
18th International Workshop on
Algorithms in Bioinformatics

WABI 2018, August 20–22, 2018, Helsinki, Finland

Edited by

Laxmi Parida
Esko Ukkonen

LIPIcs – Vo l . 113 – WABI 2018 www.dagstuh l .de/ l ip i c s

Editors
Laxmi Parida Esko Ukkonen
IBM T. J. Watson Research Center University of Helsinki
parida@us.ibm.com esko.ukkonen@helsinki.fi

ACM Classification 2012
Applied computing → Bioinformatics, Theory of computation → Design and analysis of algorithms,
Mathematics of computing → Probabilistic inference problems, Computing methodologies → Machine
learning approaches

ISBN 978-3-95977-082-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-082-8.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.WABI.2018.0

ISBN 978-3-95977-082-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-082-8
https://www.dagstuhl.de/dagpub/978-3-95977-082-8
https://dnb.d-nb.de
https://doi.org/10.4230/LIPIcs.WABI.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-082-8
http://drops.dagstuhl.de/lipics
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

WABI 2018

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Laxmi Parida and Esko Ukkonen . 0:vii

A Duality-Based Method for Identifying Elemental Balance Violations in
Metabolic Network Models

Hooman Zabeti, Tamon Stephen, Bonnie Berger, and Leonid Chindelevitch 1:1–1:13

Prefix-Free Parsing for Building Big BWTs
Christina Boucher, Travis Gagie, Alan Kuhnle, and Giovanni Manzini 2:1–2:16

Detecting Mutations by eBWT
Nicola Prezza, Nadia Pisanti, Marinella Sciortino, and Giovanna Rosone 3:1–3:15

Haplotype-aware graph indexes
Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict Paten, and Richard Durbin 4:1–4:13

Reconciling Multiple Genes Trees via Segmental Duplications and Losses
Riccardo Dondi, Manuel Lafond, and Celine Scornavacca . 5:1–5:16

Protein Classification with Improved Topological Data Analysis
Tamal K. Dey and Sayan Mandal . 6:1–6:13

A Dynamic Algorithm for Network Propagation
Barak Sternberg and Roded Sharan . 7:1–7:13

New Absolute Fast Converging Phylogeny Estimation Methods with Improved
Scalability and Accuracy

Qiuyi (Richard) Zhang, Satish Rao, and Tandy Warnow . 8:1–8:12

An Average-Case Sublinear Exact Li and Stephens Forward Algorithm
Yohei M. Rosen and Benedict J. Paten . 9:1–9:13

External memory BWT and LCP computation for sequence collections with
applications

Lavinia Egidi, Felipe A. Louza, Giovanni Manzini, and Guilherme P. Telles 10:1–10:14

Kermit: Guided Long Read Assembly using Coloured Overlap Graphs
Riku Walve, Pasi Rastas, and Leena Salmela . 11:1–11:11

A Succinct Solution to Rmap Alignment
Martin D. Muggli, Simon J. Puglisi, and Christina Boucher . 12:1–12:16

Spalter: A Meta Machine Learning Approach to Distinguish True DNA Variants
from Sequencing Artefacts

Till Hartmann and Sven Rahmann . 13:1–13:8

Essential Simplices in Persistent Homology and Subtle Admixture Detection
Saugata Basu, Filippo Utro, and Laxmi Parida . 14:1–14:10

Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time
Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen 15:1–15:15

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Multiple-Choice Knapsack for Assigning Partial Atomic Charges in Drug-Like
Molecules

Martin S. Engler, Bertrand Caron, Lourens Veen, Daan P. Geerke,
Alan E. Mark, and Gunnar W. Klau . 16:1–16:13

`1-Penalised Ordinal Polytomous Regression Estimators with Application to
Gene Expression Studies

Stéphane Chrétien, Christophe Guyeux, and Serge Moulin . 17:1–17:13

Differentially Mutated Subnetworks Discovery
Morteza Chalabi Hajkarim, Eli Upfal, and Fabio Vandin . 18:1–18:14

DGEN: A Test Statistic for Detection of General Introgression Scenarios
Ryan A. Leo Elworth, Chabrielle Allen, Travis Benedict, Peter Dulworth, and
Luay Nakhleh . 19:1–19:13

PRINCE: Accurate Approximation of the Copy Number of Tandem Repeats
Mehrdad Mansouri, Julian Booth, Margaryta Vityaz, Cedric Chauve, and
Leonid Chindelevitch . 20:1–20:13

Degenerate String Comparison and Applications
Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi,
Costas S. Iliopoulos, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone 21:1–21:14

A Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor
Progression

Nikolai Karpov, Salem Malikic, Md. Khaledur Rahman, and S. Cenk Sahinalp 22:1–22:19

Heuristic Algorithms for the Maximum Colorful Subtree Problem
Kai Dührkop, Marie A. Lataretu, W. Timothy J. White, and Sebastian Böcker . . . 23:1–23:14

Parsimonious Migration History Problem: Complexity and Algorithms
Mohammed El-Kebir . 24:1–24:14

The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra with
Application to Spectral Deconvolution

Szymon Majewski, Michał Aleksander Ciach, Michał Startek, Wanda Niemyska,
Błażej Miasojedow, and Anna Gambin . 25:1–25:21

Preface

This proceedings volume contains papers presented at the 18th Workshop on Algorithms in
Bioinformatics (WABI 2018), which was held at Aalto University, Helsinki, Finland, from
August 20–22, 2018. WABI 2018 was one of seven conferences that were organized as part of
ALGO 2018.

The Workshop on Algorithms in Bioinformatics is an annual conference established in 2001
to cover all aspects of algorithmic work in bioinformatics, computational biology, and systems
biology. The workshop is intended as a forum for discrete algorithms and machine-learning
methods that address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and tested in
simulations and on real datasets. The meeting’s focus is on recent research results, including
significant work-in-progress, as well as identifying and exploring directions of future research.

WABI 2018 is grateful for the support to the sponsors of ALGO 2018: Federation of
Finnish Learned Societies, Helsinki Institute for Information Technology HIIT, City of
Helsinki, and European Association for Theoretical Computer Science (EATCS).

In 2018, a total of 57 manuscripts were submitted to WABI from which 25 were selected
for presentation at the conference and are included in this proceedings volume as full papers.
Extended versions of selected papers will be invited for publication in a thematic series in
the journal Algorithms for Molecular Biology (AMB), published by BioMed Central.

The 25 papers were selected based on a thorough peer review, involving at least three
independent reviewers per submitted paper, followed by discussions among the WABI
Program Committee members. The selected papers cover a wide range of topics including
phylogenetic studies, network analysis, sequence and genome analysis, topological data
analysis and analysis of mass spectrometry data.

We thank all the authors of submitted papers and the members of the WABI Program
Committee and their reviewers for their efforts that made this conference possible. We are
also grateful to the WABI Steering Committee for their help and advice. We thank all
the conference participants and speakers who contributed to a great scientific program. In
particular, we are indebted to the keynote speaker of the conference, Mihai Pop, for his
presentation. We also thank Niina Haiminen and Jarkko Toivonen as well as Päivi Lindeman
and Pirjo Mulari for their help with editing the proceedings and setting up the poster session.
Finally, we thank the ALGO Organizing Committee and Parinya Chalermsook, Petteri Kaski,
and Jukka Suomela in particular for their hard work in making all of the local arrangements.

June 2018 Laxmi Parida
Esko Ukkonen

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Organization

Program Chairs

Laxmi Parida
Esko Ukkonen

IBM T. J. Watson Research Center
University of Helsinki

Program Committee

Tatsuya Akutsu
Lars Arvestad
Anne Bergeron
Paola Bonizzoni
Alessandra Carbone
Benny Chor
Daniel Doerr
Nadia El-Mabrouk
Liliana Florea
Anna Gambin
Niina Haiminen
Iman Hajirasouliha
Bjarni Halldorsson
Katharina Huber
Carl Kingsford
Gunnar W. Klau
Harri Lähdesmäki
Timo Lassmann
Yu Lin
Zsuzsanna Liptak
Veli Mäkinen
Paul Medvedev
Bernard Moret
Burkhard Morgenstern
Vincent Moulton
Robert Patro
Christian N. Storm Pedersen
Solon Pissis
Cinzia Pizzi
Alex Pothen
Teresa Przytycka
Sven Rahmann
Knut Reinert
Eric Rivals
Simona Rombo
Marie-France Sagot
Yasubumi Sakakibara
Mikaël Salson

Kyoto University
Stockholm University
Universite du Quebec a Montreal
Università di Milano-Bicocca
Université Pierre et Marie Curie
Tel-Aviv Univ
Bielefeld University
University of Montreal
Johns Hopkins University
Institute of Informatics, Warsaw University
IBM T. J. Watson Research Center
Cornell University
deCODE genetics and Reykjavik University
University of East Anglia
Carnegie Mellon University
Heinrich Heine University Düsseldorf
Aalto University
Telethon Kids
Australian National University
University of Verona
University of Helsinki
Pennsylvania State University
EPFL
University of Goettingen
University of East Anglia
Stony Brook
Aarhus University
King’s College London
Univ Padova
Purdue Univ
NIH
University of Duisburg-Essen
FU Berlin
CNRS & Univ Montpellier
Univ Palermo
INRIA Grenoble Rhône-Alpes and Univ de Lyon 1
Keio University
Université Lille 1

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:x Organization

Michael Schatz
Marcel Schulz
Russell Schwartz
Kana Shimizu
Rahul Siddharthan
Alexandros Stamatakis
Jens Stoye
Hélène Touzet
Lusheng Wang
Tandy Warnow
Yufeng Wu
Louxin Zhang
Shaojie Zhang
Michal Ziv-Ukelson

Cold Spring Harbor Laboratory
Saarland University
Carnegie Mellon University
Waseda University
Institute of Mathematical Sciences, Chennai
Heidelberg Instit. for Theoretical Studies
Bielefeld University
University of Lille and INRIA
City University of Hong Kong
University of Illinois at Urbana-Champaign
Univ Connecticut
National University of Singapore
University of Central Florida
Ben Gurion University of the Negev

WABI Steering Committee

Bernard Moret
Vincent Moulton
Jens Stoye
Tandy Warnow

EPFL
University of East Anglia
Bielefeld University
University of Illinois at Urbana-Champaign

ALGO Organizing Committee Chairs

Parinya Chalermsook
Petteri Kaski
Jukka Suomela

Aalto University
Aalto University
Aalto University

Additional Reviewers

Said Sadique Adi
Ilan Ben-Bassat
Sebastian Böcker
Aritra Bose
Christina Boucher
Bastien Cazaux
Annie Chateau
Rayan Chikhi
Neo Christopher Chung
Simone Ciccolella
Leandro I. S. De Lima
Meleshko Dmitrii
Yoann Dufresne
Hannes P. Eggertsson
Jamal Elkhader
Giuditta Franco

Krzysztof Gogolewski
Mauricio Soto Gomez
Aldo Guzmán-Sáenz
Arnaldur Gylfason
Marteinn Hardarson
Lin He
Markus Heinonen
Shahidul Islam
Vasanthan Jayakumar
Dominik Kempa
Kiavash Kianfar
Kuo-Ching Liang
Simone Linz
Guillaume Marçais
Ardalan Naseri
Laurent Noé

Murray Patterson
Leonardo Pellegrina
Pierre Peterlongo
Christopher Pockrandt
Raffaella Rizzi
Giovanna Rosone
Yutaka Saito
Mingfu Shao
Blerina Sinaimeri
Jean-Stéphane Varré
Roland Wittler
Weronika Wronowska
Zohar Yakhini
Guangyu Yang
Hongyu Zheng

List of Authors

Chabrielle Allen
caa6@rice.edu
Rice University
United States

Mai Alzamel
mai.alzamel@kcl.ac.uk
King’s College London
United Kingdom

Lorraine A. K. Ayad
lorraine.ayad@kcl.ac.uk
King’s College London
United Kingdom

Saugata Basu
sbasu@purdue.edu
Purdue University
United States

Travis Benedict
trb6@rie.edu
Rice University
United States

Bonnie Berger
bab@csail.mit.edu
MIT
United States

Giulia Bernardini
giuliabernardini.morg@gmail.com
University of Milan-Bicocca
Italy

Sebastian Böcker
sebastian.boecker@uni-jena.de
Friedrich Schiller University Jena
Germany

Julian Booth
julius_booth@sfu.ca
Simon Fraser University
Canada

Christina Boucher
cboucher@cise.ufl.edu
University of Florida
United States

Bertrand Caron
b.caron@uq.edu.au
School of Chemistry & Molecular Biosciences,
The University of Queensland, St Lucia
Australia

Bastien Cazaux
bastien.cazaux@lirmm.fr
University of Helsinki
Finland

Cedric Chauve
cedric_chauve@sfu.ca
Simon Fraser University
Canada

Leonid Chindelevitch
leonid@sfu.ca
Simon Fraser University
Canada

Stéphane Chrétien
stephane.chretien@npl.co.uk
National Physical Laboratory
United Kingdom

Michał Aleksander Ciach
m_ciach@student.uw.edu.pl
Institute of Mathematics, Informatics and
Mechanics, University of Warsaw
Poland

Tamal K. Dey
dey.8@osu.edu
The Ohio State University
United States

Riccardo Dondi
riccardo.dondi@unibg.it
Università degli Studi di Bergamo
Italy

Kai Dührkop
Kai.Duehrkop@uni-jena.de
Friedrich-Schiller-University Jena
Germany

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii Authors

Peter Dulworth
psd2@rice.edu
Rice University
United States

Richard Durbin
rd@sanger.ac.uk
Department of Genetics, University of
Cambridge
United Kingdom

Lavinia Egidi
lavinia.egidi@mfn.unipmn.it
Computer Science Institute, University of
Eastern Piedmont
Italy

Mohammed El-Kebir
melkebir@illinois.edu
University of Illinois at Urbana-Champaign
United States

Ryan A. Leo Elworth
r.a.leo.elworth@rice.edu
Rice University
United States

Martin S. Engler
martin.engler@cwi.nl
Life Sciences and Health Group, Centrum
Wiskunde & Informaticas, Amsterdam
Netherlands

Travis Gagie
travis.gagie@gmail.com
Diego Portales University
Chile

Anna Gambin
aniag@mimuw.edu.pl
Institute of Mathematics, Informatics and
Mechanics, University of Warsaw
Poland

Erik Garrison
eg10@sanger.ac.uk
Wellcome Sanger Institute
United Kingdom

Daan P. Geerke
d.p.geerke@vu.nl
AIMMS Division of Molecular and
Computational Toxicology, Vrije Universiteit
Amsterdam
Netherlands

Roberto Grossi
grossi@di.unipi.it
University of Pisa
Italy

Christophe Guyeux
christophe.guyeux@univ-fcomte.fr
University of Bourgogne Franche-Comté
France

Morteza Chalabi Hajkarim
morteza.hajkarim@bric.ku.dk
University of Copenhagen
Denmark

Till Hartmann
Till.Hartmann@uni-due.de
University of Duisburg-Essen
Germany

Costas S. Iliopoulos
c.iliopoulos@kcl.ac.uk
King’s College London
United Kingdom

Nikolai Karpov
nkarpov@iu.edu
Indiana University Bloomington
United States

Gunnar W. Klau
gunnar.klau@hhu.de
Algorithmic Bioinformatics, Heinrich Heine
University Düsseldorf
Germany

Dmitry Kosolobov
dkosolobov@mail.ru
Ural Federal University
Russia

Alan Kuhnle
akuhnle418@gmail.com
University of Florida
United States

Authors 0:xiii

Manuel Lafond
mlafond2@uOttawa.ca
Université de Sherbrooke
Canada

Marie A. Lataretu
marie.lataretu@uni-jena.de
Friedrich-Schiller-University Jena
Germany

Felipe A. Louza
louza@usp.br
Department of Computing and Mathematics,
University of São Paulo
Brazil

Szymon Majewski
smajewski@impan.pl
Institute of Mathematics, Polish Academy of
Sciences
Poland

Veli Mäkinen
vmakinen@cs.helsinki.fi
University of Helsinki
Finland

Salem Malikic
smalikic@sfu.ca
Simon Fraser University
Canada

Sayan Mandal
mandal.25@osu.edu
The Ohio State University
United States

Mehrdad Mansouri
mehrdad_mansouri@sfu.ca
Simon Fraser University
Canada

Giovanni Manzini
giovanni.manzini@unipmn.it
Computer Science Institute, University of
Eastern Piedmont
Italy

Alan E. Mark
a.e.mark@uq.edu.au
School of Chemistry & Molecular Biosciences,
The University of Queensland, St Lucia
Australia

Błażej Miasojedow
bmia@mimuw.edu.pl
Institute of Mathematics, Informatics and
Mechanics, University of Warsaw
Poland

Serge Moulin
serge.moulin@hotmail.fr
University of Bourgogne Franche-Comté
France

Martin D. Muggli
martin.muggli@colostate.edu
Colorado State University
United States

Luay Nakhleh
nakhleh@cs.rice.edu
Rice University
United States

Wanda Niemyska
w.niemyska@mimuw.edu.pl
Institute of Mathematics, Informatics and
Mechanics, University of Warsaw
Poland

Tuukka Norri
tsnorri@iki.fi
University of Helsinki
Finland

Adam M. Novak
anovak@soe.ucsc.edu
University of California, Santa Cruz
United States

Laxmi Parida
parida@us.ibm.com
IBM T. J. Watson Research Center
United States

Benedict J. Paten
bpaten@ucsc.edu
University of California, Santa Cruz
United States

Nadia Pisanti
pisanti@di.unipi.it
Dipartimento di Informatica, Universita di
Pisa, Italy & Erable Team, INRIA
Italy

WABI 2018

0:xiv Authors

Solon P. Pissis
solon.pissis@kcl.ac.uk
King’s College London
United Kingdom

Nicola Prezza
nicola.prezza@di.unipi.it
University of Pisa
Italy

Simon J. Puglisi
simon.j.puglisi@gmail.com
University of Helsinki
Finland

Md. Khaledur Rahman
morahma@umail.iu.edu
Indiana University Bloomington
United States

Sven Rahmann
Sven.Rahmann@uni-due.de
University of Duisburg-Essen
Germany

Satish Rao
satishr@cs.berkeley.edu
University of California, Berkeley
United States

Pasi Rastas
pasi.rastas@helsinki.fi
University of Helsinki
Finland

Yohei M. Rosen
yohei@ucsc.edu
University of California, Santa Cruz
United States

Giovanna Rosone
giovanna.rosone@unipi.it
Dipartimento di Informatica - Università di
Pisa
Italy

S. Cenk Sahinalp
cenksahi@indiana.edu
Indiana University Bloomington
United States

Leena Salmela
leena.salmela@cs.helsinki.fi
University of Helsinki
Finland

Marinella Sciortino
marinella.sciortino@unipa.it
University of Palermo
Italy

Celine Scornavacca
celine.scornavacca@umontpellier.fr
Institut des Sciences de l’Evolution
(Université de Montpellier, CNRS, IRD,
EPHE)
France

Roded Sharan
roded@post.tau.ac.il
Tel-Aviv University
Israel

Jouni Sirén
jouni.siren@iki.fi
University of California, Santa Cruz
United States

Michał Startek
mist@duch.mimuw.edu.pl
Institute of Mathematics, Informatics and
Mechanics, University of Warsaw
Poland

Tamon Stephen
tamon@sfu.ca
Simon Fraser University
Canada

Barak Sternberg
barakolo@gmail.com
Tel-Aviv University
Israel

Guilherme P. Telles
gpt@ic.unicamp.br
Institute of Computing, University of
Campinas
Brazil

Eli Upfal
eli@cs.brown.edu
Brown University
United States

Authors 0:xv

Filippo Utro
futro@us.ibm.com
IBM T. J Watson Research Center
United States

Fabio Vandin
fabio.vandin@unipd.it
University of Padova
Italy

Lourens Veen
l.veen@esciencecenter.nl
Netherlands eScience Center, Amsterdam
Netherlands

Margaryta Vityaz
margaryta_vityaz@sfu.ca
Simon Fraser University
Canada

Riku Walve
riku.walve@helsinki.fi
University of Helsinki
Finland

Tandy Warnow
warnow@illinois.edu
University of Illinois at Urbana-Champaign
United States

W. Timothy J. White
tim.white@bihealth.de
Berlin Institute of Health
Germany

Hooman Zabeti
hzabeti@sfu.ca
Simon Fraser University
Canada

Qiuyi (Richard) Zhang
qiyi@math.berkeley.edu
University of California, Berkeley
United States

WABI 2018

A Duality-Based Method for Identifying Elemental
Balance Violations in Metabolic Network Models
Hooman Zabeti
School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
hzabeti@sfu.ca

Tamon Stephen
Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
tamon@sfu.ca

Bonnie Berger
Department of Mathematics and CSAIL, Massachusetts Institute of Technology, Cambridge,
MA, 02139, United States of America.
bab@csail.mit.edu

Leonid Chindelevitch
School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
leonid@sfu.ca

Abstract
Elemental balance, the property of having the same number of each type of atom on both sides
of the equation, is a fundamental feature of chemical reactions. In metabolic network models,
this property is typically verified on a reaction-by-reaction basis. In this paper we show how
violations of elemental balance can be efficiently detected in an entire network, without the need
for specifying the chemical formula of each of the metabolites, which enhances a modeler’s ability
to automatically verify that their model satisfies elemental balance.

Our method makes use of duality theory, linear programming, and mixed integer linear pro-
gramming, and runs efficiently on genome-scale metabolic networks (GSMNs). We detect ele-
mental balance violations in 40 out of 84 metabolic network models in the BiGG database. We
also identify a short list of reactions that are candidates for being elementally imbalanced. Out
of these candidates, nearly half turn out to be truly imbalanced reactions, and the rest can be
seen as witnesses of elemental balance violations elsewhere in the network. The majority of these
violations involve a proton imbalance, a known challenge of metabolic network reconstruction.

Our approach is efficient, easy to use and powerful. It can be helpful to metabolic network
modelers during model verification. Our methods are fully integrated into the MONGOOSE
software suite and are available at https://github.com/WGS-TB/MongooseGUI3.

2012 ACM Subject Classification Applied computing → Biological networks

Keywords and phrases Metabolic network analysis, elemental imbalance, linear programming,
model verification

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.1

Funding TS would like to acknowledge financial support from an NSERC Discovery Grant. LC
would like to acknowledge financial support from a Sloan Foundation Fellowship and an NSERC
Discovery Grant.

Acknowledgements The authors would like to thank Cedric Chauve, Michael Schnall-Levin,
Kamyar Khodamoradi, Nafiseh Sedaghat and Reza Miraskarshahi for helpful discussions.

© Hooman Zabeti, Tamon Stephen, Bonnie Berger, and Leonid Chindelevitch;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hzabeti@sfu.ca
mailto:tamon@sfu.ca
mailto:bab@csail.mit.edu
mailto:leonid@sfu.ca
https://github.com/WGS-TB/MongooseGUI3
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Elemental Balance and Imbalance in Metabolic Networks

1 Introduction

Genome-scale metabolic network reconstructions (GSMNs) represent the collection of all
metabolic reactions available to a specific organism, together with constraints on their
direction. These GSMNs, coupled with the constraint-based analysis framework, have
been successfully used for predicting the growth rates of various organisms under different
environmental conditions [20], the minimal media necessary for growth [10], the essentiality
and synthetic lethality of specific genes [2], as well as identifying promising intervention
strategies to inhibit their growth [12].

