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Abstract
Variable-Number Tandem Repeats (VNTR) are genomic regions where a short sequence of DNA
is repeated with no space in between repeats. While a fixed set of VNTRs is typically identified
for a given species, the copy number at each VNTR varies between individuals within a species.
Although VNTRs are found in both prokaryotic and eukaryotic genomes, the methodology called
multi-locus VNTR analysis (MLVA) is widely used to distinguish different strains of bacteria, as
well as cluster strains that might be epidemiologically related and investigate evolutionary rates.

We propose PRINCE (Processing Reads to Infer the Number of Copies via Estimation), an
algorithm that is able to accurately estimate the copy number of a VNTR given the sequence of
a single repeat unit and a set of short reads from a whole-genome sequence (WGS) experiment.
This is a challenging problem, especially in the cases when the repeat region is longer than the
expected read length. Our proposed method computes a statistical approximation of the local
coverage inside the repeat region. This approximation is then mapped to the copy number using
a linear function whose parameters are fitted to simulated data. We test PRINCE on the genomes
of three datasets of Mycobacterium tuberculosis strains and show that it is more than twice as
accurate as a previous method.

An implementation of PRINCE in the Python language is freely available at https://github.
com/WGS-TB/PythonPRINCE.
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1 Introduction

Variable number tandem repeats (VNTRs) are genomic locations where identical or highly
similar sequences of DNA are repeated in tandem (i.e. with no spaces in between repeats).
One reason for the importance of VNTRs in bacterial genomics is their use in the identification
of related bacterial strains [2, 29]. For instance, 24 VNTR loci are used for Mycobacterium
tuberculosis typing because of their reproducible nature and highly discriminatory typing
results [30]. Related bacterial strains will typically have similar or identical copy numbers
(CNs) at these loci, a feature used to identify clusters of potentially related strains in the
molecular epidemiology of infectious diseases [20, 19]. In addition, the study of VNTR data
has been used to glean information about bacterial lineage and pathogenicity [23].

The prediction of CNs for targeted VNTR regions from whole-genome sequencing (WGS)
is a well-recognized problem, that needs to be solved in order to relate bacterial strains
sequenced using WGS to those genotyped in the past with PCR-based methods [17]. Unlike
the previously solved problem of reconstructing spoligotypes [5], this problem presents specific
challenges. The difficulty arises from the fact that in many instances, the reads produced
by WGS are too short to cover the entire repeat region [13]. Instead, they only cover small
sections of the repeats and cannot be assembled to reconstruct the entire, multi-copy, VNTR
region [27], preventing the direct resolution of CNs. However, reads generated from the
VNTR region are likely to result in an apparent higher depth of coverage of the repeated
pattern compared to the average depth of coverage for the rest of the genome, a signal that
can be leveraged to predict the CN.

In theory, the “coverage depth ratio” (CDR) between the repeated pattern and the rest of
the genome should be roughly equal to the CN of the VNTR region. However, several factors
complicate matters. Repeat sequences can be similar to other regions within the genome,
so a subsequence of a repeat sequence can appear in unrelated parts of the genome. What
makes things even more challenging is that the repeated sequences may share subsequences
with one another. As a result, the CDR between repeat and non-repeat regions can be highly
influenced by similar, but unrelated, regions, biasing it toward higher values. Additionally,
read errors and single-nucleotide polymorphisms (SNPs) between the sample and the reference
repeated sequence can cause reads to not be identified as belonging to the VNTR region,
biasing this ratio toward lower values.

There are three types of tandem repeats, which differ according to the length of the
sequence being repeated [31], which we refer to as the template for the tandem repeat. The
first one is short tandem repeats (STRs) or microsatellites, whose templates range between
1 and 6 base pairs. The second one, the focus of this paper, is VNTRs or minisatellites,
whose templates are typically between 10 and 100 base pairs. The third type of repeat, copy
number variations (CNVs), involves large templates of size 1000 base pairs and above.

There are a number of methods that work with microsatellites. These methods typically
rely on the tandem repeat to be fully contained within the read or paired-end reads, and
are therefore limited by their length. Examples of such methods include lobSTR [15] and
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HipSTR [33]. In addition, a number of tools, such as STRViper [4] and STRait Razor [34],
focus on identifying repeat templates, rather than predicting the CN for a given template.

