
A Multi-labeled Tree Edit Distance for Comparing
“Clonal Trees” of Tumor Progression
Nikolai Karpov
Department of Computer Science, Indiana University, Bloomington, IN, USA
nkarpov@iu.edu

Salem Malikic
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
smalikic@sfu.ca

Md. Khaledur Rahman
Department of Computer Science, Indiana University, Bloomington, IN, USA
morahma@iu.edu

S. Cenk Sahinalp
Department of Computer Science, Indiana University, Bloomington, IN, USA
cenksahi@iu.edu

Abstract
We introduce a new edit distance measure between a pair of “clonal trees”, each representing
the progression and mutational heterogeneity of a tumor sample, constructed by the use of
single cell or bulk high throughput sequencing data. In a clonal tree, each vertex represents a
specific tumor clone, and is labeled with one or more mutations in a way that each mutation
is assigned to the oldest clone that harbors it. Given two clonal trees, our multi-labeled tree
edit distance (MLTED) measure is defined as the minimum number of mutation/label deletions,
(empty) leaf deletions, and vertex (clonal) expansions, applied in any order, to convert each
of the two trees to the maximal common tree. We show that the MLTED measure can be
computed efficiently in polynomial time and it captures the similarity between trees of different
clonal granularity well. We have implemented our algorithm to compute MLTED exactly and
applied it to a variety of data sets successfully. The source code of our method can be found in:
https://github.com/khaled-rahman/leafDelTED.

2012 ACM Subject Classification Applied computing → Computational genomics, Computing
methodologies → Combinatorial algorithms

Keywords and phrases Intra-tumor heterogeneity, tumor evolution, multi-labeled tree, tree edit
distance, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.22

Funding NK is supported by NSF CCF-1525024 and IIS-1633215. SM is supported by a Vanier
Canada Graduate Scholarship.

1 Introduction

According to the clonal theory of cancer evolution [26], cancer originates from a single cell
which had acquired a set of mutations that provide it proliferative advantage compared
to the neighboring healthy cells. As tumor grows, cancer cells acquire new mutations and
some of them might accumulate set of mutations conferring further selective advantage or
disadvantage compared to the other cells. This continues over a period of time and at the
time of the clinical diagnosis, tumors are usually heterogeneous consisting of multiple cellular

© Nikolai Karpov, Salem Malikic, Md. Khaledur Rahman, and S. Cenk Sahinalp;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nkarpov@iu.edu
mailto:smalikic@sfu.ca
mailto:morahma@iu.edu
mailto:cenksahi@iu.edu
https://github.com/khaled-rahman/leafDelTED
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

time

Number of cells

Healthy
cells

Set of mutations providing
selective advantage

= {𝑀1, 𝑀2, … }
𝑴𝟏,𝑴𝟐,
𝑴𝟑

𝑴𝟒,𝑴𝟓,
𝑴𝟔,𝑴𝟕

𝑴𝟖,𝑴𝟗,
 𝑴𝟏𝟎 𝑴𝟏𝟏, 𝑴𝟏𝟐

Figure 1 Graphical overview of tumor initiation and growth (left) and the corresponding clonal
tree of tumor evolution (right). Sets of mutations providing proliferative advantage and driving the
emergence of new clones are denoted as stars in the left and as sets of corresponding mutations in
the right panel (e.g. red star from the left panel represents the set of mutations {M1, M2, M3}.)
Node corresponding to the healthy cells is omitted as it would be non-informative.

populations, harboring distinct sets of mutations, leading to different phenotypes. Each such
cellular population is considered to be a clone. The whole process of tumor initiation and
growth is illustrated in Figure 1 (left panel).

One of the most widely used ways of depicting mutational heterogeneity and tumor
progression over time is by the use of a clonal tree of tumor evolution. Here, each individual
vertex represents a distinct clone and each mutation (i.e. its label) is placed as part of the
label of clone where it occurs for the first time in evolutionary history. In this work we
focus on trees built by the use of single nucleotide variants (SNVs), which represent the
most widely used type of mutations in reconstructing trees of tumor evolution [12]. We also
assume that each SNV occurs exactly once during the course of tumor evolution and never
gets lost (infinite sites assumption, usually abbreviated as ISA). Some recently introduced
methods (e.g. SiFit [10]) allow for the violations of ISA and, in such cases, we expect that
labels corresponding to mutations vioalating ISA are removed from the trees prior to distance
calculation. In order to simplify our figures, in each figure in this work we omit the node
representing population of healthy cells. Namely, such node would be non-informative as it
would always be label-free (since healthy cells are assumed to contain none of the mutations
relevant to cancer progression) and attached as the parent of root node in each of the figures
presented in this work. See Figure 1 for an illustration of tumor growth (left panel) and the
corresponding clonal tree of tumor evolution (right panel). Note that the children of a vertex
in a clonal tree are unordered.

A popular alternative to the clonal tree is the mutation tree, a special case of the clonal
tree, where along each edge there is exactly one mutation [21, 14] - thus a mutation tree
is a clonal tree with the highest possible granularity. As can be expected, any clonal tree
can be easily converted to the mutation tree as follows. Consider an arbitrary edge (u, v)
and assume WLOG that a set of all mutations assigned to it is {M1,M2, . . . ,Mk}. Now
replace each edge (u, v) by a path with vertices {w0 = u,w1, w2, . . . , wk−1, wk = v} and

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:3

edges {(w0, w1), (w1, w2), . . . , (wk−1, wk)}, such that exactly one mutation, WLOG Mi, is
assigned to the edge (wi−1, wi) for each i ∈ {1, 2, . . . , k}. Note that from a given clonal tree
which is not mutation tree (i.e. contains at least one node with two or more labels), multiple
different mutation trees can be obtained. There are additional tree representations [14] for
tumor evolution but in this work we focus on clonal trees only.

Similarity/distance measures between tree representations of tumor
evolution
In the past few years, we have witnessed rapid developments in computational methods for
inferring trees of tumor evolution from both bulk and single cell high throughput sequencing
(HTS) data [21, 14, 9, 18, 11, 6, 15, 27, 16, 25, 8, 5].

In order to assess the accuracy of the proposed method, many of these studies use
simulated HTS data extracted from synthetic tumor compositions. The inferred tree is
then compared against the (synthetic) ground truth. (We will call the ground truth tree
the true tree.) Other studies, such as the Pan Cancer Analysis of Whole Genomes Project
(PCAWG) compare trees inferred by participating methods on real tumor samples to reach a
consensus tree. In order to compare clonal trees with varying granularity (granularity can be
measured in terms of the average number of mutations assigned to a clone) the measure(s)
used should be versatile enough to discriminate real topological differences between trees
from those differences due to the type and coverage of the HTS data used by a method; e.g.
such a distance measure should be equal to 0 between any clonal tree and its corresponding
mutation tree (obtained using the procedure described above).