A fundamental property of chemical reactions is elemental balance, the presence of the
same number of each type of atom in the reactants (left-hand side of the reaction) and the
products (right-hand side of the reaction). For instance, the ethanol combustion reaction,

C2H5OH + 3O2→ 3H2O + 2CO2,

is elementally balanced. Each reaction in a GSMN is expected to possess this property
[18, 15]. Unfortunately, it turns out that elemental balance is frequently violated in published
models [14]. Since the chemical formulas of the metabolites in a metabolic network are
sometimes left unspecified, it is a challenge for modelers to use the facilities provided by
platforms such as COBRA [18] to check elemental balance in their model directly.

In this paper we present a method for quickly and effectively identifying small groups of
reactions in a metabolic network model such that at least one of them violates elemental
balance, without the need to specify the elemental formulas of any metabolites. This
method is based on the earlier observation that a set of elementally imbalanced reactions
may be able to produce “something out of nothing” [14]. Our key theoretical result, first
proved in Chindelevitch [7], shows that the ability to produce something out of nothing is
mathematically equivalent to a violation of elemental balance; more specifically, if something
cannot be produced out of nothing, then there is a set of chemical formulas that make all
the reactions elementally balanced. Our method is fully integrated into the MONGOOSE
software suite for metabolic network analysis in exact rational arithmetic [8, 13], and is
available at https://github.com/WGS-TB/MongooseGUI3.

When we apply our method to the collection of existing GSMNs in the BiGG database
[11], we find elemental balance violations in 40 out of 84 of them. When we compare these
elemental balance violations to the formulas provided in some of the models, we observe
that our tool directly identifies a subset of the elementally imbalanced reactions in 28 of
the 40 GSMNs, and identifies small sets of reactions containing an imbalanced reaction,
which we call “free lunches”, in an additional 10 cases. We cannot ascertain which one of
these options occurs in the remaining 2 cases since they do not have a formula specified
for each metabolite. These results mean that our tool can help modelers efficiently identify
elemental imbalances during the process of GSMN reconstruction, even in the absence of
detailed chemical formulas for the metabolites.

Although previous authors have identified the presence of elemental imbalances in GSMNs
[14], it has not been previously demonstrated, to the best of our knowledge, that this could
be done without knowing the exact chemical formulas for the metabolites. Our results also
show that our method fails to detect the elementally imbalanced reactions that are present
in 32 out of 84 GSMNs in the BiGG database, so it does not guarantee that the network is
elementally balanced. Nevertheless, with a detection rate exceeding 55%, this method can
be an additional tool for model verification, and we expect it to be helpful to the community
thanks to its versatility, transparency, and ease of use.

https://github.com/WGS-TB/MongooseGUI3

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:3

2 Methods

This section is organized as follows. We start by explaining the connection between elemental
balance in a metabolic network and its ability to produce “something out of nothing”. We
then introduce our three-step method which consists of the following steps:
1. Verify whether the condition forbidding the production of something out of nothing is

violated, and if so, identify any metabolites that can be produced out of nothing.
2. Identify a small set of reactions responsible for such a production being possible.
3. Find a lower bound on the number of imbalanced reactions in the network and identify

reactions that are likely to be imbalanced.
All of these steps are carried out entirely from the stoichiometric matrix of the network,
without any knowledge of the underlying chemical formulas of the metabolites. Steps 1 and
2 are carried out using linear programming, while step 3 uses integer linear programming.

Throughout this paper we use the standard convention that z can also denote the vector
with all entries equal to z for any z ∈ R, and that all vector inequalities (such as x ≥ y) are
interpreted component-wise except for x 6= y, which means that x and y are unequal vectors.

Elemental Balance and the No Free Lunch Condition
A GSMN is a collection of metabolic reactions available to an organism. If the GSMN has
m metabolites and the n reactions, it is commonly represented by its stoichiometric matrix
S ∈ Rm×n, which contains a row for each metabolite and a column for each reaction. The
entry Sij is the stoichiometric coefficient of metabolite i in reaction j, which is positive if
reaction j produces metabolite i, negative if it consumes it, and zero otherwise.

The stoichiometric matrix S is elementally balanced with respect to some set of chemical
elements (called a “closed system with atomic representation” in [16]) if and only if there
exists a vector y with strictly positive components such that

yTS = 0. (1)

Indeed, one can think of y as containing the number of elements (atoms) in each metabolite,
since every metabolite has a strictly positive (and integer) number of atoms, and the total
number of atoms must be the same for the reactants and the products in any elementally
balanced reaction.

Therefore, the non-existence of such a vector y implies the presence of an imbalanced
reaction in the model. Theorem 2 shows that elemental balance is equivalent to the No Free
Lunch (FL) condition, which postulates that something cannot be produced out of nothing
by the net (overall) reaction of any linear combination of the reactions in the metabolic
network. This condition can be written as

A := {v | Sv ≥ 0 and Sv 6= 0} = ∅

The following theorem, known as Stiemke’s Alternative [5], is one of several statements
closely related to Farkas’ Lemma.

I Theorem 1 (Stiemke’s Alternative). Let A ∈ Rm×n. Then exactly one of the following is
true.
1. ∃ x ∈ Rn such that Ax ≥ 0 and Ax 6= 0
2. ∃ y ∈ Rm with y > 0 such that yTA = 0

WABI 2018

1:4 Elemental Balance and Imbalance in Metabolic Networks

I Theorem 2. [7] Let S be a stoichiometric matrix of a metabolic network. Then S is
elementally balanced with respect to some set of elements if and only if no linear combination
of the reactions in S can result in the production of one or more metabolites out of no
reagents.

Proof. Assume that S is elementally balanced. Then there exists a vector y with strictly
positive components such that

yTS = 0.

In this case, according to Theorem 1, there is no vector v ∈ Rn such that

Sv ≥ 0 and Sv 6= 0.

Therefore, the No FL condition holds.
Similarly, if the No FL condition holds for the matrix S, by Theorem 1, we can conclude
that there exists a strictly positive vector y such that

yTS = 0.

Hence, the matrix S is elementally balanced. J

As a result of Theorem 2, we can decide whether a given model violates elemental
balance by testing the No FL condition for it. That is, we can check whether there exists a
non-negative non-zero vector in the column space of S (i.e. A 6= ∅) [7].

Suppose the No FL condition is not satisfied for a stoichiometric matrix S (i.e. A 6= ∅).
Then there exists a linear combination of the reactions in S that can produce metabolites out
of nothing, individually or in combination. For the definitions below we recall that the support
of a vector v ∈ Rn is the set of its non-zero components, supp(v) := {i ∈ {1, . . . , n} | vi 6= 0}.

I Definition 3 (Free Lunch). Given a stoichiometric matrix S, we call a subset F of reactions
a free lunch if there exists a non-zero vector v ∈ A with supp(v) = F . We call such a v a
vector corresponding to the free lunch F .

I Definition 4 (Free Lunch Metabolite). For a free lunch F with a corresponding vector
v ∈ A, we call the metabolite t a free lunch metabolite if t ∈ supp(Sv).

Step 1: No FL and all possible FL metabolites
In the first step of our method we introduce a test to verify the No FL condition for a given
stoichiometric matrix S and identify the set of all possible FL metabolites. The verification
of the No FL condition is performed by checking the feasibility of the linear program

Sv = w,w ≥ 0, 1Tw ≥ 1, where v ∈ Rn, w ∈ Rm. (2)

In addition, recall that ‖x‖0 := |{i | xi 6= 0}| denotes the size of the support of a vector x
and t is a FL metabolite if t ∈ supp(Sv) for some v ∈ A. In the following lemma we show
that the support of Sv for the vector v solving the non-linear program

max
v
‖Sv‖0 subject to Sv ≥ 0, v ∈ Rn (3)

is the set of all possible FL metabolites for the matrix S. Note that if the optimum value of
(3) is greater than zero, then (2) is feasible and the No FL Condition is not satisfied.

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:5

I Lemma 5. Given a stoichiometric matrix S ∈ Rm×n, the support of Sv where v is a
solution of the non-linear program in (3) corresponds to the set of all possible FL metabolites
for the given matrix S.

Proof. Let TS be the set of all possible FL metabolites for S and v̂ be a maximizer of (3).
By definition of an FL metabolite we can observe that

supp(Sv̂) ⊆ TS .

Now, assume that TS − supp(Sv̂) 6= ∅ and let t ∈ TS − supp(Sv̂). Since t is a FL meta-
bolite, there exists a vector u ∈ A such that t ∈ supp(Su). Note that in this case
supp(Sv̂) (supp(S(v̂ + u)), which contradicts the maximality of ‖Sv̂‖0. Therefore, TS =
supp(arg maxv‖Sv‖0). J

Although (3) is a non-linear program, we can in fact solve it with the following linear program.

I Lemma 6. Given a matrix S ∈ Rm×n, the support of w, where w is a solution of

max
w

(1Tw), subject to Sv − w ≥ 0, 0 ≤ w ≤ 1, (v, w) ∈ Rn+m (4)

corresponds to the set of all possible FL metabolites for the given matrix S.

Proof. Let (v, w) be a solution for (4). Also let p be a maximizer of (3) and define q = Sp.
We show that

1Tw = ‖q‖0.

Note that since 0 ≤ w ≤ 1, we have 1Tw = ‖w‖1 ≤ ‖q‖0. Now assume that 1Tw < ‖q‖0. Let

ṽ = v + p

min{mini∈supp(w) wi,minj∈supp(q) qj}
.

Also, define w̃ ∈ Rm such that

w̃i =
{

1 if max{wi, qi} > 0
0 otherwise

Since the non-zero components of vector Sṽ are greater than or equal to 1, we found
(ṽ, w̃) ∈ Rn+m that is in the feasible region of (4) and

1T w̃ ≥ ‖q‖0 > 1Tw

which contradicts the maximality of 1Tw. With a similar argument we can show that the
solution of (4) is unique. Therefore, by Lemma 5, we are done. J

Step 2: Minimal Free Lunches
Theorem 2 shows that violation of the No FL condition implies violation of elemental balance
in at least one reaction in the model. In the following section we continue the process in
order to identify minimal subsets of reactions that contain such imbalanced reactions. We
also show that, regardless of the chemical formulas assigned to the metabolites participating
in the model, such a subset always contains an imbalanced reaction.

I Definition 7 (Minimal Free Lunch). The Free Lunch F is called a Minimal Free Lunch,
if no proper subset of F is a free lunch.

WABI 2018

1:6 Elemental Balance and Imbalance in Metabolic Networks

A minimal FL can be computed with respect to any desired subset of FL metabolites. Let T
be a non-empty subset of all FL metabolites in a model, and let us define the vector w ∈ Rm

to be an indicator vector such that wi = 1 if metabolite i ∈ T and wi = 0 otherwise, for
i ∈ {1, . . . ,m}. Then the smallest subset of reactions producing all FL metabolites in T can
be computed by solving the following non-linear optimization problem:

arg min
v
‖v‖0 subject to Sv − w ≥ 0, v ∈ Rn, w ∈ Rm (5)

This problem is NP-hard and challenging in practice [4], so we use the following steps to
identify the minimal subsets instead. First we use the iterative reweighted `1 minimization
algorithm, presented by Candès, Wakin and Boyd [6], to find an approximation for the
non-convex minimization (5). We then reduce the (possibly non-minimal) FL found to a
minimal FL by removing each reaction in turn and checking if the resulting combination is
still a FL; if it is not, the reaction is restored. This procedure produces a minimal FL [7].

I Lemma 8. SupposeM is a minimal FL. Then, for every assignment of chemical formulas
to the metabolites involved in M there exists an elementally imbalanced reaction in M.
Furthermore, for each reaction r ∈ M there exists an assignment of chemical formulas to
these metabolites that makes r imbalanced while making the reactions inM−{r} balanced.

Proof. AssumeM is a minimal FL. Let S′ be the submatrix of the stoichiometric matrix S
corresponding to the reactions inM. SinceM is a FL, by Theorem 2, there exits no strictly
positive vector y for which (1) holds. Therefore, if we think of the vector y as containing the
number of elements in each metabolite, regardless of the chemical formulas assigned to the
metabolites in S′, there exists at least one imbalanced reaction inM.

In addition, sinceM is minimal, for each r ∈M,M−{r} cannot be a FL. Let S′′ be
the submatrix of S corresponding to the reactions inM− {r}. Therefore, by Theorem 2,
there exits a strictly positive vector y such that

yTS′′ = 0.

We can assume that the coefficients of y are rational, since S has rational entries. Let ŷ = Ny

be the vector obtained by scaling y by the least common multiple N of the denominators in
y. Then ŷTS′′ = 0 as well, and ŷ contains positive integers. Thus we can set the formula of
metabolite j to Cŷj

, and observe that (1) holds forM−{r} with these one-atom formulas. J

We solve the linear programs in Steps 1 and 2 using the QSOpt_ex solver [3], which
checks that the solutions are correct in exact rational arithmetic. Some of our previous work
[8, 13] has argued that this is necessary in order to ensure accuracy and reproducibility of
the solutions. We use the QSOpt_ex API for Python [19] created by Jon Steffensen [17] to
streamline the process.

Step 3: Free Lunch Witnesses
In the current section we aim to find the smallest number of reactions that are guaranteed
to be involved in at least one FL each. We observe that the optimum of the minimization
problem

min
y
‖yTS‖0, subject to y > 0 (6)

represents a lower bound on the minimum number of FL’s over all possible metabolite
formulas, and the minimizer represents a smallest set of reactions involved in FL’s. Moreover,

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:7

the optimum value of (6) also gives us a lower bound on the number of imbalanced reactions
in the model for an arbitrary or a specific set of metabolite formulas. In other words, if
the optimum value of (6) is k, we know that at least k distinct reactions are elementally
imbalanced, no matter what metabolite formulas we choose, and in particular, the metabolic
network cannot be elementally balanced unless k = 0. This motivates the following

I Definition 9 (Free Lunch Witness). The reaction r is called a Free Lunch Witness, if
r ∈ supp(yTS) for some y ∈ argminy>0‖yTS‖0.

Even though we cannot guarantee this, it turns out to be more likely than not in practice
that a FL witness is elementally imbalanced for a given set of metabolite formulas, as we
discuss in more detail in the Results section.

In order to solve (6), we can use the following mixed integer linear program:

min
x

1Tx subject to x ≥ −yTS, x ≥ yTS, y ≥ ε, x ∈ {0, 1}n, y ∈ Rm (7)

where ε is a small positive scalar (in practice, we use ε = 10−4). The lower bound of ε ensures
that the vector y = 0 is not an admissible solution of (6), so that any y that is optimal for (7)
can be scaled to a ŷ that is optimal for (6) (with the same objective value), and vice versa.

We point out that the solution vector to the optimization problem (7) is in general not
unique (even though the optimal value is), and may change based on the solver as well as
the order of the reactions or metabolites in the stoichiometric network S. We used CPLEX
12.8.0 [1] via its API for Python [19] to solve the integer optimization problem (7).

3 Results

We analyzed a collection of 84 previously published metabolic network models in the BiGG
database [11]. From our analysis we excluded any pseudo-reactions, namely, the biomass
reactions (those containing the word “biomass” or “growth” in their name) as well as import
and export reactions (those that have only positive or only negative stoichiometric coefficients,
i.e. produce something out of nothing or reduce something to nothing, respectively). This
ensures that all the reactions included in a stoichiometric matrix S were bona fide biochemical
reactions, with both reactant and product sides non-empty. We expected all those reactions
to be elementally balanced, as required in the model construction protocol [18].

Nevertheless, we found instances of elemental balance violation in 72 of the 84 network
models by using the provided chemical formulas. An additional 7 of the models had no
instance of elemental balance violation and 5 of them had no specified chemical formulas for
the metabolites. Note that we only consider the following bona fide atoms in our decision
about whether a reaction is imbalanced: C, Fe, H, Mg, Na, N, O, P, S, Z (the latter represents
a photon, which can for instance be used by photosynthetic organisms). We do not consider
symbols for functional groups or other moieties such as I, K, M, R, U, X, Y; in other words, if
all the bona fide atoms were balanced, the reaction was considered to be balanced no matter
whether these additional symbols were present on both sides of the reaction or only one.

The pie chart in Figure 1 shows the relative frequency of the atoms that are not balanced.
There are a total of 810 imbalanced reactions, and 1492 atomic imbalances, so an average
imbalanced reaction has just under two imbalanced atoms. Almost half of all atomic
imbalances are proton or hydrogen imbalances, involving the H atom.

We applied the first step of our method to find instances of FL metabolites that result
from elemental balance violations. We found that 40 out of 84 models include at least one
FL metabolite. The number of FL metabolites ranged from 3 to 1791, with a mean just

WABI 2018

1:8 Elemental Balance and Imbalance in Metabolic Networks

O

Z

H

S C

P

N

Figure 1 Frequency of imbalanced reactions in the BiGG networks by imbalanced atom.

under 139. There are a total of 5552 FL metabolites, of which 2912 are distinct; more
than 90% of them happen to be in four of the models, namely, those for Homo sapiens
(RECON1), Mus musculus (iMM1415), Escherichia coli (iECIAI1_1343), and Salmonella
enterica (STM_v1_0). The vast majority of the other models only have 3 FL metabolites,
which are predominantly protons (H) in three different compartments, namely, [c] (cytosol),
[p] (periplasm), and [e] (extracellular space).

The pie chart in Figure 2 shows the relative frequency of the FL metabolites that are
found in more than 5 of the metabolic networks we investigated. There are a total of 9 such
metabolites, which all happen to be currency metabolites - H (protons), H2O (water), H2O2
(hydrogen peroxide), O2 (oxygen), and SO2 (sulfur dioxide) - in the compartments listed
above.

We also applied the second step to find a minimal FL with respect to one of the FL
metabolites1 in each of these 40 models, and their sizes ranged from 2 to 71, with a mean of
5.8. By using the specified chemical formulas, we were able to verify the existence of at least
one imbalanced reaction in each minimal FL in 38 out of 40 models, in accordance with our
theoretical results (the remaining 2 models, namely, iMM1415 and iECIAI1_1343, did not
have any chemical formulas specified for their metabolites).

Finally, by applying the third step of our method, we found small sets of FL witnesses in
all 40 models, with sizes ranging from 1 to 12, and a mean of 2.2. Just as for the second
step, we compared the set of detected FL witnesses to the set of imbalanced reactions based
on the chemical formulas provided in 38 of the models. We observed that, in 28 out of 38
models, at least one of the FL witnesses identified by our method was an imbalanced reaction.
Furthermore, just over half (41 out of 79) of the FL witnesses were imbalanced reactions.

1 We chose the FL metabolite in following way. First we found an optimum solution (v, w) ∈ Rn+m of
minv‖v‖1 subject to: Sv−w ≥ 0, w ≥ 0, 1T w ≥ 1 to roughly approximate the subset of FL metabolites
for which we may have a small FL. We then chose the first index in supp(w) as the desired FL metabolite.

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:9

H[c]
H[e]

H[p]

H2O[c]
H2O[e]

H2O2[c]

O2[c]

O2[e]

O2S[c]

Figure 2 Relative frequency of the most common free lunch metabolites in the BiGG networks.

This suggests that FL witnesses can be good candidates for imbalanced reactions in the
absence of chemical formulas for the metabolites in a network.

A detailed summary of the 40 models with at least one FL is presented in Table 1. We
now discuss in detail the results of applying our algorithms to four particular models, chosen
for illustration purposes. They are arranged in increasing order of complexity.

The first example is iECB_1328, a model for Escherichia coli B strain REL606 (the first
model in Table 1). For this model, our method identifies 3 FL metabolites, which happen to
be protons, H, in three different compartments. We also find a minimal FL that consists of
two reactions - OPET decarboxylase and 5-carboxy-2-oxohept-3-enedioate decarboxylation:

C8H5O7[c]→ CO2[c] + C7H6O5[c] (8a)
H[c] + C8H5O7[c]→ CO2[c] + C7H6O5[c] (8b)

We can see that by subtracting reaction (8b) from reaction (8a), we get a net overall reaction
that produces the FL metabolite H[c] out of nothing, while all other metabolites cancel out.
The OPET decarboxylase reaction is also detected as the single FL witness in this model,
and in fact, it is easy to see that the H atom is not balanced in this reaction (there are 5 H’s
on the reagent side and 6 on the product side). Thus, in this model, the FL witness is an
imbalanced reaction.

The second example is iBWG_1329, another model for Escherichia coli, but a different
strain, BW2952. Similarly to the first example, our method identifies 3 FL metabolites, which
happen to be protons, H, in three different compartments. This time, the minimal FL consists
of three reactions - nucleoside triphosphate pyrophosphorylase (atp), phenylacetate-CoA
ligase, and phenylacetyl CoA thioesterase:

C10H12N5O13P3[c] + H2O[c]→ C10H12N5O7P[c] + H[c] + HO7P2[c] (9a)
C10H12N5O13P3[c] + C21H32N7O16P3S[c] + C8H7O2[c]→
→ C10H12N5O7P[c] + C29H38N7O17P3S[c] + HO7P2[c] (9b)
H2O[c] + C29H38N7O17P3S[c]→ C21H32N7O16P3S[c] + C8H7O2[c] (9c)

WABI 2018

1:10 Elemental Balance and Imbalance in Metabolic Networks

We can see that subtracting (9a) from the sum of (9b) and (9c) results in the production
of the FL metabolite H[c] out of nothing. We can also see that the H atoms are not balanced
in (9c), with 40 on the reagent side and 39 on the product side, while (9a) and (9b) are
balanced. In this model, our method detects reaction (9b) as the unique FL witness. Thus,
in this model, the FL witness is itself a balanced reaction, but is part of a FL of size 3.

The third example is iJN678, a model for Synechocystis sp. PCC 6803, a cyanobacterium
that can grow by oxygenic photosynthesis [9]. For this model, our method once again identifies
3 FL metabolites, which this time are photons (Z) in three compartments. The minimal
FL contains five reactions - ATP synthetase(u), cyanophycinase, cyanophycin sinthetase,
cytochrome oxidase bd (plastocianine-8 2 protons) (lumen), and photosystem II, which we
denote by R1 through R5 for convenience:

R1 : 3C10H12N5O10P2[c] + 3HO4P[c] + 14H[u]→
→ 3C10H12N5O13P3[c] + 11H[c] + 3H2O[c] (10a)

R2 : 2H2O[c] + C10H17N5O4R[c]→ C6H15N4O2[c] + C4H6NO4[c] + R[c] (10b)
R3 : C6H15N4O2[c] + C4H6NO4[c] + 2C10H12N5O13P3[c] + R[c]→
→ 2C10H12N5O10P2[c] + 2H[c] + 2HO4P[c] + C10H17N5O4R[c] (10c)

R4 : C8H10O2[u] + 1
2O2[u]→ C8H8O2[u] + H2O[u] (10d)

R5 : 2H[c] + C8H8O2[u] + H2O[u] + 2Z[c]→ 2H[u] + C8H10O2[u] + 1
2O2[u] (10e)

It is easy to check (but far from obvious to guess!) that 2R1 +3R2 +3R3 +14R4 +14R5 would
result in the consumption of 28 units of the FL metabolite Z[c], while all other metabolites
cancel out. Also, note that Z is only present on the reagent side of (10e). In this example,
our method detects reaction (10e) as one of the 3 FL witnesses, and in this case, it is the
one imbalanced FL witness.

