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Abstract
We study the problem of identifying differentially mutated subnetworks of a large gene-gene inter-
action network, that is, subnetworks that display a significant difference in mutation frequency in
two sets of cancer samples. We formally define the associated computational problem and show
that the problem is NP-hard. We propose a novel and efficient algorithm, called DAMOKLE
to identify differentially mutated subnetworks given genome-wide mutation data for two sets of
cancer samples. We prove that DAMOKLE identifies subnetworks with a statistically signifi-
cant difference in mutation frequency when the data comes from a reasonable generative model,
provided enough samples are available. We test DAMOKLE on simulated and real data, showing
that DAMOKLE does indeed find subnetworks with significant differences in mutation frequency
and that it provides novel insights not obtained by standard methods.
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1 Introduction

The analysis of molecular measurements from large collections of cancer samples has revolu-
tionized our understanding of the processes leading to a tumour through somatic mutations,
changes of the DNA appearing during the lifetime of an individual [10]. One of the most
important aspects of cancer revealed by recent large cancer studies is inter-tumour genetic
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Figure 1 Identification of subnetworks with significant difference in mutation frequency in two
set of samples C, D. The blue subnetwork is significantly more mutated in D than in C, but it is not
be detected by methods that look for the most significantly mutated subnetworks in C or in D or in
C ∪ D, since the orange subnetwork is in each case mutated at much higher frequency.

heterogeneity: each tumour presents hundreds-thousands mutations and no two tumours
harbour the same set of DNA mutations [23].

One of the fundamental problems in the analysis of somatic mutations is the identification
of the handful of driver mutations (i.e., mutations related to the disease) of each tumour,
detecting them among the thousands or tens of thousands that are present in each tumour
genome [32]. Inter-tumour heterogeneity renders the identification of driver mutations, or of
driver genes (genes containing driver mutations), extremely difficult, since only few genes
are mutated in a relatively large fraction of samples while most genes are mutated in a low
fraction of samples in a cancer cohort [28].

Recently, several analyses (e.g, [18, 12]) have shown that interaction networks provide
useful information to discover driver genes by identifying groups of interacting genes, called
pathways, in which each gene is mutated at relatively low frequency while the entire group has
one or more mutations in a significantly large fraction of all samples. Several network-based
methods have been developed to identify groups of interacting genes mutated in a significant
fraction of tumours of a given type and have been shown to improve the detection of driver
genes compared to methods that analyze genes in isolation [18, 26, 13, 7].

The availability of molecular measurements in a large number of samples for different
cancer types have also allowed comparative analyses of mutations in cancer [11, 14, 18]. Such
analyses usually analyze large cohorts of different cancer types as a whole employing methods
to find genes or subnetworks mutated in a significant fraction of tumours in one cohort, and
also analyze each cancer type individually, with the goal to identify:
i) pathways that are common to various cancer types;
ii) pathways that are specific to a given cancer type.

For example, [18] analyzed 12 cancer types and identified subnetworks (e.g., a TP53 sub-
network) mutated in most cancer types as well as subnetworks (e.g., a MHC subnetwork)
enriched for mutations in one cancer type. In addition, comparative analyses may also be
used for the identification of mutations of clinical relevance [35]. For example: comparing
mutations in a patients that responded to a given therapy with mutations in patients (of
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the same cancer type) that did not respond to the same therapy may identify genes and
subnetworks associated with response to therapy; comparing mutations in patients whose
tumours metastasized with mutations in patients whose tumours did not metastasize may
identify mutations associated with the insurgence of metastases.

Pathways that are significantly mutated only in a specific cancer type may not be
identified by analyzing one cancer type at the time or all samples together (Figure 1), but,
interestingly, to the best of our knowledge no method has been designed to directly identify
sets of interacting genes that are significantly more mutated in a set of samples compared to
another. The task of finding such sets is more complex than the identification of subnetworks
significantly mutated in a set of samples, since subnetworks that have a significant difference
in mutations in two sets may display relatively modest frequency of mutation in both set of
samples, whose difference can be assessed as significant only by the joint analysis of both
sets of samples.

