
Average Whenever You Meet: Opportunistic
Protocols for Community Detection
Luca Becchetti
Sapienza Università di Roma, Italy
becchetti@dis.uniroma1.it

Andrea Clementi
Università di Roma “Tor Vergata”, Italy
clementi@mat.uniroma2.it

Pasin Manurangsi
U.C. Berkeley, California, USA
pasin@berkeley.edu

Emanuele Natale
Simons Institute and MPII, Germany
enatale@mpi-inf.mpg.de

Francesco Pasquale
Università di Roma “Tor Vergata”, Italy
pasquale@mat.uniroma2.it

Prasad Raghavendra
U.C. Berkeley, California, USA
raghavendra@berkeley.edu

Luca Trevisan
Simons Institute and U.C. Berkeley, California, USA
luca@berkeley.edu

Abstract
Consider the following asynchronous, opportunistic communication model over a graph G: in
each round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations. Under this model, we study
the following random process: The first time a vertex is an endpoint of an active edge, it chooses
a random number, say ±1 with probability 1/2; then, in each round, the two endpoints of the
currently active edge update their values to their average.

We provide a rigorous analysis of the above process showing that, if G exhibits a two-
community structure (for example, two expanders connected by a sparse cut), the values held
by the nodes will collectively reflect the underlying community structure over a suitable phase
of the above process. Our analysis requires new concentration bounds on the product of certain
random matrices that are technically challenging and possibly of independent interest.

We then exploit our analysis to design the first opportunistic protocols that approximately re-
cover community structure using only logarithmic (or polylogarithmic, depending on the sparsity
of the cut) work per node.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Community Detection, Random Processes, Spectral Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.7

© Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale,
Prasad Raghavendra, and Luca Trevisan;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:becchetti@dis.uniroma1.it
mailto:clementi@mat.uniroma2.it
mailto:pasin@berkeley.edu
mailto:enatale@mpi-inf.mpg.de
mailto:pasquale@mat.uniroma2.it
mailto:raghavendra@berkeley.edu
mailto:luca@berkeley.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1703.
05045.

Funding This material is based upon work supported by the National Science Foundation under
Grants No. 1540685 and No. 1655215 and by the University of “Tor Vergata” under research
programme “Mission: Sustainability” project ISIDE (grant no. E81I18000110005).

1 Introduction

The Averaging Protocol. Consider the following, elementary distributed process on an
undirected graph G = (V,E) with |V | = n nodes and |E| = m edges. Each node v holds
a real number xv (which we call the state of node v); at each time step, one random edge
{u, v} becomes active and its endpoints u and v update their states to their average.

Viewed as a protocol, the above process is consistent with asynchronous, opportunistic
communication models, such as those considered in [1] for population protocols; here, in every
round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations in that round. We further
assume no global clock is available (nodes can at most count the number of local activations)
and that the network is anonymous, i.e., nodes are not aware of theirs or their neighbors’
identities and all nodes run the same process at all times.

The long-term behavior of the process outlined above is well-understood: assuming G to
be connected, for each initial global state x ∈ RV the system converges to a global state in
which all nodes share a common value, namely, the average of their initial states. A variant
of an argument of Boyd et al. [4] shows that convergence time is equivalent to the the mixing
time of a lazy random walk on the graph, namely O

(
1
λ2
n logn

)
, where λ2 is the second

smallest eigenvalue of the normalized Laplacian of G.

Distributed Community Detection. Suppose now that G is well-clustered, i.e. it exhibits
a community structure which in the simplest case consists of two equal-sized expanders,
connected by a sparse cut: this structure arises, for instance, when the graph is sampled from
the popular stochastic block model Gn,p,q for p� q and p > logn/n [6, 7, 10]. If we let the
averaging process unfold on such a graph, for example starting from an initial ±1 random
global state, one might reasonably expect a faster, transient convergence toward some local
average within each community, accompanied by a slower, global convergence toward the
average taken over the entire graph. If, as is likely the case, a gap exists between the local
averages of the two communities, the global state during the transient phase would reflect
the graph’s underlying community structure. This intuition suggests the main questions we
address in this paper: Is there a phase in which the global state carries information about
community structure? If so, how strong is the corresponding “signal”? Finally, can nodes
leverage local history to recover this information?

Our Results: Highlights. We show that, if G exhibits a two-community structure (for
example, two expanders connected by a sparse cut), the values held by the nodes will
collectively reflect the underlying community structure over a suitable phase of the above
process, allowing efficient and effective recovery in important cases.

In more detail, we first provide a first moment analysis showing that, for a large class of
almost-regular clustered graphs that includes the stochastic block model, the expected values
held by all but a negligible fraction of the nodes eventually reflect the underlying cut signal.
We prove this property emerges after a “mixing” period of length O(n logn).

https://arxiv.org/abs/1703.05045
https://arxiv.org/abs/1703.05045

L. Becchetti et al. 7:3

We further provide a second moment analysis for a more restricted class of regular
clustered graphs that includes the regular stochastic block model [3, 5, 11]. Since nodes do
not share a common clock, it is not immediate to translate the above results into distributed
clustering protocols. To this purpose, we show that concentration holds over a long time
window and most nodes are able to select a local time within this window. So, most nodes can
efficiently and locally identify their community of reference over a suitable time window. Even
for the above class of regular graphs, our second moment analysis requires new concentration
bounds on the product of certain random matrices that are technically challenging and
possibly of independent interest.