A wide range of algorithms has also been developed for CNVs. They generally fall into
five categories: paired-end mapping, split read, read depth, de novo assembly of a genome,
and combination of the above approaches. Read depth based methods are typically used
for CNV detection, and the rest are typically used for CNV identification [36]. Read depth
methods typically rely on dividing the genome into windows of at least 100 base pairs [35].
However, this cannot provide enough resolution for VNTRs, whose templates typically have
a length smaller than 100 base pairs. Another issue is that these methods tend to pre-train
their model on the human genome, and are not directly applicable to bacterial genomes
[35, 1].

Relatively few methods have been developed to address the problem of predicting CNs of
minisatellites (VNTRs) from WGS data. To the best of our knowledge, there are only two
such methods that are broadly applicable: CNVeM [32] and ExpansionHunter [7]. CNVem
uses a probabilistic model that utilizes the inherent uncertainty of read mapping and uses
maximum likelihood to estimate locations and copy numbers. ExpansionHunter is designed
to work with PCR-free WGS short-read data. It distinguishes three categories of reads:
spanning, flanking and in-repeat reads in a BAM file and used basic statistical techniques
to estimate the copy number from them. Unfortunately, we were not able to successfully
apply CNVeM to our data, and thus report on the results of comparing our method to
ExpansionHunter in this paper.

Three other existing methods work in a similar context to ours and are worth mention-
ing. The first one of these methods, TGS-TB [28], was specifically developed to work for
Mycobacterium tuberculosis, the organism which we use as the pilot application in our work.
However, it requires a minimum read length of at least 300 base pairs, which exceeds the
most commonly used short read technologies, and is not applicable to our data. The second
one, adVNTR [3], is based on a Hidden Markov model (HMM) trained on the human genome.
This method is not directly comparable to ours as it uses not only the template sequence,
but also information about the region flanking each VNTR. The final one, VNTRseek [12],
is designed for detecting VNTRs, not predicting the CNs of VNTRs with known templates.

In this paper we propose a method called PRINCE (Processing Reads to Infer the Number
of Copies Exactly), which successfully addresses the challenges of determining CNs for VNTR
in bacterial genomes. PRINCE accomplishes the goal of VNTR CN estimation by training
a model using reads simulated from a reference genome with computationally “spiked-in”
VNTRs that have known copy numbers. For each template, the prediction takes place in
two stages, the first of which is independent of the considered reference genome and depends
only on the template while the second one is reference-dependent. In the first stage, reads
are recruited in a computationally efficient manner by finding exact k-mer matches to the
template within the reads. The recruited reads are then compared to the template to compute
an overall matching score based on coverage and sequence features. In the second stage,
PRINCE fits the dependency of the known CNs on the matching score using linear regression.
For an input consisting of previously unseen WGS data, the reads are recruited in the same
way and the CNs are calculated from the resulting match score using the fitted parameters.

We have tested PRINCE on two datasets consisting of M. tuberculosis genome reads
(135 samples in total) as well as a simulated dataset. We show that the CNs estimated by
PRINCE are consistently closer to the true CNs than the ones predicted by ExpansionHunter,
and that the estimation remains robust for a range of coverages, read qualities and copy
numbers. PRINCE is freely available at https://github.com/WGS-TB/PythonPRINCE.
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2 Methods

2.1 Problem Description

The objective of PRINCE is to find the CNs within VNTRs in a genome exclusively from
a set of short reads, a set of templates (one per VNTR), and a reference genome. In this
section we define the relevant terminology.
Definition 1: A template is the repeat unit of a VNTR, sometimes also referred to as the

pattern of a VNTR. We define T as the set of templates, i.e. T := {ti}m
i=1, where ti is

the i-th template and m is the number of templates.
Definition 2: The copy number ci is the number of times a template ti is repeated in tandem

in a genome G, possibly with errors. We define c as the vector of the ci’s corresponding
to each ti in T , and write c := [c1, . . . , cm].

Definition 3: The match score si is a proxy for the copy number of a template computed by
PRINCE. We define s as the vector of match scores corresponding to each ti in T , and
write s := [s1, . . . , sm].

Definition 4: A read rj is a subsequence of length L of a genome G, possibly corrupted by
sequencing errors. We define R as the set of reads, i.e. R := {rj}n

j=1, where n is the
number of reads.