Related Work. Several methods have been designed to analyze different aspects of somatic
mutations in a large cohort of cancer samples in the context of networks. Some methods
analyze mutations in the context of known pathways to identify the ones significantly enriched
in mutations (e.g., [30]). Other methods combine mutations and large interaction networks to
identify cancer subnetworks [29, 18, 5]. Networks and somatic mutations have also been used
to prioritarize mutated genes in cancer [26, 13, 16, 24, 4] and for patients stratification [12, 17].
Some of these methods have been used for the identification of common mutation patterns or
subnetworks in several cancer types [18, 11], but to the best of our knowledge no method has
been designed to identify mutated subnetworks with a significant difference in two cohorts of
cancer samples.

Few methods studied the problem of identifying subnetworks with significant differences
in two sets of cancer samples using data other than mutations. [8] studied the problem of
identifying optimally discriminative subnetworks of a large interaction network using gene
expression data. [20] developed a procedure to identify statistically significant changes in the
topology of biological networks. Such methods cannot be readily applied to find subnetworks
with significant difference in mutation frequency in two sets of samples. Other related work
use gene expression to characterize different cancer types: [33] defined a pathway-based score
that clusters samples by cancer type, while [15] defined pathway-based features used for
classification in various settings.

Our Contribution. In this work we study the problem of finding subnetworks with frequency
of mutation that is significantly different in two sets of samples. In particular, our contribu-
tions are fourfold. First, we propose a combinatorial formulation for the problem of finding
subnetworks significantly more mutated in one set of samples than in another and prove
that such problem is NP-hard. Second, we propose DifferentiAlly Mutated subnetwOrKs
anaLysis in cancEr (DAMOKLE), a simple and efficient algorithm for the identification of
subnetworks with a significant difference of mutation in two sets of samples, and analyze
DAMOKLE proving that it identifies subnetworks significantly more mutated in one of two
sets of samples under reasonable assumptions for the data. Third, we test DAMOKLE on
simulated data, verifying experimental that DAMOKLE correctly identifies subnetworks
significantly more mutated in a set of samples when enough samples are provided in input.
Fourth, we test DAMOKLE on large cancer datasets comprising two cancer types, and show
that DAMOKLE identifies subnetworks significantly associated with one of the two types
which cannot be identified by state-of-the-art methods designed for the analysis of one set of
samples.
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2 Methods and Algorithms

This section presents the problem we study, the algorithm we propose for its solution, and the
analysis of our algorithm. In particular, Section 2.1 formalizes the computational problem
we consider; Section 2.2 presents DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr
(DAMOKLE), our algorithm for the solution of the computational problem; Section 2.3
describes the analysis of DAMOKLE under a reasonable generative model for mutations;
Section 2.4 presents a formal analysis of the statistical significance of subnetworks obtained
by DAMOKLE; and Section 2.5 describes two permutation test to assess the significance of
the results of DAMOKLE for limited sample sizes.

2.1 Computational Problem
We are given measurements on mutations in m genes G = {1, . . . ,m} on two sets C =
{c1, . . . , cnC

},D = {d1, . . . , dnD
} of samples. Such measurements are represented by two

matrices C and D, of dimension m× nC and m× nD, respectively, where nC (resp., nD) is
the number of samples in C (resp., D). C(i, j) = 1 (resp., D(i, j) = 1) if gene i is mutated
in the j-th sample of C (resp., D) and C(i, j) = 0 (resp., D(i, j) = 0) otherwise. We are
also given an (undirected) graph G = (V,E), where vertices V = {1, . . . ,m} are genes and
(i, j) ∈ E if gene i interacts with gene j (e.g., the corresponding proteins interact).

