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Abstract
Absolute fast converging (AFC) phylogeny estimation methods are ones that have been proven
to recover the true tree with high probability given sequences whose lengths are polynomial in
the number of number of leaves in the tree (once the shortest and longest branch lengths are
fixed). While there has been a large literature on AFC methods, the best in terms of empirical
performance was DCMNJ , published in SODA 2001. The main empirical advantage of DCMNJ

over other AFC methods is its use of neighbor joining (NJ) to construct trees on smaller taxon
subsets, which are then combined into a tree on the full set of species using a supertree method;
in contrast, the other AFC methods in essence depend on quartet trees that are computed
independently of each other, which reduces accuracy compared to neighbor joining. However,
DCMNJ is unlikely to scale to large datasets due to its reliance on supertree methods, as no
current supertree methods are able to scale to large datasets with high accuracy. In this study
we present a new approach to large-scale phylogeny estimation that shares some of the features
of DCMNJ but bypasses the use of supertree methods. We prove that this new approach is AFC
and uses polynomial time. Furthermore, we describe variations on this basic approach that can be
used with leaf-disjoint constraint trees (computed using methods such as maximum likelihood) to
produce other AFC methods that are likely to provide even better accuracy. Thus, we present a
new generalizable technique for large-scale tree estimation that is designed to improve scalability
for phylogeny estimation methods to ultra-large datasets, and that can be used in a variety of
settings (including tree estimation from unaligned sequences, and species tree estimation from
gene trees).
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8:2 New AFC Phylogeny Estimation Methods

1 Introduction

The inference of phylogenies from molecular sequence data is generally approached as a
statistical estimation problem, in which a model tree (equipped with a model of sequence
evolution) is assumed to have generated the observed data, and the properties of the statistical
model are then used to infer the tree. Various statistical approaches can be applied for this
estimation, including maximum likelihood, Bayesian techniques, and methods that operate
by computing a distance matrix and then computing the tree from the distance matrix.

Many stochastic sequence evolution models have been developed, starting with the
Cavender-Farris-Neyman [15, 6, 15] symmetric two-state model (referred to henceforth as
“CFN") and including increasingly complex molecular sequence evolution models (with four
states for DNA, 20 states for amino acids, and 64 states for codon sequences). However,
typically the theory that can be established under the CFN model can also be established
under the more complex molecular sequence evolution models used in phylogeny estimation.

Under standard sequence evolution models, many methods are known to be statistically
consistent (meaning that they will provably converge to the true tree as the sequence lengths
increase), including maximum likelihood [19] and many distance-based methods [1, 23]. A
key challenge is to have methods that can scale to large datasets; hence, polynomial time
methods are desirable. High accuracy is also needed, so methods that recover the true tree
with high probability from limited numbers of sites are best. In this respect, methods that
are “absolute fast converging" [8, 9, 25] (i.e., methods that recover the true tree with high
probability from polynomial length sequences) are the most promising.

There are several methods that have been established to be absolute fast converging
(AFC) under the CFN model, including maximum likelihood [19] (if solved exactly) and
various distance-based methods [8, 9, 25, 14, 17, 18, 12, 4]. Some of these algorithms achieve
a poly-logarithmic sample complexity but require a balanced model tree and an upper bound
on g, the maximum edge length (defining the expected number of changes of a random site)
in the CFN model. Specifically, methods based on reconstruction of ancestral sequences
provide the best sample complexity bounds but cannot handle the case where g is larger
than what is known as the Kesten-Stigum threshold, which is ln(

√
2) [13] for the CFN model.

Other methods, which are AFC in the regime where g is unbounded, are not guaranteed
to recover a tree in certain situations [8, 9, 25]. Two of the fastest AFC methods are the
Harmonic Greedy Triplets (HGT+FP) method by Csűrös [7] and a method developed by
King et al. [11]; these methods use O(n2) time and are based on quartet trees. Another
approach is DCMNJ , which uses a divide-and-conquer technique [25]. In the first phase, O(n2)
trees are computed, each based on dividing the sequence dataset into overlapping subsets,
constructing trees on each subset using the polynomial time distance-based method neighbor
joining (NJ) [20], and then combining the subset trees using a supertree method. This
approach differs from other AFC methods in its use of neighbor joining to construct trees
on subsets, whereas the other AFC methods in essence construct the tree by independently
constructing quartet trees, and then assembling the quartet trees together using a quartet
amalgamation method.