For the final example we chose a model that does not have any chemical formulas assigned
to its metabolites, namely, model iECIAI1_1343, which represents Escherichia coli. IAI1.
For this model our method identifies 1279 FL metabolites and a minimal FL which contains
two reactions - OPET decarboxylase and 5-carboxy-2-oxohept-3-enedioate decarboxylation:

5-Carboxy-2-oxohept-3-enedioate[c]→ 2-Hydroxyhepta-2-4-dienedioate[c] + CO2[c] (11a)
H[c] + 5-Carboxy-2-oxohept-3-enedioate[c]→ 2-Hydroxyhepta-2-4-dienedioate[c] + CO2[c] (11b)

We can see that by subtracting reaction (11b) from reaction (11a), we get the FL
metabolite H[c] out of nothing, while all other metabolites cancel out. Note that this is the
same FL as the one identified in equations (8a) and (8b), although in this model they are not
specified via chemical formulas. Moreover, our method identifies 4 FL witnesses; as a result
of the absence of chemical formulas, we are not able to verify whether they are elementally
balanced.

4 Conclusion

Our approach represents the first attempt to automatically verify elemental balance in a
GSMN without access to the chemical formulas for the metabolites. It quickly and efficiently
identifies small sets of reactions which must contain at least one imbalanced reaction, or
determines that no such set exists. In addition, it can provide a lower bound on the number

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:11

Table 1 The summary of our results. n and m denote the number of reactions and metabolites,
respectively. mF L and nF L is the number of FL metabolites and the size of a minimal FL we found,
respectively. nI and nF LW are the numbers of imbalanced reactions and FL witness reactions,
respectively. Finally, nIF LW if the number of FL witness reactions that are imbalanced.

Model Organism n m mF L nI nF L nF LW nIF LW

iECB_1328 E. coli B str. REL606 2748 1951 3 10 2 1 1
iNJ661 M. tuberculosis H37Rv 1025 825 192 10 4 4 1
iY75_1357 E. coli str. K-12 2759 1953 3 9 3 1 0
iMM1415 Mus musculus 3726 2775 1767 N/A 12 6 N/A
iECO103_1326 E. coli O26:H11 str. 11368 2758 1958 3 17 2 2 2
iECUMN_1333 E. coli UMN026 2740 1935 3 7 2 1 1
iEcolC_1368 E. coli ATCC 8739 2768 1969 3 16 2 2 1
RECON1 Homo sapiens 3741 2766 1791 5 40 4 1
iECO111_1330 E. coli O111:H- str. 11128 2760 1959 3 19 2 2 2
iSBO_1134 S. boydii Sb227 2591 1908 3 7 2 1 1
iRC1080 C. reinhardtii 2191 1706 21 61 6 12 0
iJB785 Synechococcus elongatus 849 768 16 11 14 4 0
iS_1188 S. flexneri 2a str. 2457T 2619 1914 3 4 2 1 1
STM_v1_0 S. enterica subsp. enterica 2545 1802 344 1 71 2 0
iECBD_1354 E. coli BL21 2748 1952 3 10 2 1 1
iECO26_1355 E. coli O26:H11 str. 11368 2780 1965 3 17 2 2 2
iWFL_1372 E. coli W 2782 1973 3 21 2 2 2
iECSE_1348 E. coli SE11 2768 1957 3 18 2 2 2
iECD_1391 E. coli BL21 2741 1943 3 10 2 1 1
iEcDH1_1363 E. coli DH1 2750 1949 3 8 3 1 1
iECDH1ME8569_1439 E. coli DH1 2755 1950 3 9 3 1 0
iECDH10B_1368 E. coli str. K-12 2742 1947 3 9 3 1 1
iB21_1397 E. coli BL21 2741 1943 3 10 2 1 1
iEcE24377_1341 E. coli O139:H28 str. E24377A 2763 1972 3 17 3 1 1
iUMNK88_1353 E. coli UMNK88 2777 1969 3 18 3 1 0
iETEC_1333 E. coli ETEC H10407 2756 1962 3 14 3 1 0
iECW_1372 E. coli W 2782 1973 3 21 2 2 2
iSF_1195 S. flexneri 2a str. 301 2630 1917 3 7 2 1 1
iSbBS512_1146 S. boydii CDC 3083-94 2591 1910 3 7 2 1 0
iEKO11_1354 E. coli KO11FL 2778 1972 3 21 2 2 2
iCHOv1 Cricetulus griseus 6663 4456 46 92 4 9 4
iSSON_1240 S. sonnei Ss046 2693 1936 3 9 2 1 1
iJN678 Synechocystis sp. PCC 6803 863 795 3 9 5 3 3
iSFxv_1172 S. flexneri 2002017 2638 1918 3 7 2 1 1
iBWG_1329 E. coli BW2952 2741 1949 3 9 3 1 0
iECIAI1_1343 E. coli IAI1 2765 1968 1279 N/A 2 4 N/A
iSFV_1184 S. flexneri 5 str. 8401 2621 1917 3 1 2 1 0
iLB1027_lipid P. tricornutum 4456 2172 3 6 6 2 1
iEcHS_1320 E. coli HS 2753 1963 3 21 2 2 2
iEC55989_1330 E. coli 55989 2756 1953 3 14 3 1 1
Average 138.8 14.0 5.8 2.2 1

of imbalanced reactions present in the model. Lastly, it identifies all the metabolites that
can be produced out of nothing by the overall reaction of a combination of model reactions.

The difference in the number of elementally imbalanced models examined with (72) and
without (40) chemical formulas (out of a total of 84) can be addressed by examining equation
(1). Since the vector y in (1) is not unique, different y vectors can represent different sets
of metabolites. Therefore, although a model with stoichiometric matrix S may contain

WABI 2018

1:12 Elemental Balance and Imbalance in Metabolic Networks

imbalanced reactions for a specific set of chemical formulas, the same stoichiometric matrix S
may be elementally balanced for a different set of formulas. Thus, our method can guarantee
a violation of elemental balance by finding one or more FL metabolites, but the absence of
such metabolites does not guarantee that the model is elementally balanced.

Nevertheless, we believe that our approach provides a complimentary way of ascertaining
a model’s soundness and point out potential issues, as part of the model verification process.
It can - and should - be accompanied by a verification of the elemental balance of individual
reactions whenever possible, i.e. when the chemical formulas are specified for its metabolites.
We thus hope that our method is a useful contribution to metabolic network model verification.

References
1 CPLEX optimizer. URL: www-01.ibm.com/software/integration/optimization/

cplex-optimizer.
2 V Acuña, F Chierichetti, V Lacroix, A Marchetti-Spaccamela, M-F Sagot, and L Stougie.

Modes and cuts in metabolic networks: complexity and algorithms. BioSystems, 95:51–60,
2009.

3 D Applegate, W Cook, S Dash, and D Espinoza. Exact solutions to linear programming
problems. Operations Research Letters, 35:693–699, 2007.

4 D Bertsimas, A King, and R Mazumder. Best subset selection via a modern optimization
lens. Ann. Statist., 44(2):813–852, 2016.

5 KC Border. Alternative linear inequalities. Cal Tech Lecture Notes, 2013.
6 EJ Candès, MB Wakin, and SP Boyd. Enhancing sparsity by reweighted `1 minimization.

Journal of Fourier analysis and applications, 14(5-6):877–905, 2008.
7 L Chindelevitch. Extracting Information from Biological Networks. PhD thesis, MIT, 2010.
8 L Chindelevitch, J Trigg, A Regev, and B Berger. An exact arithmetic toolbox for a

consistent and reproducible structural analysis of metabolic network models. Nature Com-
munications, 5, 2014.

9 T Heidorn, D Camsund, H Huang, P Lindberg, P Oliveria, K Stensjo, and P Lindblad.
Synthetic biology in cyanobacteria: Engineering and analyzing novel functions. In Methods
in Enzymology, volume 497, pages 539–579. Academic Press, 2011.

10 M Imieliński, C Belta, H Rubin, and Á Halász. Systematic analysis of conservation relations
in escherichia coli genome-scale metabolic network reveals novel growth media. Biophysical
Journal, 90(8):2659–2672, 2006.

11 ZA King, J Lu, A Dräger, P Miller, S Federowicz, JA Lerman, A Ebrahim, BO Palsson, and
NE Lewis. BiGG Models: A platform for integrating, standardizing and sharing genome-
scale models. Nucleic Acids Research, 44:D515–D522, 2015.

12 S Klamt and E Gilles. Minimal cut sets in biochemical reaction networks. Bioinformatics,
20:226–234, 2004.

13 C Le and L Chindelevitch. The MONGOOSE rational arithmetic toolbox. In Marco
Fondi, editor, Metabolic Network Reconstruction and Modeling, volume 1716 of Methods in
Molecular Biology, pages 77–99. Humana Press, New York, NY, 2018.

14 J Monk, J Nogales, and B Palsson. Optimizing genome-scale network reconstructions.
Nature Biotechnology, 32:447–452, 2014.

15 A Ravikrishnan and K Raman. Critical assessment of genome-scale metabolic networks:
the need for a unified standard. Briefings in Bioinformatics, 16(6):1057–1068, 2015.

16 S Schuster and T Höfer. Determining all extreme semi-positive conservation relations in
chemical reaction systems: a test criterion for conservativity. Journal of the Chemical
Society, Faraday Transactions, 87:2561–2566, 1991.

www-01.ibm.com/software/integration/optimization/cplex-optimizer
www-01.ibm.com/software/integration/optimization/cplex-optimizer

H. Zabeti, T. Stephen, B. Berger, and L. Chindelevitch 1:13

17 JL Steffensen, K Dufault-Thompson, and Y Zhang. Psamm: A portable system for the
analysis of metabolic models. PLOS Computational Biology, 12(2):e1004732, 2016.

18 I Thiele and B Palsson. A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nature Protocols, 5:93–121, 2010.

19 G van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, 1995.

20 A. Varma and B. Palsson. Stoichiometric flux balance models quantitatively predict growth
and metabolic by-product secretion in wild-type Escherichia coli w3110. Appl. Environ.
Microbiol., 60:3724–3731, 1994.

WABI 2018

Prefix-Free Parsing for Building Big BWTs
Christina Boucher1

CISE, University of Florida
Gainesville, FL, USA

https://orcid.org/0000-0001-9509-9725

Travis Gagie2

EIT, Diego Portales University
Santiago, Chile
1exCeBiB
Santiago, Chile

https://orcid.org/0000-0003-3689-327X

Alan Kuhnle3

CISE, University of Florida
Gainesville, FL, USA

https://orcid.org/0000-0001-6506-1902

Giovanni Manzini4

University of Eastern Piedmont
Alessandria, Italy
1exIIT, CNR
Pisa, Italy

https://orcid.org/0000-0002-5047-0196

Abstract
High-throughput sequencing technologies have led to explosive growth of genomic databases;
one of which will soon reach hundreds of terabytes. For many applications we want to build
and store indexes of these databases but constructing such indexes is a challenge. Fortunately,
many of these genomic databases are highly-repetitive – a characteristic that can be exploited
and enable the computation of the Burrows-Wheeler Transform (BWT), which underlies many
popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free
parsing, that takes a text T as input, and in one-pass generates a dictionary D and a parse P
of T with the property that the BWT of T can be constructed from D and P using workspace
proportional to their total size and O(|T |)-time. Our experiments show that D and P are
significantly smaller than T in practice, and thus, can fit in a reasonable internal memory even
when T is very large. Therefore, prefix-free parsing eases BWT construction, which is pertinent
to many bioinformatics applications.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Burrows-Wheeler Transform, prefix-free parsing, compression-aware al-
gorithms, genomic databases

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.2

1 Partially supported by National Science Foundation grant 1618814.
2 Partially supported by FONDECYT grant 1171058.
3 Partially supported by National Science Foundation grant 1618814 and a post-doctoral fellowship from

the University of Florida Informatics Institute.
4 Partially supported by PRIN grant 201534HNXC

© Christina Boucher, Travis Gagie, Alan Kuhnle, and Giovanni Manzini;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9509-9725
https://orcid.org/0000-0003-3689-327X
https://orcid.org/0000-0001-6506-1902
https://orcid.org/0000-0002-5047-0196
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Prefix-Free Parsing

Supplement Material Source code: https://gitlab.com/manzai/Big-BWT

Acknowledgements The authors thank Risto Järvinen for the insight they gained from his pro-
ject on rsync in the Data Compression course at Aalto University.

1 Introduction

The money and time needed to sequence a genome have shrunk shockingly quickly and
researchers’ ambitions have grown almost as quickly: the Human Genome Project cost billions
of dollars and took a decade but now we can sequence a genome for about a thousand dollars
in about a day. The 1000 Genomes Project [21] was announced in 2008 and completed in
2015, and now the 100,000 Genomes Project is well under way [22]. With no compression
100,000 human genomes occupy roughly 300 terabytes of space, and genomic databases
will have grown even more by the time a standard research machine has that much RAM.
At the same time, other initiatives have began to study how microbial species behave and
thrive in environments. These initiatives are generating public datasets which are just are as
equally challenging from a size perspective as the 100,000 Genomes Project. For example, in
recent years, there has been an initiative to move toward using whole genome sequencing
to accurately identify and track foodborne pathogens (e.g. antibiotic resistant bacteria) [5].
This led to the existence of GenomeTrakr, which is a large public effort to use genome
sequencing for surveillance and detection of outbreaks of foodborne illnesses. Currently,
the GenomeTrakr effort includes over 100,000 samples, spanning several species available
through this initiative – a number that continues to rise as datasets are continually added [19].
Unfortunately, analysis of this data is limited due to their size, even though the similarity
between genomes of individuals of the same species means the data is highly compressible.

These public databases are used in various applications – e.g., to detect genetic variation
within individuals, determine evolutionary history within a population, and assemble the
genomes of novel (microbial) species or genes. Pattern matching within these large databases
is fundamental to all these applications, yet repeatedly scanning these – even compressed
– databases is infeasible. Thus for these and many other applications, we want to build
and use indexes from the database. Since these indexes should also fit in RAM and cannot
rely on word boundaries, there are only a few candidates. Many of the popular indexes
in bioinformatics are based on the Burrows-Wheeler Transform (BWT) [4] and there have
been a number of papers about building BWTs for genomic databases; see, e.g., [18] and
references therein. However, it is difficult to process anything more than a few terabytes of
raw data per day with current techniques and technology because of the difficulty of working
in external memory.

Since genomic databases are often highly repetitive, we revisit the idea of applying a
simple compression scheme and then computing the BWT from the resulting encoding in
internal memory. This is far from being a novel idea – e.g., Ferragina, Gagie and Manzini’s
bwtdisk software [7] could already in 2010 take advantage of its input being given compressed,
and Policriti and Prezza [17] recently showed how to compute the BWT from the LZ77 parse
of the input using O(n(log r + log z))-time and O(r + z)-space, where n is the length of the
uncompressed input, r is the number of runs in the BWT and z is the number of phrases in
the LZ77 parse – but we think the preprocessing step we describe here, prefix-free parsing,
stands out because of its simplicity and flexibility. Specifically, the parsing algorithm itself is
straightforward and it can either be made to work using a single pass over the data on disk
or it can be parallelized. Once we have the results of the parsing, which are a dictionary

https://gitlab.com/manzai/Big-BWT

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:3

and a parse, building the BWT out of them is more involved, but when our approach works
well, the dictionary and the parse are together much smaller than the initial dataset and
that makes the BWT computation less resource-intensive.

Our Contributions. In this paper, we formally define and present prefix-free parsing. The
main idea of this method is to divide the input text into overlapping variable-length phrases
with delimiting prefixes and suffixes. To accomplish this division, we slide a window of
length w over the text and, whenever the Karp-Rabin hash of the window is 0 modulo p,
we terminate the current phrase at the end of the window and start the next one at the
beginning of the window. This concept is partly inspired by rsync’s [1] use of a rolling hash
for content-slicing. Here, w and p are parameters that affect the size of the dictionary of
distinct phrases and the number of phrases in the parse. This takes linear-time and one pass
over the text, or it can be sped up by running several windows in different positions over the
text in parallel and then merging the results.

Just as rsync can usually recognize when most of a file remains the same, we expect that
for most genomic databases and good choices of w and p, the total length of the phrases in
the dictionary and the number of phrases in the parse will be small in comparison to the
uncompressed size of the database. We demonstrate experimentally that with prefix-free
parsing we can compute BWT using less memory and equivalent time. In particular, using
our method we reduce peak memory usage up to 10x over a standard baseline algorithm which
computes the BWT by first computing the suffix array using the algorithm SACA-K [16],
while requiring roughly the same time on large sets of salmonella genomes obtained from
GenomeTrakr.

In Section 3, we show how we can compute the BWT of the text from the dictionary
and the parse alone using workspace proportional only to their total size, and time linear
in the uncompressed size of the text when we can work in internal memory. In Section 4
we describe our implementation and report the results of our experiments showing that in
practice the dictionary and parse often are significantly smaller than the text and so may fit
in a reasonable internal memory even when the text is very large, and that this often makes
the overall BWT computation both faster and smaller. We conclude in Section 5 and discuss
directions for future work. Prefix-free parsing and all accompanied documents are available
at https://gitlab.com/manzai/Big-BWT.

2 Review of the Burrows-Wheeler Transform

As part of the Human Genome Project, researchers had to piece together a huge number
of relatively tiny, overlapping pieces of DNA, called reads, to assemble a reference genome
about which they had little prior knowledge. Once the Project was completed, however, they
could then use that reference genome as a guide to assemble other human genomes much
more easily. To do this, they indexed the reference genome such that, after running a DNA
sample from a new person through a sequencing machine and obtaining another collection of
reads, for each of those new reads they could quickly determine which part of the reference
genome it matched most closely. Since any two humans are genetically very similar, aligning
the new reads against the reference genome gives a good idea of how they are really laid out
in the person’s genome.

In practice, the best solutions to this problem of indexed approximate matching work
by reducing it to a problem of indexed exact matching, which we can formalize as follows:
given a string T (which can be the concatenation of a collection of strings, terminated by

WABI 2018

https://gitlab.com/manzai/Big-BWT

2:4 Prefix-Free Parsing

19

279 17

$1

T

A

C

$1 $2 $3

26

2

3

4

5

16

15

14

$1

T

A

C

$1

T

A

C

$1

$1
6

$1
7

$1
8

$1

10

$2

T

A

C

1

$2

T

A

C

11

12

$2
13

$2

$2

$2

$2

T

A

G

18

$3

A

T

A

G

$3

A

20

T

A

G

$3

A

21

T

A

G

$3

A

22

T

A

G

$3

A
24

25

$3
23

$3

$3

$3

T

A

C

A

A

T

T

A

T

A

C

A

TA

T

A

G

A

T

A

C

T

T

A

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 1 The suffix trie for our example with the three strings GATTACAT, GATACAT and
GATTAGATA. The input is shown at the bottom, in grey because we do not need to store it.

special symbols), pre-process it such that later, given a pattern P , we can quickly list all
the locations where P occurs in T . We now start with a simple but impractical solution to
the latter problem, and then refine it until we arrive at a fair approximation of the basis
of most modern assemblers, illustrating the workings of the Burrows-Wheeler Transform
(BWT) along the way.

Suppose we want to index the three strings GATTACAT, GATACAT and GATTAGATA,
so T [1..n] = GATTACAT$1GATACAT$2GATTAGATA$3, where $1, $2 and $3 are termin-
ator symbols. Perhaps the simplest solution to the problem of indexing T is to build a trie of
the suffixes of the three strings in our collection (i.e., an edge-labelled tree whose root-to-leaf
paths are the suffixes of those strings) with each leaf storing the starting position of the
suffix labelling the path to that leaf, as shown in Figure 1.

Suppose every node stores pointers to its children and its leftmost and rightmost leaf
descendants, and every leaf stores a pointer to the next leaf to its right. Then given P [1..m],
we can start at the root and descend along a path (if there is one) such that the to the node
at depth i is P [i], until we reach a node v at depth m+ 1. We then traverse the leaves in v’s
subtree, reporting the the starting positions stored at them, by following the pointer from v

to its leftmost leaf descendant and then following the pointer from each leaf to the next leaf
to its right until we reach v’s rightmost leaf descendant.

The trie of the suffixes can have a quadratic number of nodes, so it is impractical for
large strings. If we remove nodes with exactly one child (concatenating the edge-labels above
and below them), however, then there are only linearly many nodes, and each edge-label
is a substring of the input and can be represented in constant space if we have the input
stored as well. The resulting structure is essentially a suffix tree (although it lacks suffix and
Weiner links), as shown in Figure 2. Notice that the label of the path leading to a node v is
the longest common prefix of the suffixes starting at the positions stored at v’s leftmost and
rightmost leaf descendants, so we can navigate in the suffix tree, using only the pointers we
already have and access to the input.

Although linear, the suffix tree still takes up an impractical amount of space, using several
bytes for each character of the input. This is significantly reduced if we discard the shape of
the tree, keeping only the input and the starting positions in an array, which is called the

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:5

19

279 17

26

2

3

4

5

16

15

146

7

8

10

1

11

12

13

18

20

21

22

24

25

23

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 2 The suffix tree for our example. We now store the input.

suffix array (SA). The SA for our example is shown in Figure 3. Since the entries of the
SA are the starting points of the suffixes in lexicographic order, with access to T we can
perform two binary searchs to find the endpoints of the interval of the suffix array containing
the starting points of suffixes starting with P : at each step, we consider an entry SA[i] and
check if T [SA[i]] lexicographically precedes P . This takes a total of O(m logn) time done
naïvely, and can be sped up with more sophisticated searching and relatively small auxiliary
data structures.

Even the SA takes linear space, however, which is significantly more than what is needed
to store the input when the alphabet is small (as it is in the case of DNA). Let Ψ be the
function that, given the position of a value i < n in the SA, returns the position of i + 1.
Notice that, if we write down the first character of each suffix in the order they appear in the
SA, the result is a sorted list of the characters in T , which can be stored using using O(logn)
bits for each character in the alphabet. Once we have this list stored, given a position i in
SA, we can return T [SA[i]] efficiently.

Given a position i in SA and a way to evaluate Ψ, we can extract T [SA[i]..n] by
writing T [SA[i]], T [SA[Ψ(i)]], T [SA[Ψ2(i)]], Therefore, we can perform the same kind
of binary search we use when with access to a full suffix array. Notice that if T [SA[i]] ≺
T [SA[i + 1]] then Ψ(i) < Ψ(i + 1), meaning that Ψ(1), . . . ,Ψ(n) can be divided into σ

increasing consecutive subsequences, where σ is the size of the alphabet. It follows that we
can store nH0(T) +o(n log σ) bits, where H0(T) is the 0th-order empirical entropy of T , such
that we can quickly evaluate Ψ. This bound can be improved with a more careful analysis.