Given a set of genes S ⊂ G, we define the indicator function cS(ci) with cS(ci) = 1 if at
least one of the genes of S is mutated in sample ci, and cS(ci) = 0 otherwise. We define
cS(di) analogously. We define the coverage cS(C) of S in C as the fraction of samples in C
for which at least one of the genes in S is mutated in the sample, that is cS(C) =

∑nC

i=1
cS(ci)

nC

and, analogously, define the coverage cS(D) of S in D as cS(D) =
∑nD

i=1
cS(di)

nD
.

We are interested in identifying sets of genes S, with |S| ≤ k, corresponding to connected
subgraphs in G and displaying a significant difference in coverage between C and D, i.e.,
with a high value of |cS(C) − cS(D)|. We define the differential coverage dcS(C,D) as
dcS(C,D) = cS(C)− cS(D).

In particular, we study the following computational problem.

The Differentially Mutated Subnetworks Discovery problem: Given a value θ with θ ∈ [0, 1],
find all connected subgraphs S of G of size ≤ k such that dcS(C,D) ≥ θ.

Note that by finding sets that maximize dcS(C,D) we identify sets with significantly
more mutations in C than in D, while to identify sets with significantly more mutations in D
than in C we need to find sets maximizing dcS(D, C). In addition, note that a subgraph S in
the solution may contain genes that are not mutated in C ∪ D but that are needed for the
connectivity of S.

We have the following. (Omitted proofs can be found in the long version of the paper
available at: http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf.)

I Theorem 1. The Differentially Mutated Subnetworks Discovery problem is NP-hard.

Proof. The proof is by reduction from the connected maximum coverage problem [29].
In the connected maximum coverage problem we are given a graph G defined on a set
V = {v1, . . . , vn} of n vertices, a family P = {P1, . . . , Pn} of subsets of a universe I (i.e.,
Pi ∈ 2I), with Pi being the subset of I covered by vi ∈ V and value k, and we want to find
the subgraph C∗ = {vi1 , . . . , vik} with k nodes of G that maximizes | ∪kj=1 Pij |.

Given an instance of the connected maximum coverage problem, we define an instance of
the Differentially Mutated Subnetworks Discovery problem as follows: the set G of genes

http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf
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Algorithm 1: DAMOKLE.
Input: mutation matrices C,D; gene-gene interaction graph G = (V,E); integer

k > 0; θ ∈ [0, 1]
Output: maximal connected subgraphs with dcS(C,D) ≥ θ

1 solutions ← ∅;
2 foreach {u, v} ∈ E do
3 if dc{u,v}(C,D) ≥ θ/(k − 1) then
4 solutions ← solutions ∪ GetSolutions(E,{u, v});
5 end
6 end
7 return solutions;

corresponds to the set V of vertices of G in the connected maximum coverage problem, and
the graph G is the same as in the instance of the maximum coverage instance; the set C is
given by the set I and the matrix C is defined as Ci,j = 1 if i ∈ Pj , while D = ∅.

Note that for any subgraph S of G, the differential coverage dcD(C,D) = cS(C)− cS(D) =
cS(C) and cS(C) = | ∪g∈S Pg|/|I|. Since |I| is the same for all solutions, the optimal solution
of the Differentially Mutated Subnetworks Discovery instance corresponds to the optimal
solution to the connected maximum coverage instance, and viceversa. J

2.2 Algorithm
We now describe DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr (DAMOKLE), an
algorithm to solve the Differentially Mutated Subnetworks Discovery problem. DAMOKLE
takes in input mutation matrices C and D for two sets C, D of samples, a (gene-gene)
interaction graph G, and integer k, and a real value θ ∈ [0, 1], and returns subnetworks S
of G with ≤ k vertices and differential coverage dcS(C,D) ≥ θ. Subnetworks reported by
DAMOKLE are also maximal (no edge can be added to S while maintaining |S| ≤ k and
dcS(C,D) ≥ θ). DAMOKLE is described in Algorithm 1. DAMOKLE starts by considering
each edge e = {u, v} ∈ E of G with differential coverage dc{u,v}(C,D) ≥ θ/(k − 1), and for
each such e identifies subnetworks including e to be reported in output using Algorithm 2.