Very few AFC methods have been implemented; however, a study [14] comparing HGT+FP
[7] and DCMNJ [25] showed that DCMNJ had better accuracy despite being slower. Since the
theory does not predict this, the results on simulated data suggest that the use of NJ to
construct trees on subsets and then combine the trees using a supertree method may be
empirically advantageous compared to methods that combine quartet trees that are estimated
independently. Unfortunately, the reliance on a supertree method to combine subset trees
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means that DCMNJ is unlikely to scale to ultra-large datasets, because no current supertree
method has shown the ability to maintain good accuracy and reasonable running times on
large datasets [24].

The purpose of this paper is to describe a new polynomial time AFC phylogeny estimation
method that should improve on DCMNJ : it is designed to have comparable accuracy to DCMNJ

but also to be able to analyze ultra-large datasets (i.e., more than 100,000 sequences). The
basic approach of this new method is similar to DCMNJ in that it uses divide-and-conquer,
applies neighbor joining to subsets of the sequence dataset, and then merges the subtrees
together. However, it differs from DCMNJ in a few important ways, which we describe below.
Most importantly, it divides the taxon set into disjoint subsets and then merges the subset
trees without relying on any supertree method; thus, it avoids the challenge of relying on
existing supertree methods, none of which are likely to scale to large datasets. We present the
results here for the CFN model, but the extension to even complex DNA sequence evolution
models is straightforward (e.g., see [9]). Our arguments for correctness are very similar to
those in [7, 11]. The rest of the manuscript is organized as follows. We provide background
material in Section 2. We present the basic method, INC, in Section 3, and its extension
to allow for disjoint constraint trees (computed using various methods) in Section 4. We
conclude with a discussion of future work in Section 5.

2 Background Material

2.1 Absolute Fast Convergence under the CFN Model.
Under the Cavender-Farris-Neyman (CFN) Model, we have a rooted binary tree T and
substitution probabilities p(e) on the edges e of T . The state at the root is 0 of 1 with equal
probability, and the state changes on edge e with probability p(e), with 0 < p(e) < 0.5 for all
edges e. This model can be used for sequence evolution by requiring that all the sites evolve
i.i.d. down the tree. Finally, we define w(e) = − 1

2 log(1− 2pe). We also define CFNf,g to
be the set of all CFN model trees (T,Θ) (where Θ denotes the set of numeric parameters on
the edges) with f ≤ w(e) ≤ g for all edges in T , for arbitrarily selected positive real numbers
f ≤ g.

I Definition 1. A phylogeny estimation method Φ is said to be absolute fast converging
(AFC) under the CFN model if, for all positive values f, g, ε (with f ≤ g), there is a
polynomial p such that for all CFN model trees (T,Θ) in CFNf,g the method Φ will recover
the unrooted tree topology T given sequences of length p(n) with probability at least 1− ε.
Note that the polynomial will in general depend on f, g and ε.

2.2 DCMNJ+SQS: an AFC method with good empirical performance
but low scalability

Here we describe the approach used in [25] called “DCMNJ+SQS”, which was shown to
have high accuracy in simulation studies with up to 1600 sequences [14]. (Note: “DCM"
refers to “disk-covering method" and “SQS" refers to the “short quartet support" criterion;
see [25, 23]). The input is a set of sequences generated by an unknown model tree and a
dissimilarity matrix d (i.e., a symmetric matrix that is zero on the diagonal) where dij is the
estimated distance between taxa si and sj , based on the selected sequence evolution model.
For example, when the model is CFN, then dij = − 1

2 ln(1 − 2Hij) will be the “empirical
CFN distance", where Hij is the Hamming distance between sequences i and j divided by
the sequence length (i.e., the normalized Hamming distances). Note that these empirical

WABI 2018



8:4 New AFC Phylogeny Estimation Methods

CFN distances converge in probability to Dij = − 1
2 log(1− 2Eij) where Eij is the expected

normalized Hamming distance between leaves i and j, and that D is an additive matrix for
the model tree. DCMNJ+SQS uses a two-phase structure, as follows:

Phase 1: A set T of O(n2) trees is computed, with at most one tree tq for each entry q in
the dissimilarity matrix d.
Phase 2: All the trees in T are scored using the SQS criterion (where “SQS” refers to
the short quartet support, defined in [25]) and the best-scoring tree is returned.

