
Kermit: Guided Long Read Assembly using
Coloured Overlap Graphs
Riku Walve1

Department of Computer Science, Helsinki Institute for Information Technology HIIT,
University of Helsinki, Helsinki, Finland
riku.walve@helsinki.fi

https://orcid.org/0000-0003-0397-003X

Pasi Rastas2

Institute of Biotechnology, University of Helsinki, Helsinki, Finland
pasi.rastas@helsinki.fi

Leena Salmela1

Department of Computer Science, Helsinki Institute for Information Technology HIIT,
University of Helsinki, Helsinki, Finland
leena.salmela@helsinki.fi

https://orcid.org/0000-0002-0756-543X

Abstract
With long reads getting even longer and cheaper, large scale sequencing projects can be accom-
plished without short reads at an affordable cost. Due to the high error rates and less mature
tools, de novo assembly of long reads is still challenging and often results in a large collection
of contigs. Dense linkage maps are collections of markers whose location on the genome is ap-
proximately known. Therefore they provide long range information that has the potential to
greatly aid in de novo assembly. Previously linkage maps have been used to detect misassemblies
and to manually order contigs. However, no fully automated tools exist to incorporate linkage
maps in assembly but instead large amounts of manual labour is needed to order the contigs
into chromosomes. We formulate the genome assembly problem in the presence of linkage maps
and present the first method for guided genome assembly using linkage maps. Our method is
based on an additional cleaning step added to the assembly. We show that it can simplify the
underlying assembly graph, resulting in more contiguous assemblies and reducing the amount of
misassemblies when compared to de novo assembly.

2012 ACM Subject Classification Applied computing → Sequencing and genotyping technolo-
gies, Mathematics of computing → Graph theory

Keywords and phrases Genome assembly, Linkage maps, Coloured overlap graph

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.11

1 Introduction

High-throughput, second generation, sequencing technologies made large scale de novo
assemblies possible and commonplace. Their short read lengths however still pose a major
problem to this day. Third generation, long read sequencing technologies, such as single-
molecule real-time sequencing (SMRT) and Oxford Nanopore (ONT) are promising but their

1 Supported by Academy of Finland (grants 308030 and 314170).
2 Supported by Jane and Aatos Erkko Foundation.

© Riku Walve, Pasi Rastas, and Leena Salmela;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 11; pp. 11:1–11:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riku.walve@helsinki.fi
https://orcid.org/0000-0003-0397-003X
mailto:pasi.rastas@helsinki.fi
mailto:leena.salmela@helsinki.fi
https://orcid.org/0000-0002-0756-543X
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

error rates have made assemblies difficult in practice. Therefore most long read assemblers
include an error correction step to reduce the error rate.

Recently introduced Minimap-Miniasm workflow [12] has given new insight towards an
error correction-free pipeline for long read assemblies. Minimap finds useful overlaps in
long reads with high error rates and makes long read-only assembly projects practical and
highly efficient. However finding the overlaps between reads with high error rates becomes
impractical in very large data sets and splitting the reads into smaller sets is not possible
without additional information on the reads.

Compared to de novo assembly, where the only available information for the assembly
are the reads, guided genome assembly has additional data that gives information on the
positions of the reads. Normally this additional data is a reference genome of a closely related
species. The reads can be aligned to the reference genome, which results in a linear ordering
of the reads. This clearly makes it easier to then assemble the reads.

Directly guiding the assembly this way makes it hard to get an assembly that is higher
quality than the reference. This becomes an issue when no high quality reference genome
exists, or if the donor genome deviates too far from the reference genome. In this paper, we
guide the assembly using linkage maps.

