
Parsimonious Migration History Problem:
Complexity and Algorithms
Mohammed El-Kebir
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
melkebir@illinois.edu

https://orcid.org/0000-0002-1468-2407

Abstract
In many evolutionary processes we observe extant taxa in different geographical or anatomical
locations. To reconstruct the migration history from a given phylogenetic tree T , one can model
locations using an additional character and apply parsimony criteria to assign a location to each
internal vertex of T . The migration criterion assumes that migrations are independent events.
This assumption does not hold for evolutionary processes where distinct taxa from different
lineages comigrate from one location to another in a single event, as is the case in metastasis and
in certain infectious diseases. To account for such cases, the comigration criterion was recently
introduced, and used as an optimization criterion in the Parsimonious Migration History
(PMH) problem. In this work, we show that PMH is NP-hard. In addition, we show that a
variant of PMH is fixed parameter tractable (FPT) in the number of locations. On simulated
instances of practical size, we demonstrate that our FPT algorithm outperforms a previous integer
linear program in terms of running time.

2012 ACM Subject Classification Applied computing → Molecular evolution, Mathematics of
computing → Trees, Mathematics of computing → Combinatorial optimization

Keywords and phrases Reconciliation, maximum parsimony, metastasis, infection, phylogenetics,
phylogeography, fixed parameter tractability

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.24

1 Introduction

A phylogenetic tree, or phylogeny for short, models an evolutionary process such as those that
arise in the development of cancer, species, pathogens and languages. In a character-based
phylogeny, taxa are described by the same set of traits, where each trait is modeled by a
single character with discrete states. Mathematically, a character-based phylogeny is a tree T
whose vertices are taxa labeled by a vector of character states, assigning a single state to
each character in each taxon. While the leaves of T correspond to extant taxa with observed
character states, the internal vertices and edges of T are typically inferred algorithmically
using different criteria such as maximum parsimony [4] or maximum likelihood [3].

In some evolutionary processes, extant taxa occur in different geographical or anatomical
locations and one wishes to reconstruct the locations of ancestral taxa. Slatkin and Mad-
dison [10] noted that locations can be modeled by an additional character and introduced
the migration criterion. That is, given a phylogeny T with a location `(u) assigned to each
leaf u, the authors proposed to assign a location `(v) to each internal vertex v of T such that
the number µ(T, `) of migrations, i.e. edges (v, w) where `(v) 6= `(w), is minimized (Fig. 1).
Slatkin and Maddison [10] noted that this is an instance of the small phylogeny problem
and can be solved in polynomial time [4, 9]. Later, McPherson et al. [7] used the migration
criterion to study the migration history in metastatic ovarian cancers, where locations are
distinct anatomical locations with metastasis that occur within the same patient.

© Mohammed El-Kebir;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melkebir@illinois.edu
https://orcid.org/0000-0002-1468-2407
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Parsimonious Migration History Problem: Complexity and Algorithms

Migration number

Phylogenetic tree 

Migration 
graph .

Vertex .
labeling .

comigration

comigration

comigration

Comigration number

Figure 1 Migration histories are labelings of the vertices of a phylogenetic tree by
locations. Vertex labeling ` assigns to each vertex u a location `(u). A migration is an edge (u, v)
where `(u) 6= `(v). Here, vertex labeling ` of T incurs 6 migrations (bichromatic edges) and thus
has migration number µ(T, `) = 6. Although migrations (u, v) and (w, x) have identical source
and target locations, they could not have happened simultaneously as taxon w is a descendant of
taxon v. A comigration is a set of migrations between the same pair of locations that occur on
distinct branches of the phylogenetic tree T . The comigration number is the smallest partition of
migrations into comigrations. Here, vertex labeling ` of T has comigration number γ(T, `) = 3. The
set of migrations determines the migration graph G, a multi-graph whose vertices are locations.

Underlying the migration criterion is the assumption that migrations are independent
events. While this assumption is justified for evolutionary processes where shared location of
taxa is uninformative, in certain evolutionary processes migrations of distinct taxa between
the same locations are not independent events. For instance, in cancer, metastases may be
seeded by groups of tumor cells from different clones (taxa) that migrate together in the
bloodstream or lymphatics. Moreover, in certain infectious diseases, such as those caused
by Hepatitis-B and C, HIV and Ebola, different strains of the pathogen can infect a person
through a single transmission event. As such, the migration criterion does not always apply.

Recently, El-Kebir et al. [2] introduced the comigration criterion, where multiple mi-
grations between the same pair of locations are counted as a single event (Fig. 1). The
authors showed that the problem of assigning locations to ancestral taxa under the migration
and comigration criteria is a multi-objective optimization problem, with tradeoffs between
both criteria and the topology of the migration graph, a directed multi-graph capturing
all migrations between locations (Fig. 2). This problem was called the Parsimonious
Migration History (PMH) and was solved using an integer linear program (ILP). The
hardness of PMH was an open problem.

In this work, we show that PMH is NP-hard. On the positive side, we show that when
the migration graph is restricted to a tree, PMH is fixed parameter tractable (FPT) in the
number of locations. Using simulated data of metastatic cancers, we show that for practical
PMH instances with a small number of locations, the FPT algorithm outperforms the ILP
in terms of running time.

2 Preliminaries

Let T be a tree rooted at vertex r(T ). We denote the edge set by E(T ), the vertex set by
V (T ) and the leaf set by L(T ). We denote by Tv the subtree of T rooted at vertex v. We
denote the parent vertex of a non-root vertex v 6= r(T ) by π(v). We write u �T v if and only
if vertex u occurs on the unique path from r(T ) to v. Note that �T is reflexive, i.e. v �T v
for all vertices v ∈ V (T ). We write u ≺T v if and only if u �T v and u 6= v. We denote the
lowest common ancestor of a vertex subset U ⊆ V (T ) by lcaT (U). We say that two vertices



M. El-Kebir 24:3

u, v are incomparable or occur on distinct branches if and only if u 6�T v and v 6�T u. Note
that u 6�T v and v 6�T u if and only if lcaT ({u, v}) 6∈ {u, v}.

A phylogenetic tree T is a rooted tree, whose leaves correspond to taxa that are labeled by
different locations. We denote the set of locations by Σ. Since the leaf set L(T ) is composed
of taxa observed at the present time, we know their locations and are thus given the function
ˆ̀ : L(T )→ Σ, assigning location ˆ̀(v) to each leaf v ∈ L(T ). We use ˆ̀(L(Tu)) where u ∈ V (T )
as a shorthand for {ˆ̀(v) | v ∈ L(Tu}}. Typically, the edges of a phylogenetic tree are labeled
by mutations. As the problem that we consider does not use mutations, they are omitted.