Before we can describe these phases, we need to provide some definitions:

I Definition 2. (From [10].) For the given dissimilarity matrix d and positive real number q,
we define the threshold graph TG(d, q) to be the graph with the n taxa as the vertex set and
edges (i, j) if and only if dij ≤ q. We also assign weight dij to each edge (i, j) in TG(d, q).

We use a standard technique, called the Four Point Method, to compute quartet trees
(i.e., unrooted binary trees on four leaves) that is based on the Four Point Condition [5].

I Definition 3. (From [8]) Given a four taxa set {u, v, w, z} and a dissimilarity matrix d,
the Four Point Method (FPM) infers tree uv|wz (meaning the quartet tree with an edge
separating u, v from w, z) if d(u, v) + d(w, z) ≤ min{d(u,w) + d(v, z), d(u, z) + d(v, w)}. If
equality holds, then the FPM infers an arbitrary topology.

Phase 1 for DCMNJ+SQS is performed as follows. Given q (the selected threshold), a
threshold graph TG(d, q) is computed, then edges are added to the graph to make it
triangulated (if necessary), where a triangulated graph is one that has no simple cycles of
size four or more; furthermore, if d is additive, then TG(d, q) is triangulated. Once the
triangulated graph is computed, the set of all maximal cliques can be extracted in polynomial
time. See [25] for additional details and proofs.

Trees are computed for each maximal clique using neighbor joining [20], and the trees on
these cliques are then combined into a tree on the full set of species using a selected supertree
method. Phase 2 uses the SQS criterion, but other criteria also have good theoretical
properties. The SQS score of a tree T , defined by SQS(T ), is the maximum l such that
for all quartets {u, v, w, x} of taxa with diameter at most l, the Four Point Method on
{u, v, w, x} produces a four-leaf tree that agrees with the T .

I Theorem 4 (From [25, 14]). The short quartet support (SQS) criterion score can be
calculated for each tree tq ∈ T in polynomial time. Also, there is a polynomial p(n) such that
if T contains the true tree T and the sequences are of length p(n) (where n is the number of
leaves), then with probability at least 1− ε, the tree in T with the highest SQS score is the
true tree.

The basic approach has good theoretical guarantees (i.e., it is AFC, and more generally
if X is any exponentially converging base method (meaning X recovers the tree with high
probability given exponentially many sites) and Y is any true tree selection criteria that has the
same theoretical properties as SQS (as given in Theorem 4), then DCMX+Y is AFC. Empirical
performance of DCMNJ+SQS on simulated data was excellent, substantially outperforming
NJ and fast triplet/quartet-based greedy tree growing methods, such as HTP+FP, on large
datasets especially when there is a high rate of evolution [14]. However, these studies were
limited to datasets with at most 1600 sequences. In other words, DCMNJ+SQS was not tested
on very large datasets, which is to some extent the point of absolute fast converging methods.

Furthermore, the design of DCMNJ suggests some definite problems in terms of scalability
to large datasets. Most importantly, supertree methods do not have good scalability, as all



Q. Zhang, S. Rao, and T. Warnow 8:5

current supertree methods with good accuracy are attempts to solve NP-hard optimization
problems, and so become computationally intensive on large datasets [24]. Any reasonably
fast method will need to completely avoid the supertree calculation step.

3 The basic technique: Incremental Tree-Building

We begin by describing the INC method in the unconstrained condition, which uses short
quartet trees to build a tree, and we prove that the method is AFC. We then show how
INC can be modified to take an arbitrary set of disjoint constraint trees, and we prove that
when the constraint trees are constructed using an AFC method then the result is also AFC.
We then present the O(n2) INC-NJ method, which is AFC and uses neighbor joining on
carefully selected subsets to achieve this optimal running time. We then discuss the use of
constrained-INC with maximum likelihood methods (or other computationally intensive but
highly accurate methods) to construct the subset trees.