Linkage maps (also called genetic linkage maps or genetic maps) [17] are a useful technique
to orient and place contigs within a chromosome and to detect misassembled contigs. The
linkage maps themselves consists of variable genetic markers, typically called relative to some
draft assembly. The markers are derived from a set of variations, such as single-nucleotide
variations (SNVs), found from a sequenced cross, a population of related individuals. SNVs
that are close to each other in the genome are more likely to be inherited together than
SNVs that are more distant from each other. Linkage maps can therefore be constructed
by genotyping the individuals in the cross and examining the probabilities of SNVs being
inherited together. With a large enough set of variations in population, the linkage map
becomes dense enough to potentially place long reads directly.

In this paper, we formulate the genome assembly problem in the presence of linkage
maps. We propose the first method to directly use linkage maps in genome assembly. Our
method disentangles the overlap graph by removing false edges based on the linkage map.
Our experimental results show that the method is able to simplify the overlap graph and we
further show that our method decreases the number of misassemblies and improves the N50
statistic as compared to de novo assembly without linkage maps.

This linkage map-guided genome assembly can be seen as a generalisation of reference-
guided genome assembly. With a hypothetical linkage map of evenly spaced markers, the
linkage map-guided assembly becomes essentially reference-guided assembly as each read can
be placed on the genome unambiguously.

We have implemented our method in a tool called Kermit which is freely available at
https://github.com/rikuu/kermit.

2 Related Work

Despite the emergence of long read sequencing technologies like PacBio and ONT and the
development of long read assemblers [11, 12, 7, 10], auxiliary long range data is still needed
to organise the resulting scaffolds or contigs to chromosomes for large eukaryotic genomes.
Depending on the characteristics of the species of interest such data may include optical
mapping data, Hi-C data, or linkage maps.

https://github.com/rikuu/kermit

R. Walve, P. Rastas, and L. Salmela 11:3

Linkage maps consist of a set of markers, typically SNVs, on a genome. The location of
the markers with respect to each other is at least approximately known. Typically a linkage
map successfully assigns the markers to chromosomes and a partial order of the markers
within each chromosome is known. Markers can be localised on contigs or scaffolds and the
linkage map can be used to correct the scaffolds and to order them into chromosomes [1, 18, 4].
However, currently the ordering of scaffolds based on a linkage map is a time-consuming,
error-prone and mostly manual process as no fully automated tools exist [8]. Furthermore,
all current tools use linkage maps as a post processing step after assembly, whereas our work
integrates the linkage maps already in the assembly phase.

Chromonomer [5] attempts to correct and orient scaffolds based on a linkage map. It
first finds a non-conflicting set of markers in the linkage map. It then assigns orientation to
scaffolds containing more than one recombination point and splits scaffolds if they conflict
with the linkage map. Finally, Chromonomer produces a visualisation of the linkage map
and the scaffolds. Another tool that facilitates the visualisation of linkage maps and
corresponding genome assemblies is ArkMAP [15]. However, ArkMAP focuses on visual
exploration including cross species comparisons and as such does not support automatic
ordering of scaffolds into chromosomes.

Similarly to linkage maps also optical mapping data can be used for improving genome
assemblies. Also for optical mapping data the main focus has been to use the optical map
in a post processing step after genome assembly. AGORA [14] is one of the few methods
integrating optical map data with genome assembly. It is a de Bruijn graph based assembler
that uses optical map data to eliminate alternative paths that are not consistent with the
optical map. The method by Alipanahi et al. [2] for disentangling the de Bruijn graph using
optical map data is more related to our work. They map the long reads to the genome wide
optical map and use this mapping to produce a positional de Bruijn graph which resolves
most ambiguities in the de Bruijn graph. In our work we similarly first get a preliminary
ordering of long reads based on a linkage map and then use this ordering to disentangle the
overlap graph.

3 Definitions

3.1 De Novo Assembly
De novo assembly, the problem of assembling a genome given only a set of reads, has
historically been given solutions in two different categories. The de Bruijn graph-based
(DBG) assembly algorithms, such as SPAdes [3], and Overlap-Layout-Consensus (OLC)
algorithms, such as Canu [11] and Miniasm [12].