3 Problem Statement

Given a phylogenetic tree T with leaf labeling ˆ̀ : L(T ) → Σ, the task is to reconstruct
the migration history by inferring the location of origin of each ancestral taxon. In other
words, we wish to extend the given leaf labeling ˆ̀ to a vertex labeling ` : V (T ) → Σ such
that `(v) = ˆ̀(v) for each leaf v ∈ L(T ). To distinguish different vertex labelings ` of a
phylogenetic tree T , we use two different optimization criteria.

The first criterion was introduced by Slatkin and Maddison [10] and considers migrations,
which are defined as follows.

I Definition 1 ([2, 10]). A migration is an edge (u, v) ∈ E(T ) that connects two vertices
with different locations, i.e. `(u) 6= `(v).

The migration number µ(T, `) is the number of migrations incurred by `. Slatkin and
Maddison [10] noted that the problem of finding a vertex labeling with minimum migration
number is an instance of the small phylogeny maximum parsimony problem with a single
multi-state character (with states Σ). As such, this problem can be solved in polynomial
time using either the Fitch [4] or the Sankoff algorithm [9].

The second criterion, which was recently introduced in [2], allows for the simultaneous
migration, or comigration, of individuals from different (ancestral) taxa between the same
locations. This criterion is applicable to evolutionary processes where locations are seeded by
individuals from distinct taxa through a single event. Two migrations (u, v) 6= (w, x), where
v �T w, between the same pair of locations, i.e. `(u) = `(w) and `(v) = `(x), could never
have occurred simultaneously. This is because taxon w is a descendant of taxon v, and thus
migration (u, v) must have occurred prior to migration (w, x) (Fig. 1). To account for such
scenarios, we define comigrations as follows.

I Definition 2 ([2]). A comigration is a subset X of pairwise incomparable migrations
between the same locations. That is, for all distinct pairs (u, v), (u′, v′) ∈ X of migrations it
holds that (i) `(u) 6= `(v), (ii) `(u) = `(u′), (iii) `(v) = `(v′), (iv) v 6�T v′ and (v) v′ 6�T v.

Employing the principle of parsimony, we define the comigration number γ(T, `) as the
smallest partition of migrations into comigrations [2]. As shown in [2], we have that

γ(T, `) =
∑

s,t∈Σ : s 6=t
γ(T, `, s, t) (1)

where γ(T, `, s, t) is the maximum number of edges (u, v) ∈ E(T ) with `(u) = s and `(v) = t

that are on the same path of T starting from the root r(T ).
The set of migrations incurred by a vertex labeling ` of T determines the migration

graph G. More formally, the vertices of G are locations, and there is a directed edge (s, t)
for each edge (u, v) in T where (i) s 6= t, (ii) `(u) = s and (iii) `(v) = t. The migration

WABI 2018



24:4 Parsimonious Migration History Problem: Complexity and Algorithms

a b cP = {S,M}
(µ⇤, �̂) = (5, 3)

P = {S}
(µ⇤, �̂) = (6, 2)

Vertex 
labeling `C

GC

`A
Migration 
graph .      

(S).
GA

GB

`B

Phylogenetic tree Leaf labelingT ˆ̀ (T, ˆ̀) (T, ˆ̀)

(M). (R).

P = {S,M,R}
(µ⇤, �̂) = (4, 4)

Figure 2 The Parsimonious Migration History (PMH) problem is a constrained multi-
objective optimization problem, with tradeoffs between the migration number, comi-
gration number and the migration pattern. Given a phylogenetic tree T whose leaves are
labeled by locations via ˆ̀ and a set P of allowed migration patterns, the task is to extend ˆ̀ to a
vertex labeling ` such that: (i) the resulting migration graph G adheres to P, (ii) ` has the minimum
migration number µ∗(T ) and (iii) subsequently smallest comigration number γ̂(T ). (a) In the most
restrictive case, P = {S}, the migration graph is required to be a tree, yielding vertex labeling `A

with µ(T, `A) = 6 and γ(T, `A) = 2. The resulting migration graph GA has a single-source seeding
(S) pattern. (b) In the case P = {S,M}, the migration graph is required to not contain a directed
cycle, yielding vertex labeling `B with µ(T, `B) = 5, γ(T, `B) = 3, and migration graph GB with
a multi-source seeding (M) pattern. (c) In the case P = {S,M,R}, the migration graph is left
unrestricted, yielding vertex labeling `C with minimum migration number µ(T, `C) = 4, smallest
comigration number γ(T, `C) = 4, and migration graph GC with a reseeding (R) pattern.

graph G is a multi-graph because there may exist multiple directed edges between the same
pair of locations. Different topologies of G correspond to different migration patterns. We
distinguish three migration patterns: (i) in single-source seeding (S), the migration graph G
is a tree (Fig. 2a); (ii) in multi-source seeding (M), some locations are the target of migrations
from distinct source locations but G itself does not have a directed cycle (Fig. 2b); and (iii)
in reseeding (R), G has a directed cycle (Fig. 2c).

There are tradeoffs between the migration number, the comigration number and the
migration pattern, as shown in [2] and briefly reviewed in the following. Let T be a
phylogenetic tree whose leaves are labeled by m = |Σ| locations. Any vertex labeling ` of T
has migration number µ(T, `) ≥ m− 1 and comigration number γ(T, `) ≥ m− 1. While there
may not exist a vertex labeling ` with migration number µ(T, `) = m− 1, there always exists
a vertex labeling ` with comigration number γ(T, `) = m− 1 for any leaf-labeled tree T . For
instance, a labeling ` that assigns the same location to all internal vertices has comigration
number γ(T, `) = m − 1. Moreover, a vertex labeling ` incurs a single-source seeding (S)
pattern if and only if γ(T, `) = m− 1. Let µ∗(T ) = min` µ(T, `) be the minimum migration
number of T . In general, there may not exist a vertex labeling ` of T that simultaneously
achieves the minimum migration number µ(T, `) = µ∗(T ) and minimum comigration number
γ(T, `) = m − 1 (Fig. 2). To examine these tradeoffs, El-Kebir et al. [2] introduced the
following constrained multi-objective optimization problem that considered three different
sets P of allowed migration patterns: (i) P = {S}, requiring the migration graph G to be an
S pattern (Fig. 2a); (ii) P = {S,M}, requiring the migration graph to be either an S or M
pattern (Fig. 2b); (iii) P = {S,M,R} meaning that G is unrestricted (Fig. 2c).