Throughout this section, we denote dij to be the empirical CFN dissimilarity between
taxa i, j and Dij to be the underlying CFN model distance between taxa i, j defined
by the model tree (T,Θ). Given matrices d and D and positive real q, we define the
ε(q) = max{|dij −Dij | : dij ≤ q or Dij ≤ q}.

We now describe the fast incremental tree-growing method (INC) that inserts taxa in a
specific order and outputs a binary tree. We note that the structure of our method is similar
to that of HGT+FP. INC achieves a faster runtime when compared to DCMNJ for two primary
reasons. First, our method simply requires a minimum spanning tree of our dissimilarity
matrix without the need to triangulate and compute maximal cliques, as well as iterate over
multiple thresholding values. Second, our method uses the spanning tree as a guide for an
incremental tree-growing method that runs in O(n2), as opposed to the slower runtimes
required by NJ techniques. Together, this algorithm runs in the optimal O(n2) time.

The input is the dissimilarity matrix d (which is based on computing CFN distances,
and so will converge to an additive matrix as the sequence length increases). We begin by
constructing the minimum spanning tree S of TG(d,∞) and use S during an incremental
tree growing procedure that inserts taxa one by one in an order such that the subgraph
induced by the inserted vertices is connected in S. We let q0 be the maximum distance of an
edge in S. We will show that by setting q = 8q0, we can develop a tree construction method
based on this threshold q that runs in polynomial time and is AFC. Specifically, we order
the vertices as follows.

Insertion Ordering: Choose an arbitrary leaf in S to be the starting vertex in the ordering.
Then, order the vertices according to order of traversal in a BFS (or DFS) from the starting
vertex.

We initialize our tree t by choosing the first three taxa according to our insertion ordering
and forming the three-leaf tree with an internal node that connects to all three taxa. Now
suppose we wish to add a vertex x into t. We will select the edge of t into which we add x by
performing a collection of “short quartet queries" (see [8, 9] for definition and discussion of
short quartets) at the different internal nodes of t, and then insert x into the edge that has
the highest support (in the best case, it “agrees" with each query). Note that this node query
insertion procedure was explored earlier in [3, 22] to produce a fast O(n logn) tree-growing
algorithm, but analyzed under a different model of quartet tree error than we use here and a
direct implementation of their model does not produce an AFC algorithm.

WABI 2018



8:6 New AFC Phylogeny Estimation Methods

Given an internal node u of t, because t is binary the removal of u splits t into three
non-empty vertex components t1, t2, t3 (with internal nodes included). Because the leaves of
t form a connected induced subtree of S, we can find some taxon ui in ti such that (ui, vi) is
an edge in S and vi ∈ V (t) \ ti is also a taxon, where V (t) is the vertex set of t.

I Definition 5. Let u be an internal node of a binary tree t and let u1, u2, u3 be leaves in
the three components of t upon removing u such that vi is not in the same component as ui

and there exists vi with (ui, vi) an edge in S. Then, for some choice of q, a quartet query on
{u1, u2, u3, x} is q-valid iff the d-diameter (maximum pairwise distance with respect to the
input matrix d) of {u1, u2, u3, x} is less than q. We use valid when q is clear from context.

By looking at all the valid queries and the corresponding quartet trees calculated using
the Four Point Method, we can choose an edge e in the tree t on which to add x that
maximizes the support for the placement; we then subdivide e and then make x adjacent to
the node created. To choose an edge, each valid short quartet query identifies some subset of
edges of t into which x should be placed. Specifically, we assign votes according to a valid
query as follows:

Vote Assignment: If the valid query on internal node u shows that ti and x should be on
the same side of the quartet using the Four Point Method, then all edges in the induced
subtree on ti ∪ u will receive a vote.