OLC-assemblers attempt to first find pair-wise overlaps between reads which is the
bottleneck of this approach. From these overlaps, a directed graph of the set of reads, called
an overlap graph, is laid out by assigning edges between reads if an overlap is observed. The
graph is then simplified by removing all transitive edges. Ideally the graph would be simple
enough to unambiguously spell a genome assembly by following the edges from one side of
the graph to the other. This is actually never the case and some sophisticated method for
transforming the graph as close as possible to such a case is the goal of the layout step.

DBG-assemblers attempt to simplify the entire process by not looking for overlaps between
the reads. Instead they take all possible k− 1 length overlaps between substrings of length k

from the set of reads to construct a de Bruijn graph. The methods for finding the genome
from the overlap graph in the OLC setup mostly apply here too.

WABI 2018

11:4 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Though clearly simpler than the OLC assembly algorithms, the effectiveness of further
splitting the reads somewhat diminishes the usefulness of using long reads for genome
assembly. In this paper we are only looking at the OLC category of assembly algorithms,
more specifically, we are looking at Miniasm [12], a very simplistic and highly efficient
implementation of the ideas in OLC-assemblers.

Unlike traditional OLC-assemblers, Miniasm only implements the overlap and layout
steps. This reduces the base-level quality of the resulting assembly but does not greatly
affect the large scale structure. It also does not use any overly sophisticated method for
finding the genome in the overlap graph.

To choose an assembly path, Miniasm finds unitigs which are maximal non-branching
paths in the overlap graph. Such paths are simple to find and intuitively give the maximal
unambiguous and nonrepetitive sequences that the overlap graph can spell without changing
the graph. The problem of finding the unitigs from the overlap graph can be stated as
follows:

I Definition 1. Unitig assembly problem. Given a directed graph G = (V, E), find all
maximal paths P = v1v2 · · · vn such that

∀vi ∈ {v1, . . . , vn−1}, deg+ vi = deg− vi+1 = 1.

Unitigs can be efficiently found by first looking for a vertex with either zero or more than
one incoming edge and exactly one outgoing edge. Following the outgoing edges until we
find a vertex with more than one incoming edge or zero or more than one outgoing edge
constructs a path spelling a unitig.

3.2 Guided Assembly
Reference-guided genome assembly can be done by aligning the read set to a reference and
partitioning the reads based on the alignments into smaller, similar sets of reads [19]. The
small sets are then assembled into contigs and later the set of contigs are assembled into
super-contigs.

For linkage map-guided assembly, we partition the reads based on the linkage map. A
linkage map is a set of markers M which are assigned to a set of bins B. Each marker
m ∈ M belongs to a single bin b ∈ B. The bins are further assigned to chromosomes and
within each chromosome the order of the bins is given.

We assume now that each read has been assigned a set of bins based on the linkage
map. Now this coarse-grained ordering tells if a subset of reads clearly belong before or after
another subset of reads. We encode this ordering into the overlap graph by assigning each
vertex a set of colours representing the bins, resulting in a coloured overlap graph.

A coloured overlap graph is thus a directed graph G = (V, E) accompanied by a colouring
c : V → P(N), where P(N) is the power set of natural numbers. In the coloured overlap
graph we define the colour consistent indegree deg−c of a vertex vi to be the number of
in-neighbours of vi that have at least one colour that is the same as or adjacent to a colour
of vi, i.e.

deg−c vi = |{vj |(vj , vi) ∈ E and ∃cj ∈ c(vj), ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

Similarily we define the colour consistent outdegree deg+
c as

deg+
c vi = |{vj |(vi, vj) ∈ E and ∃cj ∈ c(vj), ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

R. Walve, P. Rastas, and L. Salmela 11:5

The problem of guided assembly can then be modelled as finding a rainbow path in the
coloured overlap graph. A rainbow path is a path such that no two vertices have the same
colour [6]. We use a modified variant of rainbow paths; we allow paths to reuse a colour in
consecutive vertices and we require the colours of a path to be consecutive and increasing.
I.e. colour i must be followed by colour i + 1 on the path. A more formal definition of this
assembly problem can be stated as:

I Definition 2. Guided unitig assembly problem. Given a directed graph G = (V, E), and a
colouring c : V → P(N), find all maximal paths P = v1v2 · · · vn such that

∀vi ∈ {v1, . . . , vn−1} deg+
c vi = deg−c vi+1 = 1

and

∀c ∈ c(vi), c ≥ max (c(vi−1)) .

