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Abstract
Automated annotation and analysis of protein molecules have long been a topic of interest due to
immediate applications in medicine and drug design. In this work, we propose a topology based,
fast, scalable, and parameter-free technique to generate protein signatures.

We build an initial simplicial complex using information about the protein’s constituent atoms,
including its radius and existing chemical bonds, to model the hierarchical structure of the mo-
lecule. Simplicial collapse is used to construct a filtration which we use to compute persistent
homology. This information constitutes our signature for the protein. In addition, we demon-
strate that this technique scales well to large proteins. Our method shows sizable time and
memory improvements compared to other topology based approaches. We use the signature to
train a protein domain classifier. Finally, we compare this classifier against models built from
state-of-the-art structure-based protein signatures on standard datasets to achieve a substantial
improvement in accuracy.
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1 Introduction

Proteins are by far the most anatomically intricate and functionally sophisticated molecules
known. The benchmarking and classification of unannotated proteins have been done by
researchers for quite a long time. This effort has direct influence in understanding behavior of
unknown proteins or in more advanced tasks as genome sequencing. Since the sheer volume
of protein structures is huge, up till the last decade, it had been a cumbersome task for
scientists to manually evaluate and classify them. For the last decade, several works aiming
at automating the classification of proteins have been developed. The majority of annotation
and classification techniques are based on sequence comparisons (for example in BLAST [19],
HHblits [2] and [18]) that try to align protein sequences to find homologs or a common
ancestor. However, since those methods focus on finding sequence similarity, they are more
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Figure 1 Workflow of our technique.

efficient in finding close homologs. Some domains such as remote homologs are known to
have less than 25% sequential similarity and yet have common ancestors and are functionally
similar. So, we miss out important information on structural variability while classifying
proteins solely based on sequences. Even though, sometimes, homology is established by
comparing structural alignment [14], accurate and fast structural classification techniques for
the rapidly expanding Protein Data Bank remains a challenge.

Several works on the classification of protein structures exist in the literature. The main
intuition behind these works draws upon a heuristic that generates a signature for each
protein strand so that structurally close proteins have similar signatures. Essentially, the
signature alignment quantifies the similarity between two protein structures. The problem,
however, remains with the speed of computing these signatures and the degree of their
representative power. We want a fingerprint for the protein that can be computed fast and
can tell whether two proteins are dissimilar or even marginally similar.

Some works use vector of frequencies to describe structural features while others take vari-
ous physical properties into account such as energy, surface area, volume, flexibility/rigidity
or use other features from geometric modeling. The "Bag-Of-Word" (BOW) representation
to describe an object has been used in computer vision, natural language processing and
various other fields. The work by Budowski-Tal [3] have described protein structure using a
fragment library in a similar context. Since we use this work for comparison, we shall discuss
its details later.

Topological data analysis [10], a newly developed data analysis technique has been
shown to give some encouraging results in protein structure analysis. Topological signatures,
particularly based on Persistent Homology, enjoy some nice theoretical properties including
their robustness and scale invariance. These features are global and more resilient to local
perturbations. Moreover, they are invariant to scaling and any isometric transformation of
the input. The authors in [23] extract topological fingerprints based on the alignment of
atoms and molecules in three dimensional space. Their work shows the impact of persistent
homology in the modeling of protein flexibility which is ultimately used in protein B-factor
analysis. This work also characterizes the evolution of topology during protein folding and
thereby predicts its stability. For this task, the authors have introduced a coarse grain (CG)
representation of proteins by considering an amino acid molecule as an atom Cα. This helps
them describe the higher level protein structures using the topological fingerprint perfectly.
However, since the CG homology may be inconsistent due to ambiguity in choosing the CG
particle, we present a similar study on secondary structures using our signature and show that
our method does not require such a representation as it is inherently scaling independent.
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Figure 2 Persistence of a point cloud in R2 and its cor-
responding barcode