This results in the first opportunistic protocols that approximately recover community
structure. For clustered graphs with sparse (i.e. size o(m)) cut, we devise a first protocol,
using the sign of the nodes’ state as local clustering criterion (see Algorithm 2), that
converges in O(n logn) time and has only polylogarithmic work per node (see Theorem 12
for a formal statement). So, the protocol can be much faster than the global mixing time of
the corresponding process and, moreover, the work per node does not depend on the node
degree, thus resulting very efficient in the case of dense graphs. For clustered graphs with
dense cut (i.e. size Θ(m)), the cut “signal” is much harder to recover: we derive a more
complex second moment analysis leading us to a weighted version of the averaging process,
equipped with a clustering criterion based on the fluctuations of the nodes’ state. This second
protocol (see Algorithm 3) converges within O(n logn+n/λ2) rounds and has work per node
O(polylog (n) + 1/λ2) (see Theorem 14, Corollaries 15 and 16 for formal statements).

Comparison to Previous Work. We here discuss only strongly-related work (see the full-
version [2] for a more detailed description of previous results. The idea of using averaging
local rules to perform distributed community detection is not new: In [3], Becchetti et
al. consider a deterministic dynamics in which, at every round, each node updates its
local state to the average of its neighbors. The authors show that this results in a fast
clustering algorithm with provable accuracy on a wide class of almost-regular graphs that
includes the stochastic block model. We remark that the algorithm in [3] (only) works
in a synchronous, parallel communication model where every node exchanges data with
all its neighbors in each round. This implies considerable work and communication costs,
especially when the graph is dense. It turns out that, in d-regular, well-clustered graphs, the
algorithm in [3] requires overall communication cost Θ(ndpolylog (n)) and work per-node
Θ(d polylog (n)). On the other hand, each step of the process in [3] is described by the
same matrix and its deterministic evolution unfolds according to the power of this matrix
applied to the initial state. In contrast, the averaging process we consider in this paper
is considerably harder to analyze than the one in [3], since each step is described by a
random, possibly different averaging matrix. Differently from [3], our goal here is the design
of simple, lightweight protocols for fully-decentralized community detection which fit the
asynchronous, opportunistic communication model, in which a (random) link activation
represents an opportunistic meeting that the endpoints can exploit to exchange one-to-one
messages. More specifically, by “lightweight” we mean protocols that require minimalistic
assumptions as to network capabilities, while performing their task with minimal work,
storage and communication per node (at most logarithmic or polylogarithmic in our case).
In this respect, any clustering strategies (like the one in [12]) which construct (and then work
over) some static, sparse subgraph of the underlying graph are unfeasible in the opportunistic
model we consider here. This restrictive setting is motivated by network scenarios in which
individual agents need to autonomously and locally uncover underlying, implicit communities

ESA 2018

7:4 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 1: Updating rule for a node u of an active edge, where δ ∈ (0, 1) is the
parameter measuring the weight given to the neighbor’s value.

Averaging(δ) (for a node u that is one of the two endpoints of an active edge)
Initialization: If it is the first time u is active, then pick xu ∈ {−1,+1} u.a.r.
Update: Send xu to the other endpoint and set xu := (1− δ)xu + δr, where r is the
value received from the other endpoint.

of which they are members. This has widespread applicability, for example in communication
systems where lightweight data can be locally shared via wireless opportunistic meetings
when agents come within close range [13].

Roadmap of the paper. After presenting some preliminaries in Section 2, the first moment
analysis for almost-regular graphs is given in Section 3. The second moment analysis for
regular graphs is given in Section 4 while, in Section 5, we describe our protocols for community
detection and give the main bounds on their performances. Due to space constraints, most
technical results are given in the full-version of the paper [2].

2 Preliminaries

Averaging process. In general, we consider the weighted version of the averaging process
described in the introduction: In each round, one edge of the graph is sampled uniformly at
random and the two endpoints of the sampled edge execute Algorithm 1.

Graphs and their spectra. For a connected graph G = (V,E) with n nodes, m edges and
adjacency matrix A, let 0 = λ1 6 · · · 6 λn be the eigenvalues of the normalized Laplacian
L = I −D−1/2AD−1/2, where D is the diagonal matrix with the degrees of the nodes. We
consider the following graph classes.

I Definition 1. An (n, d, β)-almost-regular graph is a connected, non-bipartite graph G =
(V,E) with n nodes such that every node has degree d± βd. An (n, d, b)-clustered regular
graph, where n is even and d and b are two positive integers with 2b < d < n, is a graph
G = ((V1, V2), E) over node set V = V1 ∪ V2, with |V1| = |V2| = n/2 and such that: (i) every
node has degree d and (ii) every node in V1 has b neighbors in V2 and every node in V2 has b
neighbors in V1.

It is easy to see that the indicator vector χ ∈ {−1,+1} of the cut (V1, V2) is an eigenvector
of L with eigenvalue 2b

d , whenever the graph is clustered regular. If we further assume that
λ3 >

2b
d , then χ is an eigenvector of λ2.

Block reconstruction. We next discuss what it means to recover the “underlying community
structure” in a distributed setting, a notion that can come in stronger or weaker flavors [6,
11, 8, 9]. Ideally, we would like the protocol to reach a state in which, at least with high
probability, each node can use a simple rule to assign itself one of two possible labels, so
that labelling within each community is consistent and nodes in different communities are
assigned different labels. Achieving this corresponds to exact (block) reconstruction. The
next best guarantee is weak (block) reconstruction.