I Problem 1 (Parsimonious Migration History (PMH) [2]). Given a phylogenetic
tree T with leaf labeling ˆ̀ : L(T )→ Σ and a set P of allowed migration patterns, find a vertex
labeling ` such that: (i) `(v) = ˆ̀(v) for each leaf v ∈ L(T ); (ii) ` has the minimum migration



M. El-Kebir 24:5

number µ(T, `) = µ∗(T ) = min`′ µ(T, `′) and subsequently the smallest comigration number
γ(T, `) = γ̂(T ) = min`′:µ(T,`′)=µ∗(T ) γ(T, `′); and (iii) the resulting migration graph G is a
tree if P = {S}, a directed acyclic graph if P = {S,M} or unrestricted if P = {S,M,R}.

4 Results

We have the following two results for the case where the migration graph G is restricted to a
tree (i.e. P = {S}).

I Theorem 3. PMH is NP-hard when P = {S}.

I Theorem 4. PMH is fixed parameter tractable in |Σ| when P = {S}.

Both theorems rely on the following important proposition that we prove first.

I Proposition 5. Let T be a phylogenetic tree, and let ` be a vertex labeling of T such that
the migration graph G is a tree. Then, `(u) �G lcaG(ˆ̀(L(Tu))) for any vertex u ∈ V (T ).

Proof. Suppose for a contradiction that there exists a vertex labeling ` of T such that
`(u) 6�G lcaG(ˆ̀(L(Tu))) for a vertex u of T . For brevity, we define s = lcaG(ˆ̀(L(Tu))). By
our premise, there exists a leaf v ∈ L(Tu) such that ˆ̀(v) 6∈ V (G`(u)). By definition of lcaG,
there exists a unique path from s to ˆ̀(v) in G. Moreover, since v is reachable from u in T ,
there exists a path from `(u) to ˆ̀(v) in G. We distinguish two cases. First, ˆ̀(v) �G π(`(u)).
This case contradicts that G is a tree, as there would be a directed cycle between `(u) and
ˆ̀(v) in G. Second, ˆ̀(v) and `(u) are incomparable in G. Thus, the path from s to ˆ̀(v) does
not contain `(u). This, however, contradicts that there exists a path from `(u) to ˆ̀(v). J

4.1 NP-hardness
We show NP-hardness of the PMH problem in the case where P = {S} by reduction from 3-
Satisfiability (3-SAT). In 3-SAT, we are given a Boolean formula φ =

∧k
i=1(yi,1∨yi,2∨yi,3)

in 3-conjunctive normal form (3-CNF) with n variables and k clauses, and wish to decide
whether there exists a truth assignment θ : [n] → {0, 1} that satisfies all the clauses of φ.
We define ψ(yi,j) = 1 if literal yi,j is of the form x, and define ψ(yi,j) = 0 if literal yi,j is
of the form ¬x. Truth assignment θ satisfies clause (yi,1 ∨ yi,2 ∨ yi,3) provided there exists
a j ∈ {1, 2, 3} such that θ(x) = ψ(yi,j) where x is the variable corresponding to literal yi,j .
Without loss of generality, we may assume that each clause of φ consists of three distinct
variables. We denote the n variables of φ by x1, . . . , xn and the k clauses of φ by c1, . . . , ck.
3-SAT is among the 21 problems proven to be NP-hard by Karp [6].

We construct a tree T with location set Σ = {⊥, x1, . . . , xn,¬x1, . . . ,¬xn, c1, . . . , ck} such
that the migration graph G∗ of any optimal vertex labeling `∗ models a truth assignment θ.
More specifically, we want to ensure that: (i) `∗ labels the root of T by ⊥; (ii) for each
variable x of φ, either {(⊥, x), (x,¬x)} ⊆ E(G∗) if θ(x) = 1, or {(⊥,¬x), (¬x, x)} ⊆ E(G∗)
if θ(x) = 0; and (iii) θ is satisfiable if and only if `∗ encodes a truth assignment that satisfies
all clauses of θ. We accomplish these three requirements using three types of gadgets that
form subtrees of T (Fig. 3a): (i) n variable gadgets T [x1], . . . , T [xn], each with 2B leaves
(Fig. 3b); (ii) a single root gadget T [⊥] with A leaves (Fig. 3c); and (iii) 3k clause literal
gadgets T [y1,1], . . . , T [yk,3], each with 9 leaves (Fig. 3d). Fig. 4 shows an example reduction.

Let `∗ be an optimal vertex labeling of T under the restriction P = {S}, and let G∗ be
the resulting migration graph. By setting B > 10k + 1 and A > 2Bn+ 27k, we accomplish
the first two requirements, as shown by the following two lemmas.

WABI 2018



24:6 Parsimonious Migration History Problem: Complexity and Algorithms

Phylogenetic tree 

a

Clause literal gadget 

. . . . . .

db

Variable gadget 

(       leaves) (9 leaves)

. . .

c

Root gadget 

(    leaves)

Figure 3 Given a Boolean formula φ =
∧k

i=1(yi,1 ∨ yi,2 ∨ yi,3) in 3-conjunctive nor-
mal form, we construct the phylogenetic tree T composed of three types of gadgets.
(a) Tree T has n variable gadgets (panel b), a single root gadget (panel c) and 3k clause literal
gadgets (panel d). The location set Σ contains a location corresponding to a positive and negative
literal of each variable, a location corresponding to each clause and a special location ⊥. That is,
Σ = {x1, . . . , xn,¬x1, . . . ,¬xn, c1, . . . , ck,⊥}. (b) For each variable xj , the corresponding variable
gadget T [xj ] is composed of 2B leaves where B = 10k + 2. This gadget enforces that either
(xj ,¬xj) ∈ E(G∗) or (¬xj , xj) ∈ E(G∗). (c) The root gadget T [⊥] is composed of A = 2Bn+27k+1
leaves and enforces that `∗(r(T )) = ⊥. (d) For each literal yi,j , the corresponding clause literal
gadget T [yi,j ] has 9 leaves, and links variables to clauses. We refer to Fig. 4 for an example.

I Lemma 6. The root vertex r(T ) has location `∗(r(T )) = ⊥.

Proof. Suppose for a contradiction that `∗(r(T )) 6= ⊥. Thus, we have that each of the
incoming edges to the leaves of the subtree T [⊥] is a migration. Hence, µ(T, `∗) ≥ A >

2Bn+ 27k. Consider the vertex labeling ` of T where `(v) = ⊥ for each vertex v. Observe
that the resulting migration graph of ` has an S pattern. Only the leaves of subtree T [⊥] are
labeled by ⊥; the remaining 2Bn+ 27k have leaf labels that differ from ⊥. We thus have
µ(T, `) = 2Bn+ 27k. Therefore, µ(T, `) < µ(T, `∗), which contradicts the premise that `∗ is
an optimal vertex labeling. Hence, `∗(r(T )) = ⊥. J

I Lemma 7. For all variables x, {(⊥, x), (x,¬x)} ⊆ E(G∗) or {(⊥,¬x), (¬x, x)} ⊆ E(G∗).