Figure 3 Weighted Alpha complex
for protein structure

The authors in [4] have used persistent homology to generate feature vector in the context
of machine learning algorithms applied to protein structure explorations. We explore further
to improve upon the technique to eliminate its deficiencies. First, the approach in [4] does not
differentiate between atoms belonging to different elements. Also, it does not account for the
existing chemical bonds between the atoms while building the signature. Most importantly
it uses Vietoris Rips(VR) complex to generate the topological features for protein complex
which suffers from the well-known problem of scalability. As we will describe later, the VR
complex developed in the early 20th century grows rapidly in size even for moderate size
protein structures. Current state-of-the-art techniques, which have addressed the problem to
some extent, are still very cumbersome and slow especially for structures having about 30,000
atoms on an average. Among the several methods that generate persistence signature from a
point cloud, the PHAT toolbox [1] based on several efficient matrix reduction strategies and
GUDHI [22] library based on some compression techniques have been popular because of
their space and time efficiencies. A recent software called SimBa [8] published last year, has
been shown to work faster for large datasets. Yet, for our application, SimBa falls short as
we shall see later.

The algorithm that we present here is a fast technique to generate a topological signature
for protein structures. We build our signature based on the coordinates of the atoms in R3

using their radius as weights. Since we also consider existing chemical bonds between the
atoms while building the signature, we believe that the hierarchical convoluted structure of
protein is captured in our features. Finally, we have developed a new technique to generate
persistence that is much quicker and uses less space than even the current state-of-the-art
such as SimBa. It helps us generate the signature even for reasonably large protein structures.
In sum, in this paper, we focus on three problems: (1) effectively map a protein structure into
a suitable complex; (2) develop a technique to generate fast persistent signature from this
complex; (3) use this signature to train a machine learning model for classification and compare
against other techniques. Our entire method is summarized in figure 1. We also illustrate
this method using a supplementary video available at https://youtu.be/yfcf9UWgdTo.

2 Methods

We use the theory of topological persistence to generate features for protein structures. These
topological features serve as a distinct signature for each protein strand. In this section, we
give some background on persistent homology followed by how we construct our signature.

2.1 Persistence signature of point cloud data
We start with a point cloud data in any n-dimensional Euclidean space. These will essentially
be the centers of protein atoms in the three dimensional space. However, to illustrate the
theory of persistent homology, we consider a toy example of taking a set of points in two
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dimensions sampled uniformly from a two-hole structure (Fig. 2). We start growing balls
around each point, increasing their radius r continually and tracking the behavior of the
union of these growing balls. If we start increasing r from zero, we notice that at r = r1
(third from left in Fig 2) both holes are prominent in the union of ball structure. Further
increasing r to r2, leads to filling of the smaller hole (fourth figure from left). This continues
till the value of r is large enough for the union of balls to fill the entire structure. During the
change in the structure of the union of balls due to increase in radius, the larger of the two
holes ‘persists’ for a larger range of r compared to the smaller one. Hence features that are
more prominent are expected to persist for longer periods of increasing r. This is the basic
intuition for topological persistence. The holes in this example are captured by calculating a
set of birth-death pairs of homology cycle classes that indicate at which value of r the class
is born and where it dies. The persistence is visualized in R2 using horizontal line segments
that connect two points whose x-coordinates coincide with the birth and death values of
the homology classes. These collection of line segments, as shown in Figure 2, are called
barcodes [5]. The length of each line segment corresponds to the persistence of a cycle in the
structure. Hence, the short blue line segments correspond to the tiny holes that are formed
intermittently as the radius increases. The two long red line segments correspond to the two
holes in the structure, the largest being the bigger hole. For computational purposes, the
growing sequence of the union of balls is converted to a growing sequence of triangulations,
simplicial complexes in general, called a filtration. In some cases, some cycles called the
‘essential cycles’ persists till the end of the filtration.

The rank of the persistent homology group called the persistent Betti numbers capture
the number of persistent features. For n-dimensional homology group, we denote this number
as βn. This means β0 counts the number of connected components that arise in the filtration.
Similarly, β1 counts the number of circular holes being born as we proceed through the
filtration. It is due to this fact that all the folds in the tertiary structure, as well as the helix
and strands in the secondary structure of proteins, are recorded in our signature.