Unfortunately, comparing trees of tumor evolution has turned out to be a very challenging
problem and available measures fail to capture the differences/similarities between inferred
or true trees. In fact many of existing measures only aim to compare the relative placement
of pairs of mutations across two trees, e.g. whether the two mutations maintain an ancestor-
descendant relationship in both trees [27, 16]. Such measures can not capture topological
differences between distinct trees, e.g. a simple topology with two vertices, where all but one
of the mutations is assigned to the non-root vertex, v.s. a star topology where each vertex
is assigned a single mutation. As a result it is of high importance to have measures of tree
similarity that not only consider the relative placement of mutations but also the topological
structure of the trees.

The standard measure to compare combinatorial objects - such as strings, especially in
bioinformatics, is the edit distance. This measure has numerous applications and a large
number of variants, not only for strings but also for labeled trees, have been considered
in the past. The classical Levenstein edit distance between two strings is defined as the
minimum number of single symbol insertions, deletions and replacements to convert one
of the strings to the other and has a well established dynamic programming algorithm to
compute it (e.g. [35]). The running time of this algorithm is proportional to the product
of the lengths of the two input strings and the existence of a sub-quadratic algorithm is
unlikely [1]. In general, the complexity of computing an edit distance strictly depends on
the set of allowed edit operations. E.g. if we consider a variant of the problem where only
single character mismatches and block reversals are allowed, then the running time reduces
to O(n log2 n) [29] - here n is the total length of the strings; on the other hand, the variant
where only mismatches, block deletion and move operations are allowed is NP -hard [32].

Edit distance measures for rooted trees have typically been defined for those with ordered
vertices, each with a single label; here the goal is to transform one tree to the other by the use
of vertex insertions, vertex deletions and vertex label replacements [31]. Based on the tree
edit distance, a notion of tree alignment has also been introduced, both for vertex ordered as

WABI 2018

22:4 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

well as unordered trees [13]. For many of the vertex ordered cases, there are polynomial time
algorithms that can solve the distance/alignment problem [33, 31, 22, 4, 38, 37, 30, 13, 20, 3],
whereas for several unordered cases, the problems are NP-hard [24, 34] or MAX SNP-
hard [39, 13].

Unfortunately for many of variants of the problem, the time complexity is still unknown [2].
As importantly none of the existing algorithms deal with trees where vertices may have more
than a single (mutational) label - which is at the heart of clonal tree comparison problem.

In this paper we introduce for the first time a tree edit distance measure to compare
trees where vertices may have one or more (mutational) labels. The multi-labeled tree edit
distance (MLTED) measure we introduce in this paper successfully captures the differences
between clonal trees: for example it satisfies a key condition that two clonal trees from
which it is possible to produce two identical mutation trees have a distance 0. Even though
MLTED is defined for (the more general) vertex unordered trees, we show that there is an
algorithm to exactly compute it in polynomial time. We have implemented this algorithm
and applied it to a number of synthetic and real data sets to compare trees inferred by some
of the available tumor history reconstruction methods with success.

2 Definitions

A rooted tree T = (V,E) is a connected, acyclic, undirected graph with set of vertices V
(also denoted as V (T)) and edges E (also denoted as E(T)), with a particular vertex, r
identified as the root. For each non-root vertex v, any vertex u that lies on the simple path
between v and the root is considered to be its ancestor; in particular, the node u = p(v)
on this path which has an edge to v is considered to be its parent. The depth of vertex v
denoted d(v), is thus defined as the number of its ancestors. The lowest common ancestor of
any pair of vertices u and v, denoted lca(u, v), is defined as a common ancestor of both u
and v whose depth is maximum possible. The structure of a tree induces partial order � on
its vertices: u � v denotes that u is an ancestor of v.

In this work, we consider multi-labeled trees in which each vertex v has a subset Lv of
labels from a universe L. Additionally, each label is unique to a vertex, i.e. Lu ∩ Lv = ∅ for
each pair of distinct vertices u and v. We denote the set of all labels assigned to the vertices
of T as L(T). In other words, L(T) =

⋃
v∈V (T)

Lv.

Consider the following types of edit operations on multi-labeled tree:
deleting a label where one of the labels is removed from some set Lv,
deleting a vertex where a vertex is removed from the tree. This operation is allowed to
be performed only for unlabeled leaves, i.e. vertices with no labels and no children,
expanding a vertex where vertex v is replaced by two vertices v1 and v2 such that all
children of v after this operation are children of v2, and the parent of v is the parent of
v1, and v1 is the parent of v2. Each of the labels from Lv is assigned to exactly one of
the Lv1 and Lv2 .

We define the edit distance between two multi-labeled trees as the minimal number of
label deletions, such that together with an arbitrary number of vertex deletions and vertex
expansions (which do not contribute to the distance), they transform both trees to a common
third tree (which will be defined as the maximal common tree of the two input trees). As
can be observed, the distance between two trees is upper bounded by the total number of
labels in the two trees.1

1 Note that typically edit distance measures are based on symmetric edit operations, in a way that each

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:5

3 Set Alignment Problem

Our algorithm for computing the distance between trees is based on finding a maximal
common tree, as will be defined below. We first show connection between this notion and our
edit distance measure and then demonstrate how this notion works for paths, which form
the base case. We later extend this definition to the general case and provide an efficient
algorithm for computing the maximal common tree.

A Common tree of arbitrary multi-labeled trees T1 and T2 is any multi-labeled tree which
can be obtained from each of T1 and T2 by the use of edit operations defined above. A
maximal common tree of T1 and T2 is a common tree of T1 and T2 having the largest number
of labels among all common trees of T1 and T2. Our MLTED measure between T1 and T2 is,
by definition, equal to the difference between the total number of labels in T1 and T2 and
twice the number of labels in their maximal common tree. In other words, tree edit distance
is defined as the total number of labels required to be removed from the two trees in order
to transform them to their maximal common tree.

If the two trees are simple paths, then any common tree between them is also a path.
Let the ordered sequence of vertices of the first tree/path be v1, v2, . . . , vn with respective
label sets S1, S2, . . . , Sn, and the ordered sequence of vertices of the second tree/path be
w1, w2, . . . , wm with respective label sets P1, P2, . . . , Pm. (Assume that Si, Pj are subsets
of L and that any label u ∈ L occurs exactly in one of S1, S2, . . . , Sn and exactly in one of
P1, P2, . . . , Pm.) Let f : L → {1, 2, . . . , n} and g : L → {1, 2, . . . ,m} be the functions that
map labels to vertex indices, respectively in the first and the second tree such that vf(a)
denotes the vertex of label a in the first tree and wg(a) denotes the vertex of the label a in
the second tree.

It is easy to see that computing a maximal common tree in this special case is equivalent
to the following generalized version of the string edit distance problem for a pair of ordered
sets.

Set Alignment Problem
Instance: Two ordered set of labels: (S1, S2, . . . , Si) and (P1, P2, . . . , Pj) where
1 ≤ i ≤ n and 1 ≤ j ≤ m.

Task: Find set A(i, j) ⊆ (
i⋃

p=1
Sp)

⋂
(

j⋃
q=1

Pq) of maximal size such that, for each pair

(a, b) of labels from A(i, j), the following holds: f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b).

The following lemma offers an efficient algorithm for solving the Set Alignment
Problem. Our approach for computing edit distance between two arbitrary trees (presented
in Section 4) uses this algorithm as a subroutine.

