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Abstract
Elemental balance, the property of having the same number of each type of atom on both sides
of the equation, is a fundamental feature of chemical reactions. In metabolic network models,
this property is typically verified on a reaction-by-reaction basis. In this paper we show how
violations of elemental balance can be efficiently detected in an entire network, without the need
for specifying the chemical formula of each of the metabolites, which enhances a modeler’s ability
to automatically verify that their model satisfies elemental balance.

Our method makes use of duality theory, linear programming, and mixed integer linear pro-
gramming, and runs efficiently on genome-scale metabolic networks (GSMNs). We detect ele-
mental balance violations in 40 out of 84 metabolic network models in the BiGG database. We
also identify a short list of reactions that are candidates for being elementally imbalanced. Out
of these candidates, nearly half turn out to be truly imbalanced reactions, and the rest can be
seen as witnesses of elemental balance violations elsewhere in the network. The majority of these
violations involve a proton imbalance, a known challenge of metabolic network reconstruction.

Our approach is efficient, easy to use and powerful. It can be helpful to metabolic network
modelers during model verification. Our methods are fully integrated into the MONGOOSE
software suite and are available at https://github.com/WGS-TB/MongooseGUI3.
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1:2 Elemental Balance and Imbalance in Metabolic Networks

1 Introduction

Genome-scale metabolic network reconstructions (GSMNs) represent the collection of all
metabolic reactions available to a specific organism, together with constraints on their
direction. These GSMNs, coupled with the constraint-based analysis framework, have
been successfully used for predicting the growth rates of various organisms under different
environmental conditions [20], the minimal media necessary for growth [10], the essentiality
and synthetic lethality of specific genes [2], as well as identifying promising intervention
strategies to inhibit their growth [12].

A fundamental property of chemical reactions is elemental balance, the presence of the
same number of each type of atom in the reactants (left-hand side of the reaction) and the
products (right-hand side of the reaction). For instance, the ethanol combustion reaction,

C2H5OH + 3O2→ 3H2O + 2CO2,

is elementally balanced. Each reaction in a GSMN is expected to possess this property
[18, 15]. Unfortunately, it turns out that elemental balance is frequently violated in published
models [14]. Since the chemical formulas of the metabolites in a metabolic network are
sometimes left unspecified, it is a challenge for modelers to use the facilities provided by
platforms such as COBRA [18] to check elemental balance in their model directly.

In this paper we present a method for quickly and effectively identifying small groups of
reactions in a metabolic network model such that at least one of them violates elemental
balance, without the need to specify the elemental formulas of any metabolites. This
method is based on the earlier observation that a set of elementally imbalanced reactions
may be able to produce “something out of nothing” [14]. Our key theoretical result, first
proved in Chindelevitch [7], shows that the ability to produce something out of nothing is
mathematically equivalent to a violation of elemental balance; more specifically, if something
cannot be produced out of nothing, then there is a set of chemical formulas that make all
the reactions elementally balanced. Our method is fully integrated into the MONGOOSE
software suite for metabolic network analysis in exact rational arithmetic [8, 13], and is
available at https://github.com/WGS-TB/MongooseGUI3.

When we apply our method to the collection of existing GSMNs in the BiGG database
[11], we find elemental balance violations in 40 out of 84 of them. When we compare these
elemental balance violations to the formulas provided in some of the models, we observe
that our tool directly identifies a subset of the elementally imbalanced reactions in 28 of
the 40 GSMNs, and identifies small sets of reactions containing an imbalanced reaction,
which we call “free lunches”, in an additional 10 cases. We cannot ascertain which one of
these options occurs in the remaining 2 cases since they do not have a formula specified
for each metabolite. These results mean that our tool can help modelers efficiently identify
elemental imbalances during the process of GSMN reconstruction, even in the absence of
detailed chemical formulas for the metabolites.