The support for an edge e is then the total number of votes it receives from all the short
quartets, and the edge that receives the highest number of votes wins. If there is a tie, then
one of the edges receiving the most votes is selected (randomly). However, for favorable
values of d and q, there will be a unique edge on which all queries agree, and so the algorithm
will correctly add x into t (in such a way that it agrees with the model tree T ), and so
inductively the greedy algorithm will construct the model tree. In particular, we show that
for our choice of q = 8q0, if ε(q) < f/2, then there is always a unique edge chosen by this
voting procedure, and furthermore that unique edge is the correct edge. Hence, this greedy
algorithm will correctly reconstruct the true tree.

t = INC(d)

1. Calculate a spanning tree S of T G(d, ∞).
2. Set q = 8q0, where q0 is the maximum edge length of S.
3. Find the insertion ordering according to a BFS of S.
4. Initialize t as the three-leaf tree on the first three taxa in the ordering.
5. Insert each taxon according to the ordering on the edge with the most votes from valid queries.
6. Return the resulting tree t.

I Theorem 6. Let d be a dissimilarity matrix, D an additive matrix defining a model tree T
with edge weights w : E(T ) → R+, and q = 8q0, where q0 is the maximum distance in the
minimum spanning tree of TG(d,∞). Let f be the length of the shortest internal edge in T
and suppose ε(q) < f/2 and q0 ≥ f/2, then INC(d) returns T .

Proof. We proceed by induction on the size of T . Our claim holds when T is size 3, since
there is only one such topology. Let t be the tree maintained by INC before the insertion of
the last taxon x according to our insertion ordering. By induction, t must have the correct
topology. It suffices to show that valid queries can determine the accurate placing of x.
Assume that the correct location on which to place x is e = (u, v) of t. Note that when
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ε(q) < f/2, all valid node queries will return the correct quartet tree. Therefore, e will
receive all possible votes.

To show that all other edges will miss at least one vote, it suffices to show that node
queries are valid at u, v because all other edges will miss a vote from one of the two such
queries, confirming that x is inserted at e (if one of u, v is a leaf vertex, the same conclusion
is achieved).

We will show that a node query at u is valid; a similar argument is done for v. Let
u1, u2, u3 be selected upon the deletion of u with their corresponding vi. First, for all i,
D(ui, vi) ≤ q0 + f/2 since d(ui, vi) ≤ q0 and ε(q) ≤ f/2. Then, since vi ∈ V \ ti and t is the
correct tree topology, D(ui, u) ≤ D(ui, vi) ≤ q0 + f/2, where D is the true distance matrix
and u is the corresponding internal node in T .

Next, we claim that D(x, u) ≤ 2q0 + f and together we will have concluded that
{u1, u2, u3, x} is a quartet of d-diameter at most 3q0 + 2f since by triangle inequality,
we deduce {u1, u2, u3, x} is of D-diameter 3q0 + 3f/2 and so the d-diameter is bounded at
3q0 + 2f ≤ 7q0 ≤ q, proving validity.

For the last claim, since x is within q0 of some leaf x′ in t, D(x, x′) ≤ d(x, x′) + f/2 ≤
q0 + f/2. Since the path x to x′ must pass through u or v in T and e = (u, v) is the correct
edge insertion location, we conclude that min(D(x, u), D(x, v)) ≤ q0 + f/2.

If D(x, u) ≤ q0 + f/2, then our claim follows (we automatically get D(x, u) ≤ 2q0 + f).
Else, D(x, v) ≤ q0 +f/2. Since v ∈ V (t3), D(x, u) ≤ D(x, v)+D(u, v) ≤ q0 +f/2+D(u, v) ≤
q0 + f/2 +D(u, u3) ≤ q0 + f/2 + q0 + f/2 ≤ 2q0 + f .

Therefore, if the correct edge is u, v, then the query at u votes against all edge placements
for x in t1∪ t2, and symmetrically for v. Hence all other edges will miss at least one vote. J

I Theorem 7. Given the n× n dissimilarity matrix d and a given q, INC(d) can be imple-
mented in O(n2).

Proof. It suffices to show that as we grow our tree t, each insertion step can be implemented
to take O(n) time. First, each internal node, when initialized due to an inserted taxon, can
store the necessary vertices u1, u2, u3 and that can be done in O(n) time. Each node query
is O(1), so in total the |V (t)| node queries take O(n) time.