GetSolutions, described in Algorithm 2, is a recursive algorithm that, give a current
subgraph S, identifies all maximal connected subgraphs S′, |S′| ≤ k, containing S and with
dcS′(C,D) ≥ θ. This is obtained by expanding S one edge at the time and stopping when
the number of vertices in the current solution is k or when the addition of no vertex leads
to an increase in differential coverage dcS(C,D) for the current solution S. In Algorithm 2,
N(S) refers to the set of edges with exactly one vertex in the set S.

The motivation for design choices of DAMOKLE are provided in the next section.

2.3 Analysis of DAMOKLE
The design and analysis of DAMOKLE are based on the following generative model for the
underlying biological process.

Model

For each gene i ∈ G = {1, 2, ...,m} there is an a-priori probability pi of observing a mutation
in gene i. Let H ⊂ G be the connected subnetwork of up to k genes that is differentially
mutated in samples of C w.r.t. samples of D. Mutations in our samples are taken from

WABI 2018
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Algorithm 2: GetSolutions.
Input: set E of edges of the graph; current subgraph (solution) S
Output: maximal connected subgraphs containing S with dcS(C,D) ≥ θ

1 nextEdges ← ∅;
2 foreach e ∈ N(S) do
3 if dcS∪{e}(C,D) ≥ dcS(C,D) then nextEdges ← nextEdges ∪{e};
4 end
5 if |nextEdges| = 0 OR |S| = k then
6 if dcS(C,D) ≥ θ then return S;
7 end
8 newSols ← ∅;
9 foreach e ∈ nextEdges do newSols ← newSols ∪ GetSolutions(E,S ∪ {e}) ;

10 return newSols;

two related distributions. In the “control" distribution F a mutation in gene i is observed
with probability pi independent of other genes’ mutations. The second distribution FH is
analogous to the distribution F but we condition on the event E(H) =“at least one gene in
H is mutated in the sample”.

For genes not in H, all mutations come from distribution F . For genes in H, in a perfect
experiment with no noise we would assume that samples in C are taken from FH and samples
from D are taken from F . However, to model realistic, noisy data we assume that with some
probability q the “true” signal for a sample is lost, that is the sample from C is taken from F .
In particular, samples in C are taken with probability 1− q from FH and with probability q
from F .

Let p be the probability that H has at least one mutation in samples from the control
model F , p = 1−

∏
j∈H(1− pj) ≈

∑
j∈H pj . Clearly, we are only interested in sets H ⊂ G

with p� 1.
If we focus on individual genes, the probability gene i is mutated in a sample from D

is pi, while the probability that it is mutated in a sample from C is (1−q)pi

1−
∏

j∈H
(1−pj)

+ qpi.

Such a gap may be hard to detect with a small number of samples. On the other hand,
the probability of E(H) (i.e., of at least one mutation in the set H) in a sample from C is
(1− q) + q(1−

∏
j∈H(1− pj)) = 1− q + qp, while the probability of E(H) in a sample from

D is 1−
∏
j∈H(1− pj) = p which is a more significant gap, when p� 1.

The efficiency of DAMOKLE is based on two fundamental results. First we show that it
is sufficient to start the search only in edges with relatively high discrepancy.

I Proposition 1. If dcS(C,D) ≥ θ, then, in the above generating model, with high probability
(asymptotic in nC and nD) there exist an edge e ∈ S such that dc{e}(C,D) ≥ (θ− ε)/(k − 1),
for any ε > 0.

The second result motivates the choice, in Algorithm 2, of adding only edges that increase
the score of the current solution (and to stop if there is no such edge).