Although previous authors have identified the presence of elemental imbalances in GSMNs
[14], it has not been previously demonstrated, to the best of our knowledge, that this could
be done without knowing the exact chemical formulas for the metabolites. Our results also
show that our method fails to detect the elementally imbalanced reactions that are present
in 32 out of 84 GSMNs in the BiGG database, so it does not guarantee that the network is
elementally balanced. Nevertheless, with a detection rate exceeding 55%, this method can
be an additional tool for model verification, and we expect it to be helpful to the community
thanks to its versatility, transparency, and ease of use.

https://github.com/WGS-TB/MongooseGUI3
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2 Methods

This section is organized as follows. We start by explaining the connection between elemental
balance in a metabolic network and its ability to produce “something out of nothing”. We
then introduce our three-step method which consists of the following steps:
1. Verify whether the condition forbidding the production of something out of nothing is

violated, and if so, identify any metabolites that can be produced out of nothing.
2. Identify a small set of reactions responsible for such a production being possible.
3. Find a lower bound on the number of imbalanced reactions in the network and identify

reactions that are likely to be imbalanced.
All of these steps are carried out entirely from the stoichiometric matrix of the network,
without any knowledge of the underlying chemical formulas of the metabolites. Steps 1 and
2 are carried out using linear programming, while step 3 uses integer linear programming.

Throughout this paper we use the standard convention that z can also denote the vector
with all entries equal to z for any z ∈ R, and that all vector inequalities (such as x ≥ y) are
interpreted component-wise except for x 6= y, which means that x and y are unequal vectors.

Elemental Balance and the No Free Lunch Condition
A GSMN is a collection of metabolic reactions available to an organism. If the GSMN has
m metabolites and the n reactions, it is commonly represented by its stoichiometric matrix
S ∈ Rm×n, which contains a row for each metabolite and a column for each reaction. The
entry Sij is the stoichiometric coefficient of metabolite i in reaction j, which is positive if
reaction j produces metabolite i, negative if it consumes it, and zero otherwise.

The stoichiometric matrix S is elementally balanced with respect to some set of chemical
elements (called a “closed system with atomic representation” in [16]) if and only if there
exists a vector y with strictly positive components such that

yTS = 0. (1)

Indeed, one can think of y as containing the number of elements (atoms) in each metabolite,
since every metabolite has a strictly positive (and integer) number of atoms, and the total
number of atoms must be the same for the reactants and the products in any elementally
balanced reaction.

Therefore, the non-existence of such a vector y implies the presence of an imbalanced
reaction in the model. Theorem 2 shows that elemental balance is equivalent to the No Free
Lunch (FL) condition, which postulates that something cannot be produced out of nothing
by the net (overall) reaction of any linear combination of the reactions in the metabolic
network. This condition can be written as

A := {v | Sv ≥ 0 and Sv 6= 0} = ∅

The following theorem, known as Stiemke’s Alternative [5], is one of several statements
closely related to Farkas’ Lemma.

I Theorem 1 (Stiemke’s Alternative). Let A ∈ Rm×n. Then exactly one of the following is
true.
1. ∃ x ∈ Rn such that Ax ≥ 0 and Ax 6= 0
2. ∃ y ∈ Rm with y > 0 such that yTA = 0

WABI 2018



1:4 Elemental Balance and Imbalance in Metabolic Networks

I Theorem 2. [7] Let S be a stoichiometric matrix of a metabolic network. Then S is
elementally balanced with respect to some set of elements if and only if no linear combination
of the reactions in S can result in the production of one or more metabolites out of no
reagents.

Proof. Assume that S is elementally balanced. Then there exists a vector y with strictly
positive components such that

yTS = 0.

In this case, according to Theorem 1, there is no vector v ∈ Rn such that

Sv ≥ 0 and Sv 6= 0.

Therefore, the No FL condition holds.
Similarly, if the No FL condition holds for the matrix S, by Theorem 1, we can conclude
that there exists a strictly positive vector y such that

yTS = 0.

Hence, the matrix S is elementally balanced. J

As a result of Theorem 2, we can decide whether a given model violates elemental
balance by testing the No FL condition for it. That is, we can check whether there exists a
non-negative non-zero vector in the column space of S (i.e. A 6= ∅) [7].