Now suppose that instead of a way to evaluate Ψ, we have a way to evaluate quickly its
inverse, which is called the last-to-first (LF) mapping. (This name was not chose because,
if we start with the position of n in the suffix array and repeatedly apply the LF mapping
we enumerate the positions in the SA in decreasing order of their contents, ending with 1;
to some extent, the name is a lucky coincidence.) The LF mapping for our example is also
shown with arrows in Figure 3. Since it is the inverse of Ψ, the sequence LF(1), . . . ,LF(n)
can be partitioned into σ incrementing subsequences: for each character c in the alphabet,
if the starting positions of suffixes preceded by copies of c are stored in SA[j1], . . . ,SA[jt]
(appearing in that order in the SA), then LF(j1) is 1 greater than the number of characters

WABI 2018

2:6 Prefix-Free Parsing

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 3 The suffix array for our example is the sequence of values stored in the leaves of the
tree (which we need not store explicitly). The LF mapping is shown as the arrows between two
copies of the suffix array; the arrows to values i such that T [SA[i]] = A are heavy, to illustrate that
they point to consecutive positions in the suffix array and do not cross. Since Ψ is the inverse of the
LF mapping, it can be obtained by simply reversing the direction of the arrows.

lexicographically less than c in T and LF(j2), . . . ,LF(jt) are the next t−1 numbers. Figure 3
illustrates this, with the arrows to values i such that T [SA[i]] = A heavy, to illustrate that
they point to consecutive positions in the suffix array and do not cross.

Consider the interval IP [i..m] of the SA containing the starting positions of suffixes
beginning with P [i..m], and the interval IP [i−1] containing the starting positions of suffixes
beginning with P [i− 1]. If we apply the LF mapping to the SA positions in IP [i..m], the SA
positions we obtain that lie in IP [i−1] for a consecutive subinterval, containing the starting
positions in T of suffixes beginning with P [i− 1..m]. Therefore, we can search also with the
LF mapping.

If we write the character preceding each suffix of T (considering it to be cyclic) in the
lexicographic order of the suffixes, the result is the Burrows-Wheeler Transform (BWT) of
T . A rank data structure over the BWT (which, given a character and a position, returns
the number of occurrences of that character up to that position) can be used to implement
searching with the LF-mapping, together with an array C indicating for each character in the
alphabet how many characters in T are lexicographically strictly smaller than it. Specifically,

LF(i) = BWT.rankBWTi + C[BWT[i]] .

If follows that, to compute IP [i−1..m] from IP [i..m], we perform a rank query for P [i− 1]
immediately before the beginning of IP [i..m] and add C[P [i+ 1]] + 1 to the result, to find
the beginning of IP [i−1..m]; and we perform a rank query for P [i− 1] at the end of IP [i..m]
and add C[P [i + 1]] to the result, to find the end of IP [i−1..m]. Figure 4 shows the BWT
for our example, and the sorted list of characters in T . Comparing it to Figure 3 makes the
formula above clear: if BWT[i] is the jth occurrence of that character in the BWT, then
the arrow from LF(i) leads from i to the position of the jth occurrence of that character in
the sorted list. This is the main idea behind FM-indexes [8], and the main motivation for
bioinformaticians to be interested in building BWTs.

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:7

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

$3$1 $2T CT G AT CT G AA AT GT G TA AA AA AT

$1 $2 $3 A A A A A A A A A A C C G G G G T T T T T T T T

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 4 The BWT and the sorted list of characters for our example. Drawing arrows between
corresponding occurrences of characters in the two strings gives us the diagram for the LF-mapping.

3 Theory

We let E ⊆ Σw be any set of strings each of length w ≥ 1 over the alphabet Σ and let
E′ = E ∪ {#, $w}, where # and $ are special symbols lexicographically less than any in Σ.
We consider a text T [0..n− 1] over Σ and let D be the maximum set such that for d ∈ D,

d is a substring of #T $w,
exactly one proper prefix of d is in E′,
exactly one proper suffix of d is in E′,
no other substring of d is in E′.

We let S be the set of suffixes of length greater than w of elements of D.
Given T and a way to recognize strings in E, we can build D iteratively by simulating

scanning #T $w to find occurrences of elements of E′, adding to D each substring of #T $w

that starts at the beginning of one such occurrence and ends at the end of the next one.
While we are building D we also build a list P of the occurrences of the elements of D in T ,
which we call the parse (although each consecutive pair of elements overlap by w characters,
so P is not a partition of the characters of #T $w). We then build S from D and sort it.

For example, suppose we have Σ = {!, A, C, G, T}, w = 2, E = {AC, AG, T!} and

T = GATTACAT!GATACAT!GATTAGATA .

Then it follows that we get

D = {#GATTAC, ACAT!, AGATA$$, T!GATAC, T!GATTAG} ,
S = {#GATTAC, GATTAC, . . . , TAC,

ACAT!, CAT!, AT!,
AGATA$$, GATA$$, . . . , A$$,
T!GATAC, !GATAC, . . . , TAC,

T!GATTAG, !GATTAG, . . . , TAG}

and, identifying elements of D by their lexicographic ranks, P = 0, 1, 3, 1, 4, 2.

WABI 2018

2:8 Prefix-Free Parsing

I Lemma 1. S is a prefix-free set.

Proof. If s ∈ S were a proper prefix of s′ ∈ S then, since |s| > w, the last w characters of s –
which are an element of E′ – would be a substring of s′ but neither a proper prefix nor a
proper suffix of s′. Therefore, any element of D with s′ as a suffix would contain at least
three substrings in E′, contrary to the definition of D. J

I Lemma 2. Suppose s, s′ ∈ S and s ≺ s′. Then sx ≺ s′x′ for any strings x, x′ ∈
(Σ ∪ {#, $})∗.

Proof. By Lemma 1, s and s′ are not proper prefixes of each other. Since they are not equal
either (because s ≺ s′), it follows that sx and s′x′ differ on one of their first min(|s|, |s′|)
characters. Therefore, s ≺ s′ implies sx ≺ s′x′. J

I Lemma 3. For any suffix x of #T $w with |x| > w, exactly one prefix s of x is in S.

Proof. Consider the substring d stretching from the beginning of the last occurrence of
an element of E′ that starts before or at the starting position of x, to the end of the first
occurrence of an element of E′ that starts strictly after the starting position of x. Regardless
of whether d starts with # or another element of E′, it is prefixed by exactly one element of
E′; similarly, it is suffixed by exactly one element of E′. It follows that d is an element of D.
Let s be the prefix of x that ends at the end of that occurrence of d in #T $w, so |s| > w and
is a suffix of an element of D and thus s ∈ S. By Lemma 1, no other prefix of x is in S. J

Let f be the function that maps each suffix x of #T $w with |x| > w to the unique prefix
s of x with s ∈ S.

I Lemma 4. Let x and x′ be suffixes of #T $w with |x|, |x′| > w. Then f(x) ≺ f(x′) implies
x ≺ x′.

Proof. By the definition of f , f(x) and f(x′) are prefixes of x and x′ with |f(x)|, |f(x′)| > w.
Therefore, f(x) ≺ f(x′) implies x ≺ x′ by Lemma 2. J

Define T ′[0..n] = T $. Let g be the function that maps each suffix y of T ′ to the unique
suffix x of #T $w that starts with y, except that it maps T ′[n] = $ to #T $w. Notice that
g(y) always has length greater than w, so it can be given as an argument to f .

I Lemma 5. The permutation that lexicographically sorts T [0..n−1] $w, . . . , T [n−1] $w,#T $w

also lexicographically sorts T ′[0..n], . . . , T ′[n− 1..n], T ′[n].

Proof. Appending copies of $ to the suffixes of T ′ does not change their relative order, and
just as #T $w is the lexicographically smallest of T [0..n− 1] $w, . . . , T [n− 1] $w,#T $w, so
T ′[n] = $ is the lexicographically smallest of T ′[0..n], . . . , T ′[n− 1..n], T ′[n]. J

Let β be the function that, for i < n, maps T ′[i] to the lexicographic rank of f(g(T ′[i+
1..n])) in S, and maps T [n] to the lexicographic rank of f(g(T ′)) = f(T $w).

I Lemma 6. Suppose β maps k copies of a to s ∈ S and maps no other characters to s, and
maps a total of t characters to elements of S lexicographically less than s. Then the (t+ 1)st
through (t+ k)th characters of the BWT of T ′ are copies of a.

Proof. By Lemmas 4 and 5, if f(g(y)) ≺ f(g(y′)) then y ≺ y′. Therefore, β partially sorts
the characters in T ′ into their order in the BWT of T ′; equivalently, the characters’ partial
order according to β can be extended to their total order in the BWT. Since every total
extension of β puts those k copies of a in the (t + 1)st through (t + k)th positions, they
appear there in the BWT. J

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:9

From D and P , we can compute how often each element s ∈ S is preceded by each
distinct character a in #T $w or, equivalently, how many copies of a are mapped by β to
the lexicographic rank of s. If an element s ∈ S is a suffix of only one element d ∈ D and a
proper suffix of that – which we can determine first from D alone – then β maps only copies
of the the preceding character of d to the rank of s, and we can compute their positions
in the BWT of T ′. If s = d or a suffix of several elements of D, however, then β can map
several distinct characters to the rank of s. To deal with these cases, we can also compute
which elements of D contain which characters mapped to the rank of s. We will explain in a
moment how we use this information.

For our example, T = GATTACAT!GATACAT!GATTAGATA, we compute the information shown
in Table 1. To ease the comparison to the standard computation of the BWT of T ′ $, shown
in Table 2, we write the characters mapped to each element s ∈ S before s itself.

By Lemma 6, from the characters mapped to each rank by β and the partial sums of
frequencies with which β maps characters to the ranks, we can compute the subsequence
of the BWT of T ′ that contains all the characters β maps to elements of S, which are not
complete elements of D and to which only one distinct character is mapped. We can also
leave placeholders where appropriate for the characters β maps to elements of S, which are
complete elements of D or to which more than one distinct character is mapped. For our
example, this subsequence is ATTTTTTCCGGGGAAA!$!AAA - - TAA. Notice we do not need all
the infomation in P to compute this subsequence, only D and the frequencies of its elements
in P .

Suppose s ∈ S is an entire element of D or a suffix of several elements of D, and
occurrences of s are preceded by several distinct characters in #T $w, so β assigns s’s
lexicographic rank in S to several distinct characters. To deal with such cases, we can sort
the suffixes of the parse P and apply the following lemma.

I Lemma 7. Consider two suffixes t and t′ of #T $w starting with occurrences of s ∈ S,
and let q and q′ be the suffixes of P encoding the last w characters of those occurrences of s
and the remainders of t and t′. If t ≺ t′ then q ≺ q′.

Proof. Since s occurs at least twice in #T $w, it cannot end with $w and thus cannot be
a suffix of #T $w. Therefore, there is a first character on which t and t′ differ. Since the
elements of D are represented in the parse by their lexicographic ranks, that character forces
q ≺ q′. J

We consider the occurrences in P of the elements of D suffixed by s, and sort the
characters preceding those occurrences of s into the lexicographic order of the remaining
suffixes of P which, by Lemma 7, is their order in the BWT of T ′. In our example, TAC ∈ S
is preceded in #T $$ by a T when it occurs as a suffix of #GATTAC ∈ D, which has rank 0 in
D, and by an A when it occurs as a suffix of T!GATAC ∈ D, which has rank 3 in D. Since the
suffix following 0 in P = 0, 1, 3, 1, 4, 2 is lexicographically smaller than the suffix following 3,
that T precedes that A in the BWT.

Since we need only D and the frequencies of its elements in P to apply Lemma 6 to build
and store the subsequence of the BWT of T ′ that contains all the characters β maps to
elements of S, to which only one distinct character is mapped, this takes space proportional to
the total length of the elements of D. We can then apply Lemma 7 to build the subsequence
of missing characters in the order they appear in the BWT. Although this subsequence of
missing characters could take more space than D and P combined, as we generate them we
can interleave them with the first subsequence and output them, thus still using workspace
proportional to the total length of P and the elements of D and only one pass over the space
used to store the BWT.

WABI 2018

2:10 Prefix-Free Parsing

Table 1 The information we compute for our example, T = GATTACAT!GATACAT!GATTAGATA. Each
line shows the lexicographic rank r of an element s ∈ S; the characters mapped to r by β; s itself;
the elements of D from which the mapped characters originate; the total frequency with which
characters are mapped to r; and the preceding partial sum of the frequencies.

mapped preceding
rank characters suffix sources frequency partial sum

0 A #GATTAC 1 1 0
1 T !GATAC 2 1 1
2 T !GATTAG 3 1 2
3 T A$$ 5 1 3
4 T ACAT! 4 2 4
5 T AGATA$$ 5 1 6
6 C AT! 4 2 7
7 G ATA$$ 5 1 9
8 G ATAC 2 1 10
9 G ATTAC 1 1 11
10 G ATTAG 3 1 12
11 A CAT# 4 2 13
12 A GATA$$ 5 1 15
13 ! GATAC 2 1 16
14 $ GATTAC 1 1 17
15 ! GATTAG 3 1 18
16 A T!GATAC 2 1 19
17 A T!GATTAG 3 1 20
18 A TA$$ 5 1 21
19 T, A TAC 1; 2 2 22
20 T TAG 3 1 24
21 A TTAC 1 1 25
22 A TTAG 3 1 26

If we want, we can build the first subsequence from D and the frequencies of its elements
in P ; store it in external memory; and make a pass over it while we generate the second
one from D and P , inserting the missing characters in the appropriate places. This way
we use two passes over the space used to store the BWT, but we may use significantly less
workspace.

Summarizing, assuming we can recognize the strings in E quickly, we can quickly compute
D and P with one scan over T and then from them, with Lemmas 6 and 7, we can compute
the BWT of T ′ = T $ by sorting the suffixes of the elements of D and the suffixes of P . Since
there are linear-time and linear-space algorithms for sorting suffixes when working in internal
memory, this implies our main theoretical result:

I Theorem 8. We can compute the BWT of T $ from D and P using workspace proportional
to sum of the total length of P and the elements of D, and O(n) time when we can work in
internal memory.

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:11

Table 2 The BWT for T ′ = GATTACAT!GATACAT!GATTAGATA$. Each line shows a position in the
BWT; the character in that position; and the suffix immediately following that character in T ′.

i BWT[i] suffix

0 A $
1 T !GATACAT!GATTAGATA$
2 T !GATTAGATA$
3 T A$
4 T ACAT!GATACAT!GATTAGATA$
5 T ACAT!GATTAGATA$
6 T AGATA$
7 C AT!GATACAT!GATTAGATA$
8 C AT!GATTAGATA$
9 G ATA$
10 G ATACAT!GATTAGATA$
11 G ATTACAT!GATACAT!GATTAGATA$
12 G ATTAGATA$
13 A CAT!GATACAT!GATTAGATA$
14 A CAT!GATTAGATA$
15 A GATA$
16 ! GATACAT!GATTAGATA$
17 $ GATTACAT!GATACAT!GATTAGATA$
18 ! GATTAGATA$
19 A T!GATACAT!GATTAGATA$
20 A T!GATTAGATA$
21 A TA$
22 T TACAT!GATACAT!GATTAGATA$
23 A TACAT!GATTAGATA$
24 T TAGATA$
25 A TTACAT!GATACAT!GATTAGATA$
26 A TTAGATA$

4 Practice

We have implemented our BWT construction in order to test our conjectures that, first, for
most genomic databases and good choices of w and p, the total length of the phrases in the
dictionary and the number of phrases in the parse will both be small in comparison to the
uncompressed size of the database; second, computing the dictionary and the parse first and
then computing the BWT from them leads to an overall speedup and reduction in memory
usage. In this section we describe our implementation and then report our experimental
results.

4.1 Implementation
As described in Sections 1 and 3, we slide a window of length w over the text, keeping track
of the Karp-Rabin hash of the window; we also keep track of the hash of the entire prefix
of the current phrase that we have processed so far. Whenever the hash of the window is

WABI 2018

2:12 Prefix-Free Parsing

0 modulo p, we terminate the current phrase at the end of the window and start the next
one at the beginning of the window. We prepend a NULL character to the first phrase and
append w copies of NULL to the last phrase. If the text ends with w characters whose hash
is 0 modulo p, then we take those w character to be the beginning of the last phrase and
append to them w copies of NULL. We note that we prepend and append copies of the same
NULL character; although using different characters simplifies the proofs in Section 3, it is
not essential in practice.

We keep track of the set of hashes of the distinct phrases in the dictionary so far, as well
as the phrases’ frequencies. Whenever we terminate a phrase, we check if its hash is in that
set. If not, we add the phrase to the dictionary and its hash to the set, and set its frequency
to 1; if so, we compare the current phrase to the one in the dictionary with the same hash to
ensure they are equal, then increment its frequency. (Using a 64-bit hash the probability of
there being a collision is very low, so we have not implemented a recovery mechanism if one
occurs.) In both cases, we write the hash to disk.

When the parsing is complete, we have generated the dictionary D and the parsing
P = p1, p2, . . . , pz, where each phrase pi is represented by its hash. Next, we sort the
dictionary and make a pass over P to substitute the phrases’ lexicographic ranks for their
hashes. This gives us the final parse, still on disk, with each entry stored as a 4-byte integer.
We write the dictionary to disk phrase by phrase in lexicographic order with a special
end-of-phrase terminator at the end of each phrase. In a separate file we store the frequency
of each phrase in as a 4-byte integer. Using four bytes for each integer does not give us the
best compression possible, but it makes it easy to process the frequency and parse files later.
Finally, we write to a separate file the array W of length |P | such that W [j] is the character
of pj in position w + 1 from the end (recall each phrase has length greater than w). These
characters will be used to handle the elements of S that are also elements of D.

Next, we compute the BWT of the parsing P , with each phrase represented by its
4-byte lexicographic rank in D. The computation is done using the SACA-K suffix array
construction algorithm [16] which, among the linear time algorithms, is the one using
the smallest workspace. Instead of storing BWT (P) = b1, b2, . . . , bz, we save the same
information in a format more suitable for the next phase. We consider the dictionary words
in lexicographic order, and, for each word di, we write the list of BWT positions where di

appears. We call this the inverted list for word di. Since the size of the inverted list of
each word is equal to its frequency, which is available separately, we write to file the plain
concatenation of the inverted lists using again four bytes per entry, for a total of 4|P | bytes.
In this phase we also permute the elements of W so that now W [j] is the character coming
from the phrase that precedes bj in the parsing, i.e. P [SA[j]− 2].

In the final phase of the algorithm we compute the BWT of the input T . We deviate
slightly from the description in Section 3 in that instead of lexicographically sorting the
suffixes in D larger than w we sort all of them and later ignore those which are of length
≤ w. The sorting is done applying the gSACAK algorithm [14] which computes the SA and
LCP array for the set of dictionary phrases. We then proceed as in Section 3. If during
the scanning of the sorted set S we meet s which is a proper suffix of several elements of
D we use a heap to merge their respective inverted lists writing a character to the final
BWT file every time we pop a position from the heap. If we meet s which coincides with
a dictionary word d we write the characters retrieved from W from the positions obtained
from d’s inverted list.

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:13

Table 3 The dictionary and parse sizes for several files from the Pizza & Chili repetitive corpus,
with three settings of the parameters w and p. All sizes are reported in megabytes; percentages are
the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files.

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100
file size dict. parse % dict. parse % dict. parse %

cere 440 61 77 31 43 159 46 89 17 24
cere_no_Ns 409 33 77 27 43 33 18 60 17 19
dna.001.1 100 8 20 27 13 9 21 21 4 25

einstein.en.txt 446 2 87 20 3 39 9 4 17 5
influenza 148 16 28 30 32 12 29 49 6 37

kernel 247 14 52 26 14 20 13 15 10 10
world_leaders 45 5 5 21 8 2 21 11 1 26

world_leaders_no_dots 23 4 5 34 6 2 31 7 1 33

4.2 Experiments
In this section, the parsing and BWT computation are experimentally evaluated. All
experiments were run on a server with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and
756 gigabytes of RAM.

Table 3 shows the sizes of the dictionaries and parses for several files from the Pizza &
Chili repetitive corpus [2], with three settings of the parameters w and p. We note that
cere contains long runs of Ns and world_leaders contains long runs of periods, which can
either cause many phrases, when the hash of w copies of those characters is 0 modulo p, or a
single long phrase otherwise; we also display the sizes of the dictionaries and parses for those
files with all Ns and periods removed. The dictionaries and parses occupy between 5 and 31
percent of the space of the uncompressed files.

Table 4 shows the sizes of the dictionaries and parses for prefixes of a database of
Salmonella genomes [20]. The dictionaries and parses occupy between 14 and 44 percent
of the space of the uncompressed files, with the compression improving as the number of
genomes increases. In particular, the dataset of ten thousand genomes takes nearly 50 GB
uncompressed, but with w = 10 and p = 100 the dictionary and parse take only about 7 GB
together, so they would still fit in the RAM of a commodity machine. This seems promising,
and we hope the compression is even better for larger genomic databases.

Table 5 shows the runtime and peak memory usage for computing the BWT from the
parsing for the database of Salmonella genomes. As a baseline for comparison, simplebwt
computes the BWT by first computing the Suffix Array using algorithm SACA-K [16];
SACA-K is a linear time algorithm that uses O(1) workspace and is fast in practice. As
shown in Table 5, the peak memory usage of simplebwt is reduced by a factor of 4 to 10 by
computing the BWT from the parsing; furthermore, the total runtime is competitive with
simplebwt. In some instances, for example the databases of 5000, 10000 genomes, computing
the BWT from the parsing achieved significant runtime reduction over simplebwt; with
w = 10, p = 100 on these instances, the runtime reduction is more than factors of 2, 4,
respectively. For our BWT computations, the peak memory usage with w = 6, p = 20 stays
within a factor of roughly 2 of the original file size and is smaller than the orginal file size on
the larger databases of 1000 genomes. For the database of 5000 genomes, the most expensive
steps were parsing and computing the missing characters – about 23% of the total BWT –
to fill in the subsequence.

Qualitatively similar results on files from the Pizza & Chili corpus are shown in Table 6.

WABI 2018

2:14 Prefix-Free Parsing

Table 4 The dictionary and parse sizes for prefixes of a database of Salmonella genomes, with
three settings of the parameters w and p. Again, all sizes are reported in megabytes; percentages are
the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files.

number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100
genomes size dict. parse % dict. parse % dict. parse %

50 249 68 43 44 77 20 39 91 10 40
100 485 83 85 35 99 39 28 122 19 29
500 2436 273 424 29 314 194 21 377 96 19

1000 4861 475 847 27 541 388 19 643 192 17
5000 24936 2663 4334 28 2915 1987 20 3196 985 17

10000 49420 4190 8611 26 4652 3939 17 5176 1955 14

Table 5 Time (seconds) and peak memory consumption (megabytes) of BWT calculations for
prefixes of a database of Salmonella genomes, for three settings of the parameters w and p and for
the comparison method simplebwt.

number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
genomes time peak time peak time peak time peak

50 71 545 63 642 65 782 53 2247
100 118 709 100 837 102 1059 103 4368
500 570 2519 443 2742 402 3304 565 21923
1000 1155 4517 876 4789 776 5659 1377 43751
5000 7412 42067 5436 46040 4808 51848 11600 224423

10000 19152 68434 12298 74500 10218 84467 43657 444780

Table 6 Time (seconds) and peak memory consumption (megabytes) of BWT calculations on
various files from the Pizza & Chili repetitive corpus, for three settings of the parameters w and p
and for the comparison method simplebwt.