I Proposition 2. If subgraph S can be partitioned as S = S′∪{j}∪S′′, and dcS′∪{j}(C,D) <
dcS′(C,D)− ppj, then with high probability (asymptotic in nD) dcS\{j}(C,D) > dcS(C,D).
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2.4 Statistical Significance of the Results
To compute a threshold that guarantees statistical confidence of our finding, we first compute
a bound on the gap in a non significant set.

I Theorem 2. Assume that S is not a significant set, i.e., C and D have the same distribution
on S, then

Prob(dcS(C,D) > ε) ≤ 2e−2ε2nCnD/(nC+nD).

Let Nk be the set of subnetworks under consideration, or the set of all connected
components of size ≤ k. We use Theorem 2 to obtain guarantees on the statistical significance
of the results of DAMOKLE in terms of the Family-Wise Error Rate (FWER) or of the
False Discovery Rate (FDR) as follows:

FWER: if we want to find just the subnetwork with significant maximum differential
coverage, to bound the FWER of our method by α we use the maximum ε such that
Nk2e−2ε2nCnD/(nC+nD) ≤ α.
FDR: if we want to find several significant subnetworks with high differential coverage, to
bound the FDR by α we use the maximum ε such that Nk2e−2ε2nCnD/(nC+nD)/n(α) ≤ α,
where n(α) is the number of sets with differential coverage ≥ ε.

2.5 Permutation Testing
While Theorem 2 shows how to obtain guarantees on the statistical significance of the results
of DAMOKLE by appropriately setting θ, in practice, due to relatively small sample sizes
and to inevitable looseness in the theoretical guarantees, a permutation testing approach
may be more effective in estimating the statistical significance of the results of DAMOKLE
and provide more power for the identification of differentially mutated subnetworks.

We consider two permutation tests to assess the association of mutations in the subnetwork
with the highest differential coverage found by DAMOKLE. The first test assesses whether
the observed differential coverage can be obtained under the independence of mutations in
genes by considering the null distribution in which each gene is mutated in a random subset
(of the same cardinality as observed in the data) of all samples, independently of all other
events. The second test assesses whether, under the observed marginal distributions for
mutations in sets of genes, the observed differential coverage of a subnetwork can be obtained
under the independence between mutations and samples’ memberships (i.e., being a sample
of C or a sample of D), by randomly permuting the samples memberships.

Let dcS(C,D) be the differential coverage observed on real data for the solution S with
highest differential coverage found by DAMOKLE (for some input parameters). For both
tests we estimate the p-value as follow:
1. generate N (permuted) datasets from the null distribution;
2. run DAMOKLE (with the same input parameters used on real data) on each of the N

permuted datasets;
3. let x be the number of permuted datasets in which DAMOKLE reports a solution with

differential coverage ≥ dcS(C,D): then the p-value of S is (x+ 1)/(N + 1).

3 Results

We implemented DAMOKLE in Python and tested it on simulated and on cancer data.
Our experiments have been conducted on a Linux machine with 16 cores and 256 GB of
RAM. All experiments required less than 10 MB of RAM and at most one day (for the

WABI 2018
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(a)$ (b)$ (c)$

Figure 2 (a) Performance of DAMOKLE as a function of the differential coverage dcS(C, D)
of subnetwork S. The figure shows (red) the fraction of times, out of 10 experiments, that the
best solution corresponds to S and (blue) the fraction of genes in S that are reported in the best
solution by DAMOKLE. For the latter, error bars show the standard deviation on the 10 experiments.
n = 100 and k = 5 for all experiments. (b) Performance of DAMOKLE as a function of the number
k of genes in subnetwork S. n = 100 and dcS(C, D) = 0.46 for all experiments. (c) Performance of
DAMOKLE as a function of the number n of samples in C, D. k = 10 and dcS(C, D) = 0.46 for all
experiments.

largest simulated datasets). For all our experiments we used as interaction graph G the
HINT+HI2012 network2 [18], a combination of the HINT network [9] and the HI-2012 [34]
set of interactions. In all cases we considered only the subnetwork with the highest differential
coverage among the ones returned by DAMOKLE. We first present the results on simulated
data (Section 3.1) and then present the results on cancer data (Section 3.2).