With the above technique, difficulties are faced as r increases. An average protein in
a database such as CATH [20] has 20,0000~30,000 atoms, thus creating a point cloud of
the same size in R3. Furthermore, the initial complex including 3-simplices (or tetrahedra)
becomes quite large. On an average, this complex size grows to (50~100)x104 simplices of
dimension upto 4 and becomes quite difficult to process. Building a filtration using this
growing sequence of balls is thus not scalable. We attack the problem with two strategies: (1)
we only consider simplices on the boundary of the entire simplicial complex in our algorithm
and (2) compute a new filtration technique that is based on collapsing simplices rather than
growing their numbers by addition.

Topological persistence
Traditionally, given a point cloud, its persistence signature is calculated by building

a filtration over a simplicial complex called Vietoris-Rips(VR). This technique is also
used in [4] which takes the 3D position of the centers of the atoms as points in the
point cloud. Given a parameter α, we can define VR complex over a point cloud P as:
VRα(P) = {σ | d(p,q) < α ∀ p,q ∈ σ}.

As the value of α increases, more edges and higher order simplices are introduced, and
a filtration is obtained. Finally, the persistence of this filtration is computed. For a better
representation of protein molecules, we take into account the radius of different atoms as
weight of the points. So, we replace each point p ∈ P with a tuple p̂ = (p, rp) where rp is the
radius of the atom represented by p. For the resulting weighted point cloud P̂ = {(p, rp)},
we consider the weighted VR complex: VRα(P̂) = {σ | d(p,q) < α(rp + rq) ∀ p,q ∈ σ}.
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The VR complex is easy to implement, but its size can become a hindrance for an even a
moderate size protein molecule. Thus, instead of a VR complex, we use the (weighted) alpha
complex that is sparser and has been used to model molecules in earlier works [11].

Alpha complex AC(α): For a given value of α, a simplex σ ∈ AC(α) if:
The circumball of σ is empty and has radius < α, or
σ is a face of some other higher dimensional simplex in AC(α).

Weighted Alpha Complex WACP̂ (α): Let Bk(p̂) be a k-dimensional closed ball with
center p, and weight rp. It is orthogonal or sub-orthogonal to a weighted point (p′,rp′) iff
||p− p′||2 = r2

p + r2
p′ or ||p− p′||2 < r2

p + r2
p′ respectively.

An orthoball of a k-simplex σ = {p̂0, . . . , p̂k} is a k-dimensional ball that is orthogonal to
every vertex pi. A simplex is in the weighted alpha complex WACP̂ (α) iff its orthoball has
radius less than α and is suborthogonal to all other weighted points in P̂ .

2.2 Collapse-induced persistent homology from point clouds

The following procedure computes a topological signature for a weighted point cloud
P̂ = {p, rp} using subsamples and subsequent collapses:
1. Compute a weighted alpha complex C0 on the point set P̂ = {p, rp} using the algorithm

described in [22]. Let V 0 be the vertex set of C0.
2. Compute a sequence of subsamples V 0 ⊃ V 1 ⊃ ... ⊃ V k of the initial vertex set V 0 based

on the Morton Ordering as discussed later. (For every V i, we remove every nth point
in the Morton Ordering from V i to form V i+1. We choose ‘n’ based on the number of
initial points).

3. This sequence of subsets of V i allows us to define a simplicial map between any two

adjacent subsets V i and V i+1: f i(p) =

p if p ∈ V i+1

argmin
v∈V i+1

d(p, v) otherwise

4. This vertex map f i : V i → V i+1 in turn generates a sequence of collapsed complexes:
C0,C1, ...,Cn. Each vertex map induces a simplicial map f i : Ci−1 → Ci that associates
simplices in Ci−1 to simplices in Ci(see Figure 4)

5. Compute the persistence for the simplicial maps in the sequence C0 f1−→ C1 f2−→ ...
fk−→ Ck

to generate the topological signature of the point set P̂ .

In step 1 of the procedure, weighted points alone lead to disconnected weighted atoms in
C0 rather than capturing the actual protein structure. To sidestep this difficulty, we increase
the weights of these points based on the existence of covalent or ionic bonds in the structure.
That is, if there exists a chemical bond between two atoms (which we get from the input
.pdb file), we scale-up the weight of each point so that they are connected in the weighted
alpha complex WACP̂ (α) (see Fig. 3). We determine a global multiplying factor ρ ≥ 1 for
this purpose. As mentioned earlier, we take the boundary of this weighted complex which
forms our initial simplicial complex C0.