We note that the above definition only recovers forward strand paths in the coloured
overlap graph. However due to the structure of the graph, for each reverse strand path there
also exists a corresponding forward strand path in the graph.

Rather than modifying the layout step of the OLC-assembly pipeline, we implement a
graph cleaning step, which attempts to remove edges that make unitigs not be rainbow paths.

4 Methods

4.1 Overview of Our Method
Constructing a linkage map [17] involves generating a draft assembly and localising the
markers, which are typically single nucleotide variations, on this draft assembly. The markers
are then further placed into bins based on the hereditary patterns seen in a cross-bred
population of individuals. The bins are assigned to chromosomes and the order of the bins
within each chromosome is known. Thus the markers give a partial order of the genome.

The input to our method is the draft assembly on which the linkage map was built, the
linkage map, and long reads. We first use Minimap2 [13] to map the long reads on the draft
assembly to assign colours (i.e. bin numbers) to the long reads. Miniasm [12] is then used to
build the overlap graph of the long reads and missing colours are propagated in the overlap
graph. The overlap graph is then cleaned based on the colour assignments of the reads.
Finally the unitigs are read from the cleaned overlap graph. Figure 1 shows an overview of
our method. The colouring, propagation, and cleaning steps are discussed in more details in
the following subsections.

4.2 Colouring
To colour the underlying overlap graph, we map all the reads against the draft genome using
Minimap2 [13] and store the longest mappings for each read. We extend each of the longest
mappings into naive linear “alignments” by stretching the start and end positions to cover
the entire read. As the insertion errors are the dominant error type [20], we limit the number
of characters by which we extend the mappings (by default we use a limit of 250 bp).

All the extended mappings are then stored in a simple query structure, where each
chromosome in the reference genome is split into equal length blocks. For each marker in the
linkage map, we query the index for reads that overlap with the marker and assign every
overlapping read the colour the marker in the linkage map belongs to.

WABI 2018

11:6 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Mapping and colouring

a
b

c

d
e

f
hg

i
j

Coloured overlap graph

a b c d e f g h i j

After colour propagation

a b c d e f g h i j

After cleaning

a b c d e f g h i j

Figure 1 Overview of our method. First the reads are mapped to the draft assembly and assigned
colours (top left). Each colour represents one bin in the linkage map. In this example we have three
bins (brown, green and red) and the ordering of the bins is brown < green < red. All bins belong to
the same chromosome. Miniasm is then used to construct the overlap graph which is augmented
with the colours. Next vertex f is coloured through the colour propagation process. Finally we
remove the edges (a, i) and (h, b) because they have inconsistent colourings.

As there can still be reads with no mapping to the reference, we attempt to colour
them using the overlap graph. For each uncoloured vertex u we find the set of coloured
vertices Vc(u) that are reachable from u by paths that traverse only uncoloured vertices.
The uncoloured vertex u is then given all the colours that the vertices in Vc(u) have, i.e.
c(u) =

⋃
v∈Vc(u) c(v). The set Vc(u) can be found by a breadth first search on the graph

starting at vertex u.
If a coloured vertex is too far from the uncoloured vertex, we get an over-approximation

of the colour for the vertex. To reduce this effect, we apply a limit to the depth of the search
(by default 10). We can also get conflicting colours from the propagation. If there are missing
colours between the propagated colours, we are skipping some part of the genome entirely.
As we cannot use the colouring to usefully clean the graph, we simply remove the read from
the graph entirely.