L. Becchetti et al. 7:5

I Definition 2 (Weak Reconstruction). A function f : V → {±1} is said to be an ε-weak
reconstruction of G if subsets W1 ⊆ V1 and W2 ⊆ V2 exist, each of size at least (1− ε)n/2,
such that f(W1) ∩ f(W2) = ∅.

We introduce a third notion, which we call community-sensitive labeling (CSL for short):
in this case, there is a predicate that can be applied to pairs of labels so that, for all but a
small fraction of outliers, the labels of any two nodes within the same community satisfy the
predicate, whereas the converse occurs when they belong to different communities1. In this
paper, informally speaking, nodes are labelled with binary signatures of logarithmic length,
while two labels satisfy the predicate whenever their Hamming distance is below a certain
threshold. This introduces a notion of similarity between nodes of the graph, with labels
behaving like profiles that reflect community membership2. Note that this weaker notion of
community-detection allows nodes to locally tell “friends” in their community from “foes” in
the other community, which is the main application of distributed community detection in
the opportunistic setting we consider here.

Let ∆(x,y) denote the Hamming distance between two binary strings x and y.

I Definition 3 (Community-sensitive labeling). Let G = (V,E) be a graph, let (V1, V2) be
a partition of V and let γ ∈ (0, 1]. For some ` ∈ N, a function h : V1 ∪ V2 → {0, 1}` is a
γ-community-sensitive labeling for (V1, V2) if a subset Ṽ ⊆ V with size |Ṽ | > (1− γ)|V | and
two constants 0 6 c1 < c2 6 1 exist, such that for all u, v ∈ Ṽ it holds that: ∆(hu,hv) 6 c1`

if iu = iv, and ∆(hu,hv) > c2`, otherwise, where iu = 1 if u ∈ V1 and iu = 2 if u ∈ V2.

3 First moment analysis

We analyze the expected behaviour of Algorithm Averaging(1/2) on an almost-regular
graph G. The evolution of the resulting process can be formally described by the recursion
x(t+1) = Wt · x(t), where Wt = (Wt(i, j)) is the random matrix that defines the updates of
the values at round t, i.e.,

Wt(i, j) =


0 if i 6= j and {i, j} is not sampled (at round t),

1/2 if i = j and an edge with endpoint i is sampled
or i 6= j and edge {i, j} is sampled,

1 if i = j and i is not an endpoint of sampled edge.

(1)

and the initial random vector x(0) is uniformly distributed in {−1, 1}n.3 Note that, con-
sequently, x(t+1) = Wt · · ·W1x(0), with the Wi’s independently and identically distributed.
Simple calculus shows that the expectation of the random matrices {Wt : t > 0} can be
expressed as

W := E[Wt] = I − 1
2mL , (2)

where L = D − A is the Laplacian matrix of G. Matrix W is thus symmetric and doubly-
stochastic. We denote its eigenvalues as λ̄1, . . . , λ̄n, with 1 = λ̄1 > λ̄2 > · · · λ̄n > −1.

1 Note that a weak reconstruction protocol entails a community-sensitive labeling. In this case, the
predicate is true if two labels are the same.

2 Hence the phrase community-sensitive Labeling we use to refer to our approach.
3 Notice that, since each node chooses value ±1 with probability 1/2 the first time it is active, by using

the principle of deferred decisions we can assume there exists an “initial” random vector x(0) uniformly
distributed in {−1, +1}n.

ESA 2018

7:6 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Our first contribution is an analysis of the expected evolution of the averaging process
over (n, d, β)-almost regular graphs that possess a hidden and balanced partition of the nodes
with the following properties: (i) The cut separating the two communities contains o(m)
edges; (ii) the subgraphs induced by the two communities are expanders, i.e., the gap λ3−λ2
is constant. The above conditions on the underlying graph are satisfied, for instance, by
graphs sampled from the stochastic block model4 Gn,p,q for q = o(p) and p > logn/n. Our
analysis proves the following results.

I Theorem 4. Let G = (V,E) be an (n, d, β)-almost regular graph G = (V,E) with a
balanced partition V = (V1, V2) and such that: (i) The cut E(V1, V2) is sparse, i.e., m1,2 =
|E(V1, V2)| = o(m); (ii) λ3 − λ2 = Ω(1). If nodes of G execute Protocol Averaging then,
with constant probability w.r.t. the initial random vector x(0) ∈ {−1, 1}n, after Θ(n logn)
rounds the following holds for all but o(n) nodes:
(i) The expected value of a node u increases or decreases depending on the community it
belongs to, i.e., sgn

(
E
[
x(t−1)
u |x(0)

]
− E

[
x(t)
u |x(0)

])
= sgn (χu);

(ii) Over a suitable time window of length Ω(n logn), the sign of the expected value of a
node u reflects the community u belongs to, i.e., sgn

(
E
[
x(t)
u |x(0)

])
= sgn (α2χu), for some

α2 = α2(x(0)).

We note that these results suggest two different local criteria for community-sensitive
labeling: (i) According to the first one, every node uses the sign of its own state within the
aforementioned time window to set the generic component of its binary label (in fact, we
run independent copies of the averaging process to get binary labels of logarithmic size - see
Protocol Sign-Labeling in Section 5.1). (ii) According to the second criterion, every node
uses the signs of fluctuations of its own value along consecutive rounds to set the generic
component of its binary label (see Protocol Jump-Labeling in Section 5.2).

