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—— Abstract

Being able to distinguish between true DNA variants and technical sequencing artefacts is a
fundamental task in whole genome, exome or targeted gene analysis. Variant calling tools provide
diagnostic parameters, such as strand bias or an aggregated overall quality for each called variant,
to help users make an informed choice about which variants to accept or discard. Having several
such quality indicators poses a problem for the users of variant callers because they need to set or
adjust thresholds for each such indicator. Alternatively, machine learning methods can be used
to train a classifier based on these indicators. This approach needs large sets of labeled training
data, which is not easily available.

The new approach presented here relies on the idea that a true DNA variant exists independ-
ently of technical features of the read in which it appears (e.g. base quality, strand, position in
the read). Therefore the nucleotide separability classification problem — predicting the nucleotide
state of each read in a given pileup based on technical features only — should be near impossible to
solve for true variants. Nucleotide separability, i.e. achievable classification accuracy, can either
be used to distinguish between true variants and technical artefacts directly, using a thresholding
approach, or it can be used as a meta-feature to train a separability-based classifier. This article
explores both possibilities with promising results, showing accuracies around 90%.
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1 Introduction

Apparent differences between a reference genome and a sequenced sample may either be due
to biological variance or to technical artefacts (e.g. caused by flawed library preparation or
sequencing machine bias). For downstream analysis, e.g., finding disease-related genes, or
personal disease risk assessment, it is important to be able to distinguish between these two
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kinds of causes. Therefore, variant callers, such as the one in GATK [3], include measures,
such as strand bias or overall variant quality, to assess the likelihood of a technical sequencing
or processing artefact, and conversely, to provide a measure of confidence for each detected
variant. For this, variant callers typically rely on assumptions about error distributions
or require prior or expert knowledge [1]. Since these assumptions may not hold for every
sequencing and processing pipeline or no prior knowledge may be available, we develop a
different approach. For simplicity, our presentation focuses on single nucleotide variants
(SNVs). In principle, it can be applied to longer variants (e.g. short indels) at the expense of
a more complex technical implementation.

The idea is that a true DNA variant exists independently of technical features of the read
where it appears, e.g. base quality, position in the read, mapping quality or strand of the read.
Therefore the classification problem to predict the nucleotide state of each read in a given
pileup based on only technical features should be unlearnable for a true variant. In other
words, high classification accuracy on the nucleotide separability classification problem on a
pileup suggests that the called variant is a technical artefact. Separability alone can be used
to decide between a true DNA variant and a technical artefact. This yields a method that
does not need labeled training data with known true variants. If ground truth information
about which pileups exhibit true variants (and which exhibit technical artefacts) is available,
it is possible to train a machine learning model on the separability values, resulting in a
meta machine learning task. We here explore both possibilities.

Our work, called spalter, differs from related approaches that also use machine learning
techniques to classify pileups, like SNPSVM [4] or DeepVariant [5], in that it does not
necessarily need labeled training data. Spalter employs classification methods for computing
separability values, which can, but do not need to be used for training another classifier using
labeled target data (true variant vs. technical artefact). If such is not available, a thresholding
rule can be applied on separability at the cost of accuracy. In contrast, SNPSVM learns only
the latter classifier in conjunction with ‘hand-crafted’ features (such as ‘base quality mean’ or
‘read position mean’). DeepVariant encodes information in RGBA images (in newer versions,
data is encoded in multichannel tensors instead), which are then used to train a convolutional
neural network (CNN). Training the CNN is computationally expensive, especially without
dedicated graphic processing units (GPUs) or tensor processing units (TPUs). Spalter, in
contrast, is neither restricted to a single model architecture nor does it require extensive
CPU or memory resources.

2 Idea

For an arbitrary site in the reference sequence, let B be the multiset of bases in that site’s
pileup, and let s be the base in the reference sequence at that site. If some bases in B
disagree with s, i.e. there is a certain (minimum) fraction of bases which are not equal to s,
we ask whether this is due to technical artefacts or biological variation.

However, there is more information available for each base of a pileup than just the
nucleotide represented, and we gather and store the purely technical information that should
be independent of the presence or absence of a biological variant, such as the base quality of
a base (assigned by the sequencer), the strand of the read, or whether the read is the first or
second of a read pair.