4.3 Graph Cleaning
To make sure any unitig path is a valid rainbow path, we remove any edges between vertices
with inconsistent colourings from the overlap graph. If the vertices share a colour, the
colourings are always consistent as they can be merged without affecting the connectivity of
the colours in the graph. Edges between vertices with different colours are inconsistent if
there are no adjacent colours between the vertices. Such an edge could never be part of a
rainbow path because the path would not have consecutive colours.

Therefore we define an edge (vi, vj) to be inconsistently coloured if there are no colours
ci ∈ c(vi) and cj ∈ c(vj) such that the colours ci and cj would be the same or consecutive,
i.e. |ci − cj | ≤ 1. Our graph cleaning step remove

5 Results

We implemented our method in a tool called Kermit. Kermit uses Miniasm [12] to find
the overlaps between the reads and to perform the layout step to find unitigs. In between
these two steps Kermit colours the vertices of the overlap graph and cleans the graph by
removing inconsistently coloured edges as explained in the previous section. We compared
Kermit to the Miniasm pipeline [12]. Both the overlap and the mapping steps were done
using Minimap2 v2.9 [13], an improved implementation of Minimap. All experiments were
run on 32 GB RAM machines equipped with 8 cores.

R. Walve, P. Rastas, and L. Salmela 11:7

Table 1 Summary of read data used in the experiments.

Data set Reads Total bases Coverage Accession

S. cerevisiae 36,639 486,048,334 39.98 simulated
(simulated)
C. elegans 296,230 3,930,689,562 39.99 simulated
(simulated)
S. cerevisiae 52,208 690,899,144 56.83 PacBio DevNet1)

C. elegans 740,776 8,118,404,281 82.59 PacBio DevNet2)

H. erato 10,818,653 27,094,241,328 60.89 SRR3476970 SRR4039325
B. pendula 1,898,360 19,032,363,776 49.71 ERR2003767 ERR2003768

1) https://github.com/PacificBiosciences/DevNet/wiki/
Saccharomyces-cerevisiae-W303-Assembly-Contigs

2) https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

Table 2 Summary of linkage maps used in the experiments.

Data set Markers Marker density Bins Bin density Reference

S. cerevisiae 100,009 0.008 19,283 0.002 simulated
(simulated)
C. elegans 750,004 0.008 162,601 0.002 simulated
(simulated)
H. erato 2,781,314 0.007 145,863 0.002 Van Belleghem et al. [4]

Generated by LepMap3 [17]
B. pendula 2,979,993 0.007 925,123 0.002 Salojärvi et al. [18]

5.1 Data
We performed experiments both on simulated and real data. All data used in the experiments
is summarized in Tables 1 and 2.

First we performed experiments using both simulated reads and a simulated linkage map
for S. cerevisiae and C. elegans. We simulated reads using SimLoRD [20] to a coverage of
40x, sampling read lengths from a real PacBio data set with shortest (< 10,000bp) reads
filtered out. To generate a simulated linkage map, markers were randomly placed on the
reference and binned such that the bins are separated by at least 200bp. The number of
markers was chosen to give a marker density similar to real linkage maps. The distance for
binning is arbitrary; as real linkage maps are based on fragmented and misassembled draft
genomes, the bins are rarely contiguous. The chosen values give similar densities of bins as
the real linkage maps as shown in Table 2. These experiments on simulated read and linkage
map data allow us to evaluate the colouring and cleaning steps because the origin of each
read is known.

To understand how our method performs on real data, we first ran experiments using real
PacBio reads for S. cerevisiae and C. elegans but still using the simulated linkage map as
no real linkage maps exist for these species. Good reference genomes are available for these
genomes so we could evaluate also the correctness of the resulting assemblies on these data
sets. Finally to show that our method works on real linkage maps, we ran experiments on
real PacBio reads and real linkage maps for H. erato and B. pendula. The genomes for these
species are in draft stage so we could not reliably measure the correctness of these assemblies.