Proof. Suppose for a contradiction that there exists a variable x of φ such that neither
{(⊥, x), (x,¬x)} ⊆ E(G∗) nor {(⊥,¬x), (¬x, x)} ⊆ E(G∗). Let T [x] be the subtree of T
corresponding to the variable gadget of x. Let rx be the root vertex of T [x]. By Lemma 6
and the premise, we have that `∗(rx) 6∈ {x,¬x}. Therefore, the 2B edges incoming to the
leaves of T [x] are migrations in `∗.

We construct a vertex labeling ` with fewer migrations than `∗. Intuitively, vertex labeling
` corresponds to a truth assignment θ where θ(x) = 1 for all variables x. Initially, we set
` = `∗. Next, we set `(rx) = x. By definition of 3-SAT, each clause ci of φ contains at most
one literal yi,j of the form x or ¬x. Let ci be such a clause with literal yi,j of the form x or ¬x.
Let T [yi,j ] be the subtree of T corresponding to the clause literal gadget of yi,j , and let ri,j
be the root vertex of T [yi,j ]. We set `(ri,j) = ⊥, `(v1) = ⊥, `(v2) = `(v3) = `(v4) = `(v5) = x

and `(v6) = x (where v1, . . . , v6 are defined in Fig. 3d). We distinguish two cases. First,



M. El-Kebir 24:7

x1

. . .

x1

~x1

. . .

~x1

x1

_|_

x2

~x3
_|_. . ._|_

x1

_|_

_|_

_|_

_|_

~x3

x2

. . .

x2

~x2

. . .

~x2

~x3

. . .

~x3
x3

. . .x3

c1

x1

x1

x1

x1

~x1

~x1

~x1

~x1

x1

x1

x1

x1

x1

~x1c1

x2

x2

x2

x2

~x2

~x2

~x2

~x2

x1

x2

x2

x2

x2

x2

c1

~x3

~x3

~x3

~x3

x3

x3

x3

x3

x1

~x3

~x3

~x3

~x3

~x3

c2

~x1

~x1

~x1

~x1

x1
x1 x1 x1

~x3

x1

x1

x1

x1

x1

c2
~x2

~x2

~x2

~x2

x2

x2

x2

x2

~x3
x2

x2

x2

x2

x2

c2

~x3

~x3

~x3

~x3

x3

x3

x3

x3

~x3

~x3

~x3

~x3

~x3

x3

T [?]

T [x1]

(a) Phylogenetic tree T and optimal vertex labeling `∗.

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2

3 3

(b) Migration graph G∗.

Figure 4 Example reduction. Consider the Boolean formula φ = (y1,1 ∨ y1,2 ∨ y1,3) ∧ (y2,1 ∨
y2,2 ∨ y2,3) = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) with k = 2 clauses and n = 3 variables. Truth
assignment θ(x1) = 1, θ(x2) = 1, θ(x3) = 0 satisfies φ. (a) The corresponding tree T has location
set Σ = {x1, x2, x3,¬x1,¬x2,¬x3, c1, c2,⊥}. The variable gadgets T [x1], T [x2], T [x3] each have
2B = 2(10k+2) = 44 leaves. The root gadget T [⊥] has A = 2Bn+27k+1 = 187 leaves. The variable
literal gadgets T [y1,1], . . . , T [y2,3] each have 9 leaves. The shown vertex labeling `∗ corresponds to
truth assignment θ and has migration number µ(T, `∗) = (B + 1)n+ 25k = (22 + 1) · 3 + 25 · 2 = 119.
Thus, by Lemma 10, the truth assignment θ encoded by `∗ satisfies φ. (b) The corresponding
migration graph G∗, where each edge is labeled by its multiplicity incurred by `∗.

WABI 2018



24:8 Parsimonious Migration History Problem: Complexity and Algorithms

a
Case (i)

. . . . . .

. . . . . .

. . . . . .

b
Case (ii)

c
Case (iii)

. . . . . .

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

d
Case (iv)

µ � 3 µ � 10

µ � 6 µ � 10

T [y1,1]

T [y1,1]

T [y1,1]

T [y1,1]

T [x1]

T [x1]

T [x1]

T [x1]

Figure 5 A clause literal gadget T [yi,j] imposes four different sets of constraints on
optimal vertex labelings `∗, as shown in Lemma 8. The figure reproduces clause literal gadget
T [y1,1], where y1,1 = x1, depicted in Fig. 4a. (a) If `∗(r(T [x1])) = x1 and `∗(r(T [y1,1])) = x1, vertices
v2, . . . , v5 must be labeled by x1 and the migration number is at least 3. (b) If `∗(r(T [x1])) = x1

and `∗(r(T [y1,1])) = ⊥, vertex v6 must be labeled by x1 and the migration number is at least 10. (c)
If `∗(r(T [x1])) = ¬x1 and `∗(r(T [y1,1])) = ¬x1, vertex v6 must be labeled by ¬x1 and the migration
number is at least 6. (d) If `∗(r(T [x1])) = ¬x1 and `∗(r(T [y1,1])) = ⊥, vertices v2, . . . , v5 must be
labeled by ¬x1 and the migration number is at least 10.

yi,j = x. In this case, the outgoing edge of v1 is a migration. The incoming edges of
v2, v3, v4, v5, v6 are migrations. The four outgoing edges of v6 are migrations. Thus, the
number of migrations incurred by ` in T [yi,j ] is 10. Second, yi,j = ¬x. In this case, the
outgoing edge of v1 is a migration. The incoming edges of v2, v3, v4, v5, v6 are migrations.
The outgoing edges of v2, v3, v4, v5 are migrations. Thus, the number of migrations incurred
by ` in T [yi,j ] is 10.

In both cases, we have that µ(T [x], `∗) > 2B. On the other hand, µ(T [x], `) = B + 1,
and µ(T [yi,j ], `) = 10 for each literal yi,j of the form {x,¬x}. As there at most k literals of
the form {x,¬x}, we have that there are at most B + 1 + 10k migrations incurred by ` in
subtree T [x] and the corresponding clause literal subtrees T [yi,j ]. Since B > 1 + 10k, we
have that 2B > B + 1 + 10k. Thus,

µ(T [x], `∗) > 2B > B + 1 + 10k > µ(T [x], `) +
∑

yi,j of form {x,¬x}

µ(T [yi,j ], `).