If, for a given pileup, it is possible to separate bases that match the respective reference
base from those that do not by making use of the aforementioned technical features and
simple classifiers, we are inclined to believe that a technical artefact is present (depending
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Figure 1 Computing separability profiles. For a given pileup, labels gl (base matches reference
base) and =gl (base does not match reference base) are determined for every base (rectangle) in
the pileup (stack of rectangles). Also, for each base a technical feature vector (grey rectangle with
colored squares, one square for each feature) is derived from its read and accompanying auxiliary data
(such as base quality or read strand). Using these labels and feature vectors, a simple classification
model is trained and its training accuracy is evaluated and interpreted as separability.

on the degree to which separation was successful).

The reasoning behind this assumption is that the sequencing process is consistent regard-
less of whether samples contain SNVs or not. This implies that it should not be possible
to tell reference from alternative bases by looking at technical features only. Hence, if it is
indeed possible to tell them apart, a pattern was recognized which is most likely explained
by technical biases during some stage of the sequencing process.

For a given pileup’s bases B, we derive base labels @ if the base matches the reference
base s and © if it does not. We then train a classifier to predict the base label only from
the technical features (which should work badly for true biological variants). The training
accuracy of this classifier is called separability of B (Figure 1).

A low separability suggests that there is a true variant in B. As a first step, the separability
of a pileup can thus be used directly for decision making (true variant or technical artefact),
or, in a further step, as a feature for training a classifier based on separability. The first step
does not need labeled training examples (in the sense of manually annotated 'true SNV’ and
‘technical artefact’ labels; of course, a supervised classification problem is solved based on
known nucleotide status for each read). The second step does need labeled training examples
and uses (meta-)features (separability) from the classification problem of the first step. We
hence call spalter a pseudo-supervised meta machine learning approach.

3 Method

To disambiguate between the different kinds of features used throughout the paper, features
associated with bases and reads (such as base quality or read strand) are called technical
features, while features constructed as explained in subsection 3.1 are called meta features or
separability profile.
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Algorithm 1 Building a separability profile for a single pileup p, using a set of classifiers C and a
set of feature combinations . A C x F matrix S with separability values is returned.
function separability_profile(p, C, F):
S = empty real C X7 matrix

{ = [base == reference_base for base in p.bases]
f = extract_features(p) # technical features
for (C, F) in Cx &: # for each combination (each F € 27)
M = C.train(F,() # train model M
(' = M.predict (F) # predict labels [’
s = rel_accuracy((, (/) # evaluate training accuracy (see text)
S[C,F] = s # store s in meta feature matrix

return S

3.1 Computing the separability profile

Since the idea is to discern between SNVs and technical artefacts on the assumption that
they behave differently with respect to separability, the first step is to build a separability
profile! for each pileup. Algorithm 1 outlines the routine for building a separability profile
for a single pileup p for a given set C is a set of classifiers and a set F of feature combinations
from a basic set f of technical features.

We assume that the given pileup p has a given minimum alternative allele fraction (default:
> 0.1) and a given minimum coverage (default: > 10)2. A label vector ( is built by comparing
every base in the pileup to the reference base at the pileup’s position (line 3). By default, the
following four technical features are extracted for each base in the pileup (line 4), resulting
in a technical feature matrix of dimension number of reads in p times number of features:
1. Read pair index (binary): Is the read containing the base the first or the second of its

read pair?

2. Read strand (binary): Is the read on the forward or the reverse strand?

3. Neighbour base quality (continuous): Average base quality of the respective base and its
direct neighbours (from the same read).

4. End proximity (continuous): Distance of the base to either end of its read, transformed
to be in [0, 1]. The closer the base to the center of its read, the lower the end proximity
and vice versa.

In order to build a separability profile, we train one model (lines 6-9) for each combination
of classifier and feature subset (line 5) in order to obtain information about the difficulty
of separation (a) with a limited set of features and (b) with different classifiers. Note that
increasing the number of technical features or increasing the number of classifiers, while
increasing the level of detail of separability profiles, will not change the general appearance
and behaviour of separability profiles; they will always exhibit a gradual increase of accuracy
with both increasing number of technical features used for training and classifier complexity,
as can be seen in Figure 2. Calculating separability is straightforward: After training a

ae

model (line 6), its prediction (line 7) is used to calculate relative training accuracy s = fg,

where a is the model’s accuracy (fraction of correct predictions) and p is the accuracy of a

! Initially, we assumed that a single separability value might suffice; however, the resulting accuracy was
not satisfactory.