In step 2, in order to generate the sequence of subsamples, we pick vertices uniformly
from the simplicial complex to be collapsed to their respective nearest neighbors. To choose
a subsample that respects local density, we use a space curve generation technique called
Morton Ordering [15]. The Morton curve generates a total ordering on the point set V 0.

WABI 2018
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Figure 4 (a) Collapse of weighted alpha complex generated from protein structure via simplicial
map. (b) Same algorithm applied to a kitten model in R3.

This ordering is explicitly defined by the Morton Ordering map M : ZN 7→ Z given by:

M(p) =
B∨

b=0

N∨
i=0

xi,b
2 � N(b + 1)− (i + 1),

where xi,b2 : bth bit value of the binary representation of the ith component of x.
This map merely interleave bits of the different components of p. Application of M to V 0

yields a total ordering on our initial point set. To generate a new subset V 1 ⊂ V 0, we simply
choose a value n such that 1 < n ≤ ‖V 0‖. Then, V i+1 is taken as:

Vi+1 = {xj | xj ∈ Vi, j 6≡ 0 mod n},

where xj is the jth vertex in the Morton Ordering of V i. We choose n = 12 as it has
procured good results for the datasets we experimented on (having 20,000~30,000 atoms on
an average). Following this approach, the process can be repeated to create a sequence of
subsets V 0 ⊃ V 1 ⊃ ... ⊃ V n, ‖V n‖≤ k as done in step 2 of our procedure above.

Finally, as described in step 3, instead of constructing the filtration by increasing the
value of α, we perform a series of successive collapses starting with the initial simplicial
complex. This leads to a sequence of complexes that decreases in size instead of growing as
we proceed forward. Effectively, it generates a sequence called tower of simplicial complexes
where successive complexes are connected by simplicial maps. These maps which are the
counterpart of continuous maps for the combinatorial setting extend maps on vertices (vertex
maps) to simplices (see [16] for details). In our case, collapses of vertices generate these
simplicial maps between a simplicial complex in the tower to the one it is collapsed to.
Persistence for towers under simplicial maps can be computed by the algorithm introduced
in [7]. We use the package called Simpers that the authors have reported for the same.

To summarize, the algorithm generates an initial weighted alpha complex. It then
proceeds by recursively choosing vertices based on Morton Ordering to be collapsed to their
nearest neighbors resulting in vertex maps. These vertex maps are then extended to higher
order simplices (such as triangles and tetrahedra) using the simplicial map. Finally given
the simplicial map, we generate the persistence and get the barcodes for the zero and one
dimensional homology groups.

2.3 Feature vector generation
We discuss how we generate a feature vector given a protein structure. We take protein data
bank (*.pdb) files as input to extract protein structures. It contains the coordinates of every
atom, their name, chemical bond with neighboring atoms and other meta-data such as helix,
sheet and peptide residue information. We introduce a weighted point for each atom in the
protein where the point is the center of the atom and its weight is the specified radius. For
instance, for a Nitrogen atom in the amino acid, we assign a weight equal to its covalent
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Figure 5 (a) Left: Alpha helix from PCB 1C26 , Middle: Barcode of [23], Right: Our Barcode,
(b) Left: Beta sheet from PCB 2JOX, Middle: Barcode of [23], Right: Our Barcode. Each segment
of the barcodes shows β0(top) and β1(bottom).