Compared to `∗, the new vertex labeling ` differs in subtree T [x] and in at most k subtrees
T [yi,j ]. Hence, µ(T, `∗) > µ(T, `), yielding a contradiction. The lemma now follows. J

Thus, our reduction enables us to encode a truth assignment. We now focus on the third
requirement that links literals to clauses. We start by showing that the clause literal gadget,
when combined with the variable and root gadgets, imposes very specific constraints on `∗.

I Lemma 8. Let x be a variable of φ and let yi,j be a literal corresponding to x. Then, one of
the following four cases must hold, where C = {ci | i ∈ [k]} and X = {`∗(r(T [xi])) | i ∈ [n]}.



M. El-Kebir 24:9

case `∗(r(T [x])) `∗(r(T [yi,j ])) `∗(v1) `∗(v2), . . . , `∗(v5) `∗(v6)
(i) yi,j yi,j {yi,j ,¬yi,j} ∪ C yi,j {yi,j ,¬yi,j}
(ii) yi,j ⊥ {⊥} ∪ C ∪X {⊥, yi,j} yi,j

(iii) ¬yi,j ¬yi,j {yi,j ,¬yi,j} ∪ C {yi,j ,¬yi,j} ¬yi,j

(iv) ¬yi,j ⊥ {⊥} ∪ C ∪X ¬yi,j {⊥,¬yi,j}

Proof. The lemma follows by case analysis, with four cases that each correspond to a unique
case in the above table. First, it holds that `∗(r(T [x])) ∈ {yi,j ,¬yi,j} by Lemma 7. Thus,
we distinguish two cases.
1. `∗(r(T [x])) = yi,j : By construction, T [yi,j ] has leaves labeled by yi,j and ¬yi,j . Hence, by

Proposition 5, Lemma 6 and the fact that `∗(r(T [x])) = yi,j , we have that `∗(r(T [yi,j ])) ∈
{yi,j ,⊥}. Thus, we distinguish two additional subcases.
a. `∗(r(T [yi,j ])) = yi,j : Vertices v2, v3, v4, v5 must be labeled by yi,j as their parent

r(T [yi,j ]) is labeled by yi,j and they themselves are the parents of leaves labeled by
yi,j . The four children of v6 are leaves labeled by ¬yi,j , and the parent r(T [yi,j ]) of v6
is labeled yi,j . Thus, v6 must be labeled by either yi,j or ¬yi,j . Vertex v1 is the child
of r(T [yi,j ]) labeled by yi,j , and thus the only literals that can label v1 are yi,j and
¬yi,j . In addition, v1 can be labeled by clauses c1, . . . , ck. This subcase corresponds
to case (i) of the above table, and is depicted in Fig. 5a.

b. `∗(r(T [yi,j ])) = ⊥: Vertex v6 must be labeled by yi,j as its parent r(T [yi,j ]) is labeled
by ⊥ and its four children are leaves labeled by ¬yi,j . Vertices v2, v3, v4, v5 must each
be labeled by either yi,j or ⊥ as their parent r(T [yi,j ]) is labeled by ⊥ and their children
are leaves labeled by yi,j . As vertex v1 is the child of r(T [yi,j ]) and its only child a
leaf labeled by ci, we have that v1 can be labeled by ⊥, all clauses C = {c1, . . . , ck}
and all active literals X. This subcase corresponds to case (ii) of the above table, and
is depicted in Fig. 5b.

2. `∗(r(T [x])) = ¬yi,j : By construction, T [yi,j ] has leaves labeled by yi,j and ¬yi,j . Hence, by
Proposition 5, Lemma 6 and the fact that `∗(r(T [x])) = ¬yi,j , we have that `∗(r(T [yi,j ])) ∈
{¬yi,j ,⊥}. Thus, we distinguish two additional subcases.
a. `∗(r(T [yi,j ])) = ¬yi,j : Vertex v6 must be labeled by ¬yi,j as its parent r(T [yi,j ]) is

labeled by ¬yi,j and its four children are leaves labeled by ¬yi,j . Vertices v2, v3, v4, v5
must each be labeled by either ¬yi,j or yi,j as their parent r(T [yi,j ]) is labeled by ¬yi,j
and their children are leaves labeled by ¬yi,j . Vertex v1 is the child of r(T [yi,j ]) labeled
by yi,j , and thus the only literals that can label v1 are yi,j and ¬yi,j . In addition, v1
can be labeled by clauses c1, . . . , ck. This subcase corresponds to case (iii) of the above
table, and is depicted in Fig. 5c.

b. `∗(r(T [yi,j ])) = ⊥: Vertices v2, v3, v4, v5 must each be labeled by ¬yi,j as their parent
r(T [yi,j ]) is labeled by ⊥ and their children are leaves labeled by yi,j . Vertex v6
must be labeled by either ⊥ or ¬yi,j , as its parent r(T [yi,j ]) is labeled by ⊥ and its
four children are leaves labeled by ¬yi,j . As vertex v1 is the child of r(T [yi,j ]) and
its only child a leaf labeled by ci, we have that v1 can be labeled by ⊥, all clauses
C = {c1, . . . , ck} and all active literals X. This subcase corresponds to case (iv) of the
above table, and is depicted in Fig. 5d. J

Next, we prove a lower bound on the minimum migration number of T given P = {S}.

I Lemma 9. It holds that µ(T, `∗) ≥ (B + 1)n+ 25k.

Proof. Consider clause i composed of literals yi,1, yi,2 and yi,3. By Lemma 8, the vertex
labeling `∗ of each of the subtrees T [yi,1], T [yi,2] and T [yi,3] must adhere to one of four cases.
It is easy to verify that case (i) has migration number µ(T [yi,j ] ≥ 3 (Fig. 5a), case (ii) has

WABI 2018



24:10 Parsimonious Migration History Problem: Complexity and Algorithms

migration number µ(T [yi,j ] ≥ 10 (Fig. 5b), case (iii) has migration number µ(T [yi,j ] ≥ 6
(Fig. 5c) and case (iv) has migration number µ(T [yi,j ] ≥ 10 (Fig. 5d). At most one of T [yi,1],
T [yi,2] and T [yi,3] can be labeled by `∗ according to cases (i) or (iii), due to the restriction
that G∗ must be a tree (i.e. P = {S}). Without loss of generality, we assume that only
T [yi,1] adheres to case (i) or (iii). We distinguish three cases.
1. T [yi,1] is of case (i), and T [yi,2] and T [yi,3] are of cases (ii) or (iv): In T [yi,1], the parent

of vertex v1 is labeled by yi,j . Moreover, in both T [yi,2] and T [yi,3], the parent of vertex
v1 is labeled by ⊥. As such, these two vertices in T [yi,2] and T [yi,3] must be assigned
label yi,j . Hence, the minimum number of migrations induced by `∗ on the subtree of T
induced by vertices r(T ), V (T [yi,1]), V (T [yi,2]) and V (T [yi,3]) is 3 + 11 + 11 = 25.