The above results describe the “expected” behaviour of the averaging process over a
large class of well-clustered graphs, at the same time showing that our approach might lead
to efficient, opportunistic protocols for block reconstruction. Yet, designing and analyzing
protocols with provable, probabilistic guarantees, requires addressing the following questions:
i) Do realizations of the averaging process approximately follow its expected behavior with
high, or even constant, probability? ii) If this is the case, how can nodes locally and
asynchronously recover the cut signal, let alone guess the “right” global time window? The
first issue is addressed in Section 4, while the second one is addressed in Section 5, which
presents our main algorithmic results for community detection.

4 Second Moment Analysis

Recall from Section 3 that x(t) depends on the product of t identically distributed random
matrices. Not much is known about concentration of such products, but we are able to
accurately characterize the class of regular clustered graphs. We point out that many of the
technical results and tools we develop to this purpose apply to far more general settings than
the regular case and may be of independent interest. In more detail, we are able to provide
accurate concentration bounds on the norm of x(t)’s projection onto the subspace spanned by
the first and second eigenvector of W for a class of regular clustered graphs that includes the
regular stochastic block model [3, 5, 11]. These bounds are derived separately for two different

4 See the full-version [2] for the definition of Gn,p,q and for more details about our results for Gn,p,q.

L. Becchetti et al. 7:7

regimes, defined by the sparseness of the cut separating the two communities. Assuming
good inner expansion within each community, the first concentration result applies for cuts
of size o(m/ log2 n) and it is given in Subsectioni 4.1 while, for the case of cuts of size up to
αm for any α < 1, the obtained concentration results are described in Subsection 4.2.

4.1 Second moment analysis for sparse cuts
We next provide a second moment analysis of the Averaging(δ) with δ = 1/2 on the class
of (n, d, b)-clustered regular graphs when the cut between the two communities is relatively
sparse, i.e., for λ2 = 2b/d = o(λ3/ logn). This analysis is consistent with the “expected”
clustering behaviour of the dynamics explored in the previous section and highlights clustering
properties that emerge well before global mixing time, as we show in Section 5.1.

Restriction to (n, d, b)-clustered regular graphs simplifies the analysis of the Averaging
dynamics. When G is regular, W defined in (2) can be written as W =

(
1− 1

n

)
I + 1

n P =
I − 1

n L. This obviously implies that W and L share the same eigenvectors, while every
eigenvalue λi of L corresponds to an eigenvalue λ̄i = 1− λi/n of W . For (n, d, b)-clustered
regular graphs, these facts further imply λ̄2 = 1− λ2/n = 1− 2b/dn whenever λ3 >

2b
d while,

very importantly, the partition indicator vector χ turns out to be the eigenvector of W
corresponding to λ̄2 (see (2)). On the other hand, even in this restricted setting, our second
moment analysis requires new, non-standard concentration results for the product of random
matrices that apply to far more general settings and may be of independent interest.

For the sake of readability, in the remainder we denote x(t)’s projection onto 1 by x‖ and
we use y(t) to denote its component in the eigenspace of the second eigenvalue of W (i.e.,
χ).5 Finally, we use z(t) to denote x(t)’s projection onto the subspace orthogonal to 1 and χ.
We thus have:

x(t) = x‖ + y(t) + z(t). (3)

Our analysis of the process induced by Averaging(1/2) provides the following bound,
whose proof can be found in the full-version [2].

I Theorem 5 (Second moment analysis). Let G be an (n, d, b)-clustered regular graph with
λ2 = 2b

d = o (λ3/ logn). Then, for every 3n
λ3

logn 6 t 6 n
4λ2

it holds that

E
[∥∥∥y(t) + z(t) − y(0)

∥∥∥2
]
6

3λ2t

n
.

We prove Theorem 5 by bounding and tracking the lengths of the projections of x(t) onto
the eigenspace of λ2 and onto the space orthogonal to 1 and χ, i.e. ‖y(t)‖2 and ‖z(t)‖2. We
here remark that the only part using the regularity of the graph is the derivation of the
upper bound on E

[
‖y(t+1)‖2], in particular its second addend. This term arises from an

expression involving the Laplacian of G, which is far from simple in general, but that very
nicely simplifies in the regular case. We suspect that increasingly weaker bounds should be
achievable as the graph deviates from regularity.

Theorem 5 gives an upper bound on the squared norm of the difference of the state vector
at step t with the state vector at step 0. Intuitively, this will allow us to conclude that,
for most vertices, x(t)

v ≈ x‖,v + y(0)
v over a time window of size Ω(n logn). More formally,

Corollary 7 below shows how such a global bound can be used to derive pointwise bounds on
the values of the nodes.

5 Note that x‖ is time-invariant.

ESA 2018

7:8 Average Whenever You Meet: Opportunistic Protocols for Community Detection

I Definition 6. A node v is ε-good at time t if (x(t)
v − (x‖,v + y(0)

v))2 6 ε2

n ‖y
(0)‖2, it is ε-bad

otherwise. We also define Bt = {u : u is ε-bad at time t}.