Suppose the No FL condition is not satisfied for a stoichiometric matrix S (i.e. A 6= ∅).
Then there exists a linear combination of the reactions in S that can produce metabolites out
of nothing, individually or in combination. For the definitions below we recall that the support
of a vector v ∈ Rn is the set of its non-zero components, supp(v) := {i ∈ {1, . . . , n} | vi 6= 0}.

I Definition 3 (Free Lunch). Given a stoichiometric matrix S, we call a subset F of reactions
a free lunch if there exists a non-zero vector v ∈ A with supp(v) = F . We call such a v a
vector corresponding to the free lunch F .

I Definition 4 (Free Lunch Metabolite). For a free lunch F with a corresponding vector
v ∈ A, we call the metabolite t a free lunch metabolite if t ∈ supp(Sv).

Step 1: No FL and all possible FL metabolites
In the first step of our method we introduce a test to verify the No FL condition for a given
stoichiometric matrix S and identify the set of all possible FL metabolites. The verification
of the No FL condition is performed by checking the feasibility of the linear program

Sv = w,w ≥ 0, 1Tw ≥ 1, where v ∈ Rn, w ∈ Rm. (2)

In addition, recall that ‖x‖0 := |{i | xi 6= 0}| denotes the size of the support of a vector x
and t is a FL metabolite if t ∈ supp(Sv) for some v ∈ A. In the following lemma we show
that the support of Sv for the vector v solving the non-linear program

max
v
‖Sv‖0 subject to Sv ≥ 0, v ∈ Rn (3)

is the set of all possible FL metabolites for the matrix S. Note that if the optimum value of
(3) is greater than zero, then (2) is feasible and the No FL Condition is not satisfied.
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I Lemma 5. Given a stoichiometric matrix S ∈ Rm×n, the support of Sv where v is a
solution of the non-linear program in (3) corresponds to the set of all possible FL metabolites
for the given matrix S.

Proof. Let TS be the set of all possible FL metabolites for S and v̂ be a maximizer of (3).
By definition of an FL metabolite we can observe that

supp(Sv̂) ⊆ TS .

Now, assume that TS − supp(Sv̂) 6= ∅ and let t ∈ TS − supp(Sv̂). Since t is a FL meta-
bolite, there exists a vector u ∈ A such that t ∈ supp(Su). Note that in this case
supp(Sv̂) ( supp(S(v̂ + u)), which contradicts the maximality of ‖Sv̂‖0. Therefore, TS =
supp(arg maxv‖Sv‖0). J

Although (3) is a non-linear program, we can in fact solve it with the following linear program.

I Lemma 6. Given a matrix S ∈ Rm×n, the support of w, where w is a solution of

max
w

(1Tw), subject to Sv − w ≥ 0, 0 ≤ w ≤ 1, (v, w) ∈ Rn+m (4)

corresponds to the set of all possible FL metabolites for the given matrix S.

Proof. Let (v, w) be a solution for (4). Also let p be a maximizer of (3) and define q = Sp.
We show that

1Tw = ‖q‖0.

Note that since 0 ≤ w ≤ 1, we have 1Tw = ‖w‖1 ≤ ‖q‖0. Now assume that 1Tw < ‖q‖0. Let

ṽ = v + p

min{mini∈supp(w) wi,minj∈supp(q) qj}
.

Also, define w̃ ∈ Rm such that

w̃i =
{

1 if max{wi, qi} > 0
0 otherwise

Since the non-zero components of vector Sṽ are greater than or equal to 1, we found
(ṽ, w̃) ∈ Rn+m that is in the feasible region of (4) and

1T w̃ ≥ ‖q‖0 > 1Tw

which contradicts the maximality of 1Tw. With a similar argument we can show that the
solution of (4) is unique. Therefore, by Lemma 5, we are done. J

Step 2: Minimal Free Lunches
Theorem 2 shows that violation of the No FL condition implies violation of elemental balance
in at least one reaction in the model. In the following section we continue the process in
order to identify minimal subsets of reactions that contain such imbalanced reactions. We
also show that, regardless of the chemical formulas assigned to the metabolites participating
in the model, such a subset always contains an imbalanced reaction.