Given an assembled reference genome Gr for training and the template set T , PRINCE infers
the parameters of a linear model for predicting copy numbers of the templates in the set
T . Using this model, given an input of a set of reads R from a genome G 6= Gr, PRINCE
estimates the copy number vector c, i.e. the number of times ci that the i-th template ti ∈ T

is repeated in tandem in the genome G, for each of the VNTRs.

2.2 Overview

PRINCE can be thought of as the function composition g(f(R)). Let R represent the domain
of read sets, S represent the domain of match score vectors and C represent the domain of
copy number vectors. Then

f : R → S

g : S → C

A different gi is fitted to each ti and is dependent of the reference genome G, whereas f is a
recruitment and scoring algorithm that works in the same way for all the templates and is
independent of the reference genome G. The process PRINCE uses is shown in Figure 1.

2.3 Parameter Fitting and Copy Number Prediction

PRINCE’s g function is fitted using simulated reads, generated from the given reference
genome G. This is done to account for all possible copy numbers. Using a range of copy
numbers at each VNTR allows PRINCE to uncover the true relationship between match
score and copy number. The relationship is assumed to be linear, which follows from the
assumption that the depth of coverage is approximately uniform throughout the genome.

We generated artificial genomes by removing the VNTR regions in assembled genomes
and inserting varying but known numbers of copies of each template back into the genome.
Simulated reads were generated from these artificial genomes using the ART software [16].
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Figure 1 Flowchart of PRINCE. a. Reads are divided into mini-reads and low-quality mini-reads
are discarded. b. Reads are compared against templates in two stages and match scores are computed.
c. PRINCE uses the match scores to estimate copy numbers via a linear regression model.

From these artificial genome reads, PRINCE computes a vector of match scores s = f(r),
as is described in the next section. PRINCE fits the linear function

gi(si) = ai · si − bi = ci

for each template using a linear regression [10], and uses this function to estimate copy
numbers. By fitting the coverage depth ratio ai, PRINCE becomes more robust to template-
specific coverage biases such as PCR bias or substitution errors, which can be influenced by
template length [8, 26]. PRINCE also accounts for the presence of homologous short sequences
that may be erroneously added to si during read recruitment by fitting the constant bi to
be subtracted. This assumes that the erroneously recruited reads are from stable genomic
regions, an assumption that appears to hold given our results.

The parameters used in PRINCE by default come from two sets of simulated reads
generated from 40 artificial Mycobacterium tuberculosis genomes each, made from 8 real
assembled genomes [25, 22] that had 1 to 5 copies of each template ti inserted, for a total of
80 sample points. The template set T we use is the standard 24-locus MIRU-VNTR [29, 30].

2.4 Read Recruitment and Match Score Computation
In order to determine whether a read comes from a given template, we compare one to
the other. This can be a computationally expensive task. To overcome this, PRINCE
divides each read into its k-splits (non-overlapping k-mers), which are defined as consecutive

WABI 2018
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non-overlapping substrings of length k. Here we use k = 25 as most commonly used read
lengths are divisible by 25. We call each of the k-splits a “mini-read”. In the first step,
PRINCE discards low quality mini-reads, as measured by the average Phred score [9]. We
use a previously suggested minimum quality threshold of 20 [18].

PRINCE then performs a k-mer matching step. In this step all the k-mers of a mini-read,
as well as its reverse complement (to allow for paired-end data), are compared to the unique
k-mers of the template concatenated with itself (to allow for mini-reads that fall on the
boundary between two copies) using a hash table. For this step, we use the smaller value
k = 9, chosen via calibration. To ensure that the mini-read almost certainly comes from the
VNTR region, only those reads with all k-mers matching a template k-mer (as determined
via the hash table) are recruited.

The fraction of mini-reads that are recruited for template ti out of all the ones that
survive the quality filtering step gives the match score si. The normalization by the number
of surviving mini-reads ensures that all the read sets from the same genome have the same
expected match score for the same VNTR, no matter what the read length or depth of
coverage is.