radius of 71(pm). On this weighted point cloud p̂ = (p, rp), if two atoms p̂ and q̂ are involved
in a chemical bond, we increase their weights so that p and q get connected in the alpha
complex. We compute the persistence by generating the initial alpha complex and undergoing
a series of collapses as described in the previous section. For computational efficiency, we
only consider the barcodes in zero and one dimensional homology groups. Note that some of
the barcodes can have death time equal to infinity indicating an essential feature. For finite
barcodes, shorter lengths (death− birth) indicate noise. Elimination of these intermittent
features serves some interesting purpose as we will see in section 3. To find relatively long
barcodes, we sort them in descending order of their lengths. Let {l1, l2, ..., lk} be this sorted
sequence. Consider the sequence {l′1, l′2, ..., l′k−1} where l′i = li+1 − li and let l′m be a
maximal element for 1 ≤ m ≤ k − 1. All barcodes with the lengths [l1..lm] form part of the
feature vector. Essentially we remove all barcodes whose lengths are shorter than the largest
gap between two consecutive barcodes when sorted according to their lengths. A similar
technique used in [13] has shown improved results in image segmentation over other heuristics
and parameterizations. Since the feature vector needs to be of a fixed length for feeding into
a classifier, we compute the index m of lm over all protein structures and take an average.
The feature vector also includes the number of essential zero and one dimensional cycles.
Therefore, we have a feature vector of length 2 ×m + 2 : {l01, l02, ...l0m, l11, l12, ...l1m, cβ0 , cβ1}.
Here l0i and l1i are the lengths of zero and one dimensional homology cycles respectively
whereas cβi are the total number of essential cycles in i-dimensional homology.

3 Experiments and results

We perform several experiments to establish the utility of the generated topological signature.
First, we show how our feature vector captures various connections in the single strands
of secondary structures and compare them against the signatures obtained in [23]. Then
we investigate if there is a correlation between the count of such secondary structures and
our feature vector. Next, we describe the topological feature vector obtained from two
macromolecular proteins structures. We also compare the size and time needed by our
algorithm (software) over the other commonly used persistence software (as in [4]). Lastly,
we show the effectiveness of our approach in classifying protein structures using machine
learning models.

Topological description of alpha helix and beta sheet
It is known that barcodes can explain the structure of an alpha helix and a beta sheet [23].
The authors in [23] use a coarse-grain(CG) representation of the protein by replacing each
amino acid molecule with a single atom. This representation removes the short barcodes
corresponding to the edges and cycles of the chemical bonds inside the amino acid molecule.

WABI 2018
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Figure 6 Barcode and Ribbon diagram of (Left): PDB: 1c26. (Right): PDB: 1o9a. Diagram
courtesy NCBI [17].

We do not need this CG representation as our procedure can implicitly determine a threshold
lm and therefore delete all barcodes of length shorter than the largest gap between two
consecutive barcodes (as described in section 2.3). So, we get a barcode that describes the
essential features of the secondary structures without including noise or short lived cycles
from the amino acids. For a fair comparison, we compute our barcodes on the same alpha
helix residue as in [23] with 19 residues extracted from the protein strand having PDB ID
1C26 (see figure 5). Analogous to the barcode of [23] (as shown in the middle diagram of
figure 5a), we have 19 bars in the zero-dimensional homology for the alpha helix representing
the nineteen initial residues. These components die as edges are introduced in the weighted
alpha complex which gets them connected. For one-dimensional homology, an initial ring
with 4 residues is formed followed by additional rings resulting from the growing connections
in each amino acid. These cycles eventually die by the collapse operations in our algorithm.

The same process is followed for beta sheets after we extract two parallel beta sheet
strands from the protein structure with PDB ID 2JOX. The zero-dimensional homology
cycles are killed when individual disconnected amino acid residues belonging to the same
beta sheet strand are connected by edges, as represented in the top 17 barcodes (leftmost
figure of 5b). However, other than these barcodes and the longest bar corresponding to the
essential cycle, there is one bar in the zero-dimensional homology which is longer than the
top 17 bars. This bar represents the component which is killed by joining the closest adjacent
amino acid molecules from the two parallel beta strands. The one dimensional homology
bars are formed as more adjacent amino acid molecules are connected and killed once the
collapse operation starts. Note that the two barcodes shown in figure 5 comparing our work
with [23] are not to scale. This is because, in contrast to [23], the barcodes in our figure are
not plotted against Euclidean distance rather the step at which each insertion and collapse
operation occurs.