3.1 Simulated data
We tested DAMOKLE on simulated data generated as follows. We simulate data assuming
there is a subnetwork S of k genes with differential coverage dcS(C,D) = c. In our simulations
we set |C| = |D| = n. For each sample in D, each gene g in G (including S) is mutated with
probability pg, independently of all other events. For samples in C, we first mutated each
gene g with probability pg independently of all other events. We then considered the samples
of C without mutations in S, and for each such sample we mutated, with probability c, one
gene of S, chosen uniformly at random. In this way c is the expectation of the differential
coverage dcS(C,D). For genes in G \ S we used mutation probabilities pg estimated from
oesophageal cancer data [22]. We considered only value of n ≥ 100, consistent with sample
sizes in most recent cancer sequencing studies3.

The goal of our investigation using simulated data is to evaluate the impact of various
parameters on ability of DAMOKLE to recover S or part of it. To evaluate the impact of
such parameters, for each combination of parameters in our experiments we generated 10
simulated datasets and run DAMOKLE on each dataset with θ = 0.01, recording
1. the fraction of times that DAMOKLE reported S as the solution with the highest

differential coverage, and
2. the fraction of genes of S that are in the solution with highest differential coverage found

by DAMOKLE.

We first investigated the impact of the differential coverage c = dcS(C,D). We analyzed
simulated datasets with n = 100 samples in each class, where k = 5 genes are part of the
subnetwork S, for values of c = 0.1, 0.22, 0.33, 0.46, 0.6, 0.8,. We run DAMOKLE on each

2 http://compbio-research.cs.brown.edu/pancancer/hotnet2/
3 https://dcc.icgc.org/

https://dcc.icgc.org/
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dataset with k = 5. The results are shown in Figure 2(a). For low values of the differential
coverage c, with n = 100 samples DAMOKLE never reports S as the best solution found
and only a small fraction of the genes in S are part of the solution reported by DAMOKLE.
However, as soon as the differential coverage is ≥ 0.45, even with n = 100 samples in each
class DAMOKLE identifies the entire planted solution S most of the times, and even when
the best solution does not entirely corresponds to S, more than 80% of the genes of S are
reported in the best solution. For values of c ≥ 0.6, DAMOKLE always reports the whole
subnetwork S as the best solution. Given that many recent large cancer sequencing studies
consider at least 200 samples, DAMOKLE will be useful to identify differentially mutated
subnetworks in such studies.

We then tested the performance of DAMOKLE as a function of the number of genes k in
S. We tested the ability of DAMOKLE to identify a subnetwork S with differential coverage
dcS(C,D) = 0.46 in a dataset with n = 100 samples in both C and D, when the number k of
genes in S varies as k = 5, 7, 9. The results are shown in Figure 2(b). As expected, when the
number of genes in S increases, the fraction of times S is the best solution as well as the
fraction of genes reported in the best solution by S decreases, and for k = 9 the best solution
found by DAMOKLE corresponds to S only 10% of the times. However, even for k = 9, on
average most of the genes of S are reported in the best solution by DAMOKLE. Therefore
DAMOKLE can be used to identify relatively large subnetworks mutated in a significantly
different number of samples even when the number of samples is relatively low.