The only possible difficulty is efficiently finding the edge with the most votes. A naive
implementation will lead to an O(n3) runtime. For any edge e = (u, v) on the tree, let
n(e) denote the total number of votes that e has. Note that if e, e′ are adjacent edges in t
with common vertex u , then n(e)− n(e′) can be determined by simply looking at the short
quartet query at u. Specifically, let e = (u, v) and e′ = (u, v′) be adjacent edges at vertex
u. If the query at u was invalid or it showed that x should be in tj with v, v′ 6∈ tj , then
n(e)− n(e′) = 0. Otherwise, if the query returned tj with v ∈ tj , then n(e)− n(e′) = 1; a
similar argument shows that if v′ ∈ tj then n(e)− n(e′) = −1. Therefore, by using this local
property, we can calculate n(e) + C for some constant C in O(n) time by performing BFS
starting from any leaf of the tree. The BFS then simply returns the edge with the highest
score. J

I Theorem 8. [2](Azuma’s Inequality) Suppose X = (X1, X2, ..., Xk) are independent random
variables taking values in any set S, and let L : Sk → R be any function that satisfies the
condition: |L(u)− L(v)| ≤ t whenever u and v differ in just one coordinate. Then,

P (|L(X)− E[L(X)]| ≥ λ) ≤ 2 exp(− λ2

2t2k ).
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I Theorem 9. For k = Ω( ln(n)e4q

f2 ), with high probability, we have ε(q) < f/2 for all
q = O(g logn). Furthermore, if q0 is the minimum value of q such that TG(d, q) is connected,
then q0 = O(g logn). and q0 ≥ f/2.

Proof. To show that ε(q) < f/2, we must show that |Dij − dij | < f/2 when Dij < q or
dij < q. First, if Dij < q we show that k = Ω( ln(n)e2q

f2 ) suffices to show |Dij − dij | < f/2
with high probability. We express our probability of failure as:

P (|Dij − dij | ≥ f/2) = P (| log(1− 2Hij

1− 2Eij
)| ≥ f)

≤ P ((1− 2Eij)e−f ≥ 1− 2Hij) + P (1− 2Hij ≥ (1− 2Eij)ef )

The first expression can be written as:

P (Hij − Eij ≥
1
2(1− e−f )(1− 2Eij)) ≤ P (Hij − Eij ≥

1
2(1− e−f )e−2Dij )

≤ 2 exp(−Ω(k(1− e−f )2e−2q))
≤ 2 exp(−Ω(lnn))

The second line follows from Azuma’s with t = 1/k. Similarly, the second expression is
equivalent to:

P (Eij −Hij ≥
1
2(ef − 1)(1− 2Eij)) ≤ P (Eij −Hij ≥

1
2(ef − 1)e−2Dij )

≤ 2 exp(−Ω(k(ef − 1)2e−2q))
≤ 2 exp(−Ω(lnn))

Next, if dij < q, then we show that Dij < 2q + 1 with high probability and then apply the
previous result with q′ = 2q + 1. First, if we let rij = Dij − q, then by simple algebra our
probability that dij < q when rij > q + 1 is bounded by

P (dij < q) = P (Dij − dij > Dij − q)

= P (−1
2 log( 1− 2Eij

1− 2Hij
) > Dij − q)

= P (1− 2Hij > e2rij (1− 2Eij))

= P (Eij −Hij >
1
2(e2rij − 1)e−2Dij )

= P (Eij −Hij >
1
4e

2rij−2Dij )

≤ 2 exp(−Ω(ke−2q))
≤ 2 exp(−Ω(lnn))

The fourth to fifth line follows since e2rij − 1 > 1
2e

2rij whenever rij > 1. Therefore, we
conclude our claim that ε(q) < f/2 with high probability.

We now show that q0 = O(g logn). Note that in our model tree, since g is the maximum
length of an edge in a binary tree with n leaves, it follows that TG(D,O(g logn)) is connected.
By our previous part, we know that |dij − Dij | < f/2 for all edges in TG(D,O(g logn)).
Therefore, we conclude that TG(d,O(g logn)) is also connected, and so q0 = O(g logn).

Lastly, we show q0 ≥ f/2. Consider all edges in the minimum spanning tree of TG(d,∞).
These edges have true length (in D) at least f and by our previous part the length of the
edges in the minimum spanning tree deviate from the true length (as defined by the model
tree) by at most f/2 with high probability. Thus, we conclude that q0 ≥ f/2. J
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I Theorem 10. INC is absolute fast converging for the CFN model and takes O(n2) time
(assuming distances are precomputed).