A caveat
Our aim is to compute signatures that capture discriminating structural information

useful for classifying proteins. Even though we can use our signature to describe secondary
structures, we do not want our signature to be directly correlated to the number of alpha
helix or beta sheet as it would mean they are redundant. We generate a 2× 12 matrix where
each cell contains the correlation value between beta-sheet(top row) and alpha-helix(bottom
row) with each individual component in the feature vector: {l01, l02, ...l0m, l11, l12, ...l1m, cβ0, cβ1}.
We use proteins in the PCB00020 record of the PCBC database to compute this matrix and
depict it by a heatmap (Fig 7). Essentially, we first generate two vectors vα and vβ of the
number of alpha helices and beta sheets respectively in each protein over all entries in the
database. Similarly, we produce a vector for each value in the feature vector: {vl01 , ..., vcβ1}.
Now we populate the matrix by calculating the correlation between each of these individual
vectors with vα and vβ . For example, row 1 and column 1 of the matrix contain the cor-
relation value between the vectors vl01 and vβ . The heat map color ranges from blue for
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Figure 7 Heatmap correlating secondary
structure against our feature vector. Each
column in the heatmap is the feature vector.

Figure 8 Plot showing accuracy against vary-
ing training data size. 100(%) indicates the
entire training and test data.

zero correlation to dark-red for complete correlation. As we can see from the figure, almost
all matrix entries have a blue tinge indicating low correlation. This shows that our feature
vector is non-redundant over the frequency of secondary structures.

Topological Description of macromolecular structures

In the previous section, we use our signature to describe the secondary structures and
compare it with the work in [23]. In this section, we further show how our signature works
by describing two macromolecular protein structures that are built on multiple secondary
structures. We start by describing the tetrametric protein: 1C26. The ribbon diagram
and associated barcode after noise removal is given in figure 6 . It essentially contains four
monomers, associated pairwise to form two dimers. These two dimers, in turn, join across a
distinct parallel helix-helix interface to form the tetramer. When we build the filtration on
this protein structure, two monomers on opposite sides are killed first by connecting to their
adjacent monomers to form two distinct dimers. This is evident as there are two short bars
in the zero dimensional barcode (Fig. 6 right: shown in red). We now have two dimers, one
of which is killed when it joins with the other to form a third slightly longer non-essential
barcode (shown in purple). The second dimer lives on as the tetramer and forms an essential
barcode (shown in black). Next, if we look into the one dimensional homology (shown as blue
lines), we notice that the most notable feature for the protein is the tetramer structure which
contains a large loop when the two dimers are connected. This is evident in our 1D-barcode
as there is a distinct long bar representing the large one dimensional cycle. Note that the
birth time of this cycle in 1D corresponds with the death time of the non-essential dimer
in 0D.

Next, we consider the protein structure 1O9A. The structure contains several antiparallel
beta-strands and is an example of a tandem beta-zipper. As we can see from the ribbon
diagram in Fig. 6, there are six beta sheets on one side and five on another, connected
together to form a fibronectin. This is evident as there are ten non essential and one essential
bar in the zero dimensional homology owing to the six beta sheets on one side and five on
the other. Each component is killed as the beta sheets join with another as the filtration
proceeds. Note that the last connected component after joining all beta sheets forms an
essential bar. Moreover, since there is no distinct cycle in the structure, we do not get any
distinct long bar in the one dimensional homology. The presence of multiple one dimensional
bars of similar size are probably due to the antiparallel beta-strands on either side which
form a ring once joined. Thus, we can see that using the same signature generation method,
we can describe secondary structures (as in the previous section) as well as macromolecular
proteins without any change in the parameter. It is therefore evident that our signature is
intrinsic and scale independent.

WABI 2018
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Table 1 Time comparison of our algorithm
against SimBa [8] and VR complex.

Size Time (in sec)
Data Dim VR SimBa Our VR SimBa Our
CATH 3 – 1422 443 – 1.75 0.35
Soneko 3 324802 10188 576 32 6.77 2.05
Surv-l 150 – 3.1 × 106 1.09 × 106 – 5.08 × 103 884
PrCl-I 25 – 10.2 × 106 0.22 × 106 – 585 141.3

Table 2 Accuracy comparison with Frag-
Bag and Cang.