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
file time peak time peak time peak time peak

cere 90 603 79 559 74 801 90 3962
einstein.en.txt 53 196 40 88 35 53 97 4016

influenza 27 166 27 284 33 435 30 1331
kernel 43 170 29 143 25 144 50 2216

world_leaders 7 50 7 74 7 98 7 405

5 Conclusion and Future Work

We have described how prefix-free parsing can be used as preprocessing step to enable
compression-aware computation of BWTs of large genomic databases. Our results demonstrate
that the dictionaries and parses are often significantly smaller than the original input, and so
may fit in a reasonable internal memory even when T is very large. Finally, we show how the
BWT can be constructed from a dictionary and parse alone. We plan to investigate using
compressed suffix arrays during the construction of the BWT, instead of suffix arrays, which
should reduce our memory usage at the cost of increasing the running time by approximately
a factor logarithmic in the size of the input; we will report the results in the full version of
this paper.

C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini 2:15

In future extended versions of this work, we plan to explore its applications to sequence
datasets that are terabytes in size; such as GenomeTrakr [19] and MetaSub [15]. We
note that when downloading large datasets, prefix-free parsing can avoid storing the whole
uncompressed dataset in memory or on disk. Suppose we run the parser on the dataset as it
is downloaded, either as a stream or in chunks. We have to keep the dictionary in memory
for parsing but we can write the parse to disk as we go, and in any case we can use less
total space than the dataset itself. Ideally, the parsing could even be done server-side to
reduce transmission time and/or bandwidth – which we leave for future implementation and
experimentation.

A natural extension of our method is to consider efficient parallelization of the parsing.
With k processors, we could divide the input string into k equal blocks, with each consecutive
pair of blocks overlapping by w characters; we scan each block with a processor, to find
the locations of the substrings of length w with Karp-Rabin hashes congruent to 0 modulo
p; and then we scan the input with the k processors in parallel to compute the dictionary
and parse, starting at roughly evenly-spaced locations of such substrings. Alternatively, our
approach can be viewed as a modified Schindler Transform [3] and since previous authors [6]
have shown how the Schindler Transform benefits from GPU parallelization, we believe that
GPU-based parallelization could be both easy and effective.

Perhaps the main use of BWTs is in FM-indexes [8], which are at the heart of the most
popular DNA aligners, including Bowtie [11, 10], BWA [12] and SOAP 2 [13]. With only
rank support over a BWT, we can count how many occurrences of a given pattern there are
in the text, but we cannot tell where they are without using a suffix-array sample. Until
recently, suffix-array samples for massive, highly repetitive datasets were usually either much
larger than the datasets BWTs, or very slow. Gagie, Navarro and Prezza [9] have now shown
we need only store suffix array values at the ends of runs in the BWT, however, and we
conjecture that we can build this sample while computing the BWT from the dictionary and
the parse. Indeed, we were initially motivated to study new approaches to BWT construction
because without them, Gagie et al.’s result may never realize its full potential.

References
1 rsync. URL: https://rsync.samba.org.
2 Repetitive corpus. URL: http://pizzachili.dcc.uchile.cl/repcorpus.html.
3 The sort transformation. URL: http://www.compressconsult.com/st.
4 Michael Burrows and David J. Wheeler. A block-sorting lossless compression algorithm.

Technical report, Digital Equipment Corporation, 1994.
5 H.A. Carleton and P. Gerner-Smidt. Whole-genome sequencing is taking over foodborne

disease surveillance. Microbe, 11:311–317, 2016.
6 Chia-Hua Chang, Min-Te Chou, Yi-Chung Wu, Ting-Wei Hong, Yun-Lung Li, Chia-Hsiang

Yang, and Jui-Hung Hung. sBWT: memory efficient implementation of the hardware-
acceleration-friendly Schindler transform for the fast biological sequence mapping. Bioin-
formatics, 32(22):3498–3500, 2016.

7 Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight data indexing and
compression in external memory. Algorithmica, 63(3):707–730, 2012.

8 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552–581, 2005.

9 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-runs
bounded space. In Proceedings of the 29th Symposium on Discrete Algorithms (SODA),
pages 1459–1477, 2018.

WABI 2018

https://rsync.samba.org
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://www.compressconsult.com/st

2:16 Prefix-Free Parsing

10 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–360, 2012. doi:10.1038/nmeth.1923.

11 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome biology,
10(3):R25, 2009.

12 Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

13 Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and
Jun Wang. Soap2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966–1967, 2009.

14 Felipe Alves Louza, Simon Gog, and Guilherme P. Telles. Inducing enhanced suffix arrays
for string collections. Theor. Comput. Sci., 678:22–39, 2017.

15 MetaSUB International Consortium. The Metagenomics and Metadesign of the Subways
and Urban Biomes (MetaSUB) International Consortium inaugural meeting report. Micro-
biome, 4(1):24, 2016.

16 Ge Nong. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM
Trans. Inf. Syst., 31(3):15, 2013.

17 Alberto Policriti and Nicola Prezza. From LZ77 to the run-length encoded burrows-wheeler
transform, and back. In Proceedings of the 28th Symposium on Combinatorial Pattern
Matching (CPM), pages 17:1–17:10, 2017.

18 Jouni Sirén. Burrows-Wheeler transform for terabases. In Proccedings of the 2016 Data
Compression Conference (DCC), pages 211–220, 2016.

19 E.L. Stevens, R. Timme, E.W. Brown, M.W. Allard, E. Strain, K. Bunning, and S. Musser.
The public health impact of a publically available, environmental database of microbial
genomes. Frontiers in Microbiology, 8:808, 2017.

20 Eric L. Stevens, Ruth Timme, Eric W. Brown, Marc W. Allard, Errol Strain, Kelly Bunning,
and Steven Musser. The public health impact of a publically available, environmental
database of microbial genomes. Frontiers in Microbiology, 8:808, 2017.

21 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–74, 2015.

22 C. Turnbull et al. The 100,000 genomes project: bringing whole genome sequencing to the
nhs. British Medical Journal, 361:k1687, 2018.

http://dx.doi.org/10.1038/nmeth.1923

Detecting Mutations by eBWT

Nicola Prezza
Dipartimento di Informatica, University of Pisa, Italy
nicola.prezza@di.unipi.it

https://orcid.org/0000-0003-3553-4953

Nadia Pisanti
Dipartimento di Informatica, University of Pisa, Italy, and
ERABLE Team, INRIA, Lyon, France
pisanti@di.unipi.it

https://orcid.org/0000-0003-3915-7665

Marinella Sciortino
Dipartimento di Matematica e Informatica, University of Palermo, Italy
marinella.sciortino@unipa.it

https://orcid.org/0000-0001-6928-0168

Giovanna Rosone1

Dipartimento di Informatica, University of Pisa, Italy
giovanna.rosone@unipi.it

https://orcid.org/0000-0001-5075-1214

Abstract
In this paper we develop a theory describing how the extended Burrows-Wheeler Transform
(eBWT) of a collection of DNA fragments tends to cluster together the copies of nucleotides
sequenced from a genome G. Our theory accurately predicts how many copies of any nucleotide
are expected inside each such cluster, and how an elegant and precise LCP array based procedure
can locate these clusters in the eBWT.

Our findings are very general and can be applied to a wide range of different problems. In
this paper, we consider the case of alignment-free and reference-free SNPs discovery in multiple
collections of reads. We note that, in accordance with our theoretical results, SNPs are clustered
in the eBWT of the reads collection, and we develop a tool finding SNPs with a simple scan
of the eBWT and LCP arrays. Preliminary results show that our method requires much less
coverage than state-of-the-art tools while drastically improving precision and sensitivity.

2012 ACM Subject Classification Applied computing → Bioinformatics, Mathematics of com-
puting → Combinatorial algorithms

Keywords and phrases BWT, LCP Array, SNPs, Reference-free, Assembly-free

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.3

Supplement Material https://github.com/nicolaprezza/eBWTclust

Funding G. Rosone, N. Pisanti, M. Sciortino are partially and N. Prezza is supported by the
project MIUR-SIR CMACBioSeq (“Combinatorial methods for analysis and compression of bio-
logical sequences”) grant n. RBSI146R5L.

1 Corresponding author

© Nicola Prezza, Nadia Pisanti, Marinella Sciortino, and Giovanna Rosone;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.prezza@di.unipi.it
 https://orcid.org/0000-0003-3553-4953
mailto:pisanti@di.unipi.it
 https://orcid.org/0000-0003-3915-7665
mailto:marinella.sciortino@unipa.it
https://orcid.org/0000-0001-6928-0168
mailto:giovanna.rosone@unipi.it
 https://orcid.org/0000-0001-5075-1214
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.3
https://github.com/nicolaprezza/eBWTclust
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Detecting Mutations by eBWT

Acknowledgements We want to thank the anonymous reviewers and Mikaël Salson for their
interesting and useful comments.

1 Introduction

The cheap and fast Next Generation Sequencing (NGS) technologies are producing huge
amounts of data that put a growing pressure on data structures designed to store raw
sequencing information, as well as on efficient analysis algorithms: collections of billion of
DNA fragments (reads) need to be efficiently indexed for downstream analysis. After a
sequencing experiment, the most traditional analysis pipeline begins with an error-prone and
lossy mapping of the collection of reads onto a reference genome. Among the most widespread
tools to align reads on a reference genome we can mention BWA [20], Bowtie2 [16], SOAP2
[21]. These methods share the use of the FM-index [10], an indexing machinery based on
the Burrows-Wheeler Transform (BWT) [4]. Other approaches [13, 14] combine an index
of the reference genome with the BWT of the reads collection in order to boost efficiency
and accuracy. In some applications, however, aligning reads on a reference genome presents
limitations mainly due to the difficulty of mapping highly repetitive regions, especially in
the event of a low-quality reference genome (not to mention the cases in which the reference
genome is not even available).

For this reason, indices of reads collections have also been suggested as a lossless dictionary
of sequencing data, where sensitive analysis methods can be directly applied without mapping
the reads to a reference genome (thus without needing one), nor assembling [29, 31, 17, 12].
In [7] the BWT, or more specifically its extension to string collections (named eBWT [27, 2]),
is used to index reads from the 1000 Genomes Project [37] in order to support k-mer search
queries. An eBWT-based compressed index of sets of reads has also been suggested as a
basis for both RNA-Seq [6] and metagenomic [1] analyses. There exist also suffix array
based data structures devised for indexing reads collections: the Gk array [30, 39] and the
PgSA [15]. The latter does not have a fixed k-mer size. The tool SHREC [35] also uses a
suffix-sorting-based index to detect and correct errors in sets of reads. The main observation
behind the tool is that sequencing errors disrupt unary paths at deep levels of the reads’
suffix trie. The authors provide a statistical analysis allowing to detect such branching points.
Finally, there are several tools ([29, 31, 19, 3, 18, 17, 12]) that share the idea of using the
de Bruijn graph (dBG) of the reads’ k-mers. The advantages of dBG-based indices include
allowing therein the characterization of several biologically-interesting features of the data
as suitably shaped and sized bubbles2 (e.g. SNPs, INDELs, Alternative Splicing events on
RNA-Seq data, sequencing errors can all be modeled as bubbles in the dBG of sequencing
data [29, 31, 19, 3, 18]). The drawback of these dBG representation, as well as those of suffix
array based indices such as the ones introduced in [30, 39], is the lossy aspect of getting down
to k-mers rather than representing the actual whole collection of reads. Also [13, 14] have
this drawback as they index k-mers. An eBWT-based indexing method for reads collections,
instead, has the advantages to be easy to compress and, at the same time, lossless: (e)BWT
indexes support querying k-mers without the need to build different indexes for different
values of k.

Here we introduce the Positional Clustering framework: an eBWT-based index of reads
collections where we give statistical characterizations of (i) read suffixes prefixing the same
genome’s suffix as clusters in the eBWT, and (ii) the onset of these clusters by means of the

2 A bubble in a graph is a pair of disjoint paths sharing the same source node and target node.

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:3

LCP. This clustering allows to locate and investigate, in a lossless index of reads collections,
genome positions possibly equivalent to bubbles in the dBG [19, 29] independently from the
k-mer length (a major drawback of dBG-based strategies). We thus gain the advantages of
dBG-based indices while maintaining those of (e)BWT-based ones. Besides, the eBWT index
also contains abundance data (useful to distinguish errors from variants, as well as distinct
variant types) and does not need the demanding read-coherency check at post processing
as no micro-assembly has been performed. With these promising advantages with respect
to dBG-based strategies, the positional clustering framework allows likewise reference-free
and assembly-free detection of SNPs [29, 28, 12], small INDELs [22, 12], sequencing errors
[32, 33, 23], alternative splicing events [31], rearrangements breakpoints [19] on raw reads
collections. To our knowledge, SHREC [35] and our positional clustering framework are
the only attempts to characterize the statistical behavior of suffix trees of reads sets in
presence of errors. We note that, while the two solutions are completely different from
the algorithmic and statistical points of view, they are also, in some sense, complementary.
SHREC characterizes errors as branching points at deep levels of the suffix trie; on the
contrary, our positional framework characterizes clusters of read suffixes prefixing the same
genome’s suffix and identifies mutations (e.g. sequencing errors or SNPs) in the characters
preceding those suffixes (i.e. eBWT characters). We note that our cluster characterization
could be used to detect the suffix trie level from where sequencing errors are detected in
SHREC. Similarly, SHREC’s characterization of errors as branching points could be used in
our framework to detect further mutations in addition to those in the eBWT clusters.

As a proof-of-concept, we test our theoretical framework with a prototype tool named
eBWTclust designed to detect positional clusters and post-process them for assembly-free
and reference-free SNPs detection directly on the eBWT of reads collection. Among several
reference-free SNPs finding tools in the literature [29, 38, 28, 12], the state-of-the-art is
represented by the well documented and maintained KisSNP and DiscoSnp suite [29, 38, 11],
where DiscoSnp++ [28] is the latest and best performing tool. In order to validate the
accuracy of positional clustering for finding SNPs, we compared DiscoSnp++ sensitivity and
precision to those of our prototype eBWTclust. Preliminary results on human chromosomes
show that, for example, using coverage 22x our tool is able to find 91% of all SNPs (vs 70%
of DiscoSnp++) with an accuracy of 98% (vs 94% of DiscoSnp++).

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet with c1 < c2 < . . . < cσ, where < denotes
the standard lexicographic order. For s ∈ Σ∗, we denote its letters by s[1], s[2], . . . , s[n],
where n is the length of s, denoted by |s|. We append to s ∈ Σ∗ an end-marker symbol $ that
satisfies $ < c1. Note that, for 1 ≤ i ≤ n, s[i] ∈ Σ and s[n+ 1] = $ /∈ Σ. A substring of s is
denoted as s[i, j] = s[i] · · · s[j], with s[1, j] being called a prefix and s[i, n+ 1] a suffix of s.

We denote by S = {R1, R2, . . . , Rm} a collection of m strings (reads), and by $i the
end-marker appended to Ri (for 1 ≤ i ≤ m), with $i < $j if i < j. Let us denote by P the
sum of the lengths of all strings in S. The generalized suffix array GSA of the collection
S (see [36, 5, 25]) is an array containing P pairs of integers (r, j), corresponding to the
lexicographically sorted suffixes Rr[j, |Rr|+ 1], where 1 ≤ j ≤ |Rr|+ 1 and 1 ≤ r ≤ m. In
particular, gsa(S)[i] = (r, j) (for 1 ≤ i ≤ P) if the suffix Rr[j, |Rr|+ 1] is the i-th smallest
suffix of the strings in S. Such a notion is a natural extension of the suffix array of a string
(see [26]). The Burrows-Wheeler Transform (BWT) [4], a well known text transformation
largely used for data compression and self-indexing compressed data structure, has also
been extended to a collection S of strings (see [27]). Such an extension, known as extended

WABI 2018

3:4 Detecting Mutations by eBWT

Burrows-Wheeler Transform (eBWT) or multi-string BWT, is a reversible transformation that
produces a string that is a permutation of the letters of all strings in S: ebwt(S) is obtained
by concatenating the symbols cyclically preceding each suffix in the list of lexicographically
sorted suffixes of all strings in S. The eBWT applied to S can also be defined in terms of the
generalized suffix array of S ([2]): if gsa(S)[i] = (j, t) then ebwt(S)[i] = Rj [t− 1]; when t = 1,
then ebwt(S)[i] = $j . For gsa, ebwt, and lcp, the LF mapping (resp. FL) is a function that
associates to each (e)BWT symbol the position preceding (resp. following) it on the text.

The longest common prefix (LCP) array of a collection S of strings (see [5, 25, 8]),
denoted by lcp(S), is an array storing the length of the longest common prefixes between two
consecutive suffixes of S in lexicographic order. For each i = 2, . . . , P , if gsa(S)[i−1] = (p1, p2)
and gsa(S)[i] = (q1, q2), lcp(S)[i] is the length of the longest common prefix of suffixes starting
at positions p2 and q2 of the strings Rp1 and Rq1 , respectively. We set lcp(S)[1] = 0.

For gsa, ebwt, and lcp, the set S will be omitted when clear from the context.

3 eBWT positional clustering

Let R be a read sequenced from a genome G[1, n]. We say that R[j] is a read-copy of G[i]
iff R[j] is copied from G[i] during the sequencing process (and then possibly changed due
to sequencing errors). Let us consider the eBWT of a set of reads {R1, . . . , Rm} of length3
r, sequenced from a genome G. Assuming that c is the coverage of G[i], let us denote with
Ri1 [j1], . . . , Ric [jc] the c read-copies of G[i]. Should not there be any sequencing error, if
we consider k such that the genome fragment G[i+ 1, i+ k] occurs only once in G (that is,
nowhere else than right after G[i]) and if r is large enough so that with high probability
each Rit [jt] is followed by at least k nucleotides, then we observe that the c read copies
of G[i] would appear contiguously in the eBWT of the reads. We call this phenomenon
eBWT positional clustering. Due to sequencing errors, and to the presence of repetitions with
mutations in real genomes, a clean eBWT positional clustering is not realistic. However, in
this section we show that, even in the event of sequencing errors, in the eBWT of a collection
of reads sequenced from a genome G, the read-copies of G[i] still tend to be clustered together
according to a suitable Poisson distribution.

We make the following assumptions: (i) the sequencing process is uniform, i.e. the
positions from where each read is sequenced are uniform and independent random variables,
(ii) the probability ε that a base is subject to a sequencing error is a constant4, (iii) a
sequencing error changes a base to a different one uniformly (i.e. with probability 1/3 for
each of the three possible variants), and (iv) the number m of reads is large (hence, in our
theoretical analysis we can assume m→∞).

I Definition 1 (eBWT cluster). The eBWT cluster of i, with 1 ≤ i ≤ n being a position
on G, is the substring ebwt[a, b] such that gsa[a, b] is the range of read suffixes prefixed by
G[i+ 1, i+ k], where k < r is the smallest value for which G[i+ 1, i+ k] appears only once
in G. If no such value of k exists, we take k = r − 1 and say that the cluster is ambiguous.

If no value k < r guarantees that G[i + 1, i + k] appears only once in G, then the
eBWT cluster of i does not contain only read-copies of G[i] but also those of other t − 1
characters G[i2], . . . , G[it]. We call t the multiplicity of the eBWT cluster. Note that t = 1
for non-ambiguous clusters.

3 For simplicity of exposition, here we assume that all the reads have the same length r. With little more
effort, it can be shown that our results hold also when r is the average read length.

4 We assume this to simplify the theoretical framework. In Section 4 we will see that our framework
works even on data with sequencing simulated using realistic position-dependent errors distribution.

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:5

I Theorem 2 (eBWT positional clustering). Let Ri1 [j1], . . . , Ric [jc] be the c read-copies of
G[i]. An expected number X ≤ c of these read copies will appear in the eBWT cluster
ebwt[a, b] of i, where X ∼ Poi(λ) is a Poisson random variable with mean

λ = m · r − k
n

(1− ε)k

and where k is defined as in Definition 1.

Proof. The probability that a read covers G[i] is r/n. However, we are interested only in
those reads such that, if R[j] is a read-copy of G[i], then the suffix R[j + 1, r+ 1] contains at
least k nucleotides, i.e. j ≤ r − k. In this way, the suffix R[j + 1, r + 1] will appear in the
GSA range gsa[a, b] of suffixes prefixed by G[i+ 1, i+ k] or, equivalently, R[j] will appear in
ebwt[a, b]. The probability that a random read from the set is uniformly sampled from such
a position is (r− k)/n. If the read contains a sequencing error inside R[j + 1, j + k], however,
the suffix R[j + 1, r + 1] will not appear in the GSA range gsa[a, b]. The probability that
this event does not happen is (1− ε)k. Since we assume that these events are independent,
the probability of their intersection is therefore

Pr(R[j] ∈ ebwt[a, b]) = r − k
n

(1− ε)k

This is a Bernoullian event, and the number X of read-copies of G[i] falling in ebwt[a, b] is
the sum of m independent events of this kind. Then, X follows a Poisson distribution with
mean λ = m · r−kn (1− ε)k. J

Theorem 2 states that, if there exists a value k < r such that G[i + 1, i + k] appears
only once in G (i.e. if the cluster of i is not ambiguous), then X of the b− a+ 1 letters in
ebwt[a, b] are read-copies of G[i]. The remaining (b− a+ 1)−X letters are noise introduced
by suffixes that mistakenly end up inside gsa[a, b] due to sequencing errors. It is not hard to
show that this noise is extremely small under the assumption that G is a uniform text; we
are aware that this assumption is not realistic, but we will experimentally show in Section 4
that also on real genomes and simulated reads our approach produces extremely accurate
results (as predicted by our simplified theoretical framework).

Note that the expected coverage of position G[i] is also a Poisson random variable, with
mean λ′ = mr

n equal to the average coverage. On expectation, the size of non-ambiguous
eBWT clusters is thus λ/λ′ = (r−k)(1−ε)k

r < 1 times the average coverage. E.g., with
k = 14, ε = 0.0033 (see [34, Table 1, HiSeq, R2]), and r = 100 the expected cluster size is
100 · λ/λ′ ≈ 80% the average coverage.

Finally, it is not hard to prove, following the proof of Theorem 2, that in the general case
with multiplicity t ≥ 1 the expected cluster size follows a Poisson distribution with mean
t · λ (because the read-copies of t positions are clustered together). This observation will
allow us to detect and discard ambiguous clusters using a significance test.

So far, we have demonstrated the eBWT positional clustering property but we don’t
have a way for identifying the eBWT clusters. A naive strategy could be to fix a value of
k and define clusters to be ranges of k-mers in the GSA. This solution, however, fails to
separate read suffixes differing after k positions (this is, indeed, a drawback of all k-mer-based
strategies). The aim of Theorem 3 is precisely to fill this gap, allowing us to move from
theory to practice. Intuitively, we show that clusters lie between local minima in the LCP
array. This strategy automatically detects the value k satisfying Definition 1 in a data-driven
approach.

WABI 2018

3:6 Detecting Mutations by eBWT

Our result holds only if two conditions on the eBWT cluster under investigation are
satisfied (see Proposition 4 for an analysis of the success probability). More specifically, we
require that the eBWT cluster ebwt[a, b] of position i satisfies:
(1) The cluster does not have noise, i.e. X = b− a+ 1, and
(2) Let (p1, j1), (p2, j2) ∈ gsa[a, b]. For any x such that k ≤ x < r, if both Rp1 [j1, r] and

Rp2 [j2, r] contain their leftmost sequencing errors in Rp1 [j1 + x] and Rp2 [j2 + x], then
Rp1 [j1 + x] 6= Rp2 [j2 + x].