Proof. All we need to establish is that for every triplet ε, f, g with 0 < f < g <∞ and ε > 0,
there is a polynomial p(n) such that for all model trees (T,Θ) in CFNf,g, given sequences of
length at least p(n) generated by (T,Θ) and empirical CFN dissimilarity matrix d computed
on these sequences, the tree returned by INC(d) is the model tree T with probability at least
1− ε.

Let q0 be the maximum edge length on the minimum spanning tree. By Theorem 9,
with high probability, we know q0 = O(g logn) and thus q = 8q0 = O(g logn). Thus, when
k = Ω(ln(n)e4q/f2) = poly(n), we have ε(q) < f/2. Furthermore, q0 ≥ f/2. Therefore, by
Theorem 12, the insertion algorithm will return the model tree T . Hence, INC is absolute
fast converging for the CFN model.

Finally, given the dissimilarity matrix, the running time to compute the constraint
trees andthe minimum spanning tree and to run the insertion algorithm are all O(n2) by
Theorem 7. J

The method we described runs in O(n2) time and is AFC. As shown by [11], any algorithm
that reconstructs the true tree with high probability and uses distance calculations as its
only source of information about the phylogeny on sequences of length O(poly logn) will
have Ω(n2) runtime, up to logarithmic factors. Hence, our runtime is optimal.

4 Boosting INC using constraint trees

We show how INC can be modified to take an arbitrary set of disjoint constraint trees, and
we prove that when the constraint trees are constructed using an AFC method then the
result is also AFC. We present several variants of this method: one that optimizes speed
while still guaranteeing that the resultant algorithm is AFC, and other AFC variants that
are designed for improved accuracy but with an increase in running time.

4.1 Constrained INC
The input to the constrained version of INC includes a set of leaf-disjoint trees. Therefore,
the constraint set is compatible (i.e., a compatibility tree exists). We will describe a
straightforward modification to INC so that it never violates the topological information in
the constraint trees, by which we mean only that the final output tree is required to induce
each constraint tree, when restricted to that specific set of leaves. Thus, the constraint trees
are not required to be clades in the output tree.

Before proceeding, we define the induced tree topology, tA, on a tree t and a subset
of leaves A as follows. Consider the minimal subtree of t that contains the leaves A, and
then suppress all nodes of degree two (i.e., replace all maximal paths of degree two nodes by
a single edge). For an edge e ∈ tA, note that its endpoints correspond to vertices in t, and
that e corresponds to a (possibly length 1) path in t; we denote the corresponding endpoints
of e as et(u) and et(v). For an induced tree tA, the component in t corresponding to
an edge e ∈ tA is the set of edges and vertices that can be reached by a walk starting from
et(u) and ending at et(v) without using et(u) or et(v) multiple times. Note this will be a
subgraph of t that includes et(u) and et(v) as leaves.

When working with constraint trees, we alter the insertion algorithm to account for the
constraints. Recall that the constraint trees are on disjoint sets of taxa. Thus, when inserting
a taxon, we identify the corresponding constraint tree tc that includes that new taxon. Let
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A be the taxa shared between tc and t and note that tAc = tA since the trees are consistent.
Thus, in tA∪{x}c , the taxon x can be viewed as being attached to some edge e in tA. The
eligible edges are in the component in t corresponding to e. We then simply run INC on the
component to find the desired edge of insertion.

4.2 INC-NJ
We continue by presenting the O(n2) INC-NJ method, which is AFC and uses neighbor joining
on carefully selected subsets to achieve this running time. Given the selected threshold q,
we take our threshold graph TG(d, q) and compute a greedy disjoint clique decomposition,
such that each clique is of size O(

√
n). This is done by a simple ball-growing procedure

that is interrupted when the ball includes more than O(
√
n) vertices; it is easy to see this

takes O(n2) time. Next, we run NJ on each of these clique; this produces a set of neighbor
joining subset trees that will serve as our constraint trees. Note that since the subsets are
disjoint, the subset trees are compatible (in that a compatibility supertree exists). Finally, if
ε(q) < f/2, then the following theorem guarantees that all constraint trees produced by our
technique are correct. Furthermore, since NJ applied to each clique of size O(

√
n) takes at

most O(n1.5) time, our total runtime over all cliques is O(n2).