2. T [yi,1] is of case (iii), and T [yi,2] and T [yi,3] are of cases (ii) or (iv): In T [yi,1], the parent
of vertex v1 is labeled by ¬yi,j . Moreover, in both T [yi,2] and T [yi,3], the parent of vertex
v1 is labeled by ⊥. As such, these two vertices in T [yi,2] and T [yi,3] must be assigned
label ¬yi,j . Hence, the minimum number of migrations induced by `∗ on the subtree of
T induced by vertices r(T ), V (T [yi,1]), V (T [yi,2]) and V (T [yi,3]) is 6 + 11 + 11 = 28.

3. T [yi,1], T [yi,2] and T [yi,3] are of cases (ii) or (iv): The minimum number of migrations
induced by `∗ on the subtree of T induced by vertices r(T ), V (T [yi,1]), V (T [yi,2]) and
V (T [yi,3]) is 10 + 10 + 10 = 30.

Thus, for each clause i, the minimum number of migrations induced by `∗ on r(T ), V (T [yi,1]),
V (T [yi,2]) and V (T [yi,3]) is 25. Thus, all k clauses lead to a least 25k migrations. By
Lemmas 6 and Lemma 7, we have that `∗(r(T )) = ⊥ and `∗(r(T [x])) ∈ {x,¬x} for each
variable x. Thus, all variable subtrees T [x] induce (B + 1)n migrations. Hence, µ(T, `∗) ≥
(B + 1)n+ 25k. J

Finally, we show that the above lower bound is tight if and only if φ is satisfiable.

I Lemma 10. Boolean formula φ is satisfiable if and only if µ(T, `∗) = (B + 1)n+ 25k.

Proof. (⇒) We construct a vertex labeling ` with migration number µ(T, `) = (B+1)n+25k
such that the resulting migration graph G has an S pattern.

First, we set `(r(T )) = ⊥. For each variable x, we set `(r(T [x])) = x if θ(x) = 1 and set
`(r(T [x])) = ¬x if θ(x) = 0. Next, we consider each clause i. By the premise, there must
exist a literal in clause i that satisfies the clause. Without loss of generality, we assume that
θ(yi,1) = 1. We assign vertex labels to the vertices of T [yi,1] by setting `(r(T [yi,1])) = yi,1,
`(v1) = . . . = `(v5) = yi,1 and `(v6) = ¬yi,1, according to case (i) of Lemma 8 (Fig. 5a). For
the other two literals yi,j (where j ∈ {2, 3}), we set `(r(T [yi,j ])) = ⊥. Let x′ be the variable
corresponding to yi,j . If θ(x′) = ψ(yi,j), we set `(v2) = . . . = `(v5) = yi,j and `(v6) = yi,2,
according to case (ii) of Lemma 8 (Fig. 5b). Otherwise, we set `(v2) = . . . = `(v5) = ¬yi,j
and `(v6) = ¬yi,2, according to case (iv) of Lemma 8 (Fig. 5d).

It is easy to verify that µ(T, `) = (B + 1)n+ 25k. By construction, each literal label yi,j ,
as well as each clause label ci, has a unique parent in G. Thus, G adheres to an S pattern.
By Lemma 9, it holds that µ(T, `∗) ≥ (B + 1)n+ 25k. Hence, ` is an optimal vertex labeling
and µ(T, `∗) = (B + 1)n+ 25k.

(⇐) We construct a truth assignment θ from `∗. By Lemma 7, we have that `∗(r(T [x])) ∈
{x,¬x} for each variable x. We set θ(x) = ψ(`∗(r(T [x]))). We claim that θ satisfies at least
one literal for each clause i of φ.

By Lemmas 6, 7 and 9, we have that `∗ induces, for each clause i, 25 migrations in
the subtree induced by vertices V (T [yi,1]) ∪ V (T [yi,2]) ∪ V (T [yi,3]) ∪ {r(T )}. Thus, one
subtree among T [yi,1], T [yi,2] and T [yi,3] must have 3 migrations, corresponding to case (i)
of Lemma 8 (Fig. 5a). Let T [yi,j ] be the subtree with 3 migrations and let x be the variable



M. El-Kebir 24:11

corresponding to yi,j . As `∗(r(T [yi,j ])) = yi,j , we have that `∗(r(T [x])) = yi,j and thus
θ(x) = ψ(`∗(r(T [x]))) = ψ(yi,j). Thus, θ satisfies literal yi,j and thereby clause i. The same
argument applies to each clause of φ. Hence, θ is a truth assignment that satisfies φ. J

Phylogenetic tree T has 1+A+(2B+1)n+16kn vertices can be constructed in polynomial
time from φ. For instance, setting B = 10k + 2 and A = 2Bn + 27k + 1 (respecting the
requirement that B > 10k + 1 and A > 2Bn+ 27k), yields a total of 56kn+ 27k + 9n+ 2
vertices in T , which is polynomial in the number k of clauses and the number n of variables.
Thus, by Lemma 10, we have a polynomial time reduction from 3-SAT to PMH, proving
Theorem 3.

4.2 Fixed parameter tractability
A PMH instance (T, ˆ̀) has m = |Σ| locations that label n = |V (T )| vertices. Typically,
m� n in practical problem instances. Here, we show that PMH is fixed parameter tractable
in m and give an algorithm that runs in time O(nmm).

Our algorithm relies on the notion of a migration tree Ĝ, a rooted tree whose vertex set
is Σ. Unlike a migration graph, which is a directed multi-graph, Ĝ is a simple directed graph
with at most one edge between every pair of vertices. We say that a vertex labeling ` is
consistent with migration tree Ĝ provided that for any distinct pair (s, t) of locations there
exists an edge (u, v) ∈ E(T ) such that `(u) = s and `(v) = t if and only if (s, t) ∈ E(Ĝ).

For a given PMH instance (T, ˆ̀) and migration tree Ĝ there may not exist a vertex
labeling consistent with Ĝ (Fig. 6). Let lcaĜ(u) = lcaĜ(ˆ̀(L(Tu))) for vertex u ∈ V (T ).
For u �T v, let dT (u, v) be the number of edges on the unique path from u to v. We show
that the condition

dT (u, v) ≥ dĜ(lcaĜ(u), ˆ̀(v)) ∀u, v ∈ V (T ) such that u �T v, (2)

is both necessary and sufficient for the existence of a vertex labeling of T consistent with Ĝ.