I Lemma 1. Let D(i, j) be the size of the set which is answer of the Set Alignment
Problem for the instance where input sequences are (S1, . . . , Si) and (P1, . . . , Pj) (i.e.
according to the notation from the above D(i, j) = |A(i, j)|). Then the following hold:

D(i, 0) = D(0, j) = 0, for all non-negative integers i and j.
D(i, j) = max (D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj |, for all positive integers i and j.

operation is complemented by a reverse operation (e.g. deleting a label is the reverse of inserting the
same label). In such cases, the edit distance is defined as the minimum number of operations required
to transform one combinatorial object into another. Although it is possible to define our edit distance
measure similarly (with label insertions complementing label deletions), we chose to present our distance
by specifying deletions only for keeping the description compact.

WABI 2018

22:6 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Proof. The first equation easily follows from the fact that A(i, 0) ⊆ ∅ and A(0, j) ⊆ ∅.
For the second equation, we first prove that D(i, j) ≥ max(D(i, j−1),D(i−1, j))+|Si∩Pj |.

In order to prove this, observe that each of A(i, j − 1) ∪ (Si ∩ Pj) and A(i− 1, j) ∪ (Si ∩ Pj)
represent a valid candidate solution for the instance of Set Alignment Problem with the
input sequences (S1, . . . , Si) and (P1, . . . , Pj). Namely, in the case of set A(i, j−1)∪ (Si∩Pj)
(analogous applies to the set A(i− 1, j) ∪ (Si ∩ Pj)), if we consider two arbitrary labels a
and b of this set, then:

If a ∈ A(i, j − 1) and b ∈ A(i, j − 1) then f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) holds by the
definition of A(i, j − 1).
If a ∈ A(i, j − 1) and b ∈ Si ∩ Pj then f(a) ≤ i and g(a) ≤ j − 1. On the other hand,
f(b) = i and g(b) = j hence f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) is obviously satisfied.
Case where a ∈ Si ∩ Pj and b ∈ A(i, j − 1) is analogous to the previous case.
Case where both a and b are from Si ∩ Pj is trivial since in this case f(a) = f(b) = i and
g(a) = g(b) = j implying that f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) holds in this case as well.

Now it suffices to prove that D(i, j) ≤ max(D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj |. In order
to prove this, consider the partition of A(i, j) into A(i, j) \ (Si ∩ Pj) and Si ∩ Pj . We
claim that at most one of the sets Si and Pj has non-empty intersection with the set A(i,
j)\ (Si∩Pj). To prove this, assume on contrary that there exists a ∈ Si∩ (A(i, j) \ (Si ∩ Pj))
and b ∈ Pj ∩ (A(i, j) \ (Si ∩ Pj)). Since a ∈ Si we have f(a) = i. For b we have that
b ∈ A(i, j) and b /∈ Si implying that f(b) ≤ i− 1. Similarly, g(a) ≤ j − 1 and g(b) = j. By
the above assumption, both a and b belong to A(i, j) but obviously they violate constraint
f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) which is, by definition of A(i, j) satisfied for all of its labels.
This contradiction directly implies our latest claim. To finalize the proof of inequality D(i,
j) ≤ max(D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj | assume WLOG that the intersection of Si and
A(i, j) \ (Si ∩ Pj) is the empty set. This implies that A(i, j) does not contain any label from
Si\(Si∩Pj). ThereforeD(i, j) ≤ D(i−1, j)+|Si ∩ Pj | ≤ max(D(i, j−1),D(i−1, j))+|Si∩Pj |
which completes our proof. J

Lemma 1 provides a dynamic programming formulation for calculating distance D(n,m)
between trees T1 and T2.

I Observation 2. Total time and total space required for calculating number of labels in each
of the sets Si ∩ Pj, where i ∈ [n] and j ∈ [m] are both O(

n∑
i=1
|Si|+

m∑
j=1
|Pj |+ nm).

Proof. For each label from u ∈ L we can store two indices f(u) and g(u). This can be
implemented in the above time and space by using a hash table. If we know these indices, we
can fill the table Iij , where Iij = |Si ∩ Pj |, by iterating through elements of L and increasing
the value of If(x)g(x) by one for each x ∈ L. J

I Lemma 3. The Set Alignment Problem is solvable in O(
n∑

i=1
|Si|+

m∑
j=1
|Pj |+nm) time

and space.

Proof. Follows straightforwardly from Lemma 1 and Observation 2. J

4 Computing a maximal common tree in the general case

We now describe an efficient algorithm for computing a maximal common tree. Note that in
the remainder of the paper we call all vertices in a tree with exactly one child as non-crucial
vertices and all other vertices, i.e. leaves, and vertices with two or more children, as crucial

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:7

vertices. Now consider the sequence of edit operations applied to a tree T1 in the process to
reaching a common tree T with another tree T2.

I Observation 4. Each edit operation applied to any vertex deletes at most one crucial vertex
and creates at most one (new) crucial vertex; no edit operation can increase the number of
crucial vertices.

Proof. The proof follows through a simple case analysis on the edit operations we allow.
The edit operation of deleting a label does not change the topology of the tree or the set
of crucial vertices in the tree.
The edit operation of deleting a leaf u does change the topology of a tree, but with respect
to the set of crucial vertices, the only update is that u is lost, and, (i) provided that u
was the only child of p(u), p(u) becomes crucial, or (ii) provided that u was one of the
two children of p(u), p(u) becomes non-crucial, or (iii) provided that u was one of more
than two children of p(u), p(u) stays crucial. All other vertices remain unaltered.
Finally, the edit operation of expanding, i.e., splitting a vertex v into v1 and v2 does
change the topology of the tree but it does not create a new crucial vertex if v is non-
crucial; however, if a vertex v is crucial, then v2 becomes crucial after the edit operation,
but v1 stays non-crucial. J

The observation above indicates that an edit operation applied to a crucial vertex u may
create a new crucial vertex v. In that case, we say that the crucial vertex u in T1 corresponds
to a crucial vertex v in T ′1 (if latter was created). In case of an expansion of vertex u in T1
to two vertices u1 and u2, we say that u corresponds to u2 in T ′1. In case of a deletion of
a leaf u, if p(u) which was originally non-crucial, became crucial, then we say that u in T1
corresponds to p(u) in T ′1. For any vertex v which remains unedited and crucial in T ′1, we
say that v in tree T1 corresponds to v in the tree T ′1.

Finally, we say that v in T1 corresponds to v′ in T if for the sequence of trees T1 = T 0
1 , T

1
1 ,

. . . , T l
1 = T (where T i+1

1 is obtained from T i
1 by an edit operation) there exists the sequence

of vertices v = v0, v1, . . . , vl = v (where vl ∈ V (T l
1)) such that vi corresponds to vi+1 for all

i. We extend the notion of correspondence to T2 in a similar manner.
Given trees T1 and T2, their common tree T and the vertices in T1 and T2 that correspond

to every crucial vertex in T , it is straightforward to establish the edit operations to transform
T1 and T2 to T . The algorithm to compute T makes use of this observation.