I Corollary 7. Assume 3 n
λ3

logn 6 t 6 3c nλ3
logn for any absolute constant c > 1 and

λ2/λ3 6 ε4/(4c logn):

P
[
|Bt| > εn |x(0) = x

]
6 ε. (4)

The next lemma strengthens the result above, giving a bound on the number of nodes
that are good over a relatively large time-window. This is the key-property that we leverage
to analyse the asynchronous protocol Sign-Labeling. The main idea of its proof is to first
show that with probability strictly larger than 1− ε, the number of ε-good nodes is at least
n · (1− ε/ logn) in every round t ∈ [t1, 2t1]. Theorem 5 already ensures this to be true in
any given time step within a suitable window, but simply taking a union bound will not
work, since we have n logn time steps and only a 1− ε probability of observing the desired
outcome in each of them. We will instead argue about the possible magnitude of the change
in ‖y(t) + z(t) − y(0)‖2 over time, assuming this quantity is small at time 6 n

λ3
logn. We will

then show that our argument implies that, with probability 1 − ε, at least n − εn nodes
remain ε-good over the entire window [6 n

λ3
logn, 12 n

λ3
logn].

I Lemma 8 (Non-ephemeral good nodes). Let ε > 0 be an arbitrarily small value, let G be an
(n, d, b)-clustered regular graph with λ2

λ3
6 λ3ε

4

c log2 n
, for a large enough costant c. If we execute

Averaging(1/2) on G, it holds that
P
[
|Bt| 6 3ε · n , ∀ t : 6 n

λ3
logn 6 t 6 12 n

λ3
logn

]
> 1− ε.

4.2 Second moment analysis for dense cuts
In this section, we extend our study to the lazy averaging algorithm Averaging(δ) where
δ < 1/2. Similar to the previous section, we assume that the underlying graph G is an
(n, d, b)-clustered regular graph and λ3 > λ2 = 2b/d. However, this new analysis works
even for large (constant) λ2, in contrast to that in Section 4.1 which only works for small
λ2 � 1/ log2 n. Informally speaking, we show that, for an appropriate value of δ and any
t such that Ω(n logn) 6 t 6 O(n2), with large probability, the vector y(t) + z(t) is almost
parallel to χ, i.e., ‖z(t)‖ is much smaller than ‖y(t)‖. A more precise statement is given below
as Theorem 9. Note that, for brevity, we write E here to denote the sequence {(ut, vt)}t∈N of
the edges chosen by the protocol.

I Theorem 9. For any sufficiently large n ∈ N, any6 δ ∈ (0, 0.8(λ3 − λ2)) and any t ∈[
Ω
(

n
δ(λ3−λ2) log (n/δ)

)
,O
(

n2

δ(λ3−λ2)

(
d(λ3−λ2)

δb

)2/3
)]

, we have

Prx(0),E

[
‖z(t)‖2 6

√
δb

d(λ3−λ2)‖y
(t)‖2

]
> 1−O

(
3
√

δb
d(λ3−λ2) + 1√

n

)
.

Theorem 9 should be compared to Theorem 5: both assert that ‖y(t)‖ is much larger
than ‖z(t)‖, but Theorem 9 works even when λ2 is quite large whereas Theorem 5 only holds
for λ2 � 1/ log2 n. While the parameter dependencies in Theorem 9 may look confusing at
first, there are mainly two cases that are interesting here. First, for any error parameter ε,
we can pick δ depending only on ε and λ3 − λ2 in such a way that Theorem 9 implies that,
with probability 1− ε, ‖z(t)‖2 is at most ε‖y(t)‖2, as stated below.

6 Here 0.8 is arbitrary and can be changed to any constant less than 1. However, we pick an absolute
constant here to avoid introducing another parameter to our theorem.

L. Becchetti et al. 7:9

Algorithm 2: Sign-Labeling algorithm.
Sign-Labeling(T,`) (for a node u that is one of the two endpoints of an active edge)
Component selection: Jointly with the other endpoint choose a component j ∈ [`]
u.a.r.
Initialization and update: Run one step of Averaging (1/2) for component j.
Labeling: If this is the T -th activation of component j: set hsignu (j) = sgn(xu(j)).

I Corollary 10. For any constant ε > 0 and for any λ3 > λ2, there exists δ depending only on
ε and λ3−λ2 such that, for any sufficiently large n and for any t ∈ [Ωε,λ3−λ2(n logn),O(n2)],
we have Prx(0),E

[
‖z(t)‖2 6 ε‖y(t)‖2] > 1− ε.

Another interesting case is when δ = 1/2 (i.e., we consider the basic averaging protocol).
Recalling that λ2 = 2b/d, observe that λ2 appears in both the bound on ‖z(t)‖2 and the error
probability. Hence, we can derive a similar lemma as the one above, but with λ2 depending
on ε instead of δ:

I Corollary 11. Fix δ = 1/2. For any constant ε > 0, any7 λ3 > 0.7, any sufficiently small
λ2 depending only on ε, any sufficiently large n and any t ∈ [Ωε(n logn),O(n2)], we have
Prx(0),E

[
‖z(t)‖2 6 ε‖y(t)‖2] > 1− ε.

5 Distributed Community Detection

5.1 The Sign-Labeling protocol for sparse cuts
In the case of sparse cuts (i.e. of size o(m/ log2 n)), the obtained bound on the variance of
non-ephemeral nodes (see Lemma 8) holds over a time window that essentially equals the
one “suggested” by our first moment analysis. Hence, we next propose a simple, lightweight
opportunistic protocol that provides community-sensitive labeling for graphs that exhibit a
relatively sparse cut.