I Theorem 11. [From [1]] Neighbor Joining (NJ) will recover the true tree T whenever
the input matrix d satisfies L∞(d,D) < f/2, where D is an additive matrix defining an
edge-weighted version of the true tree T and f is the shortest internal branch length in T .
Furthermore, the runtime is O(n3).

I Theorem 12. INC-NJ is AFC and takes O(n2) (assuming distances are precomputed).

Proof. Follows directly from combining Theorem 10 and 11. J

4.3 Boosting INC using other constraint trees
The version of constrained-INC we presented in the previous section achieves an optimal
running time, but is based on obtaining constraint trees using neighbor joining on small
subsets. However, we could modify the decomposition to produce larger subsets and thus
take advantage of the likely improvement in accuracy obtained by using neighbor joining on
these larger subsets to produce the constraint trees. This would still produce a polynomial
time algorithm, but one with a higher (and hence suboptimal) running time.

Another variation would be to use other phylogeny estimation methods besides neighbor
joining. In particular, maximum likelihood could be used to construct the constraint trees. As
shown in [19], maximum likelihood under the CFN model is AFC. Hence, running maximum
likelihood on any subsets of the taxon set will provide correct subset trees from polynomial
length sequences with high probability. Hence, the same approach we describe for use with
neighbor joining (where that subset trees are computed using neighbor joining) can be
modified to be used with maximum likelihood, and will be an AFC method. Furthermore,
because maximum likelihood is AFC, we can afford to use maximum likelihood on arbitrarily
large subsets, without losing the overall AFC property (as we show below); the only negative
impact of doing this would be running time, since maximum likelihood is NP-hard [16] and
heuristics for maximum likelihood are computationally more intensive than neighbor joining.

I Theorem 13. If the disjoint constraint trees are estimated by a method that is AFC under
the CFN model, then constrained INC with the estimated constraint trees is AFC under the
CFN model. Hence, using maximum likelihood to produce constraint trees and combining the
constraint trees using INC is AFC under the CFN model.
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Proof. Let Φ be an AFC method, and fix ε, f, g and some CFN model tree (T,Θ). Hence,
we can find a polynomial p1(n) (where the degree may depend on f, g) such that given
sequences of length p1(n) guarantees that with probability at least 1− ε, all the constraint
trees computed using Φ are correct. Then, by Theorem 10, we can find p2(n) (where the
degree may depend on f, g) such that INC returns the model tree with probability at least
1− ε given sequences of length p2(n). Hence, given sequences of length max{p1(n), p2(n)},
constrained INC returns the model tree with probability at least 1− 2ε. Thus, constrained
INC is AFC. By [19], maximum likelihood is AFC. Hence, using INC with disjoint maximum
likelihood constraint trees is AFC, for all ways of decomposing the dataset into disjoint
subsets. J

5 Discussion

This paper presents a novel algorithmic technique for constructing phylogenetic trees, which
allows statistically consistent and highly accurate methods to be used on subsets of the taxa
in a divide-and-conquer framework. We proved that several of these variants are absolute fast
converging (AFC) under the CFN sequence evolution model, and that some of these achieve
O(n2) time (where n is the number of sequences) once the dissimilarity matrix relating the
sequences is computed. Although this theory was presented for the CFN model, the extension
to the Jukes-Cantor DNA sequence evolution models is trivial (i.e., just substitute the CFN
distances by Jukes-Cantor distances), and equally simple for more complex models, provided
that statistically consistent distance estimators exist (see discussion in [23]). Fortunately,
all the standard sequence evolution models, including the General Markov Model [21], have
such distance estimators. More generally, tree estimation methods could be scaled to large
datasets using this approach, provided that it is possible to compute a matrix of pairwise
distances that is guaranteed to converge to an additive matrix as the amount of data increases.
The goal of this work was improved empirical performance, compared to prior AFC methods.
Thus, additional work is needed to evaluate the empirical benefits of this approach in these
various applications.
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