I Observation 5. Given two sets of crucial vertices u1, . . . , ul and v1, . . . , vl in T1 and T2
respectively such that ui and vi correspond to same crucial vertex in the common tree T for
each i, we can reconstruct a common tree T ′ such that the number of labels in T ′ is at least
that in T .

Proof. Here we describe the procedure of reconstructing the tree T ′ in two steps.
In the first step we delete each label which cannot belong to T in a trivial manner: let

S1 (S2) be the set of vertices which do not lie on a path from the root of T1 (T2) to some
ui (vi). Then we delete all vertices from S1 (and S2) together with their labels. Note that
no label which is present in tree T will be deleted: if a vertex v does not belong to a path
from the root to some crucial vertex in T , then any label from Lv cannot be present in T .
However, if any label in T that is in Lv for some vertex v which lies on a path from the root
to a leaf w (which is necessarily crucial) then there must exist a pair of vertices ui, vi which
correspond to the leaf w.

Thus, starting from the leaf level, we can delete all vertices which do not belong to a
path from the root to any ui (and vi). It is easy to see that this first step transforms T1 and
T2 into isomorphic trees - the isomorphism φ on r1, u1, . . . , ul which transforms T1 into T2 is
φ(r1) = r2, φ(u1) = v1, . . . , φ(ul) = vl (here ri is the root of Ti).

WABI 2018

22:8 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Let T ′1 and T ′2 denote the trees respectively produced from T1 and T2 after applying the
first step. Notice that, T ′1 and T ′2 are also topologically isomorphic to T and T ′.

In the second step, for each pair of vertices vi and ui we consider the pair of “maximal”
paths from vi and ui to the associated root, which do not contain other vertices from v1, . . . , vl

and u1, . . . , ul. For this pair of paths we apply a sequence of edit operations that expand
vertices and delete labels, such that the resulting paths will be identical with the maximum
possible number of labels.

T ′ is the tree produced as a result of the second step. Note that on any pair of paths from
the vertex pair ui and vi to the respective root, the set of labels observed will be identical.
This implies that T ′ is a common tree with number of labels necessarily lower bounded by
that of T . J

The above observation implies that we can reduce the problem of computing a maximal
common tree between two multi-labeled trees to the problem of finding an optimal pair of
sequences of vertices u1, . . . , ul and v1, . . . , vl corresponding to the maximal common tree.

Our general algorithm for computing the distance between two multi-labeled trees requires
constant time access to the solutions to many instances of the Set Alignment Problem,
which we compute in a preprocessing step.

Solving Set Alignment Problem for all pairs of sequences u1, . . . , ul and v1, . . . , vl is
impractical. Fortunately, special conditions with respect to the structure of these sequences
help us develop an efficient algorithm for finding an optimal pair of sequences as explained
below.

The algorithm for computing an optimal pair of sequences will need the solutions to
Set Alignment Problem for all possible downward paths; we call this auxiliary problem
Pairwise Alignments on a Tree.

Given a pair of vertices u, v such that u � v, let the following sequence of sets of vertex
labels be denoted as P(u, v) = (Lw1 , . . . , Lwk

) where w1(= u), w2, . . . , wk(= v) is called
the downward path between u and v. Then we can define Pairwise Alignments on a
Tree problem formally as follows.

Pairwise Alignments on a Tree
Instance: Two rooted unordered multi-labeled trees T1 = (V1, E1) and T2 = (V2, T2)
with associated sets of labels for each vertex.
Task: For each 4-tuple (a, b, c, d) such that a, b ∈ V1, c, d ∈ V2, a � b and c � d,
compute and store the answer for Set Alignment Problem on P(a, b),P(c, d).

In the next lemma, we introduce equations for computing Pairwise Alignments on a
Tree which forms the basis of our dynamic programming algorithm.

I Lemma 6. Given a, b ∈ V (T1); c, d ∈ V (T2); a � b; c � d, let D(a, c, b, d) be the solution
for the instance P(a, b), P(c, d) of Set Alignment Problem. Then
1. If a = b and c = d then D(a, c, b, d) = |Lb ∩ Ld|.
2. If a = b and c 6= d then D(a, c, b, d) = D(a, c, b, p(d)) + |Lb ∩ Ld|.
3. If a 6= b and c = d then D(a, c, b, d) = D(a, c, p(b), d) + |Lb ∩ Ld|.
4. Otherwise D(a, c, b, d) = max(D(a, c, p(b), d),D(a, c, b, p(d))) + |Lb ∩ Ld|.

Proof. Each of the cases above holds true as a direct consequence of Lemma 1. J

Through a straightforward application of the above lemma, we obtain the following.

I Lemma 7. If I1 and I2 denote the heights of T1 and T2, respectively, Pairwise Align-
ments on a Tree is solvable in O (|V1||V2|I1I2 + |L(T1)|+ |L(T2)|) time and space.

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:9

Proof. The algorithm is a straightforward implementation of Observation 2 and Lemma 6.
Namely, from Observation 2 it follows that the values of |La ∩ Lb|, for all a ∈ V1 and
b ∈ V2, can be computed by the use of algorithm having time and space complexity
O (|V1||V2|+ |L(T1)|+ |L(T2)|). After computing these values, all entries in D can be com-
puted in the time and space that are proportional to the number of all possible combinations
of a, b, c, d, which is bounded by |V1||V2|I1I2. Now, combining the above with the obvious
inequality |V1||V2|I1I2 ≥ |V1||V2|, we have that the overall time and space complexity of the
proposed algorithm is O (|V1||V2|I1I2 + |L(T1)|+ |L(T2)|). J

Let M : V (T1) ∪ V (T2) → V (T1) ∪ V (T2) be the (partial) bijective mapping between
vertices v and w of T1 and T2, respectively, which correspond to the same crucial vertex u in
their common tree T ; i.e. M(v) = w and M(w) = v.

I Observation 8. For any pair of vertices a, b ∈ V1 (or V2) the lowest common ancestor of
a and b, namely lca(a, b), has a mapping, M(lca(a, b)) which is equal to lca(M(a),M(b)).
For any triplet of vertices a, b, c ∈ V1 (or V2), the lowest common ancestor of a, b is equal to
the lowest common ancestor of b, c if and only if lca(M(a),M(b)) = lca(M(b),M(c)).

We now present our algorithm for computing the size of a maximal common tree, which
is a combination of dynamic programming and an algorithm for finding a maximum cost
matching.

I Theorem 9. The mapping which corresponds to a maximal common tree can be computed
in time O(|V1||V2|(|V1|+ |V2|) log(|V1|+ |V2|) + |V1||V2|I1I2 + |L(T1)|+ |L(T2|).