The algorithm, denoted as Sign-Labeling (see Algorithm 2), adds a simple labeling
rule to the Averaging(1/2) process: Each node keeps track of the number of times it is
activated. Upon its T -th activation, for a suitable T = Θ(logn), the node uses the sign of its
current value as a binary label. The above local strategy is applied to ` independent runs of
Averaging(1/2), so that every node is eventually assigned a binary signature of length `.

Roughly, Lemma 8 implies that over a suitable time window of size Θ(n logn), for all
nodes u but a fraction O (ε/ logn), we have sgn(x(t)

u) = sgn(x‖,u + y(0)
u). Recalling that x‖

and y(0) respectively are x(0)’s projections along χ/
√
n and 1/

√
n, this immediately implies

that, with probability 1 − ε and up to a fraction ε of the nodes, sgn(x(t)
u) = sgn(x(t)

v),
whenever u and v belong to the same community and t falls within the aforementioned
window. As to the latter condition, we prove that each node labels itself within the right
window with probability at least 1−1/n.8 Moreover, sgn(x‖,u+y(0)

u))) = sgn(χu), whenever
y(0)
u exceeds x‖,u in modulus, which occurs with probability 1/2−o(1) from the (independent)

Rademacher initialization. As a consequence, if we run ` suitably independent copies of the
process, the following will happen for all but a fraction O(ε) of the nodes: the signatures of

7 0.7 here can be replaced by any constant larger than 0.5.
8 It may be worth noting that sgn(x(t)

u) = sgn(x(t)
v) for u and v belonging to the same community does

not imply sgn(x(t)
u) 6= sgn(x(t)

v) when they don’t.

ESA 2018

7:10 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 3: Jump-Labeling Here, τu is a local counter keeping track of the
number of times u was an endpoint of an active edge, while xu is u’s current value.

Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e)
(for a node u that is one of the two endpoints of an active edge)
Initialization: The first time it is activated, u chooses τ su, τ eu ∈ N independently
uniformly at random from [τ s, τ̃ s] and [τ e, τ̃ e] respectively. Moreover, let τu = 0.
Update (and Averaging’s initialization): Run one step of Averaging(δ).
Labeling: If τu = τ su, then set xsu = xu. If τu = τ eu, then label hjumpu = sgn(xsu − xu).

two nodes belonging to the same community will agree on `− o(1) bits, whereas those of
two nodes belonging to different communities will disagree on Ω(`) bits, i.e., our algorithm
returns a community-sensitive labeling of the graph, as stated in the following theorem and
corollary.

I Theorem 12 (Community-sensitive labeling). Let ε > 0 be an arbitrarily small value, let
G be an (n, d, b)-clustered regular graph with λ2

λ3
6 λ3ε

4

c log2 n
, for a large enough constant c.

Then, protocol Sign-Labeling (T, `) with T = (8/λ3) logn and ` = 10ε−1 logn performs a
γ-community-sensitive labeling of G according to Definition 3 with c1 = 4ε, c2 = 1/6 and
γ = 6ε, w.h.p. The convergence time is O(n` logn/λ3) and the work per node is O(` logn/λ3),
w.h.p.

Notice that, according to the hypothesis of Theorem 12, in order to set local parameters
T and `, nodes should know parameters ε and λ3 (in addition to a polynomial upper bound
on the number of the nodes). However, it easy to restate it in a slightly restricted form that
does not require such assumptions on what nodes know about the underlying graph.

I Corollary 13. Protocol Sign-Labeling (80 logn, 600 logn) performs a (1/10)-community-
sensitive labeling, according to Definition 3 with c1 = 1/15 and c2 = 1/6, of any (n, d, b)-
clustered regular graph G with λ3 > 1/10 and λ2 6 1/(c log2 n) for a large enough constant c.

Observe that the “good” time-window begins after O(n logn) rounds: So, if the underlying
graph has dense communities and a sparse cut, nodes can collectively compute an accurate
labeling before the global mixing time of the graph. For instance, if the cut is O(m/nγ),
for some constant γ < 2, our protocol is polynomially faster than the global mixing time.
Importantly enough, the costs of our first protocol do not depend on the cardinality of the
edge set E.

5.2 The Jump-Labeling protocol for dense cuts
The bound on the variance that allows us to adopt the sign-based criterion above does not
hold when the cut is not sparse, i.e., whenever it is ω(m/ log2 n). For such dense cuts, we
use a different bound on the variance of nodes’ values given in Theorem 9, which starts to
hold after the global mixing time of the underlying graph and over a time window of length
Θ(n2). In this case, the specific form of the concentration bound leads to adoption of the
second clustering criterion suggested by our first moment analysis, i.e., the one based on
monotonicity of the values of non-ephemeral nodes. To this aim, we consider a “lazy” version
of the averaging process equipped with a local clustering criterion, whereby nodes use the
signs of fluctuations of their own values along consecutive rounds to label themselves (see
Algorithm 3).

L. Becchetti et al. 7:11

Here δ ∈ [0, 1] and τ s, τ̃ s, τ e, τ̃ e ∈ N are parameters that will be chosen later. Intuitively,
protocol Jump-Labeling exploits the expected monotonicity in the behaviour of sgn(x(t)

u −
x(t−1)) highlighted in Section 3. Though this property does not hold for a single realization
of the averaging process in general, the results of Section 4.2 allow us to show that the
sign of x(τe

u) − x(τs
u) reflects u’s community membership for most vertices with probability

1 − o(1) (i.e., the algorithm achieves weak reconstruction) when τsu and τeu are randomly
chosen within a suitable interval. This is the intuition behind the main result of this section
which is formalized below.