WABI 2018

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

11:8 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Table 3 Number of reads fully inside and outside their acceptable colour ranges.

Reads inside Reads outside

S. cerevisiae 36,562 (99.79%) 31 (0.08%)
C. elegans 296,134 (99.97%) 3 (0.001%)

Table 4 Number of edges supported by the positions the reads were simulated from. Graphs
marked cleaned are also using the graph cleaning steps that are already implemented in Miniasm.

Graph True edges False edges

S. cerevisiae Miniasm 76,538 (99.39%) 466 (0.60%)
Kermit 76,518 (99.93%) 52 (0.07%)
Miniasm cleaned 7,146 (99.92%) 6 (0.08%)
Kermit cleaned 7,114 (100.0%) 0 (0.0%)

C. elegans Miniasm 668,012 (99.80%) 1,306 (0.19%)
Kermit 667,970 (99.99%) 58 (0.003%)
Miniasm cleaned 60,416 (99.95%) 28 (0.05%)
Kermit cleaned 60,356 (99.997%) 2 (0.003%)

5.2 Colouring

We first evaluated the results of the colouring and propagation steps on the simulated reads
and linkage maps. Because the reads are simulated, we know for each read the position
where it derives from. Therefore we can also deduce the correct colours for each read as
follows. For every read there are two markers in the linkage map that form the upper and
lower limit of acceptable colours the read can get. All the colours should be between the
colour of last marker before the read and the first marker after the read.

We are mostly interested in the set of reads that are fully within the correct range, i.e. no
colour given to the read is incorrect, and the set of reads that are fully outside the correct
range.

As can be expected, Table 3 shows that a vast majority of the reads are completely inside
their colour ranges. The small amount of reads outside the range are reads that have been
mapped to an entirely wrong position of the reference.

5.3 Cleaning

To evaluate the effectiveness of removing colour crossing edges, we find the simulated positions
of the two reads corresponding to each edge in the graph and check whether they overlap in
the reference genome. We consider those overlapping reads to be true in the sense that using
that single edge in a contig would spell the correct sequence.

Miniasm already implements a cleaning step which is solely based on the read data. We
counted the number of true and false edges both with and without this cleaning step to
understand how each cleaning step affects the overlap graph.

Table 4 shows how Kermit is able to improve the percentages of true edges by removing
false edges in the graph. Though the amounts of false edges removed is relatively small, any
single wrong edge used in the assembly can cause a misassembly or break a unitig.

R. Walve, P. Rastas, and L. Salmela 11:9

Table 5 Assembly statistics for simulated S. cerevisiae and C. elegans reads and simulated linkage
maps.

S. cerevisiae C. elegans

Assembly Miniasm Kermit Miniasm Kermit
of contigs 26 22 291 261
Total length 11,831,837 11,728,421 102,040,817 101,632,493

(97.32%) (96.47%) (103.81%) (103.40%)
N50 605,399 640,779 2,337,914 2,293,633
NGA50 565,122 585,849 2,070,983 2,337,914
Misassemblies 2 1 7 7

Table 6 Assembly statistics for real S. cerevisiae and C. elegans reads and simulated linkage
maps.

S. cerevisiae C. elegans

Assembly Miniasm Kermit Miniasm Kermit
of contigs 31 29 146 141
Total length 12,118,143 11,997,376 106,229,975 103,811,685

(99.68%) (98.69%) (108.08%) (105.62%)
N50 732,688 763,111 2,851,252 2,851,288
NGA50 345,801 376,187 252,615 254,858
Misassemblies 61 58 1,870 1,768

5.4 Assembly

Lastly, we compare the actual assemblies produced by our tool to those produced by Miniasm.
To get a better picture of the assemblies, we also applied a consensus tool, Racon v1.2.0 [16],
on the S. cerevisiae and C. elegans assemblies. On the H. erato and B. pendula assemblies
Racon was very slow so we did not run it on those assemblies. The assembly statistics were
generated with QUAST v4.6.1 [9].