Proof. For i ∈ {1, 2} and x ∈ Vi, let Ti(x) denote multi-labeled tree which is identical to
subtree of Ti rooted at x, except that the set of labels assigned to the root node in Ti(x) is
empty. We first define function G : V1 × V2 → N, such that G(a, b) denotes the size of the
maximal common tree between trees T1(a) and T2(b), where we are assuming that M(a) = b.
The maximal common tree is then indicated by max

(a,b)∈V1×V2
[G(a, b) + D(r1, r2, a, b)]. The key

observation of our algorithm is that the computation of G(a, b) can be reduced to finding
a maximum cost matching for an auxiliary graph. Let a1, . . . , an be the children of a, and
b1, . . . , bm be the children of b. The structure conditions on mapping provide the guarantee
that all vertices which are leaves of downward paths from a without internal crucial vertices,
lie in distinct subtrees. Using the Observation 8 this implies that each such vertex lies in
distinct subtrees with roots a1, . . . , an and b1, . . . , bm. For the simplicity of notation, for
i ∈ {1, . . . , n}, denote the subtree of T1 with root at ai as Fi. Analogously, we denote subtree
of T2 rooted at bj , where j ∈ {1, 2, . . . ,m}, by Hj . For a pair of subtrees, we define the
score of an optimal choice of pairs of mapped vertices; c(Fi, Hj) = max

c∈V (Fi),d∈V (Hj)
(D(a, b, c,

d) +G(c, d)). Thus the cost of edges in this graph is equal to the size of a maximal common
tree if we choose an optimal mapped pair of vertices in these subtrees. However, we should
find an optimal choice such that a subtree corresponds to a subtree in another tree, under
the condition that we cannot construct correspondence of two subtrees into single subtree;
this problem is the well known maximum weighted bipartite matching problem, which can
be solved in a polynomial time [19]. Finally, we can construct a bipartite graph on the set
of vertices a1, . . . , an, b1, . . . , bm with the cost of an edge (ai, bj) equal to c(Fi, Hj). Thus
our algorithm returns the score of an optimal assignment in this graph where the optimal
value of the G(a, b) can be reduced to the computation of G(x, y) for all x and y such that
a � x and b � y and finding the maximum weighted matching on auxiliary graph (which is
complete bipartite graph with n+m vertices and nm edges). Thus we can summarize our
algorithm as follows.

WABI 2018

22:10 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

If a or b is a leaf then G(a, b) = 0.
Otherwise let Q be a complete weighted bipartite graph on vertices a1, . . . , an, b1, . . . , bm

(ai is the root of Fi, and bj is the root of Hj) in which the weight of an edge (ai, bj) is
equal to max

c∈V (Fi),d∈V (Hj)
(D(ai, bj , c, d) + G(c, d));then G(a, b) is equal to the cost of an

optimal assignment in Q.

The time to construct auxiliary graphs is bounded by O(|V1||V2|I1I2), the most time
consuming part of this algorithm is the solution to the assignment problem. However, the
time needed to solve this problem for a graph with n vertices and m edges is bounded by
O(nm logn). If na is the number of children of a vertex a in the first tree, and nb is the number
of children of a vertex b in the second tree then the total time is bounded by O(

∑
a,b

(na +

nb)nanb log(na + nb)) which can be bound (up to constant factor) by O(|V1||V2|(|V1| +
|V2|) log(|V1| + |V2|)) or O((|V1|

∑
j

n2
b + |V2|

∑
i

n2
a) log(|V1| + |V2|)). The second bound is

significantly better if the maximal degree of a vertex is bounded by a small value. J

The above theorem finalizes the description of our algorithm for computing the edit
distance between two multi-labeled trees.

5 Discussion and an application

5.1 The existing measures and their limitations
There are number of measures in the literature that are being used to compare clonal trees.
Two of the most widely used measures include: (1) Ancestor-Descendant Accuracy (ADA),
measure which considers only mutations originating at nodes(clones) which are in ancestor-
descendant relationship in the true tree and returns the fraction of pairs of such mutations for
which the relationship is preserved in the inferred tree. (2) Different-Lineage Accuracy (DLA),
defined analogously as ADA, where only pairs of mutations originating from different clones
which are in neither ancestor-descendant nor descendant-ancestor relationship are considered.
In addition to these two measures, used in [27, 15, 16, 17] and elsewhere, (3) Clustering
Accuracy (CA) [15] and (4) Co-Clustering Accuracy (CCA) [17] were also introduced in order
to measure the accuracy in the placement of mutations originating from the same clone in
true tree. CA measures the fraction of label pairs that are both co-located in the same vertex
in both trees, whereas CCA measures the proximity in the inferred tree of pairs of mutations
originating from the same clone in true tree (see [15] and [17] for definitions of CA and CCA).
Finally, (5) Pair-wise Marker Shortest Path Distance (PMSPD) [25] is (symmetric) distance
measure calculated as the sum, over all label pairs, of the absolute difference of path length
between the two labels in true tree with the equivalent length calculated in the inferred tree.

All of the above mentioned are designed to compare inferred tree against the given true
tree and no single measure can capture the overall similarity/difference between two arbitrary
trees. Furthermore, for each of the measures there exist cases where it returns high similarity
for topologically very different true and inferred trees. We will illustrate this below by
presenting several examples using trees from Figure 2 where true tree and four trees inferred
by (hypothetical) methods are shown. Each vertex in any one of these trees have one or
more labels (corresponding to mutations in clonal trees) represented by A,B,C, . . . , J .

For ADA measure, one needs to consider all pairs of labels in the true tree: {(A,B), (A,C),
(A,D), (A,E), (A,F), (A,G), (A,H), (A, I), (A, J)}. We see that ‘Inferred tree 1’ has the max-
imum score despite being topologically very different from ’True tree’. The same tree can be

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:11

A

B,C,D,E,F G,H,I,J

(a) True tree

A

B C D E F G H I J

(b) Inferred tree 1

A

B,C,D G,H

E,F I,J

(c) Inferred tree 2

A

B G

C

D

E

F

H

I

J

(d) Inferred tree 3

A

B,C,D,E,F

G,H,I,J

(e) Inferred tree 4

Figure 2 (a) True clonal tree depicting the evolution of hypothetical tumor. (b)-(e) Hypothetical
trees inferred by methods for reconstructing history of tumor evolution (input data to these methods
is assumed to be obtained from the hypothetical tumor mentioned in the description of ’True
tree’). These trees are used as examples which demonstrate limitations of the existing measures for
calculating similarity/distance between true and each of the four inferred trees (details provided
in Section 5.1). In Section 5.2.1 we discuss the application of MLTED in calculating similarities
between these pairs of trees.

used as an illustration for the limitations of DLA measure where the following set of label pairs
need to be considered in true tree {(B,G), (B,H), (B, I), (B, J), (C,G), (C,H), (C, I), (C, J),
(D,G), (D,H), (D, I), (D,J), (E,G), (E,H), (E, I), (E, J), (F,G), (F,H), (F, I), (F, J)}. Clus-
tering of mutations in ‘Inferred tree 4’ is in the perfect agreement with the clustering in the
‘True tree’ hence both CA and CCA measures will return maximum score for this tree, even
though it is also topologically very different from ‘True tree’. Finally, the calculation of the
PMSPD measure between the ‘True tree’ and ‘Inferred tree 1’, as well as ‘Inferred tree 2’, is
shown in Figure 3. This measure assigns the same score to these two inferred trees, despite
the fact that ‘Inferred tree 2’ is, from the perspective of interpreting tumor evolution, much
closer to ‘True tree’.