I Definition 7 (Minimal Free Lunch). The Free Lunch F is called a Minimal Free Lunch,
if no proper subset of F is a free lunch.

WABI 2018



1:6 Elemental Balance and Imbalance in Metabolic Networks

A minimal FL can be computed with respect to any desired subset of FL metabolites. Let T
be a non-empty subset of all FL metabolites in a model, and let us define the vector w ∈ Rm

to be an indicator vector such that wi = 1 if metabolite i ∈ T and wi = 0 otherwise, for
i ∈ {1, . . . ,m}. Then the smallest subset of reactions producing all FL metabolites in T can
be computed by solving the following non-linear optimization problem:

arg min
v
‖v‖0 subject to Sv − w ≥ 0, v ∈ Rn, w ∈ Rm (5)

This problem is NP-hard and challenging in practice [4], so we use the following steps to
identify the minimal subsets instead. First we use the iterative reweighted `1 minimization
algorithm, presented by Candès, Wakin and Boyd [6], to find an approximation for the
non-convex minimization (5). We then reduce the (possibly non-minimal) FL found to a
minimal FL by removing each reaction in turn and checking if the resulting combination is
still a FL; if it is not, the reaction is restored. This procedure produces a minimal FL [7].

I Lemma 8. SupposeM is a minimal FL. Then, for every assignment of chemical formulas
to the metabolites involved in M there exists an elementally imbalanced reaction in M.
Furthermore, for each reaction r ∈ M there exists an assignment of chemical formulas to
these metabolites that makes r imbalanced while making the reactions inM−{r} balanced.

Proof. AssumeM is a minimal FL. Let S′ be the submatrix of the stoichiometric matrix S
corresponding to the reactions inM. SinceM is a FL, by Theorem 2, there exits no strictly
positive vector y for which (1) holds. Therefore, if we think of the vector y as containing the
number of elements in each metabolite, regardless of the chemical formulas assigned to the
metabolites in S′, there exists at least one imbalanced reaction inM.

In addition, sinceM is minimal, for each r ∈M,M−{r} cannot be a FL. Let S′′ be
the submatrix of S corresponding to the reactions inM− {r}. Therefore, by Theorem 2,
there exits a strictly positive vector y such that

yTS′′ = 0.

We can assume that the coefficients of y are rational, since S has rational entries. Let ŷ = Ny

be the vector obtained by scaling y by the least common multiple N of the denominators in
y. Then ŷTS′′ = 0 as well, and ŷ contains positive integers. Thus we can set the formula of
metabolite j to Cŷj

, and observe that (1) holds forM−{r} with these one-atom formulas. J

We solve the linear programs in Steps 1 and 2 using the QSOpt_ex solver [3], which
checks that the solutions are correct in exact rational arithmetic. Some of our previous work
[8, 13] has argued that this is necessary in order to ensure accuracy and reproducibility of
the solutions. We use the QSOpt_ex API for Python [19] created by Jon Steffensen [17] to
streamline the process.

Step 3: Free Lunch Witnesses
In the current section we aim to find the smallest number of reactions that are guaranteed
to be involved in at least one FL each. We observe that the optimum of the minimization
problem

min
y
‖yTS‖0, subject to y > 0 (6)

represents a lower bound on the minimum number of FL’s over all possible metabolite
formulas, and the minimizer represents a smallest set of reactions involved in FL’s. Moreover,
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the optimum value of (6) also gives us a lower bound on the number of imbalanced reactions
in the model for an arbitrary or a specific set of metabolite formulas. In other words, if
the optimum value of (6) is k, we know that at least k distinct reactions are elementally
imbalanced, no matter what metabolite formulas we choose, and in particular, the metabolic
network cannot be elementally balanced unless k = 0. This motivates the following

I Definition 9 (Free Lunch Witness). The reaction r is called a Free Lunch Witness, if
r ∈ supp(yTS) for some y ∈ argminy>0‖yTS‖0.

