestingly, the directed
incremental version of our problem can be seen as a graph version of Pagh’s problem (we
follow the definition from [17]). In Pagh’s problem, we are given a collection C of k sets
C1, C2, .., Ck ⊆ [n]. We are then allowed to update by providing two indices i, j ∈ {1, .., k}
adding the set Ci ∩ Cj to C. We then want to be able to query given x ∈ [n], i ∈ {1, .., k}
if x ∈ Ci. Similarly to the proof let us assume that each set Ci is represented by a path
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Pi containing a vertex of color c for each c ∈ Ci. Then updates for i, j ∈ {1, .., k} can be
implemented by adding a new vertex and an edge from it to the beginning of Pi and one to
the first vertex in Pj . Queries can be implemented by asking whether a node of color x ∈ [n]
can be reached from the first node of Pi and by returning the negated answer.
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