Table 5 shows how the assembly statistics are improved using Kermit on the simulated
S. cerevisiae and C. elegans reads and simulated linkage maps. The number of contigs is
reduced and the NGA50 statistic is increased indicating a more contiguous assembly. Also
the number of misassemblies is either reduced or stays the same.

Next we evaluated Kermit on the real read data and simulated linkage map of S. cerevisiae
and C. elegans. Table 6 shows that also in this case the number of contigs and the number
of misassemblies is reduced, whereas the NGA50 statistic is increased.

Finally we ran experiments on real read data and real linkage maps (H. erato and B.
pendula). For these species only draft assemblies are available and thus we could not validate
the produced assemblies and compute the number of misassemblies or the NGA50 statistics.
Table 7 shows that for both data sets the number of contigs is reduced and N50 is increased
indicating a more contiguous assembly. We also note that both Miniasm and Kermit struggle
on the H. erato data. We believe this is largely due to the fact that we needed to pool
PacBio reads from two experiments using two different individuals to have enough reads for
assembly. This introduces heterogeneity to the data and makes assembly challenging.

WABI 2018

11:10 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Table 7 Assembly statistics for real H. erato and B. pendula reads and real linkage maps.

H. erato B. pendula

Assembly Miniasm Kermit Miniasm Kermit
of contigs 7,444 6,091 2,201 1,587
Total length 327,725,353 280,881,758 473,300,369 425,356,395

(86.24%) (73.92%) (107.57%) (96.67%)
N50 58,892 60,356 435,830 539,400

Table 8 Wall clock times for all steps taken by the tools. The consensus phase was very slow on
the big genomes of H. erato and B. pendula so it was not run on those data sets.

Tool Overlap Map Colour Layout Consensus Total

S. cerevisiae Miniasm 52s - - 6s 4min 52s 5min 50s
(simulated) Kermit 52s 6s 0s 6s 3min 29s 4min 38s

C. elegans Miniasm 9min 55s - - 1min 58s 28min 19s 40min 17s
(simulated) Kermit 9min 55s 2min 17s 5s 55s 28min 57s 42min 9s

S. cerevisiae Miniasm 1min 9 - - 8s 2min 45s 4min 2s
Kermit 1min 09s 10s 1s 8s 2min 44s 4min 12s

C. elegans Miniasm 16min 54s - - 4min 53min 28s 1h 14min
Kermit 16min 54s 4min 8s 11s 2min 29s 50min 29s 1h 14min

H. erato Miniasm 8h 40min - - 1h 30min - 10h 10min
Kermit 8h 40min 9min 2min 2h 42min - 11h 32min

B. pendula Miniasm 3h 24min - - 1h 32min - 4h 57min
Kermit 3h 24min 9min 17s 1h 37min - 5h 11min

5.5 Performance
We recorded the wall clock time for all experiments. Table 8 shows that Kermit needs at
most 5% more time than Miniasm on all data sets except H. erato on which it needs 13%
more time. In some cases the total running time is even reduced. Additionally, we see that
the consensus step using Racon easily dominates the pipeline in terms of time to complete.

6 Conclusions

We defined guided assembly with linkage maps by extending the unitig assembly model. Our
method, Kermit, is implemented as a graph cleaning step and the contigs are generated with
a simple unitig algorithm. As such the graph cleaning step could be used as a preprocessing
step of a more complicated traversal algorithm for retrieving the contigs. Colouring the reads
also leads naturally into non-overlapping bins of reads, that can be assembled independently.
This allows massive parallelism in the assembly and could make more sophisticated assembly
algorithms practical.

When defined as an independent graph cleaning step, our method guiding the assembly
could be applied not only to other OLC-assemblers, but also to DBG-assemblers. In this
case, the colours would be assigned to reads and the k-mers would get all colours present in
reads where they derive from.