2.5 Simulated Data Generation

We generated a simulated dataset for testing PRINCE. 18 sets of reads were generated from 3
fully assembled genomes (Beijing-391, Beijing-like-1104, Beijing-like-35049) [25] of 6 different
kinds using ART: HiSeq 2500 profile with read length of 50bp, 100bp and 150bp, HiSeqX
PCR free with read length of 150 bp, and MiSeq v3 with read lengths of 200bp and 250bp.

3 Results

We have evaluated our method on three different datasets: the BC dataset (accession numbers
are in Table 1 of the Supplementary Materials), the Beijing dataset, and a simulated dataset.
Each one enabled us to explore the performance of our method under various conditions.

The BC dataset is a subset of the dataset collected in British Columbia from 2005 to
2014 [14], and contains 5 sets of high quality, high coverage WGS reads, each one containing
5 Mycobacterium tuberculosis samples sharing the same MIRU-VNTR pattern. This dataset
allowed us to test PRINCE under optimal conditions. The Beijing dataset [21] contains 110
genomes belonging to the Beijing lineage of Mycobacterium tuberculosis, with variable quality
and coverage, allowing us to explore their effects on performance. The copy numbers for these
datasets were established using standard experimental protocols for VNTR copy number
prediction [11] which are known to occasionally have errors. According to one study, when
done with a commercial kit, they have 88% reproducibility, and have lower reproducibility
when done using other methods [6]. According to another study, some loci (templates) are
more reproducible than others: reproducibility agreement rates are 98.9% and 91.3% for
standard and hypervariable loci, respectively [24].

The reason for introducing the simulated dataset is to be able to verify the method on a
dataset with known copy numbers (ground truth). We have attempted to compare PRINCE
to ExpansionHunter and CNVeM. Unfortunately, we were unable to use CNVeM as we could
not successfully compile its source code. ExpansionHunter was designed to work for diploid
organisms, and outputs two estimates and their confidence intervals. In order to correctly
interpret the results, we used the median of the widest confidence interval, as suggested by
the authors of ExpansionHunter.
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3.1 Performance
We expected PRINCE to perform better on simulated reads than on real reads as it was
trained on reads produced by ART. Indeed, PRINCE had a mean absolute error (MAE) of
0.57 over all 24 VNTR regions and 18 simulated genomes, but the MAE increased to 0.80
for both the BC and Beijing datasets, which is somewhat worse than the simulated data.
The drop in performance is likely due to dissimilarities between the simulated training data
and the real datasets, due to factors that may include a higher presence of read errors and
varying coverage in the real data. Fortunately, PRINCE accounts for differences in input
in its match score. We tested how well it adapts to variability in the input on the Beijing
dataset, which had the most variation in coverage and read quality.

There was no change in PRINCE’s performance across different coverages (R2 = 0.002)
(Fig. 3). We expect that performance might sharply decline at excessively low coverages as
the variance of depth along the genome becomes more significant. However, for all reasonable
coverages PRINCE’s performance remains consistent.

PRINCE performed well on lower quality datasets (Fig. 4). However there was a slight
increase in MAE as read quality diminished (R2 = 0.128). We measured dataset quality by
measuring the average Phred score per nucleotide.

PRINCE was trained on copy numbers between 1 and 5. Some real datasets have VNTR
regions with copy numbers above 10. We wanted to know how well PRINCE can extrapolate
to higher copy numbers. We simulated 27 datasets using ART from genomes with copy
number insertions ranging from 1 to 90 (Fig. 5). PRINCE exhibits a linear increase in MAE
as copy number increases. However, PRINCE still has an MAE under 1 for copy numbers
below 15. No VNTR in any genome from the two real datasets we used had a VNTR region
with a copy number above 12. PRINCE may perform worse on higher copy numbers because
gi is trained on small copy numbers. Errors in the fitted parameter ai are magnified as si

increases, like when the number of copies increases. Although we only chose to train PRINCE
with copy numbers from 1 to 5, PRINCE still performed well on the copy numbers seen in
our testing datasets. PRINCE can be trained with arbitrarily high copy numbers, as long as
the length of the repeat region does not become significant relative to the genome length
and affect the depth of coverage calculation. Training PRINCE with high copy number data
may be necessary when estimating high copy number VNTR regions.

3.2 Comparison with ExpansionHunter
PRINCE outperforms ExpansionHunter on all three datasets. ExpansionHunter had an
MAE of 1.80 for the simulated dataset and 1.62 and 2.07 for the BC and Beijing datasets
respectively, an error over twice that of PRINCE in each case. ExpansionHunter performs
particularly poorly on the Beijing dataset, most likely due to the variable read quality.