I Theorem 14. Let n be any sufficiently large even positive integer. For any 0 < δ <

0.8(λ3 − λ2), there exist τ s, τ̃ s, τe, τ̃e ∈ N such that, after O
(

n
δ(λ3−λ2) log (n/δ) + nd

bδ

)
rounds of protocol Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e), every node labels its cluster and this
labelling is a

(
8
√

δb
d(λ3−λ2) + 4

√
1

logn

)
-weak reconstruction of G, with probability at least

1−O
(

8
√

δb
d(λ3−λ2) + 4

√
1

logn

)
. The convergence time of this algorithm is Ωδ

(
n
(
logn+ d

b

))
.

Proof of Theorem 14: an informal overview. Since our discussion here will involve both
local times and global times, let us define the following notation to facilitate the discussion:
for each vertex u ∈ V , let Tu : N → N be a function that maps the local time of u to the
global time, i.e., Tu(τ) , min{t ∈ N | |{i 6 t | u ∈ {ui, vi}}| > τ} where ({ui, vi})i∈N is the
sequence of active edges.

We let ay(t) ∈ R be such that y(t) = ay(t) · (χ/
√
n). Let us also assume without loss

of generality that ay(0) > 0. Observe first that our concentration result (Corollaries 10
and 11) implies the following: for any t such that Ω(n logn) 6 t 6 O(n2), with large
probability, χu(x(t)

u − x||,u) is roughly EE ay(t)/n for most vertices u ∈ V ; let us call these
vertices good for time t. Imagine for a moment that we change the protocol in such a way
that each u has access to the global time t and u assigns hjumpu = sgn(x(te)

u − x(ts)
u) for

some ts, te ∈ [Ω(n logn),O(n2)] that do not depend on u. If te − ts is large enough, then
EE ay(ts)� EE ay(te). This means that, if a vertex u ∈ V is good at both times ts and te,
then we have that χu(x(ts)

u − x||,u) ≈ EE ay(ts)/n � EE ay(te)/n ≈ χu(x(te)
u − x||,u). Note

that when χu ·x(ts)
u > χu ·x(te)

u , we have hjumpu = χu. From this and from almost all vertices
are good at both times ts and te, hjump is indeed a good weak reconstruction for the graph!

The problem of the modified protocol above is of course that, in our settings, each
vertex does not know the global time t. Perhaps the simplest approach to imitate the
above algorithm in this regime is to fix τ s, τ e ∈ [Ω(logn),O(n)] and, for each u ∈ V ,
proceed as in Jump-Labeling except with τ su = τ s and τ eu = τ e. In other words, u assigns
hjumpu = sgn(x(Tu(τs))

u − x(Tu(τe))
u). The problem about this approach is that, while we know

that EE Tu(τ s) = 0.5nτ s and EE Tu(τ e) = 0.5nτ e, the actual values of Tu(τ s) and Tu(τ e)
differ quite a bit from their means, i.e., on average they will be Ω(n

√
logn) of away their

mean. Since our concentration result only says that, at each time t, we expect 99% of the
vertices to be good, it is unclear how this can rule out the following extreme case: for many
u ∈ V , Tu(τ s) or Tu(τ e) is a time step at which u is bad. This case results in hjump not
being a good weak reconstruction of V .

The above issue motivates us to arrive at our eventual algorithm, in which τ su and τ eu
are not fixed to be the same for every u, but instead each u pick these values randomly
from specified intervals [τ s, τ̃ s] and [τ e, τ̃ e]. To demonstrate why this overcomes the above
problem, let us focus on the interval [τ s, τ̃ s]. While Tu(τ s) and Tu(τ̃ s) can still differ from
their means, the interval [Tu(τ s), Tu(τ̃ s)] still, with large probability, overlaps with most of
[0.5nτ s, 0.5nτ̃ s] if τ̃ s − τ s is sufficiently large. Now, if Tu(τ + 1)− Tu(τ) are the same for all

ESA 2018

7:12 Average Whenever You Meet: Opportunistic Protocols for Community Detection

τ ∈ [τ s, τ̃ s], then the distribution of x(Tu(τs))
u is very close to x(tsu)

u if we pick tsu randomly
from [0.5nτ s, 0.5nτ̃ s]. From the usual global time step argument, it is easy to see that the
latter distribution results in most u being good at time tsu. Of course, Tu(τ + 1)− Tu(τ) will
not be the same for all τ ∈ [τ s, τ̃ s], but we will be able to argue that, for almost all such τ ,
Tu(τ + 1)− Tu(τ) is not too small, which is sufficient for our purpose. J

We remark that the nd/b dependency in the running time is necessary. If we start with a
good state where x(0) = z(0) = 0, then the values on one side of the partition are all ay(0)
and the values on the other side are −ay(0). It is easy to see that, after o(nd/b) steps of our
protocol, 1− o(1) fraction of the values remain the same. For these nodes, it is impossible to
determine which cluster they are in and, hence, no good reconstruction can be achieved.

Similarly to our concentration results in Subsection 4.2, let us demonstrate the use of
Theorem 14 to the two interesting cases. First, let us start with the case where λ3 − λ2 is
constant.