R. Walve, P. Rastas, and L. Salmela 11:11

Our experiments show that Kermit successfully removes false edges from the overlap
graph. Furthermore we showed that with only a modest increase in runtime Kermit improves
the contiguity and correctness of assembly as compared to the Miniasm pipeline.

References
1 V. Ahola, R. Lehtonen, P. Somervuo, et al. The Glanville fritillary genome retains an

ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Com-
munications, 5:4737, 2014.

2 B. Alipanahi, L. Salmela, S.J. Puglisi, M. Muggli, and C. Boucher. Disentangled long-read
de Bruijn graphs via optical maps. In R. Schwartz and K. Reinert, editors, WABI 2017,
volume 88 of LIPIcs, pages 1:1–1:14, Dagstuhl, Germany, 2017.

3 A. Bankevich, S. Nurk, D. Antipov, et al. SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. J Comput Biol., 19(5):455–477, 2012.

4 S.M. Van Belleghem, P. Rastas, A. Papanicolalaou, et al. Complex modular architecture
around a simple toolkit of wing pattern genes. Nature Ecology & Evolution, 1:0052, 2017.

5 J. Catchen. Chromonomer. http://catchenlab.life.illinois.edu/chromonomer/, 2015. Ac-
cessed: 2018-04-27.

6 G. Chartrand, GL. Johns, KA. McKeon, and P. Zhang. Rainbow connection in graphs.
Mathematica Bohemica, 133(1):85–98, 2008.

7 C.-S. Chin, P. Peluso, F.J. Sedlazeck, et al. Phased diploid genome assembly with single-
molecule real-time sequencing. Nature Methods, 13:1050–1054, 2016.

8 J.L. Fierst. Using linkage maps to correct and scaffold de novo genome assemblies: methods,
challenges, and computational tools. Frontiers in Genetics, 6:220, 2015.

9 A. Gurevich, V. Saveliev, N. Vyahhi N, and G. Tesler. QUAST: quality assessment tool for
genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

10 M. Kolmogorov, J. Yuan, Y. Lin, and P. Pevzner. Assembly of long error-prone reads using
repeat graphs. In Proc. RECOMB 2018, pages 261–263, 2018.

11 S. Koren, B.P. Walenz, K. Berlin, J.R. Miller, N.H. Bergman, and A.M. Phillippy. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separa-
tion. Genome Res., 27:722–736, 2017.

12 H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

13 H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. (To
appear).

14 H.C. Lin, S. Goldstein, L. Mendelowitz, S. Zhou, J. Wetzel, D.C. Schwartz, and M. Pop.
AGORA: assembly guided by optical restriction alignment. BMC Bioinformatics, 13:189,
2012.

15 T. Paterson and A. Law. ArkMAP: integrating genomic maps across species and data
sources. BMC Bioinformatics, 14:246, 2013.

16 R. Vaser R, I. Sovic, N. Nagarajan, and M. Sikic. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome research, 27:737–746, 2017.

17 P. Rastas. Lep-MAP3: robust linkage mapping even for low-coverage whole genome se-
quencing data. Bioinformatics, 33(23):3726–3732, 2017.

18 J. Salojärvi, O.P. Smolander, K. Nieminen, et al. Genome sequencing and population gen-
omic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics,
49:904–912, 2017.

19 K. Schneeberger, S. Ossowski, F. Ott, et al. Reference-guided assembly of four diverse
Arabidopsis thaliana genomes. PNAS, 108(25):10249–10254, 2011.

20 B.K. Stöcker, J. Köster, and S. Rahmann. SimLoRD: Simulation of long read data. Bioin-
formatics, 32(17):2704–2706, 2016.

WABI 2018

	Introduction
	Related Work
	Definitions
	De Novo Assembly
	Guided Assembly

	Methods
	Overview of Our Method
	Colouring
	Graph Cleaning

	Results
	Data
	Colouring
	Cleaning
	Assembly
	Performance

	Conclusions