We performed a per-template comparison with ExpansionHunter on our three datasets.
PRINCE greatly outperforms ExpansionHunter on most templates, with a few exceptions.

More specifically, PRINCE performs worse than ExpansionHunter on locus 2163b on the
BC dataset (Fig. 2a). However, PRINCE performs relatively well on 2163b in the Beijing
dataset (PRINCE : 1.15, ExpansionHunter : 3.70) (Fig. 2b). The true values for these
datasets were determined using traditional typing methods. Each locus is PCR-amplified
using primers that align to the flanking regions of the VNTR, the resulting PCR products
are then measured by standard gel electrophoresis and a copy number is inferred based on its
size [11]. The insertion of DNA between VNTR flanking regions that does not resemble the
template may cause some true values to be mislabelled. The average true value for 2163b in

WABI 2018
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(a) BC

(b) Beijing

(c) Simulated

Figure 2 MAE for PRINCE and ExpansionHunter for BC, Beijing and simulated datasets.
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Figure 3 MAE as a function of coverage over the Beijing dataset.

Figure 4 MAE as a function of Phred score over the Beijing dataset.

the Beijing dataset was 5.51 compared to 3.00 in the BC dataset. The poor performance of
PRINCE on 2163b might be due to incorrectly labeled true values. The poor performance
seen on loci 2163b, 2531 and 2996 in the simulated dataset (Fig. 2c), is more curious, as
the reads come from assembled genomes. This may be due to using only three samples.
Additionally, the three loci have the highest average copy number of all templates in the
simulated genomes, at 8.66, 5 and 7 copies respectively. Again, training PRINCE with higher
copy numbers may improve performance on these loci.

WABI 2018
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Figure 5 MAE as a function of copy number over the simulated dataset. Note that the relative
error remains relatively constant over the full range of copy numbers explored.

3.3 Running Time
With Illumina paired-end WGS data at 50x coverage, PRINCE takes an average of 156
seconds per genome to query. Training takes the same amount of time per genome; however,
training may use hundreds of genomes. PRINCE allows for each genome to be processed in
parallel, and we were able to train PRINCE using 80 genomes in under 5 minutes.

4 Conclusion

PRINCE provides an accurate estimation of the CN within a VNTR region. PRINCE fits
a linear regression to the relationship between CN and the estimated depth of coverage at
each loci using simulated data. We provide an example of how it could be used to estimate
the copy numbers for Mycobacterium tuberculosis genomes, where these values could be used
to compare bacteria sequenced with WGS technology to those interrogated only at their
VNTR loci. In the past, this could only be done with an experimental technique specialized
for tandem repeat amplification, rather than computationally from WGS data.

As input, in addition to a reference genome PRINCE only requires a set of reads and a
set of templates. Unlike the method described in TGS-TB [28] that computes copy numbers
exclusively for Mycobacterium tuberculosis, and requires reads of a minimum length of 300
base pairs and computes the copy number exclusively for predefined templates. PRINCE
can be trained on any bacterial genome, can work with very short reads, and can use any set
of templates.

Our work presents the first software tool that is designed to accurately infer copy numbers
of VNTR templates directly from WGS data for any bacterial species. We believe that this
will open the door to a comparison between historical isolates and modern-day ones, and
facilitate the extraction of novel insights on the epidemiology and transmission patterns of
important bacterial pathogens such as Mycobacterium tuberculosis, which we use here as an
illustrative example.
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Supplementary Materials

Table 1 SRA accession numbers for the BC data and the corresponding 24 MIRU-VNTR patterns.

SRS2774518 ERS1062942 SRS2774801 SRS2774445 SRS2774521 224325153323444234423373
SRS2774727 SRS2774503 SRS2774647 SRS2774692 SRS2774726 234315153323441444223352
SRS2774500 SRS2774680 SRS2774388 SRS2774715 SRS2774747 223325163533245544423382
SRS2774536 SRS2577355 SRS2774746 SRS2774387 SRS2774426 228225113221343244423383
SRS2577413 SRS2577389 SRS2577020 SRS2577272 SRS2577201 225425173533524244223384
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