SVM KNN
FB Cang Our FB Cang Our

Class 91.08 89.07 92.36 86.01 86.40 86.39
Architecture 90.26 91.11 92.20 88.17 87.47 89.11
Topology 92.19 94.87 96.71 91.54 94.02 96.20
Homology 93.33 94.06 94.17 90.28 91.11 93.30

Time and space comparison with VR-complex and SimBa
The method in [4] uses persistent homology as feature vectors for machine learning.

However, as mentioned earlier, the use of Veitoris-Rips (VR) complex leads to a size blow up
that not only increases runtime but also in most cases, causes the operating system to abort
the process due to space requirements. Results in [4] procure good results as the datasets
are of moderate size, but the same could not be reported for larger and real life protein
structures. In table 1, we show a size and time comparison of our approach with the original
feature generation technique used in [4]. We also tabulate the size and time to generate the
same feature vector in [4] using a state-of-the-art persistence algorithm called SimBa [8].
Table 2 contains a mix of protein databases and other higher dimensional datasets. As we
see in the table, our algorithm is faster even when the features in [4] are generated with SimBa.

3.1 Supervised learning based classification models
Classification model. For the purpose of protein classification, we train two classifiers: an
SVM model and a k-nn model on some protein databases. Once the model is trained, we test
it to find accuracy, precision, and recall. The reason behind choosing Support Vector Machine
and k-nn based supervised learning technique over other sophisticated and state-of-the-art
classifiers is their basic nature. Results obtained from basic learning techniques prove the
effectiveness of the feature vectors rather than that of the classifier. We can further improve
the classification accuracy for proteins using some advanced supervised learning or Neural
Network based classifiers using our proposed features.

Benchmark techniques. In order to test the effectiveness of our protein signature, we need
to compare it against some of the state-of-the-art protein structure classification techniques.
We generate feature vectors through these techniques and train and test the same classification
models as before. The first technique, known as PRIDE [9], classifies proteins at the Homology
level in the CATH database. It represents protein structures by distance distributions and
compares two sets of distributions via contingency table analysis. The more recent work by
Budowski-Tal et al. [3], which has achieved significant improvement in protein classification
is used as our second benchmark technique. Their work, known as FragBag mimics the
bag of word representation used in natural language processing and computer vision. They
maintain protein fragments as a benchmark. Given a large protein strand, they generate
a vector which is essentially a count of the number of times each fragment approximates a
segment in this strand. This vector now acts as a signature for the protein structure and that
is what forms the basis for their feature vector which we use to train and test our classifier.
The protein fragment benchmark is available from the library [12]. We choose 250 protein
fragments of length 7. The third work that we test against is the topological approach to
generate a protein fingerprint [4]. However, as we saw earlier, it is not possible to generate
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Figure 9 Left:a) Difference in precision and recall from FragBag. Middle: b) Difference in
precision and recall from [4]. Right: c) ROC curve for SVM classification of our algorithm.

all the protein signatures using the original algorithm used by the authors. Therefore, we
replace the Vietoris-Rips filtration by the state-of-the-art SimBa and generate feature vectors
the same way as mentioned in their paper.

Database. The database that we use is called Protein Classification Benchmark Collection
(PCBC) [21]. It has 20 classification tasks, each derived from either the SCOP or CATH
databases, each containing about 12000 protien structures. The classification experiment
involves the group of the domain as positive set, and the positive test set is the sub-domain
group. The negative set includes the rest of the database outside the superfamily divided
into a negative test or negative training set. The result for some of the classification tasks
for the database is given in Table 3. As evident from the table, the accuracy obtained by
using our signature has a considerable improvement over the state of the art techniques. The
only classification task in which our algorithm under-performs is with the protein domain
CATH95_Class_5fold_Filtered (fourth row of table 3). The class domain is randomly
sub-divided into 5 subclasses in this task. Since the class is divided randomly into subclasses,
we believe some proteins belonging to different sub-classes have generated a similar initial
complex resulting in a similar filtration and ultimately a decrease in performance.