2 Since we are training classifiers, these defaults ensure that there are at least 10 examples available for
training, albeit with heavily skewed class sizes (1 : 9).
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Figure 2 Average separability profiles for 2327321 SNV and 5618509 erroneous sites, using 2
classifiers and 4 4 1 different feature combinations (numbers correspond to those of features listed in
subsection 3.1). Each cell corresponds to the training accuracy of one classifier (x-axis) trained with
a certain subset of features (y-axis ). On average, separability is higher for erroneous sites than for
SNV sites.

‘largest class’ classifier (line 8), i.e. an accuracy of p is trivial to achieve. Finally, the resulting
relative accuracy value — called separability — is stored in the separability profile S (line 9).

3.2 Distinguishing between errors and SNVs

Having built a separability profile for each pileup, the task is to utilise these to distinguish
between sites with technical artefacts and sites with true SN'Vs.

One way to do this is to use a thresholding approach: Summarise separability profiles
(per pileup) for example by averaging the values to a single mean separability value and
apply a threshold to the averages. Any site whose mean separability is below the threshold is
deemed a likely true variant site, while values above the threshold imply a site with technical
sequencing artefacts (the easier it is to separate disagreeing bases in a pileup, the more likely
becomes a technical artefact).

Another approach lies in using separability profiles as features to train a classification
model; this necessitates labeled data, i.e. information about whether a pileup/site is deemed
a true SNV site or not.

Both approaches have been implemented in spalter. For the first approach (classification
on mean separability values with a single threshold), the threshold defaults to 0.8; for the
second approach (classification on separability profiles with an arbitrary supervised classifier),
the classifier defaults to a random forest consisting of 19 trees with a maximum depth of 4
(but can be set to an arbitrary supervised classifier). We provide pre-trained default models,
which have been evaluated as described in section 4.

4 Evaluation

In order to evaluate spalter, we used datasets from CHM-eval/syndip [2], a benchmark
specifically designed for small variant callers. Among other things, it consists of the de
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Table 1 Different separability thresholds for different bins of read depths lead to an overall
increase in accuracy compared to the accuracy achieved using a single global threshold.

read depth ‘ 2024 25-29 30-34 3539 40-44 4549 50-54 55-59
separability threshold 0.2 0.81 0.82 0.82 0.82 0.82 0.81 0.80
accuracy 92.9% 89.6% 91.8% 92.0% 94.7% 95.1% 96.0% 95.8%

novo assembly of PacBio sequences of two different complete hydatidiform mole (CHM) cell
lines (i.e. completely homozygous) as well as Illumina HiSeq-X10 reads of a 1:1 mixture
of the DNA of the two cell lines. We applied different methods to the CHM-eval dataset
with known SNV sites from full.37m.vcf.gz (indels excluded). We also used the NA12878
dataset from Genome In A Bottle to be able to compare spalter with SNPSVM. Note that we
could not successfully run SNPSVM on either dataset?, which is why we use the results given
in [4] instead, where a dataset was obtained based on the NA12878 exome (i.e. in-house
sequencing on an [lumina HiSeq 2000, variants for training determined using GATK’s best
practices guidelines and filtering these with data from the 1000 Genomes project).

Separability profiles were computed using different subsets of the technical features
(every single feature and all features) listed in subsection 3.1. The classifiers used for the
nucleotide separability problem were logistic regression (using the stochastic gradient descent
implementation in Rust, available from the rustlearn crate*), linear support vector machines,
radial basis function support vector machines with default parameters and decision trees
with a maximum depth of 4 (always using their rustlearn implementations).