Even though we cannot guarantee this, it turns out to be more likely than not in practice
that a FL witness is elementally imbalanced for a given set of metabolite formulas, as we
discuss in more detail in the Results section.

In order to solve (6), we can use the following mixed integer linear program:

min
x

1Tx subject to x ≥ −yTS, x ≥ yTS, y ≥ ε, x ∈ {0, 1}n, y ∈ Rm (7)

where ε is a small positive scalar (in practice, we use ε = 10−4). The lower bound of ε ensures
that the vector y = 0 is not an admissible solution of (6), so that any y that is optimal for (7)
can be scaled to a ŷ that is optimal for (6) (with the same objective value), and vice versa.

We point out that the solution vector to the optimization problem (7) is in general not
unique (even though the optimal value is), and may change based on the solver as well as
the order of the reactions or metabolites in the stoichiometric network S. We used CPLEX
12.8.0 [1] via its API for Python [19] to solve the integer optimization problem (7).

3 Results

We analyzed a collection of 84 previously published metabolic network models in the BiGG
database [11]. From our analysis we excluded any pseudo-reactions, namely, the biomass
reactions (those containing the word “biomass” or “growth” in their name) as well as import
and export reactions (those that have only positive or only negative stoichiometric coefficients,
i.e. produce something out of nothing or reduce something to nothing, respectively). This
ensures that all the reactions included in a stoichiometric matrix S were bona fide biochemical
reactions, with both reactant and product sides non-empty. We expected all those reactions
to be elementally balanced, as required in the model construction protocol [18].

Nevertheless, we found instances of elemental balance violation in 72 of the 84 network
models by using the provided chemical formulas. An additional 7 of the models had no
instance of elemental balance violation and 5 of them had no specified chemical formulas for
the metabolites. Note that we only consider the following bona fide atoms in our decision
about whether a reaction is imbalanced: C, Fe, H, Mg, Na, N, O, P, S, Z (the latter represents
a photon, which can for instance be used by photosynthetic organisms). We do not consider
symbols for functional groups or other moieties such as I, K, M, R, U, X, Y; in other words, if
all the bona fide atoms were balanced, the reaction was considered to be balanced no matter
whether these additional symbols were present on both sides of the reaction or only one.

The pie chart in Figure 1 shows the relative frequency of the atoms that are not balanced.
There are a total of 810 imbalanced reactions, and 1492 atomic imbalances, so an average
imbalanced reaction has just under two imbalanced atoms. Almost half of all atomic
imbalances are proton or hydrogen imbalances, involving the H atom.

We applied the first step of our method to find instances of FL metabolites that result
from elemental balance violations. We found that 40 out of 84 models include at least one
FL metabolite. The number of FL metabolites ranged from 3 to 1791, with a mean just

WABI 2018



1:8 Elemental Balance and Imbalance in Metabolic Networks
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Figure 1 Frequency of imbalanced reactions in the BiGG networks by imbalanced atom.

under 139. There are a total of 5552 FL metabolites, of which 2912 are distinct; more
than 90% of them happen to be in four of the models, namely, those for Homo sapiens
(RECON1), Mus musculus (iMM1415), Escherichia coli (iECIAI1_1343), and Salmonella
enterica (STM_v1_0). The vast majority of the other models only have 3 FL metabolites,
which are predominantly protons (H) in three different compartments, namely, [c] (cytosol),
[p] (periplasm), and [e] (extracellular space).

The pie chart in Figure 2 shows the relative frequency of the FL metabolites that are
found in more than 5 of the metabolic networks we investigated. There are a total of 9 such
metabolites, which all happen to be currency metabolites - H (protons), H2O (water), H2O2
(hydrogen peroxide), O2 (oxygen), and SO2 (sulfur dioxide) - in the compartments listed
above.

We also applied the second step to find a minimal FL with respect to one of the FL
metabolites1 in each of these 40 models, and their sizes ranged from 2 to 71, with a mean of
5.8. By using the specified chemical formulas, we were able to verify the existence of at least
one imbalanced reaction in each minimal FL in 38 out of 40 models, in accordance with our
theoretical results (the remaining 2 models, namely, iMM1415 and iECIAI1_1343, did not
have any chemical formulas specified for their metabolites).