I Corollary 15. For any constant ε > 0 and for any λ3, λ2, there exists δ depending only on ε
and λ3−λ2 such that, for any sufficiently large n, there exists τ s, τ̃ s, τe, τ̃e ∈ N such that, with
probability 1− ε, after Oε,λ3−λ2

(
n logn+ n

λ2

)
rounds of Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e),

every node labels its cluster and this labelling is a ε-weak reconstruction of G.

As in Subsection 4.2, we can consider the (non-lazy) averaging protocol and view λ2
instead as a parameter. On this front, we arrive at the following reconstruction guarantee.

I Corollary 16. Fix δ = 1/2. For any constant ε > 0, any λ3 > 0.7, any sufficiently small
λ2 depending only on ε, any sufficiently large n, there exists τ s, τ̃ s, τe, τ̃e ∈ N such that,
with probability 1 − ε, after Oε

(
n logn+ n

λ2

)
rounds of Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e),

the nodes’ labelling is a ε-weak reconstruction of G.

While the weak reconstruction in the above claims is guaranteed only with arbitrarily-large
constant probability, we can boost this success probability considering the same approach we
used in Subsection 5.1.

Indeed, we first run ` = Θε(logn) copies of Jump-Labeling where, similarly to Algorithm
2, “running ` copies” of Jump-Labeling means that each node keeps ` copies of the states
of Jump-Labeling and, when an edge {u, v} is activated, u and v jointly sample a random
j ∈ [`] and run the j-th copy of Jump-Labeling. In the previous section, we have seen that
Lemma 8 and the repetition approach above allowed us to get a good community-sensitive
labeling, w.h.p. (not a good weak-reconstruction). Interestingly enough, the somewhat
stronger concentration results used in this section allow us to “add” a simple majority rule
on the top of the ` components and get a “good” single-bit label, as described below. When
all ` components of a node u have been set, node u sets hjumpu = Majorityj∈[`](hjumpu (i))
where hjumpu (j) is the binary label of u from the j-th copy of the protocol. Observe that the
weak reconstruction guarantee of Jump-Labeling shown earlier implies that the expected
number of mislabelings of each copy is at most 2εn, i.e., E[{u ∈ V | |hjumpu (i) 6= χu|}] 6 2εn.
Now, since the number of mislabelings of each copy is independent, the total number of
mislabelings is at most O(εn`), w.h.p. However, if the eventual label of u is incorrect, it
must contributes to mislabeling across at least `/2 copies. As a result, there are at most
O(εn) mislabelings in the new protocol, w.h.p.

I Corollary 17. For any constant ε > 0 and λ3 > λ2, there is a protocol that yields an
ε-weak reconstruction of G , w.h.p. The convergence time is Θε,λ3−λ2

(
n
(

log2 n+ logn
λ2

))
rounds, while the work per node is Oε,λ3−λ2

(
log2 n+ logn

λ2

)
.

L. Becchetti et al. 7:13

We finally remark that, for the dense-cut case we focus on in this section (i.e. λ2 = 2b/d =
Θ(1)), the fraction of outliers turns out to be a constant we can made arbitrarily small. If
we relax the condition to λ2 = o(1), then this fraction can be made o(1), accordingly.

References
1 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational

power of population protocols. Distributed Computing, 20(4):279–304, 2007.
2 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Prasad Raghaven-

dra, and Luca Trevisan. Average whenever you meet: Opportunistic protocols for commu-
nity detection. CoRR, abs/1703.05045, 2017. URL: https://arxiv.org/abs/1703.05045.

3 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Tre-
visan. Find your place: Simple distributed algorithms for community detection. In Proc.
of the 28th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’17), pages 940–959.
SIAM, 2017. doi:10.1137/1.9781611974782.59.

4 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized Gossip
Algorithms. IEEE/ACM Transactions on Networking, 14:2508–2530, 2006. doi:10.1109/
TIT.2006.874516.

5 Gerandy Brito, Ioana Dumitriu, Shirshendu Ganguly, Christopher Hoffman, and Linh V.
Tran. Recovery and Rigidity in a Regular Stochastic Block Model. In Proc. of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 371–390. ACM, 2015.

6 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

7 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social networks, 5(2):109–137, 1983.

8 Laurent Massoulié. Community Detection Thresholds and the Weak Ramanujan Property.
In Proc. of the ACM Symposium on Theory of Computing (STOC), pages 694–703. ACM,
2014.

9 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold con-
jecture. Combinatorica, pages 1–44, 2013.

10 Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction
and optimal recovery of block models. In Conference on Learning Theory, pages 356–370,
2014.

11 Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3-4):431–461, 2015.

12 He Sun and Luca Zanetti. Distributed Graph Clustering and Sparsification. CoRR,
abs/1711.01262, 2017. URL: http://arxiv.org/abs/1711.01262.

13 Matthew J. Williams, Roger M. Whitaker, and Stuart M. Allen. Decentralised detection of
periodic encounter communities in opportunistic networks. Ad Hoc Networks, 10(8):1544–
1556, 2012.

ESA 2018

https://arxiv.org/abs/1703.05045
http://dx.doi.org/10.1137/1.9781611974782.59
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/TIT.2006.874516
http://arxiv.org/abs/1711.01262

	Introduction
	Preliminaries
	First moment analysis
	Second Moment Analysis
	Second moment analysis for sparse cuts
	Second moment analysis for dense cuts

	Distributed Community Detection
	The Sign-Labeling protocol for sparse cuts
	The Jump-Labeling protocol for dense cuts