Proposition 4 will show that with probability high enough Condition (2) is satisfied in
practice. E.g., with r = 100, ε = 0.0033 (see [34, Table 1, HiSeq, R2]), mean coverage λ′ = 20,
and for any k ≥ 14, Proposition 4 shows that the condition holds (in expectation) on at
least 85% of the non-ambiguous clusters. Decreasing ε to 0.002 [34, Table 1, HiSeq, R1] this
percentage increases to 93%. While the rough lower bound of Proposition 4 is quite sensitive
with respect to the substitution rate ε, the sensitivity of ≈ 90% we obtain in our experiments
(see Section 4.4) suggests that on our test-cases at least 90% of the clusters satisfy Condition
(2).

I Theorem 3. Let ebwt[a, b] be the eBWT cluster of a position i meeting Conditions (1) and
(2). Then, there exists a value a < p ≤ b such that lcp[a+ 1, p] is a non-decreasing sequence
and lcp[p+ 1, b] is a non-increasing sequence.

Proof. Let us denote by pM the largest index in (a, b] such that lcp[pM] = M , whereM is the
maximum value of LCP in (a, b] (if M occurs multiple times, take the rightmost occurrence).
We claim the theorem holds for p = pM . Let us denote by q and j, 1 ≤ q ≤ m, 1 ≤ j ≤ r,
the positive integers such that gsa[pM] = (q, j). This means, by using Condition (2), that the
read Rq contains the longest prefix Rq[j, j+M − 1] without sequencing errors, j+M ≤ r+ 1.
Consider any other suffix Ru[ju, r+1] in the range and let Ru[ju+x] be the leftmost mismatch
letter in Ru[ju, r + 1], with x ≥ k. Note that if Ru[ju, r + 1] does not contain sequencing
errors, then ju+x−1 = r, otherwise Ru[ju+x] has been mutated with an error. We suppose
that the mutation at position ju + x generated a letter lexicographically smaller than that of
the genome (the other case is symmetric). By Condition (2), x ≤M + 1 and no other suffix
Rv[jv, r + 1] in the range satisfies Rv[jv + x] = Ru[ju + x]. Then, Ru[ju, r + 1] falls right
after a suffix Ru′ [ju′ , r + 1] such that either Ru′ [ju′ , r] properly prefixes Ru[ju, r + 1] or the
leftmost mismatch occurs at position x′ ≤ x. Similarly, Ru[ju, r+ 1] falls right before a suffix
Ru′′ [ju′′ , r+ 1] such that Ru[ju+x] < Ru′′ [ju′′ +x] and whose leftmost mismatch position x′′
satisfies x ≤ x′′ ≤M +1. This shows that, before suffix Rq[j, r+1], other suffixes are ordered
by increasing position of their leftmost mismatch letter (since x′ ≤ x ≤ x′′) and, then, by the
lexicographic order among mismatch letters, which in particular implies that before suffix
Rq[j, r + 1] the lcp values are non-decreasing. Symmetrically, with a similar reasoning one
can easily prove that after suffix Rq[j, r + 1] the lcp values are non-increasing. J

I Proposition 4. Given a eBWT cluster ebwt[a, b] with multiplicity t ≥ 1, Condition (2)
holds with probability at least

CDF (tλ, dtλe+ δ) ·
(3∑
e=0

(
dtλe+ δ

e

)
· (1− ε)dtλe+δ−e · εe · ce

)r−k
for any integer δ ≥ 0 and where: k is the value defined in Definition 1, λ is the mean of the
Poisson distribution of Theorem 2, CDF (µ, z) is the cumulative distribution function of a
Poisson random variable with mean µ evaluated in z, and c0 = c1 = 1, c2 = 2/3, c3 = 2/9.

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:7

Proof. First note that, by Theorem 2, the number of suffixes in the cluster sharing their
first k bases is at most dtλe+ δ with probability CDF (tλ, dtλe+ δ). We first analyze the
probability that the condition holds for a fixed offset x (i.e. looking at the (x+ 1)-th base
of all suffixes in the range sharing their first x characters), and then compute the joint
probability for all k ≤ x < r.

Note that the condition cannot fail if the number e of bases Rph
[jh + x] that have been

subject to errors is either e = 0 or e = 1. The condition does not fail also if we have e = 2 or
e = 3 distinct errors, while it always fails for e ≥ 4 (since at least two errors will produce
the same base). On a generic number Y ≤ dtλe+ δ of suffixes (those sharing their first x
bases), one can verify that the probability that the condition does not fail for a fixed number
e < 4 of errors is

(
Y
e

)
· (1− ε)Y−e · εe · ce, where c0 = c1 = 1, c2 = 2/3, c3 = 2/9. Since these

events are disjoint, we can sum these probabilities to get a lower bound to the probability
that condition (2) holds on a specific offset x on Y suffixes. Since this probability decreases
as Y increases, we get a lower bound by taking the maximum Y = dtλe + δ, and obtain
probability

∑3
e=0

(dtλe+δ
e

)
· (1− ε)dtλe+δ−e · εe · ce.

To get a lower bound to the probability that the condition holds simultaneously on all
k ≤ x < r, we take the product of these probabilities (note that errors at different offsets are
independent events). This reasoning holds only if there are at most dtλe+ δ suffixes sharing
their first k bases – which happens with probability CDF (tλ, dtλe+ δ) – so we must include
this multiplicative correction factor to get our final lower bound. J

Note: to get a lower bound that is independent from δ in Proposition 4, use the δ that
maximizes the expression (since the lower bound holds for any δ).

According to Theorem 3, clusters are delimited by local minima in the LCP array of the
read set. This gives us a strategy for finding clusters that is independent from k. Importantly,
the proof of Theorem 3 also gives us the suffix in the range (the p-th suffix) whose longest
prefix without sequencing errors is maximized. This will be useful in the next section to
efficiently compute a consensus of the reads in the cluster.

Observe that by applying Theorem 3 we also find ambiguous clusters. However, the
expected length of these clusters is a multiple of λ, so they can be reliably discarded with a
significance test based on the Poisson distribution of Theorem 2.

To conclude, we note that our analysis automatically adapts to the case where also indels
are present in the reads (i.e. not just substitutions, but possibly also insertions and deletions).
To see why this holds true, note that our analysis only looks at the first base that changes
w.r.t. the reference in any read suffix. Since we do not look at the following bases, indels
behave exactly like SNPs in Theorems 2 and 3. For the same reason, indels between the two
individuals will produce clusters containing two distinct letters (i.e. we capture the last letter
of the indel, which by definition differs from the corresponding letter in the reference). On the
other hand, this shows that we will mistakenly classify indels as SNPs. The straightforward
solution (i.e. performing a multiple alignment on the left-contexts in each cluster) will be
discussed in a forthcoming extension of this paper.

4 Experimental Validation: Reference-Free SNPs Discovery

When the reads dataset contains variations (e.g. two allele of the same individual, or two
or more distinct individuals, or different isoforms of the same gene in RNA-Seq data, or
different reads covering the same genome fragment in a sequencing process, etc.), the eBWT
positional clustering described in the previous section can be used to detect, directly from the
raw reads (hence, without assembly and without the need of a reference genome), positions

WABI 2018

3:8 Detecting Mutations by eBWT

G[i] exhibiting possibly different values, but followed by the same context: they will be in a
cluster delimited by LCP minima and containing possibly different letters (corresponding
to the read copies of the variants of G[i] in the read set). This general idea can be used in
several applications: error correction, assembly (the strategy finds overlaps between reads,
so it can be used for assembly purposes), haplotype discovery (if fed with reads from just
one diploid sample, this strategy can find heterozygous sites), and so on.

In this section, with the purpose of experimentally validating the theoretical framework
of Section 3, we describe a new alignment-free and reference-free method that, with a simple
scan of the eBWT and LCP arrays, detects SNPs in read collections.

Since (averagely) half of the reads comes from the forward (F) strand, and half from
the reverse-complement (RC) strand, we denote with the term right (resp. left) breakpoint
those variants found in a cluster formed by reads coming from the F (resp. RC) strand,
and therefore sharing the right (resp. left) context adjacent to the variant. A non-isolated
SNP [38] is a variant at position i such that the closest variant is within k bases from i, for
some fixed k (we use k = 31 in our validation procedure, see below). The SNP is isolated
otherwise. Note that, while isolated SNPs are found twice with our method (one as a right
breakpoint and one as a left breakpoint), this is not true for non-isolated SNPs: variants at
the sides of a group of non-isolated SNPs are found as either left or right breakpoint, while
SNPs inside the group will be found with positional clustering plus a partial local assembly
of the reads in the cluster. In the next two subsections we give all the details of our strategy.

4.1 Pre-processing (eBWT computation)
Since we do not aim at finding matches between corresponding pairs of clusters on the forward
and reverse strands, we augment the input adding the reverse-complement of the reads: for a
reads set S, we add SRC as well. Hence, given two reads sets S and T , in the pre-processing
phase we compute ebwt(R), lcp(R), and gsa(R), for R = {S ∪ SRC ∪ T ∪ T RC}. This task
can be achieved using, for example, BCR5 [5], Egsa6 [25] or gsacak7 [24]. We also compute
gsa(R) because we will need it (see Subsection 4.2) to extract left and right contexts of the
SNP. Though this could be achieved by performing (in external memory) multiple steps of
LF- and FL-mappings on the eBWT, this would significantly slow-down our tool. Note that
our approach can also be generalized to more than two reads collections.

4.2 SNP calling
Our SNPs calling approach takes as input ebwt(R), lcp(R), and gsa(R) and outputs SNPs in
KisSNP2 format [11]: a fasta file containing a pair of sequences per SNP (one per sample,
containing the SNP and its context). The SNP calling is divided in two main steps.

Build clusters. First, we scan ebwt(R) and lcp(R), find clusters using Theorem 3, and store
them to file as a sequence of ranges on the eBWT. In addition, while computing clusters we
also apply a threshold of minimum LCP (by default, 16): we cut clusters’ tails containing
LCP values smaller than the threshold. This additional filtering drastically reduces the
number of clusters saved to file (and hence memory usage and running time), since the
original strategy would otherwise output many short clusters containing small LCP values
corresponding to noise.

5 https://github.com/giovannarosone/BCR_LCP_GSA
6 https://github.com/felipelouza/egsa
7 https://github.com/felipelouza/sacak-lcp

https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egsa
https://github.com/felipelouza/sacak-lcp

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:9

Call SNPs. The second step takes as input the clusters file, ebwt(R), lcp(R), gsa(R), and
R, and processes clusters from first to last as follows:
1. We test the cluster’s length using the Poisson distribution predicted by Theorem 2; if the

cluster’s length falls in one of the two tails at the sides of the distribution (by default, the
two tails summing up to 5% of the distribution), then the cluster is discarded; Moreover,
due to k-mers that are not present in the genome but appear in the reads because of
sequencing errors (which introduce noise around cluster length equal to 1), we also fix a
minimum value of length for the clusters (by default, 4 letters per sample).

2. In the remaining clusters, we find the most frequent nucleotides b1 and b2 of samples 1
and 2, respectively, and check whether b1 6= b2; if so, then we have a candidate SNP: for
each sample, we use the GSA to retrieve the coordinate of the read containing the longest
right-context without errors (see explanation after Proposition 4); moreover, we retrieve,
and temporarily store in a buffer, the coordinates of the remaining reads in the cluster.

3. After processing all events, we scan the fasta file storing R to retrieve the reads of interest
(those whose coordinates are in the buffer); for each one of them, we compute a partial
assembly of the read prefixes preceding the SNP, for each of the two samples. This allows
us to compute a left-context for each SNP (by default, of length 20), and it also represents
a further validation step: if the assembly cannot be built because a consensus cannot be
found, then the cluster is discarded. Note that these left-contexts preceding SNPs (which
are actually right-contexts if the cluster is formed by reads from the RC strand) allow us
to capture non-isolated SNPs.

Complexity. In the clustering step, we process the eBWT and LCP and on-the-fly output
clusters to disk. The SNP-calling step performs one scan of the eBWT, GSA, and clusters
file to detect interesting clusters, plus one additional scan of the read set to retrieve contexts
surrounding SNPs. Both these phases take linear time in the size of the input and do not
use disk space in addition to the input and output. Due to the fact that we store in a
buffer the coordinates of reads inside interesting clusters, this step uses an amount of RAM
proportional to the number of SNPs times the average cluster size λ times the read length r
(e.g. a few hundred MB in our case study of Section 4.4). Notice that our method is very
easy to parallelize, as the analysis of each cluster is independent from the others.

4.3 Validation
Here we describe the validation tool we designed to measure the sensitivity and precision
of any tool outputting SNPs in KisSNP2 format. Note that we output SNPs as pairs
of reads containing the actual SNPs plus their contexts (one sequence per sample). This
can be formalized as follows: the output is a series of pairs of triples (we call them calls)
(L′, s′, R′), (L′′, s′′, R′′) where L′, R′, L′′, R′′ are the left/right contexts of the SNP in the
two samples, and letters s′, s′′ are the actual variant. Given a .vcf file (Variant Call Format)
containing the ground truth, the most precise way to validate this kind of output is to check
that the triples actually match contexts surrounding true SNPs on the reference genome
(used here just for accuracy validation purposes). That is, for each pair in the output calls:
1. If there is a SNP s′ → s′′ in the .vcf that is surrounded in the first sample by contexts

L′, R′ (or their RC), then (L′, s′, R′), (L′′, s′′, R′′) is a true positive (TP).
2. Any pair (L′, s′, R′), (L′′, s′′, R′′) that is not matched with any SNP in the ground truth

(as described above) is a false positive (FP).
3. Any SNP in the ground truth that is not matched with any call is a false negative (FN).

WABI 2018

3:10 Detecting Mutations by eBWT

We implemented the above validation strategy with a (quite standard) reduction of the
problem to the 2D range reporting problem: we insert in a two-dimensional grid two points
per SNP (from the .vcf) using as coordinates the ranks of its right and (reversed) left contexts
among the sorted right and (reversed) left contexts of all SNPs (contexts from the first sample)
on the F and RC strands. Given a pair (L′, s′, R′), (L′′, s′′, R′′), we find the two-dimensional
range corresponding to all SNPs in the ground truth whose right and (reversed) left contexts
are prefixed by R′ and (the reversed) L′, respectively. If there is at least one point in the
range matching the variation s′ → s′′, then the call is a TP8 (case 1 above; note: to be a TP,
a SNP can be found either on the F or on the RC strand, or both); else, it is a FP (case 2
above). Finally, pairs of points (same SNP on the F/RC strands) that have not been found
by any call are marked as FN (case 3 above). We repeat the procedure for any other SNP
found between the two strings L′s′R′ and L′′s′′R′′ to find non-isolated SNPs.

4.4 Preliminary Experiments

In order to evaluate our method, we compare eBWTclust with DiscoSnp++, that is a
revisiting of the DiscoSnp algorithm: while DiscoSnp detects (both heterozygous and
homozygous) isolated SNPs from any number of read datasets without a reference genome,
DiscoSnp++ detects and ranks all kinds of SNPs as well as small indels. As shown in [28],
DiscoSnp++ performs better than state-of-the-art methods in terms of both computational
resources and quality of the results.

DiscoSnp++ is composed of several independent tools. As a preprocessing step, the
dBG of the input datasets is built, by also removing erroneous k-mers. Then, DiscoSnp++
detects bubbles generated by the presence of SNPs (isolated or not) and indels, and it outputs
a fasta file containing the variant sequences (KisSnp2 module). A final step (kissreads2)
maps back the reads from all input read sets on the variant sequences, mainly in order to
determine the read coverage per allele and per read set of each variant. This module also
computes a rank per variant, indicating whether it exhibits discriminant allele frequencies
in the datasets. The last module generates a .vcf of the predicted variants. If no reference
genome is provided this step is a change of format from fasta to .vcf (VCFcreator module).

We propose two experiments simulating two human chromosomes haploid read sets
obtained mutating (with real .vcf files) real reference chromosomes9. The final goal of the
experiments is to reconstruct the variations contained in the original (ground truth) .vcf
files. We generated the mutated chromosomes using the 1000 genome project (phase 3) .vcf
files10 related to chromosomes 16 and 22, suitably filtered to keep only SNPs of individuals
HG00100 (ch.16) and HG00096 (ch.22). From these files, we simulated Illumina sequencing
with SimSeq [9], both for reference and mutated chromosomes: individual HG00096 (ch.22)
at a 29x getting 15, 000, 000 of 100-bp reads, and individual HG00100 (ch.16) a 22x getting
20, 000, 000 of 100-bp reads. To simulate the reads, we used the HiSeq error profile11 publicly
available in the SimSeq’s repository. Note that our experiments are easily reproducible given
the links of the datasets, simulator, and error profile we have provided.

8 Since other tools such as DiscoSnp++ do not preserve the order of samples in the output, we actually
check also the variant s′′ → s′ and also search the range corresponding to L′′ and R′′

9 ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_
sequence/hs37d5.fa.gz

10 ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
11 https://github.com/jstjohn/SimSeq/blob/master/examples/hiseq_mito_default_bwa_mapping_

mq10_1.txt

ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/jstjohn/SimSeq/blob/master/examples/hiseq_mito_default_bwa_mapping_mq10_1.txt
https://github.com/jstjohn/SimSeq/blob/master/examples/hiseq_mito_default_bwa_mapping_mq10_1.txt

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:11

Table 1 Pre-processing comparative results of eBWTclust (i.e. building the eBWT using either
Egsa or BCR) and DiscoSnp++ (i.e. building the de Bruijn graph). Wall clock is the elapsed time
from start to completion of the instance, while RAM is the peak Resident Set Size (RSS). Both
values were taken with /usr/bin/time command.

Dataset Coverage #reads Preprocessing Wall Clock RAM
per Sample (h:mm:ss) (MB)

HG00096 (ch. 22) 29x 15,000,000

gsacak 0:53:34 100607
Egsa 1:41:37 30720
BCR 4:18:00 1970

DiscoSnp++ 00:01:09 5170

HG00100 (ch. 16) 22x 20,000,000

gsacak 1:13:04 112641
Egsa 3:39:04 30720
BCR 6:10:28 3262

DiscoSnp++ 00:02:01 6111

Our framework has been implemented in C++ and is available at https://github.com/
nicolaprezza/eBWTclust. All tests were done on a DELL PowerEdge R630 machine, used
in non exclusive mode. Our platform is a 24-core machine with Intel(R) Xeon(R) CPU
E5-2620 v3 at 2.40 GHz, with 128 GB of shared memory. The system is Ubuntu 14.04.2 LTS.
Note that, unlike DiscoSnp++, our tool is currently able to use one core only.

We experimentally observed that the pre-processing step (see Table 1) is more computa-
tionally expensive than the actual SNP calling step. The problem of computing the eBWT is
being intensively studied, and improving its efficiency is out of the aim of this paper. However,
a recent work [7] suggests that direct storing of read data with a compressed eBWT leads
to considerable space savings, and could therefore become the standard in the future. Our
strategy can be easily adapted to directly take as input these compressed formats. Building
the dBG requires a few minutes and, in order to keep the RAM usage very low, no other
information other than k-mer presence is stored in the dBG used by DiscoSnp++. On the
other hand, the construction of the eBWT, LCP and GSA arrays can take a few hours. So,
overall DiscoSnp++ is faster than eBWTclust when considering the whole processing.

We run DiscoSnp++ with default parameters (includes k-mers size 31) except for P = 3
(it searches up to P SNPs per bubble) and b (b = 0 forbids variants for which any of the two
paths is branching; b = 2 imposes no limitation on branching; b = 1 is inbetween).

eBWTclust takes as input few main parameters, among which the most important
are the lengths of right and left contexts surrounding SNPs in the output (-L and -R), the
minimum cluster size (-m), and (-v) the maximum number of non-isolated SNPs to seek in
the left contexts (like parameter P of DiscoSnp++). In order to make a fair comparison
between DiscoSnp++ and eBWTclust, with eBWTclust we decided to output (exactly
as for DiscoSnp++) 30 nucleotides following the SNP (-R 30), 31 nucleotides preceding
and including the SNP (-L 31) (i.e. the output reads are of length 61, with the SNP in the
middle position), and -v 3 (as we used P = 3 with DiscoSnp++). For the minimum cluster
size, we tested both combinations -m 6 and -m 4. We also show experiments with -L 20 in
order to study how extracting shorter left-contexts impacts running times and precision.

In Table 2, we show the number of TP, FP and FN as well as sensitivity (SEN), precision
(PREC), and the number of non-isolated SNPs found by the tools. The outcome is that
eBWTclust is always more precise and sensitive than DiscoSnp++. Moreover, while
in our case precision is stable and always quite high (always between 94% − 99%), for

WABI 2018

https://github.com/nicolaprezza/eBWTclust
https://github.com/nicolaprezza/eBWTclust

3:12 Detecting Mutations by eBWT

Table 2 Post-processing comparative results of eBWTclust (i.e. building clusters from the
eBWT and performing SNP calling) and DiscoSnp++ (i.e. running KisSnp2 and kissreads2
using the pre-computed de Bruijn graph). Wall clock (mm:ss) is the elapsed time from start to
completion of the instance, while RAM is the peak Resident Set Size (RSS). Both values were taken
with /usr/bin/time command.

Individual HG00096 vs reference (chromosome 22, 50818468bp), coverage 29× per sample

Tool Param. Wall RAM TP FP FN SEN PREC Non-isol.
Clock (MB) (%) (%) SNP

DiscoSnp++
b=0 5:07 101 32773 3719 13274 71.17 89.81 4707/8658
b=1 16:39 124 37155 10599 8892 80.69 77.80 5770/8658
b=2 20:42 551 40177 58227 5870 87.25 40.83 6325/8658

eBWTclust

m=4
L=20 19:43 415 42973 2639 3074 93.32 94.21 7268/8658

m=6
L=20 24:58 411 41972 630 4075 91.15 98.52 6940/8658

m=4
L=31 35:56 314 42309 1487 3738 91.88 96.60 7233/8658

m=6
L=31 22:19 300 40741 357 5306 88.47 99.13 6884/8658

Individual HG00100 vs reference (chromosome 16, 90338345bp), coverage 22× per sample

Tool Param. Wall RAM TP FP FN SEN PREC Non-isol.
Clock (MB) (%) (%) SNP

DiscoSnp++
b=0 6:20 200 48119 10226 18001 72.78 82.47 6625/11055
b=1 31:57 208 53456 24696 12664 80.85 68.40 7637/11055
b=2 51:45 1256 57767 124429 8353 87.37 31.71 8307/11055

eBWTclust

m=4
L=20 41:12 423 61264 943 4856 92.66 98.48 9314/11055

m=6
L=20 43:51 419 58085 391 8035 87.85 99.33 8637/11055

m=4
L=31 33:24 418 59668 898 6452 90.24 98.51 9287/11055

m=6
L=31 44:53 337 53749 190 12371 81.29 99.64 8169/11055

DiscoSnp++ precision is much lower in general, and even drops with b = 2, especially with
lower coverage, when inversely sensitivity grows. Sensitivity of DiscoSnp++ gets close to
that of eBWTclust only in case b = 2, when its precision drops and memory and time get
worse than ours.