WABI 2018

22:12 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

5.2 Applications of MLTED

In order to facilitate the interpretation of results, for two arbitrary trees T1 and T2, in addition
to the MLTED similarity measure which returns the number of mutations in common tree of T1
and T2 and is denoted here as MLTED(T1, T2), we also introduce MLTED-normalized(T1,

T2) defined as MLT ED(T1,T2)
max(a,b) , where a and b denote number of mutations in T1 and T2.

MLTED-normalized can be interpreted as similarity measure which takes values from [0, 1],
with higher values denoting higher similarity among trees. In the discussion of results below,
all presented scores represent MLTED-normalized similarity measure, although it is obviously
equivalent to MLTED (assuming that the sets of node labels are known for both trees, which
is true in all of our comparisons).

5.2.1 Application to the synthetic examples with the available ground
truth

In this section we discuss similarity between true and inferred trees shown in Figure 2.
‘Inferred tree 1’ has relatively low score equal to 0.3 which rewards the proper placement

of mutation A and correctly inferred phylogenetic relations for pairs of mutations originating
from different clones, but penalizes for extensive branching which leads to the inaccurate
placement to different branches of mutations originating from the same clone, as well as to
significant topological differences between this and true tree. In contrast, and as expected
based on our discussion from the introduction, ‘Inferred tree 2’ (which represents slightly
refined version of ‘True tree’ where green and yellow clones are each split into two adjacent
clones belonging to the same branch) and ‘Inferred tree 3’ (which represents fully resolved
mutation tree that can be obtained from ‘True tree’) both have score 1. ‘Inferred tree 4’,
having score 0.6, is rewarded for the proper placement of mutation A and large cluster
of mutations appearing for the first time at green clone, but is penalized for inaccurate
placement of yellow clone from where 4 out of 10 mutations originate.

5.2.2 Application to real data

In order to demonstrate the application of measure developed in this work in real settings
where true tree is usually not available, we analyzed two datasets obtained by sequencing real
samples of triple-negative breast cancer (TNBC) and acute lymphoblastic leukemia (ALL).
For each sample, we inferred trees of tumor evolution by the use of SCITE [14], SiFit [10]
and PhISCS2. We provide more details about these methods and parameters used in running
them, as well as details of obtaining real data, in the Appendix. Inferred trees and very
detailed discussion of the calculated MLTED-normalized scores for pairs of inferred trees are
shown in Figure 4 and Figure 5 (for the TNBC sample) and Figure 6 (for the ALL sample).
We show that MLTED-normalized score recognizes high similarity in the placement of vast
majority of mutations between two trees (as demonstrated for trees inferred by PhISCS and
SiFit for TNBC sample where score equals 0.82), but also penalizes for topological differences
and different sorting of mutations along linear chains (as demonstrated for trees inferred by
SCITE and SiFit for ALL sample where the score equals 0.69).

2 Available at https://github.com/haghshenas/PhISCS

https://github.com/haghshenas/PhISCS

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:13

6 Conclusion and Future Work

Comparing clonal and mutation trees inferred by different methods and/or by the use of
different types of input data, currently represents an important challenge in intra-tumor
heterogeneity and evolution studies. In this work, we show that the most widely used
measures for comparing clonal/mutation trees usually capture only some specific aspects
of tree similarity and can also report the similarity score which is in sharp contrast to the
expected result (e.g. perfect score is sometimes given to inferred tree which is very different
from the true tree). Motivated by these, we introduce new measure, termed MLTED, for
calculating similarity between trees of tumor evolution. From the above discussion and
results on synthetic and trees obtained by analyzing real datasets, we conclude that MLTED
successfully captures similarities and differences, relevant in proper interpretation of tumor
evolution, between two given trees. The proposed similarity measure represents a promising
alternative to the existing measures and has wider domain of applications (as it does not
require the presence of reference tree). We expect that MLTED becomes a part of the gold
standard in assessing the performance of methods for inferring trees of tumor evolution on
simulated data, as well as in comparing similarity and finding consensus tree of trees reported
by different methods in the cases where real data is used as the input and ground truth is
usually not available.

In the current implementation, MLTED is designed for trees built by the use of SNVs
under the ISA. Such trees are an output of the vast majority of the existing methods for
studying tumor evolution. However, some recent studies based on the analysis of single-cell
sequencing datasets suggest the possibility of ISA violation in some cases [23]. With the rapid
advancements in the field of single-cell sequencing, we expect developments of sophisticated
computational methods based on finite sites model and using SNVs, copy number and other
structural aberrations in inferring clonal/mutation trees. These will also require some future
work in extending MLTED to properly capture the key differences among trees reported by
such methods.

References
1 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time

(unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58,
2015. doi:10.1145/2746539.2746612.

2 P. Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci., 337(1-
3):217–239, 2005. doi:10.1016/j.tcs.2004.12.030.

3 W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26(2):370–385,
1998. doi:10.1006/jagm.1997.0899.

4 W. Chen. New algorithm for ordered tree-to-tree correction problem. J. Algorithms,
40(2):135–158, 2001. doi:10.1006/jagm.2001.1170.

5 Nilgun Donmez, Salem Malikic, Alexander W. Wyatt, Martin E. Gleave, Colin Collins,
and S Cenk Sahinalp. Clonality inference from single tumor samples using low-coverage
sequence data. Journal of Computational Biology, 24(6):515–523, 2017. doi:10.1089/cmb.
2016.0148.

6 A. G. Deshwar et al. Phylowgs: reconstructing subclonal composition and evolution from
whole-genome sequencing of tumors. Genome biology, 16(1):35, 2015.

7 C. Gawad et al. Dissecting the clonal origins of childhood acute lymphoblastic leukemia
by single-cell genomics. Proceedings of the National Academy of Sciences, 111(50):17947–
17952, 2014.

WABI 2018

http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://dx.doi.org/10.1006/jagm.1997.0899
http://dx.doi.org/10.1006/jagm.2001.1170
http://dx.doi.org/10.1089/cmb.2016.0148
http://dx.doi.org/10.1089/cmb.2016.0148

22:14 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

8 El-Kebir M. et al. Inferring the mutational history of a tumor using multi-state perfect
phylogeny mixtures. Cell systems, 3(1):43–53, 2016.

9 F. Strino et al. Trap: a tree approach for fingerprinting subclonal tumor composition.
Nucleic acids research, 41(17):e165–e165, 2013.

10 H. Zafar et al. Sifit: inferring tumor trees from single-cell sequencing data under finite-sites
models. Genome biology, 18(1):178, 2017.

11 Hajirasouliha I. et al. A combinatorial approach for analyzing intra-tumor heterogeneity
from high-throughput sequencing data. Bioinformatics, 30(12):i78–i86, 2014.

12 J. Kuipers et al. Advances in understanding tumour evolution through single-cell sequen-
cing. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1867(2):127–138, 2017.

13 Jiang T. et al. Alignment of trees - an alternative to tree edit. Theor. Comput. Sci.,
143(1):137–148, 1995. doi:10.1016/0304-3975(95)80029-9.