I Lemma 11. If there exists a vertex labeling ` for T consistent with Ĝ then (2) holds.

Proof. Let ` be a vertex labeling for T consistent with Ĝ. Let u and v be vertices of T
such that u �T v. By Proposition 5, we have that `(u) �Ĝ lcaĜ(u). Thus, the number of
migrations on the path from u to v must be at least dĜ(lcaĜ(u), ˆ̀(v)). To accommodate
these migrations, the path from u to v must have at least dĜ(lcaĜ(u), ˆ̀(v)) edges. Hence,
dT (u, v) ≥ dĜ(lcaĜ(u), ˆ̀(v)). J

We prove sufficiency constructively, using the vertex labeling `∗ of T defined as

`∗(v) =
{

lcaĜ(r(T )), if v = r(T ),
σ(`∗(π(v)), lcaĜ(v)), if v 6= r(T ),

(3)

where σ(s, t) = s if s = t and otherwise σ(s, t) is the unique child of s that lies on the path
from s to t in Ĝ. In the case where σ(`∗(π(v)), lcaĜ(v)) = lcaĜ(v) for all vertices v, vertex
labeling `∗ is identical to the LCA mapping [5] used in the context of gene-tree species-tree
reconciliation to minimize the duplication number.

I Lemma 12. If (2) holds then vertex labeling `∗ for T is consistent with Ĝ.

Proof. For `∗ to be consistent with Ĝ it must hold that: (i) for any distinct pair (s, t) of
locations there exists an edge (u, v) ∈ E(T ) such that `(u) = s and `(v) = t if and only if
(s, t) ∈ E(Ĝ), and (ii) `∗(v) = ˆ̀(v) for each leaf v. Condition (i) holds by definition of `∗.

WABI 2018



24:12 Parsimonious Migration History Problem: Complexity and Algorithms

Phylogenetic tree Migration tree 

Vertex 
labeling   .

Leaf 
labeling  .

Phylogenetic tree 

a b

Figure 6 Given a phylogenetic tree T and migration tree Ĝ, there may not exist a
vertex labeling of T consistent with Ĝ. (a) Here, any vertex labeling ` consistent with Ĝ must
label u1, u2, u4 by green. This, however, introduces a migration from green to red, violating Ĝ. By
Lemma 11, there does not a vertex labeling of T consistent with Ĝ. (b) Equivalently, labeling `∗

defined in (3) is not a vertex labeling of T , as it changes the labeling of leaf v4, i.e. `∗(v4) 6= ˆ̀(v4).

That is, each vertex u has either the same label as its parent π(u) or is labeled by a child of
`∗(π(u)) in Ĝ. As for condition (ii), assume for a contradiction that there exists a leaf v such
that `∗(v) 6= ˆ̀(v). Consider the unique path from r(T ) to v. Let u1 be the vertex closest to v
such that either u1 = r(T ) or `∗(u1) = `∗(π(u1)). Thus, each edge on the path u1, . . . , ut, v

is a migration. By definition of `∗, we have that `∗(u1), . . . , `∗(ut), `∗(v) forms a path of Ĝ.
We distinguish two cases. First, u1 = r(T ). We have that `∗(r(T )) = lcaĜ(r(T )). As

`∗(v) 6= ˆ̀(v), we have that d(r(T ), v) < dĜ(lcaĜ(r(T )), ˆ̀(v)). This contradicts the premise.
Second, u1 6= r(T ). Let u0 = π(u1). As `∗(u0) = `∗(u1), we have that `∗(u1) = lcaĜ(u1).
Since `∗(v) 6= ˆ̀(v), we have that d(u1, v) < dĜ(lcaĜ(u1), ˆ̀(v)). This contradicts the premise.
Hence, `∗ is a vertex labeling of T that is consistent with Ĝ. J

Vertex labeling `∗ has minimum migration number µ(T, `∗). To show this, we prove
the following lemma that states that `∗ assigns each vertex a location nearest to the leaf
set L(Ĝ).

I Lemma 13. Let ` be a vertex labeling ` of T that is consistent with Ĝ. Then, `(u) �Ĝ `∗(u)
for each vertex u ∈ V (T ).

Proof. Assume for a contradiction that vertex u is the nearest vertex to r(T ) such that
`(u) 6�Ĝ `∗(u) (i.e. dT (r(T ), u) is minimum). By Proposition 5, we have that `∗(u) �Ĝ
lcaĜ(u) and `(u) �Ĝ lcaĜ(u). Thus, `(u) 6�Ĝ `∗(u) implies that `∗(u) ≺Ĝ `(u). Moreover,
we have that u 6= r(T ), as `∗(r(T )) = `(r(T )) = lcaĜ(r(T )) by the same proposition. Since
u is the nearest vertex to r(T ) such that `(u) 6�Ĝ `∗(u), we have that `∗(π(u)) = `(π(u)).

We distinguish two cases. First, `(u) = `(π(u)). Thus, `(u) = `∗(π(u)). Therefore,
`∗(u) ≺Ĝ `(u) implies that `∗(u) ≺Ĝ `∗(π(u)). This contradicts the definition of `∗. Second,
`(u) 6= `(π(u)). As `∗(π(u)) = `(π(u)), we have that (π(u), u) is a migration from `∗(π(u)) =
`(π(u)) to `(u) in ` and to `∗(u) in `∗. By Lemma 12, we have that `∗ is consistent with Ĝ.
As `∗(u) ≺Ĝ `(u), the labeling by ` of edge (π(u), u) results in an edge (`(π(u)), `(u)) that
is not in Ĝ. Hence, ` is not consistent with Ĝ, yielding a contradiction. Both cases yield a
contradiction. Hence, the lemma follows. J

Finally, we prove that `∗ achieves the minimum migration number among all vertex
labelings that are consistent with a given migration tree Ĝ.

I Lemma 14. Let T be a phylogenetic tree with leaf labeling ˆ̀ satisfying (2) for a given
migration graph Ĝ. Then, `∗ is a minimum migration labeling of T that is consistent with Ĝ.



M. El-Kebir 24:13

4 6 8
number m of locations

20

40

60

80

100

120

nu
m

b
er
n

of
ve

rt
ic

es
a

mutation rate
0.1

1.0

4 6 8
number m of locations

10−3

10−2

10−1

100

101

102

103

ti
m

e
[s

]

b

method
ILP-0.1

FPT-0.1

ILP-1.0

FPT-1.0

Figure 7 The fixed parameter tractable (FPT) algorithm is faster than the previously
published [2] integer liner program (ILP) for small number m of locations. Using a tool
for simulating metastatic cancers, we generated 60 PMH instances with varying number m of
locations and number n of vertices. (a) The number of vertices increased with increasing mutation
rate. (b) Running time in seconds (logarithmic scale) for FPT algorithm and ILP for instances with
varying number m of locations and mutation rate.