Finally, by applying the third step of our method, we found small sets of FL witnesses in
all 40 models, with sizes ranging from 1 to 12, and a mean of 2.2. Just as for the second
step, we compared the set of detected FL witnesses to the set of imbalanced reactions based
on the chemical formulas provided in 38 of the models. We observed that, in 28 out of 38
models, at least one of the FL witnesses identified by our method was an imbalanced reaction.
Furthermore, just over half (41 out of 79) of the FL witnesses were imbalanced reactions.

1 We chose the FL metabolite in following way. First we found an optimum solution (v, w) ∈ Rn+m of
minv‖v‖1 subject to: Sv−w ≥ 0, w ≥ 0, 1T w ≥ 1 to roughly approximate the subset of FL metabolites
for which we may have a small FL. We then chose the first index in supp(w) as the desired FL metabolite.
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H[e]

H[p]

H2O[c]
H2O[e]
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O2[c]

O2[e]
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Figure 2 Relative frequency of the most common free lunch metabolites in the BiGG networks.

This suggests that FL witnesses can be good candidates for imbalanced reactions in the
absence of chemical formulas for the metabolites in a network.

A detailed summary of the 40 models with at least one FL is presented in Table 1. We
now discuss in detail the results of applying our algorithms to four particular models, chosen
for illustration purposes. They are arranged in increasing order of complexity.

The first example is iECB_1328, a model for Escherichia coli B strain REL606 (the first
model in Table 1). For this model, our method identifies 3 FL metabolites, which happen to
be protons, H, in three different compartments. We also find a minimal FL that consists of
two reactions - OPET decarboxylase and 5-carboxy-2-oxohept-3-enedioate decarboxylation:

C8H5O7[c]→ CO2[c] + C7H6O5[c] (8a)
H[c] + C8H5O7[c]→ CO2[c] + C7H6O5[c] (8b)

We can see that by subtracting reaction (8b) from reaction (8a), we get a net overall reaction
that produces the FL metabolite H[c] out of nothing, while all other metabolites cancel out.
The OPET decarboxylase reaction is also detected as the single FL witness in this model,
and in fact, it is easy to see that the H atom is not balanced in this reaction (there are 5 H’s
on the reagent side and 6 on the product side). Thus, in this model, the FL witness is an
imbalanced reaction.

The second example is iBWG_1329, another model for Escherichia coli, but a different
strain, BW2952. Similarly to the first example, our method identifies 3 FL metabolites, which
happen to be protons, H, in three different compartments. This time, the minimal FL consists
of three reactions - nucleoside triphosphate pyrophosphorylase (atp), phenylacetate-CoA
ligase, and phenylacetyl CoA thioesterase:

C10H12N5O13P3[c] + H2O[c]→ C10H12N5O7P[c] + H[c] + HO7P2[c] (9a)
C10H12N5O13P3[c] + C21H32N7O16P3S[c] + C8H7O2[c]→
→ C10H12N5O7P[c] + C29H38N7O17P3S[c] + HO7P2[c] (9b)
H2O[c] + C29H38N7O17P3S[c]→ C21H32N7O16P3S[c] + C8H7O2[c] (9c)

WABI 2018



1:10 Elemental Balance and Imbalance in Metabolic Networks

We can see that subtracting (9a) from the sum of (9b) and (9c) results in the production
of the FL metabolite H[c] out of nothing. We can also see that the H atoms are not balanced
in (9c), with 40 on the reagent side and 39 on the product side, while (9a) and (9b) are
balanced. In this model, our method detects reaction (9b) as the unique FL witness. Thus,
in this model, the FL witness is itself a balanced reaction, but is part of a FL of size 3.