In a first step, we use only decisions based on thresholded average separability values.
Average separability values are computed as the average over the different feature combinations
and the decision tree classifier as shown in Figure 2 (right column of panels). With a threshold
of 0.8 (which is not an optimised threshold), an accuracy of 89% is obtained for the CHM-eval
dataset, while the accuracy for the GIAB dataset is 87.2%. For CHM-eval, in detail, we
discover 85.2% of the true SNVs, and 91.7% of our SNV calls are correct; we discover 93.6%
of the true technical artefacts, and 88.4% of our artefact calls are correct with this threshold.
For GIAB, we discover 65.3% of the true SNVs, and 95.3% of our SNV calls are correct; we
discover 98.4% of the true technical artefacts, and 84.8% of our artefact calls are correct
with this threshold.

Since SNPSVM did not finish successfully on either dataset, the comparison between the
recall and precision values for SNPSVM reported in [4] and the values for spalter reported
above is not a strong one, especially considering that the number of variants examined is
roughly 4 - 10* for SNPSVM and 3 - 10° for spalter. Still, performance on the CHM-eval
dataset is comparable to SNPSVM’s performance, which achieved comparable recall with
higher precision. We note, however, that SNPSVM needs labeled training data to achieve
this performance, while our results are based on simple separability thresholding and an
educated guess for the threshold. Note that it may well be possible to estimate a better
threshold from the resulting average separability distribution automatically.

The accuracy can be improved if different (optimal) thresholds are chosen based on the
pileup’s read depth (coverage) and labeled training data, as shown in Table 1.

Similarly, higher accuracies can be obtained if separability is used as a feature in a
meta-classification task: The classifiers used for the decision problem (true variant / technical

3 This is probably due to a 0/1 indexing error in its source.
4 see https://maciejkula.github.io/rustlearn/
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Figure 3 Histograms of mean separability values for dataset CHM1_CHM13_ 2. Correctly called
SN'Vs () and errors () are clearly distinct, with the latter exhibiting higher mean

separability values. Incorrectly called SNV sites () have a mean separability distribution with

its mean close to that of the distribution of correct SNV calls, while incorrectly called errors ()
occur most often around the intersection of correct SNV and error calls.

artefact) were random forests and decision trees (with maximum depth 4). Training sample
size was varied between 10° for i € {4,5,6}, where 10* data points correspond to roughly
0.001% of available data. We found that both training and testing accuracy on CHM-eval
were extremely consistent (for all tested combinations between 87.4% (lowest minus one
standard deviation) and 92.9% (highest plus one standard deviation)), with the mean at
91.5%, which is higher than the overall accuracy using simple thresholding.

We conclude that (a) the introduced meta features are indeed useful for training classific-
ation models, and (b) a tiny fraction of the data is sufficient to train a suitable classification
model.

To explicitly show that the claim ‘error likelihood increases with separability’ holds,
we examined the empirical distributions of mean separability values as shown in Figure 3.
Indeed, sites that exhibit technical artefacts tend to have higher mean separability values
than true SNV sites.

5 Discussion

Using meta features (separability profiles) to train classifiers to distinguish technical artefacts
from true SNVs leads to accurate models, especially given the fact that only abstract
separability information is used for training. When using random labels for training instead,

accuracy is close to 50%, which indicates that separability profiles do not facilitate overfitting.
It remains to be determined if models derived from separability profiles are ‘portable’; i.e.
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can be applied to different datasets successfully (without adjustments to the models).

The advantage of this approach is that separability as a single abstract notion can be used
to distinguish between errors and SNVs, while the only assumption made is that errors grow
increasingly more likely with increasing separability. This also entails that it is possible to
increase classification accuracy by either making additional assumptions or manually adding
features (such as alternative allele fraction). Here we wanted to show that separability in
itself is a powerful feature and did not further explore this possibility.

Also, the extraction of meta features (computation of separability profiles) presented here
is an elaborate way to automatically derive constant size feature matrices for any kind of
data with varying item sizes (here: differing numbers of reads between pileups) and suspected
intrinsic labels (here: base matches / does not match reference base), i.e. the approach is not
restricted to this particular application in bioinformatics.

Another interesting avenue to explore is that, while there are (combinatorially) many
different ways to assign labels to bases in a pileup, the intrinsic one (base matches / does
not match the reference base) is the most ‘natural’. So it may be viable to try to find errors
not site-wise but read-wise by comparing separability regarding different label vectors (e.g.
ones where a single base has its label flipped).

The source code of spalter can be obtained from https://bitbucket.org/tillux/
spalter/.
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