Proof. Assume for a contradiction that ` is a vertex labeling of T consistent with Ĝ such
that µ(T, `) < µ(T, `∗). Consider a location t such that the number of migrations with
target t is greater in `∗ than `. Observe that t 6= r(Ĝ). Let s be the parent of t in Ĝ. Let
Y = {v ∈ V (T ) | `(π(v)) = s, `(v) = t} and Y ∗ = {v ∈ V (T ) | `∗(π(v)) = s, `∗(v) = t}. By
the premise we have that |Y ∗| > |Y |.

For any vertex labeling `′ consistent with Ĝ, distinct edges (u, v), (u′, v′) ∈ E(T ) labeled
by `′(u) = `′(u′) = s and `′(v) = `′(v′) = t are incomparable. Thus, the vertices in Y (Y ∗)
are pairwise incomparable in T . Let L(t) be the set of leaves u of T labeled by ˆ̀(u) = t′

where t �Ĝ t′. Let L(TY ) (L(TY ∗)) be the combined set of leaves in the subtrees rooted
at each vertex v ∈ Y (v ∈ Y ∗). As both ` and `∗ are consistent with Ĝ, we have that
L(t) = L(TY ) = L(TY ∗). Since |Y ∗| > |Y | and L(TY ) = L(TY ∗), there must exist two
distinct vertices v, w ∈ Y ∗ and vertex u ∈ Y such that u ≺T v and u ≺T w. Since u �T π(v),
u �T π(w) and `∗(π(v)) = `∗(π(w)) = s, we have that `∗(u) �Ĝ s. Given that `(u) = t and
s ≺Ĝ t, we have that `∗(u) �Ĝ s ≺Ĝ t �Ĝ `(u), which contradicts Lemma 13. Hence, `∗ is a
minimum migration labeling of T that is consistent with Ĝ. J

We note that `∗ can be computed in O(nm) time—i.e., each lcaĜ(·) query can be resolved
in O(m) time using a simple post-order tree traversal of Ĝ. The number of unrooted trees on
m labeled vertices is mm−2, which is known as Cayley’s formula [1]. Since every unrooted
tree can be rooted at each of its m vertices, the number of migration trees is mm−1. Thus, a
brute-force algorithm that computes `∗ for each migration tree Ĝ requires O(nmm) time,
proving Theorem 4.

5 Experimental Evaluation

We implemented the FPT algorithm in C++ and used Prüfer sequences [8] to enumerate
migration trees. The code is available at https://github.com/elkebir-group/PMH-S.
Using simulated data of metastatic cancers, we compared the FPT algorithm and the
previously published integer linear program (ILP) [2]. More specifically, for each combination
of m ∈ {4, 6, 8} locations and mutation rates N ∈ {0.1, 1.0}, we simulated 10 metastatic
cancer where each of the m− 1 metastases was seeded by clones from a single location. The
simulation algorithm is described in more detail in [2]. In total, we simulated 60 PMH
problem instances where P = {S}.

WABI 2018

https://github.com/elkebir-group/PMH-S


24:14 Parsimonious Migration History Problem: Complexity and Algorithms

Increasing the mutation rate N resulted in larger phylogenetic trees (Fig. 7a). We ran
both the FPT algorithm and the ILP in single-threaded mode on a computer with two Intel
Xeon CPUs at 2.6 GHz (32 cores) and 512 GB of RAM. As a sanity check, we found that
both the ILP and the FPT algorithm resulted in the same minimum migration number for
each instance (data not shown). We found that the running time of the FPT algorithm is
only moderately affected by the size of the phylogenetic tree in contrast to the ILP (Fig. 7b).
In addition, we found that the FPT algorithm outperformed the ILP for m ∈ {4, 6} locations
in terms of running time, but was slower for m = 8 locations (Fig. 7b). These findings are
in line with the asymptotic running time of O(nmm) for the FPT algorithm. For modest
number m of locations the FPT algorithm is the method of choice due to its simplicity.

6 Conclusion

In this work, we studied the complexity of the Parsimonious Migration History (PMH)
problem, a constrained multi-objective optimization problem for reconstructing the migration
history of a given phylogenetic tree T whose leaves are labeled by locations. For the case
where the resulting migration graph G is restricted to a tree (i.e. P = {S}), we showed
that PMH is NP-hard and fixed parameter tractable in the number m of locations. We
demonstrated that our FPT algorithm runs in time O(nmm) and outperforms the previously
integer linear program for small m on simulated instances of practical size. While we did not
consider the polytomy resolution variant of PMH, as introduced in [2], our hardness proof
easily extends to this case by appropriately binarizing the gadgets used in the reduction.
The hardness of PMH for the cases where G is restricted to a DAG (i.e. P = {S,M}) or left
unrestricted (i.e. P = {S,M,R}) remains open.

References
1 A Cayley. A theorem on trees. The Quart. J. of Pure and Appl. Math., 23:376–8, 1889.
2 Mohammed El-Kebir, Gryte Satas, and Benjamin J Raphael. Inferring parsimonious mi-

gration histories for metastatic cancers. Nature Genetics, 50(5):718–726, 2018.
3 Joseph Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood ap-

proach. Journal of Molecular Evolution, 17(6):368–376, nov 1981.
4 Walter M Fitch. Toward Defining the Course of Evolution: Minimum Change for a Specific

Tree Topology. Systematic Zoology, 20(4):406, 1971.
5 M Goodman et al. Fitting the gene lineage into its species lineage, a parsimony strategy

illustrated by cladograms constructed from globin sequences. Systematic Biology, 28(2):132–
163, 1979.

6 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

7 A W McPherson et al. Divergent modes of clonal spread and intraperitoneal mixing in
high-grade serous ovarian cancer. Nature Genetics, may 2016.

8 H Prüfer. Neuer Beweis eines Satzes über Permutationen. Arch Math Phys, 27:742–4, 1918.
9 David Sankoff. Minimal Mutation Trees of Sequences. SIAM Journal on Applied Mathe-

matics, 28(1):35–42, jan 1975.
10 M Slatkin and W P Maddison. A cladistic measure of gene flow inferred from the phyloge-

nies of alleles. Genetics, 123(3):603–613, 1989.


	Introduction
	Preliminaries
	Problem Statement
	Results
	NP-hardness
	Fixed parameter tractability

	Experimental Evaluation
	Conclusion