Note that precision and sensitivity of DiscoSnp++ are consistent with those reported
in [28]. In their paper (Table 2), the authors report a sensitivity of 79.31% and a precision
of 72.11% for DiscoSnp++ evaluated on a Human chromosome with simulated reads (i.e.
using an experimental setting similar to ours). In our experiments, using parameter b = 1,
DiscoSnp++’s sensitivity and precision are, on average between the two datasets, 80.67%
and 73.1%, respectively. Therefore, such results almost perfectly match those obtained by
the authors of [28]. The same Table 2 of [28] shows that DiscoSnp++ can considerably
increase precision at the expense of sensitivity by filtering low-ranking calls. By requiring
rank > 0.2, the authors show that their tool achieves a sensitivity of 65.17% and a precision
of 98.73%. While we have not performed this kind of filtering in our experiments, we note

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:13

that also in this case eBWTclust’s sensitivity would be higher than that of DiscoSnp++.
Precision of the two tools, on the other hand, would be comparable.

Finally, we note that also DiscoSnp++ has been evaluated by the authors of [28] using
the SimSeq simulator (in addition to other simulators which, however, yield similar results).
We remark that SimSeq simulates position-dependent sequencing errors, while our theoretical
assumptions are more strict and require position-independent errors. Similarly, we assume
a uniform random genome, while in our experiments we used real Human chromosomes.
Since in both cases our theoretical assumptions are more stringent than those holding on
the datasets, the high accuracy we obtain is a strong evidence that our theoretical analysis
is robust to changes towards less-restrictive assumptions. We plan to test our (extended)
prototype on real reads in a forthcoming extension of this paper.

5 Conclusions

We introduced a positional clustering framework for the characterization of breakpoints in
the eBWT, paving the way to several possible applications in assembly-free and reference-free
analysis of NGS data. The experiments proved the feasibility and potential of our approach.
Further work will focus on improving the prediction in highly repeated genomic regions and
using our framework to predict SNPs, predict INDELs, haplotyping, correcting sequencing
errors, detecting Alternative Splicing events in RNA-Seq data, and sequence assembly.

References
1 C. Ander, O.B. Schulz-Trieglaff, J. Stoye, and A.J. Cox. metaBEETL: high-throughput ana-

lysis of heterogeneous microbial populations from shotgun DNA sequences. BMC Bioinf.,
14(5):S2, 2013.

2 M.J. Bauer, A.J. Cox, and G. Rosone. Lightweight algorithms for constructing and inverting
the BWT of string collections. Theoret. Comput. Sci., 483(0):134–148, 2013.

3 E. Birmelé, P. Crescenzi, R.A. Ferreira, R. Grossi, V. Lacroix, A. Marino, N. Pisanti, G.A.T.
Sacomoto, and M.-F. Sagot. Efficient Bubble Enumeration in Directed Graphs. In SPIRE,
LNCS 7608, pages 118–129, 2012.

4 M. Burrows and D.J. Wheeler. A Block Sorting data Compression Algorithm. Technical
report, DIGITAL System Research Center, 1994.

5 A.J. Cox, F. Garofalo, G. Rosone, and M. Sciortino. Lightweight LCP construction for
very large collections of strings. J. Discrete Algorithms, 37:17–33, 2016.

6 A.J. Cox, T. Jakobi, G. Rosone, and O.B. Schulz-Trieglaff. Comparing DNA sequence
collections by direct comparison of compressed text indexes. In WABI, LNBI 7534, pages
214–224, 2012.

7 D.D. Dolle, Z. Liu, M. Cotten, J.T. Simpson, Z. Iqbal, R. Durbin, S.A. McCarthy, and
T.M. Keane. Using reference-free compressed data structures to analyze sequencing reads
from thousands of human genomes. Gen. Res., 27(2):300–309, 2017.

8 L. Egidi and G. Manzini. Lightweight BWT and LCP merging via the Gap algorithm. In
SPIRE, LNCS 10508, pages 176–190, 2017.

9 D. Earl et al. Assemblathon 1: A competitive assessment of de novo short read assembly
methods. Gen. Res., 21(12):2224–2241, 2011.

10 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In FOCS,
pages 390–398, 2000.

11 S.N. Gardner and B.G. Hall. When Whole-Genome Alignments Just Won’t Work: kSNP
v2 Software for Alignment-Free SNP Discovery and Phylogenetics of Hundreds of Microbial
Genomes. PLoS ONE, 8(12):e81760, 2013.

WABI 2018

3:14 Detecting Mutations by eBWT

12 Z. Iqbal, I. Turner, G. McVean, P. Flicek, and M. Caccamo. De novo assembly and geno-
typing of variants using colored de Bruijn graphs. Nature Genetics, 44(2):226–232, 2012.

13 K. Kimura and A. Koike. Analysis of genomic rearrangements by using the Burrows-
Wheeler transform of short-read data. BMC Bioinf., 16(suppl.18):S5, 2015.

14 K. Kimura and A. Koike. Ultrafast SNP analysis using the Burrows-Wheeler transform of
short-read data. Bioinformatics, 31(10):1577–1583, 2015.

15 T.M. Kowalski, S. Grabowski, and S. Deorowicz. Indexing arbitrary-length k-mers in se-
quencing reads. PLoS ONE, 10(7), 2015.

16 B. Langmead and S.L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat. Methods,
9(4):357–359, 2012.

17 R.M. Leggett and D. MacLean. Reference-free SNP detection: dealing with the data deluge.
BMC Genomics, 15(4):S10, 2014.

18 R.M. Leggett, R.H. Ramirez-Gonzalez, W. Verweij, C.G. Kawashima, Z. Iqbal, J.D.G.
Jones, M. Caccamo, and D. MacLean. Identifying and Classifying Trait Linked Poly-
morphisms in Non-Reference Species by Walking Coloured de Bruijn Graphs. PLoS ONE,
8(3):1–11, 03 2013.

19 C. Lemaitre, L. Ciortuz, and P. Peterlongo. Mapping-free and assembly-free discovery of
inversion breakpoints from raw NGS reads. In AlCoB, pages 119–130, 2014.

20 H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

21 R. Li, C. Yu, Y. Li, T. W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967, 2009.

22 S. Li, R. Li, H. Li, J. Lu, Y. Li, L. Bolund, M.H. Schierup, and J. Wang. SOAPindel:
efficient identification of indels from short paired reads. Gen. Res., 23(1):195–200, 2013.

23 A. Limasset, J.-F. Flot, and P. Peterlongo. Toward perfect reads: self-correction of short
reads via mapping on de Bruijn graphs. CoRR, abs/1711.03336, 2017.

24 F.A. Louza, S. Gog, and G.P. Telles. Inducing enhanced suffix arrays for string collections.
Theor. Comput. Sci., 678:22–39, 2017.

25 F.A. Louza, G.P. Telles, S. Hoffmann, and C.D.A. Ciferri. Generalized enhanced suffix
array construction in external memory. Algorithms for Molecular Biology, 12(1):26, 2017.

26 U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. In
SODA, pages 319–327, 1990.

27 S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows-Wheeler
Transform. Theoret. Comput. Sci., 387(3):298–312, 2007.

28 P. Peterlongo, C. Riou, E. Drezen, and C. Lemaitre. DiscoSnp++: de novo detection of
small variants from raw unassembled read set(s). bioRxiv, 2017.

29 P. Peterlongo, N. Schnel, N. Pisanti, M.-F. Sagot, and V. Lacroix. Identifying SNPs without
a Reference Genome by comparing raw reads. In SPIRE, LNCS 6393, pages 147–158, 2010.

30 N. Philippe, M. Salson, T. Lecroq, M. Léonard, T. Commes, and E. Rivals. Querying large
read collections in main memory: a versatile data structure. BMC Bioinf., 12:242, 2011.

31 G.A.T. Sacomoto, J. Kielbassa, R. Chikhi, R. Uricaru, P. Antoniou, M.-F. Sagot,
P. Peterlongo, and V. Lacroix. KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinf., 13(S-6):S5, 2012.

32 L. Salmela and E. Rivals. LoRDEC: accurate and efficient long read error correction.
Bioinformatics, 30(24):3506–3514, 2014.

33 L. Salmela, R. Walve, E. Rivals, and E. Ukkonen. Accurate self-correction of errors in long
reads using de Bruijn graphs. Bioinformatics, 33(6):799–806, 2017.

34 M. Schirmer, R. D’Amore, U.Z. Ijaz, N. Hall, and C. Quince. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC Bioinf., 17(1):125,
2016.

N. Prezza, N. Pisanti, M. Sciortino, and G. Rosone 3:15

35 J. Schröder, H. Schröder, S.J. Puglisi, R. Sinha, and B. Schmidt. SHREC: a short-read
error correction method. Bioinformatics, 25(17):2157–2163, 2009.

36 F. Shi. Suffix Arrays for Multiple Strings: A Method for On-Line Multiple String Searches.
In ASIAN, LNCS 1179, pages 11–22, 1996.

37 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–74, 2015.

38 R. Uricaru, G. Rizk, V. Lacroix, E. Quillery, O: Plantard, R. Chikhi, C. Lemaitre, and
P. Peterlongo. Reference-free detection of isolated SNPs. Nuc.Acids Res, 43(2):e11, 2015.

39 N. Välimäki and E. Rivals. Scalable and Versatile k-mer Indexing for High-Throughput
Sequencing Data. In ISBRA, LNCS 7875, pages 237–248, 2013.

WABI 2018

Haplotype-aware graph indexes
Jouni Sirén1

University of California, Santa Cruz, USA
Wellcome Sanger Institute, Hinxton, UK
jouni.siren@iki.fi

https://orcid.org/0000-0001-5828-4139

Erik Garrison2

Wellcome Sanger Institute, Hinxton, UK
eg10@sanger.ac.uk

https://orcid.org/0000-0003-3821-631X

Adam M. Novak3

University of California, Santa Cruz, USA
anovak@soe.ucsc.edu

https://orcid.org/0000-0001-5828-047X

Benedict J. Paten4

University of California, Santa Cruz, USA
bpaten@ucsc.edu

https://orcid.org/0000-0001-8863-3539

Richard Durbin5

Department of Genetics, University of Cambridge, UK
Wellcome Sanger Institute, Hinxton, UK
rd@sanger.ac.uk

https://orcid.org/0000-0002-9130-1006

Abstract
The variation graph toolkit (VG) represents genetic variation as a graph. Each path in the graph
is a potential haplotype, though most paths are unlikely recombinations of true haplotypes. We
augment the VG model with haplotype information to identify which paths are more likely to be
correct. For this purpose, we develop a scalable implementation of the graph extension of the po-
sitional Burrows–Wheeler transform. We demonstrate the scalability of the new implementation
by indexing the 1000 Genomes Project haplotypes. We also develop an algorithm for simplifying
variation graphs for k-mer indexing without losing any k-mers in the haplotypes.

2012 ACM Subject Classification Theory of computation → Pattern matching, Theory of com-
putation → Data compression, Applied computing → Computational genomics

Keywords and phrases FM-indexes, variation graphs, haplotypes

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.4

1 Funded by Wellcome Trust grant WT206194, the National Institutes of Health (5U41HG007234,
1U01HL137183-01), and the W. M. Keck Foundation (DT06172015)

2 Funded by Wellcome Trust grant WT206194.
3 Funded by the National Institutes of Health (5U41HG007234, 1U01HL137183-01) and the W. M. Keck

Foundation (DT06172015)
4 Funded by the National Institutes of Health (5U41HG007234, 1U01HL137183-01) and the W. M. Keck

Foundation (DT06172015)
5 Funded by Wellcome Trust grant WT206194.

© Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict J. Paten, and Richard Durbin;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jouni.siren@iki.fi
https://orcid.org/0000-0001-5828-4139
mailto:eg10@sanger.ac.uk
https://orcid.org/0000-0003-3821-631X
mailto:anovak@soe.ucsc.edu
https://orcid.org/0000-0001-5828-047X
mailto:bpaten@ucsc.edu
https://orcid.org/0000-0001-8863-3539
mailto:rd@sanger.ac.uk
https://orcid.org/0000-0002-9130-1006
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Haplotype-aware graph indexes

Supplement Material The implementation can be found at https://github.com/vgteam/vg,
https://github.com/jltsiren/gbwt, and https://github.com/jltsiren/gcsa2.

1 Introduction

Sequence analysis pipelines often start by mapping the sequence reads to a reference genome
of the same species. A read aligner first uses a text index to find candidate positions for the
read. Then it aligns the read to the candidate positions, trying to find the best mapping.

The reference genome may represent the sequenced individual poorly, e.g. when it is
a single sequence that diverges substantially at some location. Mapping reads to such a
reference can introduce reference bias to the subsequent analysis. Richer reference models
can help to avoid the bias, but challenges remain in choosing the right model and working
with it effectively [28].

We can replace the single reference sequence with a collection of haplotypes. Because
individual genomes are similar, compressed text indexes can store such collections in very
little space [18]. However, due to this similarity, most reads map equally well to many
haplotypes. If the reference model is a simple collection, we cannot tell whether a read maps
to the same position in different haplotypes or not.

If the haplotypes are aligned, we can use the alignment to determine whether the mappings
are equivalent. Text indexes can also take advantage of the alignment by storing shared
substrings only once [13]. The FM-index of alignment [19, 20] goes one step further by
collapsing the multiple alignment into a directed acyclic graph (DAG), where each node
is labeled by a sequence. It indexes the graph and stores some additional information for
determining which paths correspond to valid haplotypes.

We can also build a reference graph directly from a reference sequence and a set of variants
[24]. This approach has been used in many tools such as GCSA [26], BWBBLE [12], vBWT
[16], the Seven Bridges Graph Pipeline [23], and Graphtyper [5]. Algorithms for working
with sequences are often easy to generalize to DAGs. On the other hand, because an acyclic
graph imposes a global alignment on the haplotypes, allowing only matches, mismatches, and
indels, it cannot represent structural variation such as duplications or inversions adequately.

Assembly graphs such as de Bruijn graphs collapse sequences by local similarity instead
of global alignment. They are better suited to handling structural variation than DAGs.
However, the lack of a global coordinate system limits their usefulness as references.

Graph-based reference models share certain weaknesses. Because they collapse sequences
between variants, they represent both the original haplotypes and their recombinations, that
is paths that switch between haplotypes. This may cause false positives when a read maps
better to an unobserved recombination than to the correct path. Graph regions with many
variants in close proximity can give rise to very large numbers of recombinant paths, and be
too complex to index completely. Graph tools try to deal with such regions by, for example,
limiting the amount of variation in the graph, artificially simplifying complex regions, and
making trade-offs between query performance, index size, and maximum query length.

CHOP [17] embeds haplotypes into a graph and indexes the corresponding paths. For
a given parameter k, the graph is transformed into a collection of short strings such that
adjacent strings overlap by k−1 characters. Each haplotype can be represented as a sequence
of adjacent strings. Any read aligner can be used to map reads to the strings. However,
because the aligner sees only short strings, it cannot map long reads or paired-end reads.

The variation graph toolkit (VG) [9] works with many kinds of graphs. While the tools
mentioned earlier use graphs to represent other information (e.g. sequences or variants),

https://github.com/vgteam/vg
https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gcsa2

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:3

the graph itself is the primary object in the VG model. A global coordinate system can be
provided by designating certain paths as reference paths.

VG uses GCSA2 [25] as its text index. GCSA2 represents a k-mer index as a de Bruijn
graph and compresses it structurally by merging redundant nodes. VG handles complex graph
regions by indexing a simplified graph, although the final alignment is done in the original
graph. The drawback of this approach is that simplification can break paths corresponding
to known haplotypes, while leaving paths representing recombinations intact.

In this paper, we augment the VG model with haplotype information. We develop the
GBWT, a scalable implementation of the graph extension of the positional Burrows–Wheeler
transform (gPBWT) [4, 21], to store the haplotypes as paths in the graph. To demonstrate
the scalability of the GBWT, we build an index for the the 1000 Genomes Project haplotypes.
We also describe an algorithm that adds the haplotype paths back to the simplified graph,
without reintroducing too much complexity.

The main differences to the old gPBWT implementation [21] are:
We use local structures for each node instead of global structures for the graph. The
index is smaller and faster and takes better advantage of memory locality.
The GBWT is implemented as an ordinary text index instead of a special-purpose index
for paths. Most FM-index algorithms can be used with it. For example, we can use the
GBWT as an FMD-index [14] and support bidirectional search.
We have a fast and space-efficient incremental construction algorithm that does not need
access to the entire collection of haplotypes at the same time.
Our implementation can be used independently of VG.

The haplotype information stored in GBWT can also be used to improve read mapping,
and potentially, variant inference. We leave this investigation to a subsequent paper.

2 Background

2.1 Strings and graphs
A string S[0, n−1] = s0 · · · sn−1 of length |S| = n is a sequence of characters over an alphabet
Σ = {0, . . . , σ− 1}. Text strings T [0, n− 1] are terminated by an endmarker T [n− 1] = $ = 0
that does not occur anywhere else in the text. Substrings of string S are sequences of the
form S[i, j] = si · · · sj . We call substrings of length k k-mers and substrings of the type
S[0, j] and S[i, n− 1] prefixes and suffixes, respectively.

Let S[0, n−1] be a string. We define S.rank(i, c) as the number of occurrences of character
c in the prefix S[0, i− 1]. We also define S.select(i, c) = max{j ≤ n | S.rank(j, c) < i} as the
position of the occurrence of rank i > 0. A bitvector is a data structure that stores a binary
sequence and supports efficient rank/select queries over it.

A graph G = (V,E) consists of a finite set of nodes V ⊂ N and a set of edges E ⊆ V × V .
We assume that the edges are directed: (u, v) ∈ E is an edge from node u to node v. The
indegree of node v is the number of incoming edges to v, while the outdegree is the number
of outgoing edges from v. Let P = v0 · · · v|P |−1 be a string over the set of nodes V . We say
that P is a path in graph G = (V,E), if (vi, vi+1) ∈ E for all 0 ≤ i < |P | − 1.

The VG model [9] is based on bidirected graphs, where each node has two orientations.
We simulate them with directed graphs. We partition the set of nodes V into forward nodes
Vf and reverse nodes Vr, with Vf ∩ Vr = ∅ and |Vf | = |Vr|. We match each forward node
v ∈ Vf with the corresponding reverse node v ∈ Vr, with v = v for all v ∈ Vf . For all nodes
u, v ∈ V , we also require that (u, v) ∈ E ⇐⇒ (v, u) ∈ E.

WABI 2018

4:4 Haplotype-aware graph indexes

2.2 FM-index
The suffix array SA[0, n−1] of text T [0, n−1] is an array of pointers to the suffixes of the text
in lexicographic order. For all i < j, we have T [SA[i], n− 1] < T [SA[j], n− 1]. The Burrows–
Wheeler transform (BWT) [2] is a permutation of the text with a similar combinatorial
structure. We define it as string BWT[0, n− 1], where BWT[i] = T [(SA[i]− 1) mod n]. Let
C[c] be the number of occurrences of characters c′ < c in the text. The main operation
in BWT is the LF-mapping, which we define as LF(i, c) = C[c] + BWT.rank(i, c). We use
shorthand LF(i) for LF(i,BWT[i]) and note that SA[LF(i)] = (SA[i]− 1) mod n

Let X be a string and let c be a character. If T ′ < X for i suffixes T ′ of text T , we say
that string X has lexicographic rank i among the suffixes of text T . The number of suffixes
starting with any character c′ < c is C[c], and the number of suffixes T ′ < X preceded by
character c is BWT.rank(i, c). Hence the lexicographic rank of string cX is LF(i, c).

The FM-index [6] is a text index based on the BWT. Assume that we can compute
BWT.rank(i, c) in tr time. Further assume that we have stored (i,SA[i]) for all SA[i] divisible
by some integer d > 0. The FM-index supports the following queries:

find(X): Return the lexicographic range [sp, ep] of suffixes starting with pattern X.
If [spi+1, epi+1] is the lexicographic range for pattern X[i + 1, |X| − 1], the range for
pattern X[i, |X|−1] is [LF(spi+1, X[i]), LF(epi+1 + 1, X[i])−1]. By extending the pattern
backwards, we can support find(X) in O(|X| · tr) time.
locate(sp, ep): Return the occurrences SA[sp, ep]. For each i ∈ [sp, ep], we iterate LF(i)
until we find a stored pair (LFk(i),SA[LFk(i)]). Then SA[i] = SA[LFk(i)] + k. Locating
each occurrence SA[i] takes O(d · tr) time.
extract(j, j′): Return the substring T [j, j′]. We start from the nearest stored (i,SA[i])
with SA[i] > j′ and iterate (i,SA[i]) ← (LF(i),SA[i] − 1) until SA[i] = j + 1. As
BWT[i] = T [SA[i]− 1], we extract the substring backwards in O((d+ j′ − j) · tr) time.

We can generalize the FM-index to indexing multiple texts T0, . . . , Tm−1. Each text Tj

is terminated by a distinct endmarker $j , where $j < $j+1 for all j. As the suffixes of the
texts are all distinct, we can sort them unambiguously. In the final BWT, we replace each
$j with $ in order to reduce alphabet size. The index works as with a single text, except
that we cannot compute LF(i, $). We also define the document array DA as an array of text
identifiers. If SA[i] points to a suffix of text Tj , we define DA[i] = j.

3 Indexing haplotypes

3.1 Positional BWT
Assume that we have m haplotype strings S0, . . . , Sm−1 of equal length over alphabet Σ. At
each variant site i, character Sj [i] tells whether haplotype j contains the reference allele
(Sj [i] = 0) or an alternate allele (Sj [i] > 0). Given a pattern X and a range of sites [i, i′],
we want to find the haplotypes Sj matching the pattern at the specified sites (Sj [i, i′] = X).
Ordinary FM-indexes do not support such queries, as they find all occurrences of the pattern.

The positional BWT (PBWT) [4] is an FM-index that supports positional queries. We can
interpret it as the FM-index of texts T0, . . . , Tm−1 such that Tj [i] = (i, Sj [i]) [7]. If we want
to search for pattern X in range [i, i′], we search for pattern X ′ = (i,X[0]) · · · (i′, X[|X| − 1])
in the FM-index. The texts are over a large alphabet, but their first-order empirical entropy
is low. We can encode the BWT using alphabet Σ with a simple model. Assume that SA[x]
points to a suffix starting with (i+ 1, c). We often know the character from a previous query,
and we can determine it using the C array. Then BWT[x] = (i, c′) for a c′ ∈ Σ, and we can

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:5

encode it as c′. (Note that we build the rank structure for the original BWT, not the encoded
BWT.) Because the collection of haplotype strings is usually repetitive, we can compress the
PBWT further by run-length encoding the BWT [18].

3.2 Graph extension
Haplotypes correspond to paths in the VG model. Because chromosome-length phasings are
often not available, there may be multiple paths for each haplotype. The graph extension of
the PBWT [21] generalizes the PBWT to indexing such paths. While the original extension
was specific to VG graphs, we present a simplified version over directed graphs. We call this
structure the Graph BWT (GBWT), as it encodes the BWT using the graph as a model.

Let P0, . . . , Pm−1 be paths in graph G = (V,E). We can interpret the paths as strings
over alphabet V . Assume that 0 6∈ V , as we use it as the endmarker. We build an FM-index
for the reverse strings. We sort reverse prefixes in lexicographic order, so the LF-mapping
traverses edges in the correct direction, and place the endmarker before the string.