The PCBC dataset, even though suitable for learning algorithms, suffers from being
skewed as the number of negative instances in any classification is much larger than the
number of positive instances, leading to probable incorrect classifications. Therefore, we test
on one of the most popular protein databases known as CATH [6]. The CATH database
contains proteins divided into different domains (C: class; A: architecture; T: topology; H:
homologous superfamily). For each domain, we get protein structures and their labels in
accordance with the sub-domain they belong to. For any classification task, we randomly
choose positive instances from one sub-domain and the same number of negative instances
sampled equally from the other sub-domains. Each such task, on average has 400 protein
structures containing approximately 30,000 atoms each. We then divide this into 80%-training
and 20%-test set. The result of classification on the CATH database averaged over several
such randomly chosen sub-domains as positive classes, are illustrated in table 2. We see
yet again that for each case, there is an improvement of about 3-4% over the benchmark
techniques.

3.1.1 Classification result
We have listed our main results in tables 2 and 3 showing the improvement in accuracy
using our method over the state-of-the-art techniques of FragBag, PRIDE and the preceding
work on topology by Cang et al. [4]. We provide further evidence of the efficiency of our
algorithm by comparing the precision and recall in figures 9a and b. In these plots, we show
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Table 3 Classification accuracy for different techniques on Protein dataset. SC: SCOP95, CA:
CATH95, Sf: Superfamily, Fm: Family, F: Filtered, T: Topology, H: Homology, C: Class, 5f: 5fold,
A: Architecture, Si: Similarity.

SVM k-NN
Pride Fragbag Cang Our Pride Fragbag Cang Our

SC_Sf_Fm_F 90.09 93.01 93.39 95.24 89.58 87.31 89.83 91.66
CA_T_5f 94.23 92.97 94.87 99.53 90.96 91.16 94.57 97.87
CA_T_H_F 90.15 89.89 95.06 98.80 84.98 81.11 86.65 95.51
CA_C_5f_F 85.09 84.76 80.98 82.36 80.18 84.74 83.83 78.81
CA_H_Si_F 98.60 95.89 98.24 99.05 95.45 91.11 79.469 97.56
CA_A_T_F 87.56 91.58 74.58 90.95 67.47 89.00 68.90 87.00

the difference between the precision and recall obtained using our algorithm against that of
FragBag(9a) and Cang(9b). A green bar indicates that our algorithm performed better and
the difference is positive while a red bar suggests the opposite. This experiment is done on
the CATH database and the figure shows the precision and recall for each domain: class(C),
architecture(A), topology(T) and homology(H). Notice that, since the classification is binary,
we get two precision and two recall for every class in each domain. Thus, there are four
bars for each of C,A,T,H. Yet again, other than a few marginal cases, our algorithm largely
performs better. Finally, we calculate the ROC curve using SVM on a subset of the CATH
dataset, the result of which is shown in figure 9c. The ROC curve is a plot of the true
positive rate against false positive rate obtained by changing the input size and parameter.
This means that the further the lines are away from the diagonal, the better is the classifier.

For the positive test cases, we investigate further the trend of the output. We try to see
the correlation of accuracy with the change in training set size. We therefore change the
training and test set sizes by taking a fraction of the entire dataset and trace the accuracy in
each case. This is done over all the test cases shown in Table 3 and the average is shown in
Fig 8. We have plotted the output of our algorithm in blue with two instances of FragBag
with (fragment, library) sizes (5,225) and (7,250) in red and green respectively. In addition,
we have plotted the output of PRIDE as well. Ideally, the accuracy should decrease uniformly
with a decrease in training set size and we should get a straight line across the diagonal.
In this case, all the trendlines are almost close to the diagonal and hence we can say that
they are correlated. Moreover, we observe that even as the training data size decreases,
the accuracy of our algorithm remains better or comparable to the other algorithms. This
indicates that topological features work better with a lower number of samples as well.

4 Conclusion

We present a practical topological technique to generate signatures for protein molecules
that can be used as feature vectors for its classification. Since we investigated the descriptive
power of our signature, we believe it can be used for other purposes such as protein energy
computation, or finding protein B-factor. We believe that this signature can be extended to
other biomolecular data such as DNA or enzymes.
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