Finally, we tested the performance of DAMOKLE as the number of samples n in each
set C,D increases. In particular, we tested the ability of DAMOKLE to identify a relatively
large subnetwork S of k = 10 genes with differential coverage dcS(C,D) = 0.46 as the number
of samples n increases. We analyzed simulated datasets for n = 100, 250, 500. The results
are shown in Figure 2. For n = 100, when k = 10, DAMOKLE never reports S as the best
solution and only a small fraction of all genes in S are reported in the solution. However, for
n = 250, while DAMOKLE still reports S as the best solution only 10% of the times, on
average 70% of the genes of S are reported in the best solution. More interestingly, already
for n = 500, DAMOKLE always reports S as the best solution. These results show that
DAMOKLE can reliably identify relatively large differentially mutated subnetworks from
currently available datasets of large cancer sequencing studies.

3.2 Cancer data

We use DAMOKLE to analyze somatic mutations from The Cancer Genome Atlas. We
first compared two similar cancer types and two very different cancer types to test whether
DAMOKLE behaves as expected on these types. We then analyzed two pairs of cancer types
where differences in alterations are unclear. In all cases we run DAMOKLE with θ = 0.1
and obtained p-values with the permutation tests described in Section 2.5.

Lung Cancer. We used DAMOKLE to analyze 188 samples of lung squamous cell carcinoma
(LUSC) and 183 samples of lung adenocarcinoma (LUAD). We only considered single
nucleotide variants (SNVs)4 and use k = 5. DAMOKLE did not report any significant
subnetwork, in agreement with previous work showing that these two cancer types have
known differences in gene expression [27] but are much more similar with respect to SNVs [3].

4 http://cbio.mskcc.org/cancergenomics/pancan_tcga/

WABI 2018
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Figure 3 Results of DAMOKLE analysis of esophagus tumours and stomach tumours and of
diffuse gliomas. (a) Subnetwork S with significant (p < 0.02) differential coverage in esophagus
tumours vs stomach tumours (interactions from HINT+HI2012 network). (b) Fractions of samples
with mutations in genes of S in esophagus tumours and in stomach tumours. c) Subnetwork S

with significant (p<0.01) differential coverage in LGG samples vs GBM samples (interactions from
HINT+HI2012 network). (d) Fractions of samples with mutations in genes of S in LGG samples
and GBM samples.

Colorectal vs Ovarian Cancer. We used DAMOKLE to analyze 456 samples of colorectal
adenocarcinoma (COADREAD) and 496 samples of ovarian serous cystadenocarcinoma (OV)
using only SNVs5. For k = 5, DAMOKLE identifies the significant (p < 0.01 according
to both tests in Section 2.5) subnetwork APC, CTNNB1, FBXO30, SMAD4, SYNE1 with
differential coverage 0.81 in COADREAD w.r.t. OV. APC, CTNNB1, and SMAD4 are
members of the WNT signaling and TFG-β signaling pathways, known to be involved in
COADREAD [21]. The high differential coverage of the subnetwork is in accordance with
COADREAD being altered mostly by SNVs and OV being altered mostly by copy number
aberrations (CNAs) [6].

Esophagus-Stomach Cancer. We analyzed SNVs and CNAs in 171 samples of esophagus
cancer and in 347 samples of stomach cancer [22].6 The number of mutations in the two sets
is not significantly different (t-test p = 0.16). We first considered single genes, identifying
TP53 with high (> 0.5) differential coverage between the two cancer types. Alterations in
TP53 have then be removed for the subsequent DAMOKLE analysis. We run DAMOKLE
with k = 4 with C being the set of stomach tumours and D being the set of esophagus
tumours. DAMOKLE identifies the significant (p < 0.01 for both tests in Section 2.5)
subnetwork S = {ACTL6A,ARID1A, BRD8, SMARCB1} with differential coverage 0.26
(Figure 3a-b). Such subnetwork is not reported as differentially mutated in the TCGA
publication comparing the two cancer types [22]. BRD8 is only the top-16 gene by differential
coverage, while ACTL6 and SMARCB1 are not among the top-2000 genes by differential
coverage. ACTL6A, ARID1A, and SMARCB1 are all members of the chromatin organization
machinery, recently associated with cancer [25, 19]. We compared the results obtained by
DAMOKLE with the results obtained by HotNet2 [18], a method to identify significantly
mutated subnetworks, using the same mutation data and the same interaction network as
input: none of the genes in S appeared in significant subnetworks reported by HotNet2.