14 K. Jahn et al. Tree inference for single-cell data. Genome biology, 17(1):86, 2016.
15 M. El-Kebir et al. Reconstruction of clonal trees and tumor composition from multi-sample

sequencing data. Bioinformatics, 31(12):i62–i70, 2015.
16 S. Malikic et al. Clonality inference in multiple tumor samples using phylogeny. Bioinform-

atics, 31(9):1349–1356, 2015.
17 S. Malikic et al. Integrative inference of subclonal tumour evolution from single-cell and

bulk sequencing data. To appear in proceedings of RECOMB, 2018.
18 W. Jiao et al. Inferring clonal evolution of tumors from single nucleotide somatic mutations.

BMC bioinformatics, 15(1):35, 2014.
19 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.
28874.

20 J. Jansson and A. Lingas. A fast algorithm for optimal alignment between similar ordered
trees. Fundam. Inform., 56(1-2):105–120, 2003. URL: http://content.iospress.com/
articles/fundamenta-informaticae/fi56-1-2-07.

21 R. Kim, K.I. & Simon. Using single cell sequencing data to model the evolutionary history
of a tumor. BMC bioinformatics, 15(1):27, 2014.

22 P.N. Klein. Computing the edit-distance between unrooted ordered trees. In Algorithms -
ESA ’98, 6th Annual European Symposium, Venice, Italy, August 24-26, 1998, Proceedings,
pages 91–102, 1998. doi:10.1007/3-540-68530-8_8.

23 Jack Kuipers, Katharina Jahn, Benjamin J Raphael, and Niko Beerenwinkel. Single-cell
sequencing data reveal widespread recurrence and loss of mutational hits in the life histories
of tumors. Genome research, 27(11):1885–1894, 2017.

24 P. Kilpeläinen & H. Mannila. Ordered and unordered tree inclusion. SIAM J. Comput.,
24(2):340–356, 1995. doi:10.1137/S0097539791218202.

25 E. M. Ross & F. Markowetz. Onconem: inferring tumor evolution from single-cell sequen-
cing data. Genome biology, 17(1):69, 2016.

26 P.C. Nowell. The clonal evolution of tumor cell populations. Science, 194(4260):23–28,
1976.

27 Victoria Popic, Raheleh Salari, Iman Hajirasouliha, Dorna Kashef-Haghighi, Robert B
West, and Serafim Batzoglou. Fast and scalable inference of multi-sample cancer lineages.
Genome biology, 16(1):91, 2015.

28 Daniele Ramazzotti, Alex Graudenzi, Luca De Sano, Marco Antoniotti, and Giulio Cara-
vagna. Learning mutational graphs of individual tumor evolution from multi-sample se-
quencing data. arXiv preprint arXiv:1709.01076, 2017.

29 S. Muthukrishnan & S.C. Sahinalp. An efficient algorithm for sequence comparison with
block reversals. Theor. Comput. Sci., 321(1):95–101, 2004. doi:10.1016/j.tcs.2003.05.
005.

http://dx.doi.org/10.1016/0304-3975(95)80029-9
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-07
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-07
http://dx.doi.org/10.1007/3-540-68530-8_8
http://dx.doi.org/10.1137/S0097539791218202
http://dx.doi.org/10.1016/j.tcs.2003.05.005
http://dx.doi.org/10.1016/j.tcs.2003.05.005

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:15

30 S. M. Selkow. The tree-to-tree editing problem. Inf. Process. Lett., 6(6):184–186, 1977.
doi:10.1016/0020-0190(77)90064-3.

31 K. Zhang & D.E. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM J. Comput., 18(6):1245–1262, 1989. doi:10.1137/0218082.

32 D. Shapira & J.A. Storer. Edit distance with block deletions. Algorithms, 4(1):40–60, 2011.
doi:10.3390/a4010040.

33 Kuo-Chung T. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979. doi:
10.1145/322139.322143.

34 J. Matoušek & R. Thomas. On the complexity of finding iso- and other morphisms for par-
tial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992. doi:10.1016/0012-365X(92)
90687-B.

35 R.A. Wagner and M.J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168–
173, 1974. doi:10.1145/321796.321811.

36 Yong Wang, Jill Waters, Marco L Leung, Anna Unruh, Whijae Roh, Xiuqing Shi, Ken
Chen, Paul Scheet, Selina Vattathil, Han Liang, et al. Clonal evolution in breast cancer
revealed by single nucleus genome sequencing. Nature, 512(7513):155, 2014.

37 D. Shasha & K. Zhang. Fast algorithms for the unit cost editing distance between trees. J.
Algorithms, 11(4):581–621, 1990. doi:10.1016/0196-6774(90)90011-3.

38 K. Zhang. Algorithms for the constrained editing distance between ordered labeled trees and
related problems. Pattern Recognition, 28(3):463–474, 1995. doi:10.1016/0031-3203(94)
00109-Y.

39 K. Zhang and T. Jiang. Some MAX snp-hard results concerning unordered labeled trees.
Inf. Process. Lett., 49(5):249–254, 1994. doi:10.1016/0020-0190(94)90062-0.

Supplementary Figures

J I H G F E D C B A

A 1 1 1 1 1 1 1 1 1 0

B 2 2 2 2 0 0 0 0 0

C 2 2 2 2 0 0 0 0

D 2 2 2 2 0 0 0

E 2 2 2 2 0 0

F 2 2 2 2 0

G 0 0 0 0

H 0 0 0

I 0 0

J 0

(a) Distances for ’True tree’

J I H G F E D C B A

A 1 1 1 1 1 1 1 1 1 0

B 2 2 2 2 2 2 2 2 0

C 2 2 2 2 2 2 2 0

D 2 2 2 2 2 2 0

E 2 2 2 2 2 0

F 2 2 2 2 0

G 2 2 2 0

H 2 2 0

I 2 0

J 0

(b) Distances for ’Inferred tree 1’

J I H G F E D C B A

A 2 2 1 1 2 2 1 1 1 0

B 3 3 2 2 1 1 0 0 0

C 3 3 2 2 1 1 0 0

D 3 3 2 2 1 1 0

E 4 4 3 3 0 0

F 4 4 3 3 0

G 1 1 0 0

H 1 1 0

I 0 0

J 0

(c) Distances for ’Inferred tree 2’

Figure 3 Distances between pairs of labels required for calculating Pair-wise Marker Shortest
Path Distance (PMSPD) for trees from Figure 2. Entries in each matrix represent length of path
between labels (note that labels are shown in the first row and the first column of each matrix).
Distance is calculated as the sum of absolute values of differences between pairs of entries which are
at the same position in both matrices. Red colored entries in labels pairwise distance matrix shown
in (b)/(c) differ from the corresponding entries in matrix for true tree shown in (a) and therefore
contribute to the overall distance. PMSPD assigns the same score to ’Inferred tree 1’ and ’Inferred
tree 2’, despite the fact that ‘Inferred tree 2’ is, from the perspective of interpreting tumor evolution,
much closer to ‘True tree’.