The third example is iJN678, a model for Synechocystis sp. PCC 6803, a cyanobacterium
that can grow by oxygenic photosynthesis [9]. For this model, our method once again identifies
3 FL metabolites, which this time are photons (Z) in three compartments. The minimal
FL contains five reactions - ATP synthetase(u), cyanophycinase, cyanophycin sinthetase,
cytochrome oxidase bd (plastocianine-8 2 protons) (lumen), and photosystem II, which we
denote by R1 through R5 for convenience:

R1 : 3C10H12N5O10P2[c] + 3HO4P[c] + 14H[u]→
→ 3C10H12N5O13P3[c] + 11H[c] + 3H2O[c] (10a)

R2 : 2H2O[c] + C10H17N5O4R[c]→ C6H15N4O2[c] + C4H6NO4[c] + R[c] (10b)
R3 : C6H15N4O2[c] + C4H6NO4[c] + 2C10H12N5O13P3[c] + R[c]→
→ 2C10H12N5O10P2[c] + 2H[c] + 2HO4P[c] + C10H17N5O4R[c] (10c)

R4 : C8H10O2[u] + 1
2O2[u]→ C8H8O2[u] + H2O[u] (10d)

R5 : 2H[c] + C8H8O2[u] + H2O[u] + 2Z[c]→ 2H[u] + C8H10O2[u] + 1
2O2[u] (10e)

It is easy to check (but far from obvious to guess!) that 2R1 +3R2 +3R3 +14R4 +14R5 would
result in the consumption of 28 units of the FL metabolite Z[c], while all other metabolites
cancel out. Also, note that Z is only present on the reagent side of (10e). In this example,
our method detects reaction (10e) as one of the 3 FL witnesses, and in this case, it is the
one imbalanced FL witness.

For the final example we chose a model that does not have any chemical formulas assigned
to its metabolites, namely, model iECIAI1_1343, which represents Escherichia coli. IAI1.
For this model our method identifies 1279 FL metabolites and a minimal FL which contains
two reactions - OPET decarboxylase and 5-carboxy-2-oxohept-3-enedioate decarboxylation:

5-Carboxy-2-oxohept-3-enedioate[c]→ 2-Hydroxyhepta-2-4-dienedioate[c] + CO2[c] (11a)
H[c] + 5-Carboxy-2-oxohept-3-enedioate[c]→ 2-Hydroxyhepta-2-4-dienedioate[c] + CO2[c] (11b)

We can see that by subtracting reaction (11b) from reaction (11a), we get the FL
metabolite H[c] out of nothing, while all other metabolites cancel out. Note that this is the
same FL as the one identified in equations (8a) and (8b), although in this model they are not
specified via chemical formulas. Moreover, our method identifies 4 FL witnesses; as a result
of the absence of chemical formulas, we are not able to verify whether they are elementally
balanced.

4 Conclusion

Our approach represents the first attempt to automatically verify elemental balance in a
GSMN without access to the chemical formulas for the metabolites. It quickly and efficiently
identifies small sets of reactions which must contain at least one imbalanced reaction, or
determines that no such set exists. In addition, it can provide a lower bound on the number
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Table 1 The summary of our results. n and m denote the number of reactions and metabolites,
respectively. mF L and nF L is the number of FL metabolites and the size of a minimal FL we found,
respectively. nI and nF LW are the numbers of imbalanced reactions and FL witness reactions,
respectively. Finally, nIF LW if the number of FL witness reactions that are imbalanced.