5 http://cbio.mskcc.org/cancergenomics/pancan_tcga/
6 http://www.cbioportal.org/study?id=stes_tcga_pub#summary
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Diffuse Gliomas. We analyzed single nucleotide variants (SNVs) and copy number aberra-
tions (CNAs) in 509 samples of lower grade glioma (LGG) and in 303 samples of glioblastoma
multiforme (GBM).7 We considered nonsilent SNVs, short indels, and CNAs. We removed
from the analysis genes with < 6 mutations in both classes. By single gene analysis we
identified IDH1 with high (> 0.5) differential coverage, and removed alterations in such gene
for the DAMOKLE analysis. We run DAMOKLE with k = 5 with C being the set of GBM
samples and D being the set of LGG samples. The number of mutations in C and in D is
not significantly different (t-test p = 0.1). DAMOKLE identifies the significant (p < 0.01
for both tests in Section 2.5) subnetwork S = {CDKN2A, CDK4, MDM2, MDM4, RB1}
(Figure 3c-d). All genes in S are members of the p53 pathway or of the RB pathway, well
known glioma cancer pathways [31].

Interestingly, [2] did not report any subnetwork with significant difference in mutations
among LGG and GBM samples. CDK4, MDM2, MDM4, and RB1 do not appear among the
top-45 genes by differential coverage. We compared the results obtained by DAMOKLE with
the results obtained by HotNet2. Of the genes in our subnetwork, only CDK4 and CDKN2A
are reported in a significantly mutated subnetwork (p < 0.05) obtained by HotNet2 analyzing
D but not analyzing C, while MDM2, MDM4, and RB1 are not reported in any significant
subnetwork obtained by HotNet2.

4 Conclusion

In this work we study the problem of finding subnetworks of a large interaction network with
significant difference in mutation frequency in two sets of cancer samples. This problem is
extremely important to identify mutated mechanisms that are specific to a cancer (sub)type
as well as for the identification of mechanisms related to clinical features (e.g., response
to therapy). We provide a formal definition of the problem and show that the associated
computational problem is NP-hard. We design, analyze, implement, and test a simple and
efficient algorithm, DAMOKLE, which we prove identifies significant subnetworks when
enough data from a reasonable generative model for cancer mutations is provided. Our
results also show that the subnetworks identified by DAMOKLE cannot be identified by
methods not designed for the comparative analysis of mutations in two sets of samples. We
tested DAMOKLE on simulated and real data. The results on simulated data show that
DAMOKLE identifies significant subnetworks with currently available sample size. The
results on two large cancer datasets, each comprising genome-wide measurements of DNA
mutations in two cancer subtypes, shows that DAMOKLE identifies subnetworks that are
not found by methods not designed for the comparative analysis of mutations in two sets of
samples.

While we provide a first method for the differential analysis of cohorts of cancer samples,
several research directions remain. First, differences in the frequency of mutation of a
subnetwork in two sets of cancer cohorts may be due to external (or hidden) variables, as for
example the mutation rate of each cohort. While at the moment we ensure before running
the analysis that no significant difference in mutation rate is present between the two sets,
performing the analysis while correcting for possible differences in such confounding variable
or in others would greatly expand the applicability of our method. Second, different types
of mutation patterns (e.g., mutual exclusivity) among two set of samples could be explored

7 https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_
pub.tar.gz
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(e.g., extending the method proposed in [1]). Third, the inclusion of additional types of
measurements, as for example gene expression, may improve the power of our method. Fourth,
the inclusion of noncoding variants in the analysis may provide additional information to be
leveraged to assess the significance of subnetworks.
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