WABI 2018

http://dx.doi.org/10.1016/0020-0190(77)90064-3
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.3390/a4010040
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/0196-6774(90)90011-3
http://dx.doi.org/10.1016/0031-3203(94)00109-Y
http://dx.doi.org/10.1016/0031-3203(94)00109-Y
http://dx.doi.org/10.1016/0020-0190(94)90062-0

22:16 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Clone 1

PTEN,TBX3
SETBP1,JAK1
CDH6,AKAP9

Clone 2

ECM2,NOTCH3
ARAF,NOTCH2

MAP2K7
NTRK1,AFF4

Clone 3

MAP3K4

Clone 6

ECM1

Clone 7

PPP2R1A,SYNE2
AURKA

Clone 4

CHRM5

Clone 5

TGFB2

(a) Tree for TNBC dataset inferred by SiFit

Clone 1

PTEN,TBX3
SETBP1,JAK1
CDH6,AKAP9
MAP3K4

Clone 2

ECM2,NOTCH3
ARAF,NOTCH2

MAP2K7

Clone 3

AFF4,NTRK1

Clone 4

CHRM5

Clone 6

ECM1

Clone 7

PPP2R1A
SYNE2

Clone 8

AURKA

Clone 5

TGFB2

Clone 9

CBX4

Clone 10

TNC

(b) Tree for TNBC dataset inferred by PhISCS

Figure 4 Clonal trees of tumor evolution, inferred by SiFit and PhISCS, for triple-negative breast
cancer (TNBC) dataset originally published in [36] and consisting of the binary presence/absence
profile of 22 mutations across 16 single cells. Names of the clones are assumed not to be included as
part of the node label. Trees are very similar to each other in placement of the vast majority of
mutations: (i) Clone 1 in the SiFit tree is almost identical (with respect to the set of mutations
assigned to its label) to Clone 1 in PhISCS tree (ii) Clone 2 in SiFit tree is split into two adjacent
clones, namely Clone 2 and Clone 3, in PhISCS tree. Analogous applies to Clone 7. (iii) The order
of mutations in genes CHRM5 and TGFB2, as well as in most other pairs of mutations (including
the pairs where both mutations are at the same node), is same among the trees. Notable exceptions
leading to some dissimilarities between the trees include mutations in genes MAP3K4 and ECM1.
In addition, mutations in genes CBX4 and TNC are absent in tree reported by SiFit. Removing
these four mutations and their corresponding nodes from each tree (if present) and assigning each of
the Clone 4 and Clone 7 in SiFit tree as child of Clone 2, and Clone 7 as child of Clone 3 in PhISCS
tree, we obtain trees which are same up to the existence of splits of single into two adjacent clones
belonging to the same lineage (see (ii) from above). MLTED-normalized score for the two trees
equals 0.82, which well reflects the overall high topological similarity and concordance in ordering
pairs of mutations.

,

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:17

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4 TGFB2

SYNE2

AURKA

Figure 5 Mutation tree for TNBC dataset (see Figure 4 for details) inferred by SCITE. This
tree can be obtained from PhISCS tree by expanding nodes having more than one label, hence
MLTED-normalized score between the two trees is maximum possible (i.e. equals 1). Compared
with tree inferred by SiFit, SCITE tree has analogous topological similarities and differences as tree
inferred by PhISCS, and MLTED-normalized score for these two trees is also equal to 0.82.

,

WABI 2018

22:18 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

RIMS2
SIGLEC10

PLEC

XPO7 LINC00052 FGD4,RRP8
FAM105A

ZC3H3

BRD7P3

BDNF-AS

PCDH7

INHA
CMTM8 TRRAP

ATRNL1

(a) Tree for ALL dataset inferred by SiFit

RIMS2

SIGLEC10

PLEC

LINC00052 ZC3H3

XPO7

BRD7P3

BDNF-AS

FGD4

RRP8

PCDH7

FAM105A

INHA ATRNL1

CMTM8 TRRAP

(b) Tree for ALL dataset inferred by SCITE

Figure 6 Trees inferred by SCITE and SiFit for acute lymphoblastic leukemia (ALL) patient
dataset from [7] consisting of 115 single cells and 16 mutations. Unsurprisingly, due to large number
of single-cells in this dataset, sequencing noise and similarities in the scoring schemes used in PhISCS
and SCITE (see Section A) both methods report the same mutation tree so we only focus on
SCITE in this discsussion. The most notable difference among the two trees is in the placement and
ordering of mutations in genes ZC3H3, XPO7 and BRD7P3 as well as in the ordering of mutations
in genes FGD, RRP8, FAM105A, BDNF-AS and PCDH7. Furthermore, the relative order also
differs for mutations in genes TRRAP and ATRNL1. However, in contrast to these important
differences, the trees still share most of the major branching events in tumor evolution and have
consistent ancestor-descendant order for most of the pairs of mutations. All these are reflected in
MLTED-normalized score of 0.69 assigned to this pair of trees.

,

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:19

A Details of obtaining trees of tumor evolution for the real data sets

A.1 Summary of methods used for inferring trees of tumor evolution
In this work, we inferred trees of tumor evolution by the use of SCITE [14], SiFit [10] and
PhISCS3. Each of the methods takes as the input single-cell sequencing (SCS) data matrix
and estimated noise rates of SCS experiment. The underlying scoring used in PhISCS is
analogous to that in SCITE and the major difference among the two methods is in the
type of tree returned in the output. While SCITE searches for the maximum likelihood
mutation tree, PhISCS reports the maximum likelihood clonal tree. Due to the equivalence
in tree scoring, assuming that both methods find the optimal solution, clonal tree reported
by PhISCS is expected to represent compressed version of mutation tree reported by SCITE
(i.e. we expect that tree reported by SCITE belongs to the set of mutation trees which can be
obtained from clonal tree reported by PhISCS). Similarly as PhISCS, SiFit also returns clonal
tree of tumor evolution but uses different tree search methodology and does not necessarily
yield the same output as PhISCS nor SCITE (as demonstrated in [10]).

A.2 Details of obtaining input data and running SCITE, SiFit and
PhISCS

We obtained binary SCS data mutation matrix for TNBC patient sample from [28] and for
ALL patient sample from [7]. For each sample, false positive and false negative rates of
sequencing experiment were estimated in the original studies [36, 7] and provided as the
input to the methods used in the analysis. In order to obtain better convergence, we run
MCMC based methods SiFit and SCITE for very large number of iterations. For SiFit, we
set number of iterations to 5,000,000. For SCITE we set number of repetitions of the MCMC
to 3 and chain length of each MCMC repetition to 1,000,000. PhISCS is combinatorial
optimization based method which provided guarantee of the optimality for each solution.

3 Available at https://github.com/haghshenas/PhISCS

WABI 2018

https://github.com/haghshenas/PhISCS

	Introduction
	Definitions
	Set Alignment Problem
	Computing a maximal common tree in the general case
	Discussion and an application
	The existing measures and their limitations
	Applications of MLTED
	Application to the synthetic examples with the available ground truth
	Application to real data

	Conclusion and Future Work
	Details of obtaining trees of tumor evolution for the real data sets
	Summary of methods used for inferring trees of tumor evolution
	Details of obtaining input data and running SCITE, SiFit and PhISCS