Model Organism n m mF L nI nF L nF LW nIF LW

iECB_1328 E. coli B str. REL606 2748 1951 3 10 2 1 1
iNJ661 M. tuberculosis H37Rv 1025 825 192 10 4 4 1
iY75_1357 E. coli str. K-12 2759 1953 3 9 3 1 0
iMM1415 Mus musculus 3726 2775 1767 N/A 12 6 N/A
iECO103_1326 E. coli O26:H11 str. 11368 2758 1958 3 17 2 2 2
iECUMN_1333 E. coli UMN026 2740 1935 3 7 2 1 1
iEcolC_1368 E. coli ATCC 8739 2768 1969 3 16 2 2 1
RECON1 Homo sapiens 3741 2766 1791 5 40 4 1
iECO111_1330 E. coli O111:H- str. 11128 2760 1959 3 19 2 2 2
iSBO_1134 S. boydii Sb227 2591 1908 3 7 2 1 1
iRC1080 C. reinhardtii 2191 1706 21 61 6 12 0
iJB785 Synechococcus elongatus 849 768 16 11 14 4 0
iS_1188 S. flexneri 2a str. 2457T 2619 1914 3 4 2 1 1
STM_v1_0 S. enterica subsp. enterica 2545 1802 344 1 71 2 0
iECBD_1354 E. coli BL21 2748 1952 3 10 2 1 1
iECO26_1355 E. coli O26:H11 str. 11368 2780 1965 3 17 2 2 2
iWFL_1372 E. coli W 2782 1973 3 21 2 2 2
iECSE_1348 E. coli SE11 2768 1957 3 18 2 2 2
iECD_1391 E. coli BL21 2741 1943 3 10 2 1 1
iEcDH1_1363 E. coli DH1 2750 1949 3 8 3 1 1
iECDH1ME8569_1439 E. coli DH1 2755 1950 3 9 3 1 0
iECDH10B_1368 E. coli str. K-12 2742 1947 3 9 3 1 1
iB21_1397 E. coli BL21 2741 1943 3 10 2 1 1
iEcE24377_1341 E. coli O139:H28 str. E24377A 2763 1972 3 17 3 1 1
iUMNK88_1353 E. coli UMNK88 2777 1969 3 18 3 1 0
iETEC_1333 E. coli ETEC H10407 2756 1962 3 14 3 1 0
iECW_1372 E. coli W 2782 1973 3 21 2 2 2
iSF_1195 S. flexneri 2a str. 301 2630 1917 3 7 2 1 1
iSbBS512_1146 S. boydii CDC 3083-94 2591 1910 3 7 2 1 0
iEKO11_1354 E. coli KO11FL 2778 1972 3 21 2 2 2
iCHOv1 Cricetulus griseus 6663 4456 46 92 4 9 4
iSSON_1240 S. sonnei Ss046 2693 1936 3 9 2 1 1
iJN678 Synechocystis sp. PCC 6803 863 795 3 9 5 3 3
iSFxv_1172 S. flexneri 2002017 2638 1918 3 7 2 1 1
iBWG_1329 E. coli BW2952 2741 1949 3 9 3 1 0
iECIAI1_1343 E. coli IAI1 2765 1968 1279 N/A 2 4 N/A
iSFV_1184 S. flexneri 5 str. 8401 2621 1917 3 1 2 1 0
iLB1027_lipid P. tricornutum 4456 2172 3 6 6 2 1
iEcHS_1320 E. coli HS 2753 1963 3 21 2 2 2
iEC55989_1330 E. coli 55989 2756 1953 3 14 3 1 1
Average 138.8 14.0 5.8 2.2 1

of imbalanced reactions present in the model. Lastly, it identifies all the metabolites that
can be produced out of nothing by the overall reaction of a combination of model reactions.

The difference in the number of elementally imbalanced models examined with (72) and
without (40) chemical formulas (out of a total of 84) can be addressed by examining equation
(1). Since the vector y in (1) is not unique, different y vectors can represent different sets
of metabolites. Therefore, although a model with stoichiometric matrix S may contain

WABI 2018



1:12 Elemental Balance and Imbalance in Metabolic Networks

imbalanced reactions for a specific set of chemical formulas, the same stoichiometric matrix S
may be elementally balanced for a different set of formulas. Thus, our method can guarantee
a violation of elemental balance by finding one or more FL metabolites, but the absence of
such metabolites does not guarantee that the model is elementally balanced.

Nevertheless, we believe that our approach provides a complimentary way of ascertaining
a model’s soundness and point out potential issues, as part of the model verification process.
It can - and should - be accompanied by a verification of the elemental balance of individual
reactions whenever possible, i.e. when the chemical formulas are specified for its metabolites.
We thus hope that our method is a useful contribution to metabolic network model verification.
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