For each node v ∈ V , we define the local alphabet Σv = {w ∈ V | (v, w) ∈ E}. We also
add $ to Σv if v is the last node on a path, and define Σ$ as the set of the initial nodes
on each path. We partition the BWT into substrings BWTv corresponding to the prefixes
ending with v, and encode each substring BWTv using the local alphabet Σv. If w ∈ Σv is
the kth character in the local alphabet in sorted order, we encode it as Σv(w) = k.

The GBWT supports the following variants of the standard FM-index queries:
find(X) returns the lexicographic range of reverse prefixes starting with the reverse pattern
(the range of prefixes ending with the pattern).
locate(sp, ep) returns the haplotype identifiers DA[sp, ep]. We do not return text offsets,
as the node corresponding to the range [sp, ep] already provides similar information.
extract(j) returns the path Pj . We save memory by not supporting substring extraction.

These queries should be understood as examples of what we can support. Because the
GBWT is an FM-index for multiple texts, most algorithms using an FM-index can be adapted
to use the GBWT. For example, let P = v0 · · · v|P |−1 be a path. The reverse path of P is the
path P = v|P−1| . . . v0 traversing the reverse nodes in the reverse order. If we also index P
for every path P , the GBWT becomes an FMD-index [14] that supports bidirectional search.

3.3 Records
We develop a GBWT representation based on the following assumptions:
1. Almost all nodes v ∈ V have a low outdegree, making the local alphabet Σv small. Hence

we can afford storing the rank of all w ∈ Σv at the start of BWTv. Decompressing that
information every time we access the node does not take too much time either.

2. The number of occurrences of almost all nodes is bounded by the number of haplotypes.
As the length of BWTv is bounded for almost all v ∈ V , we can afford scanning it every
time we compute rank within it.

3. The collection of paths is repetitive. Run-length encoding compresses the BWT well,
reducing both index size and the time required for scanning BWTv.

4. The set of nodes V is a dense subset of a range [a, b]. Hence we can afford storing some
information for all i ∈ [a, b] without using too much space.

5. The graph is almost linear and almost topologically sorted. The closer to topological
order we can store the nodes, the less space we need for graph topology, and the better
we can take advantage of memory locality.

WABI 2018

4:6 Haplotype-aware graph indexes

1
3 6

5
7

2

4

Node $
|Σ$| = 1
0 : (1, 0)

0
0
0

Node 1
|Σ1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|Σ2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|Σ3| = 1
0 : (4, 1)

0

Node 4
|Σ4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|Σ5| = 1
0 : (7, 0)

0
0

Node 6
|Σ6| = 1
0 : (7, 2)

0

Node 7
|Σ7| = 1
0 : ($, 0)

0
0
0

Figure 1 Left: A graph with three paths. Right: GBWT of the paths.

We store a record consisting of a header and a body for each node v ∈ V and for
the endmarker $. For each character w ∈ Σv in sorted order, the header stores a pair
(w,BWT.rank(v, w)), where BWT.rank(v, w) is the total number of occurrences of character
w in all BWTv′ with v′ < v. The body run-length encodes BWTv, representing a run of `
copies of character w as a pair (Σv(w), `). See Figure 1 for an example.

Because the BWT is a set of records, we use node/offset pairs as positions. Pair (v, i)
refers to offset BWT[C[v] + i] = BWTv[i]. We define rank queries over positions as

BWT.rank((v, i), w) = BWT.rank(v, w) + BWTv.rank(i, w).

Similarly, we define LF((v, i), w) = (w,BWT.rank((v, i), w)) and use it in place of ordinary
LF-mapping in the FM-index.

The FM-index is based on iterating LF-mapping. Because LF-mapping tends to jump
randomly around the BWT, this can be a significant bottleneck. GBWT achieves better
memory locality, if we store the records for adjacent nodes close to each other. When we
iterate LF-mapping over a path in the graph, we traverse adjacent memory regions.

As a run-length encoded FM-index, GBWT supports the fast locate() algorithm [18]. The
direct algorithm, as described in Section 2.2, locates each position i ∈ [sp, ep] separately. If we
instead process the entire range at once, advancing every position by one step of LF-mapping
at the same time, we achieve better memory locality. We can also compute LF-mapping for
an entire run BWTv[x, y] = wy+1−x in the same time as for a single position i ∈ [x, y].

3.4 GBWT encodings
Dynamic GBWT is intended for index construction, where speed is more important than
size. We have an array of fixed-size records for characters $ and v ∈ [a, b], including character
values v 6∈ V . The record for v has four pointers to arrays: header, body, incoming edges,
and haplotype identifiers. For each incoming edge (u, v) ∈ E, the incoming edges array stores
a pair (u,BWTu.rank(|BWTu|, v)), recording the number of paths crossing from u to v.

Let SAv and DAv be the parts of SA and DA corresponding to BWTv. The haplotype
identifiers array for node v stores, in sorted order, pairs (i,DAv[i]) for which SAv[i] points to
either the last node on a path or a path position divisible by d > 0. These pairs are used for
locate() queries, like stored SA pointers in an ordinary FM-index.

Compressed GBWT balances query performance with index size. We use it when the set
of haplotypes is fixed and for storing the index on disk. Each record is a byte array. We
encode integers as sequences of bytes, where the lower 7 bits contain data and the high bit

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:7

tells whether the encoding continues. The header starts with |Σv|. We encode the outgoing
edges (wi,BWT.rank(v, wi)) differentially, replacing wi with wi −wi−1. If the local alphabet
is large, each run (k, `) in the body is encoded as an integer pair. Otherwise we encode k
and as much of ` as possible in the first byte, and continue with the remaining run length in
subsequent bytes. We concatenate all records and mark their starting positions in a sparse
bitvector [22]. The records can be accessed with select queries on the bitvector.

Each compressed record must be decompressed sequentially. As the stored haplotype
identifiers tend to cluster in certain nodes, storing them in records would make these records
large and slow to decompress. Instead, we use a global structure for the haplotype identifiers.
The structure consists of three bitvectors and an array of identifiers:

Uncompressed bitvector Bs marks the records with stored identifiers. If the ith record
contains identifiers, we set Bs[i] = 1. This allows us to skip checking the identifiers in
most records when iterating LF().
Sparse bitvector Br is defined over the concatenated offset ranges of the records with stored
identifiers. If Bs[i] = 1, the range for the record starts at Br.select(Bs.rank(i, 1) + 1, 1).
Sparse bitvector Bo covers the same range as Br. If Bo[i+ j] = 1 and the range for the
record starts at Bo[i], we have an identifier for offset j at array position Bo.rank(i+ j, 1).

4 GBWT construction

The assumptions in Section 3.3 make the GBWT easier to build than an ordinary FM-index.
Inserting new texts into the collection updates adjacent records, just like searching traverses
adjacent records. Because the local alphabet is small, because the number of occurrences
of each character is limited, and because run-length encoding compresses the BWT well,
records tend to be small. Hence we can afford rebuilding a record each time we update it.

On the other hand, the GBWT is harder to build than the PBWT. In the PBWT, all
strings are of the same length and have the same variant site at the same position. Hence we
can build the final record for a site in a single step. In the GBWT, indels in the haplotypes
become indels on the haplotype paths, and hence we have to update the same record multiple
times. We also have to buffer the strings instead of indexing them as we generate them.

4.1 Basic construction
The following algorithm [11] updates the BWT of text T to be the BWT of text cT , where c
is a character. It forms the basis of many incremental BWT construction algorithms.
1. Find the offset i where BWT[i] = $ and replace the endmarker with character c.
2. Compute i′ = LF(i, c) and insert a new endmarker between offsets i′ − 1 and i′.
If we have a BWT for m texts, we can insert a new empty text by inserting an endmarker
between offsets m− 1 and m. By iterating the above algorithm, we can then insert the actual
text. If we have a dynamic FM-index [3], this can be quite efficient in practice.

The BCR algorithm [1] builds BWT for m texts. It starts with the BWT for m empty
texts and then extends each text by one character in each step. Originally intended for
indexing short reads, the BCR algorithm is also used for PBWT construction.

Our GBWT construction algorithm is similar to RopeBWT2 [15]. We have a dynamic
GBWT and insert multiple texts into the index in a single batch using the BCR algorithm.
In each step, we extend each text by one character. In the following, v and w are the current
and the next character in the current text Tj and i is a record offset. If v is the last character
of the text (the endmarker is at Tj [0]), we set w = $. In each step, we:

WABI 2018

4:8 Haplotype-aware graph indexes

1. Rebuild records: The texts are sorted by positions (v, i) such that the endmarker of
that text should be at BWTv[i]. (We do not write the temporary endmarkers to the
records.) We process all texts at the same node v to rebuild the record.
a. If the record does not contain the edge (v, w), we add (w, 0) to the header.
b. We add BWT runs and haplotype identifiers until offset i to the new record. If we

have inserted k characters so far, we replace haplotype identifier (i′, j′) with (i′+ k, j′).
c. If w = $ or the text position is divisible by d, we insert haplotype identifier (i, j).
d. We insert w to the BWT and set i← BWTv.rank(i, w).
e. If w 6= $, we increment the number of paths from v to w in the incoming edges of w.

2. Sort: We sort the texts by (w, v, i), which is the order we need in the next step. If w = $,
the text is now fully inserted, and we remove it from further processing.

3. Rebuild offsets: For each distinct node w, we rebuild the BWT.rank(v′, w) fields in the
outgoing edges of predecessor nodes v′ using the path counts in the incoming edges of w.
Then we set i← i+ BWT.rank(v, w) to have the correct offset in the next step.

4.2 Construction in VG
GBWT construction in VG requires a VCF file with phasing information. We expect a diploid
genome, though some regions may be haploid. Because we need two layers of buffering, we
process the VCF file in batches of s samples (default 200) in order to save memory.

At each variant site and for every haplotype, we determine the path from the previous
site to the current site, and extend the buffered path for that haplotype with it. If there is
no phasing information at the current site or if we cannot otherwise extend the path P , we
insert both the path P and its reverse P into the GBWT construction buffer and start a
new path. Once the GBWT construction buffer is full (the default size is 100 million), we
launch a background thread to insert the batch into the index.

We can merge GBWT indexes quickly if the node identifiers do not overlap (e.g. indexes
for different chromosomes). The records for all nodes v ∈ V can be reused in the merged
index. In the endmarker record $, we merge the local alphabets and concatenate the record
bodies in some order. When we interleave the global haplotype identifier structures, we have
to update the identifiers according to the order we used in the endmarker.

5 Haplotype-aware graph simplification

VG uses pruning heuristics to simplify graphs for k-mer indexing. First we remove edges on
k-mers that make too many edge choices (e.g. more than 3 choices in a 24-mer). Edges on
unary paths are not deleted, as there is no choice in taking them. Then we delete connected
components with too little sequence (e.g. less than 33 bases). Finally, if the graph contains
reference paths, we may restore them to the pruned graph.

Heuristic pruning often breaks paths taken by known haplotypes. This may cause errors
in read mapping, if we cannot find candidate positions for a read in the correct graph region.
On the other hand, indexing too many recombinations may increase the number of false
positives. Hence we would like to prune recombinations while leaving the haplotypes intact.

We describe an algorithm that unfolds the haplotype paths in pruned regions, duplicating
nodes when necessary. Our algorithm works with any pruning algorithm that removes nodes
from the graph. See Figure 2 for an example. We work with bidirected VG graphs, unless
otherwise noted. Reference paths can also be unfolded with a similar algorithm.

Let Gi = (Vi, Ei) be the graph induced by GBWT paths and Gp = (Vp, Ep) be a pruned
graph. We build a complement graph induced by edges Ei \Ep and consider each connected

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:9

1
3

7
2

3 6

5
7

2

4
1

3 9

10
7

2 8

11

4

4 6

5

Figure 2 Unfolding the paths in the graph in Figure 1. Border nodes have been highlighted. Left:
The graph after removing nodes 4, 5, and 6. Center: Complement graph. The maximal paths are
(2, 4 | 6, 7), (2 | 5, 7), and (3, 4 | 5, 7), with the bar splitting a path into a prefix and a suffix. Right:
Unfolded graph. Dashed edges cross from prefixes to suffixes. Duplicated nodes have the original ids
below the node.

component Gc = (Vc, Ec) in it separately. The set Vb = Vc∩Vp is the border of the component,
as the nodes exist both in the component and in the pruned graph. Nodes in the set Vc \ Vb

are internal nodes.
Each connected component Gc represents a graph region that was removed from the

original graph. We build an unfolded component consisting of the paths in Gc supported by
GBWT paths and insert it into the pruned graph Gp. We achieve this by duplicating the
internal nodes that would otherwise cause recombinations.

In order to build the unfolded component, we must find all maximal paths P of length
|P | ≥ 2 supported by GBWT paths in the component. A path starting from a border node
is maximal if it reaches the border again or cannot be extended any further. GBWT paths
consisting entirely of internal nodes of the component are also maximal.

Let v be a GBWT node and vg(v) ∈ Vc the corresponding VG node. If vg(v) is a
border node, we create a search state (v, find(v)) consisting of a pattern and a range. For
internal nodes, we create state (v, find($v)). Then, for each search state (X, [sp, ep]), with
x = X[|X| − 1]:
1. If |X| ≥ 2 and the last node vg(x) is a border node, we stop the search for this state. If

vg(X[0]) is also a border node, X is a maximal path, and we output it.
2. We try to extend the search with all GBWT nodes v corresponding to the succes-

sors u ∈ Vc of vg(x), taking the orientation of v from the VG edge. If [sp′, ep′] =
[LF((x, sp), v), LF((x, ep+ 1), v)− 1] 6= ∅, we create a new state (Xv, [sp′, ep′]).

3. If no extension was successful and |X| ≥ 2, path X is maximal, and we output it.

Let P be a maximal path we output. If P is not a border-to-border path, we try to
extend the lexicographically smaller of P and P with reference paths, replacing P with the
extended path. To avoid having the same path in both orientations, we replace each path P
with the smaller of P and P .

We could create new duplicates of all internal nodes on P and insert the path into Gp,
but this would create too much nondeterminism for GCSA2.6 Instead, we split each path
into a prefix and a suffix of equal length and build a trie of the prefixes and a trie of the
reverse suffixes. Every edge in the tries becomes a node in the unfolded component.

Let v be the label of a trie edge starting from the root. If vg(v) is a border node, it
already exists in Gp. Otherwise we add a new duplicate of vg(v). Now let v and v′ be the

6 If VG node v has predecessors u and u′ with identical labels, k-mers starting from u and u′ and passing
through v cannot be distinguished. GCSA2 construction has to extend these k-mers until the order of
the index (e.g. k = 256), which may increase the size of the temporary files significantly.

WABI 2018

4:10 Haplotype-aware graph indexes

labels of two successive trie edges, and let u be the VG node we used for v. We create a new
duplicate u′ of vg(v′) and add node u′ to Gp. We also add edge (u, u′) or (u′, u), depending
on whether we are in a prefix or a suffix. Finally, if we used VG node u for the end of a
prefix and VG node u′ for the start of the corresponding suffix, we add edge (u, u′) to Gp.

After we have handled all components, the simplified graph Gp contains all GBWT paths.
The GCSA2 index of Gp contains all k-mers (e.g. 256-mers) in the haplotypes. This allows us
to prune the graph more aggressively, removing more k-mers corresponding to recombinations.
In order to map reads to the original graph G = (V,E) instead of the simplified graph Gp, we
replace the node identifiers v ∈ Vp in the GCSA2 index with the original identifiers v′ ∈ V .

6 Experiments

We have implemented GBWT in C++ using the SDSL library [10]. The following experiments
were done using VG v1.7.0 with prerelease versions of GBWT v0.4 and GCSA2 v1.2. All
code was compiled using GCC 5.4. We used a single Amazon EC2 i3.8xlarge instance with
16 physical (32 logical) cores of an Intel Xeon E5 2686 v4 and 244 GiB7 of memory. The
system was running Ubuntu 16.04 with Linux kernel 4.4.0. The temporary files in GCSA2
construction were stored on a local RAID 0 volume consisting of four 1.9 TB SSDs.

6.1 GBWT construction
We built VG graphs from the GRCh37 human reference genome and the 1000 Genomes
Project (1000GP) final phase data [27]. The VCF files had phasings for 2504 humans over
approximately 80 million variants. VG transformed the phasings into 29.3 million paths of
total length 1.62 trillion in a graph with 493 million nodes (including the reverse paths).

GBWT construction is space-efficient and uses two threads. We first built separate GBWTs
for each chromosome, running 12 jobs in parallel. The jobs were ordered X, 1, . . . , 22, Y , as
large chromosomes take longer to finish. Total construction time was 29.0 hours. The longest
job was 27.1 hours for chromosome 2. The bottleneck was generating haplotype paths, as
the insertion threads were running less than half of the total time.

Merging the GBWTs into a single index took less than 9 minutes. The merged index
took 14.6 GiB, out of which 7.4 GiB was for the GBWT itself and 7.2 GiB for the haplotype
identifiers (d = 1024). The dynamic GBWT was roughly 10x larger. Its exact size is not
well-defined due to a large number of memory allocations and unused space in the arrays.

All the assumptions in Section 3.3 were valid for our dataset:
1. The average outdegree of a record is 1.34 and the maximum is 13, excluding the endmarker.
2. As the graphs built from a VCF file are acyclic, no haplotype can visit the same node

twice.
3. The GBWT takes 0.04 bits per character, excluding the haplotype identifiers.
4. VG construction avoids leaving gaps between node identifiers.
5. The VG graphs built from a VCF file are almost in topological order.

6.2 GBWT benchmarks
For various pattern lengths |X| from 2 to 50, we extracted 100,000 patterns from the whole-
genome index and used them for find() queries. The average query times in the compressed
GBWT start from 460 ns/character with |X| = 2 and go down to 300 ns/character with

7 Sizes measured in MiB, GiB, and TiB are based on 1024-byte kibibytes. Sizes measured in MB, GB,
and TB are based on 1000-byte kilobytes.

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:11

Table 1 GCSA2 indexes for simplified 1000GP graphs. Index size in GiB and construction time
in hours. Number of distinct 64-mers (in billions) shared with pruned-256, additional haplotype
64-mers, and additional recombination 64-mers.

GCSA2 index 64-mers
Graph Size Construction Shared Haplotype Recombination

pruned-128 35.4 GiB 25.4 h 27.0 G 3.11 G 11.4 G
pruned-256 29.3 GiB 25.5 h 27.0 G – –

unfolded-256 33.7 GiB 28.9 h 27.0 G 3.46 G –

|X| = 50 due to memory locality. This is somewhat slower than in FM-indexes over small
alphabets [25]. For the dynamic GBWT, query times were 130 ns/character with |X| = 2
and 80 ns/character with |X| = 50, or 2–3 times faster than in ordinary FM-indexes.

The locate() performance suffers from the long distance d = 1024 between stored identifiers.
We extracted 20,000 patterns of length 20 from the index and used the ranges returned
by find() queries for locate() benchmarks. The total length of the ranges was 69.1 million.
The average query times in the compressed GBWT were 110 µs/position (direct algorithm)
and 14 µs/position (fast algorithm). For the dynamic index, the times were 19 µs/position
(direct) and 11 µs/position (fast). FM-indexes for non-repetitive text typically use d = 16 or
d = 32 and take a few microseconds to locate each position.

We also extracted 100,000 paths of total length 5.50 billion from the index. The average
time per character was 1,800 ns in the compressed index and 410 ns in the dynamic index.
This is several times slower than in find() queries: find() uses LF((v, i), c) instead of the
slower LF(v, i), while extract() queries start from the very large record for the endmarker $.
While the direct locate() algorithm also uses LF(v, i), it benefits from memory locality, as it
traverses the same graph region for each position in the query range.

6.3 Haplotype-aware graphs
The typical pruning parameters for a 128-mer GCSA2 index are 4 edge choices in a 16-mer.
When building 256-mer indexes, we need to prune more aggressively: 3 edge choices in a
24-mer. This removes more k-mers corresponding to both haplotypes and their recombinations.
In the following, graph pruned-k has been pruned with the parameters for a k-mer index, and
the reference paths have been restored afterwards. Similarly, unfolded-k is a graph, where
the haplotype paths and reference paths have been unfolded after pruning.

We created simplified whole-genome graphs pruned-128, pruned-256, and unfolded-256.
The simplification took 3–4 hours for unfolded-256 and slightly less for the other graphs. We
then built GCSA2 indexes for both orientations of the simplified graphs. The results can
be seen in Table 1. The index for pruned-256 is a few GiB smaller than the others, while
the index for unfolded-256 takes a few hours longer to build. Graph pruned-128 contains
90 % of the haplotype k-mers missing from pruned-256 but included in unfolded-256. (Some
haplotype k-mers may be recombinations crossing between simple and unfolded regions.) It
also contains a large number of additional recombination k-mers not present in unfolded-256.

7 Discussion

We have developed GBWT, a scalable implementation of the graph extension of the PBWT.
The earlier implementation used 9.3 hours and 278 GiB of memory to index the 1000GP
chromosome 22 using a single thread [21]. In comparison, our implementation takes 4.1 hours
and less than 10 GiB of memory using two threads. We also reduced the final index size from

WABI 2018

4:12 Haplotype-aware graph indexes

321 MiB to 110 MiB (without haplotype identifiers). By running multiple jobs in parallel,
we were able to build a whole-genome GBWT in less than 30 hours on a single system.

Contemporary sequencing projects are sequencing in excess of 100,000 diploid genomes.
We intend to scale GBWT to allow working with such large collections, providing a compressed,
indexed and searchable representation that should fit into the memory of a single server.
Potential applications in genome inference and imputation, as well as for powering population
genomic queries, are myriad. The main bottleneck here is construction time. We currently
parse the VCF file and find the paths between variant sites once for every 200 samples, which
takes the bulk of the time. By parsing the file once and storing the information in a directly
usable format, we should be able to double the construction speed.

Storing the haplotype identifiers for locate() queries is another bottleneck. With 5,000 hap-
lotypes, the identifiers use roughly as much space as the GBWT itself. If we increase the
number of haplotypes to 50,000, GBWT size should not increase too much, while the iden-
tifiers will take 10x more space. We can save space by increasing the distance between
stored identifiers, at the expense of increased query times. There is a theoretical proposal for
supporting fast locate() queries in space proportional to the size of the run-length encoded
BWT [8]. Building the proposed structure for large text collections is still an open problem.

We used the haplotype information in GBWT to simplify VG graphs for k-mer indexing.
This allowed us to prune the k-mers corresponding to recombinations more aggressively, while
still having all k-mers from the haplotypes in the index. CHOP, the other haplotype-aware
graph indexing approach, can only use short-range haplotype information in read mapping.
Because VG graphs are connected, we can use the long-range information in the GBWT for
mapping long reads and paired-end reads. We will investigate this in a subsequent paper.

References
1 Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight algorithms for

constructing and inverting the BWT of string collections. Theoretical Computer Science,
483:134–148, 2013. doi:10.1016/j.tcs.2012.02.002.

2 Michael Burrows and David J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994. URL: http://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-124.html.

3 Ho-Leung Chan et al. Compressed indexes for dynamic text collections. ACM Transactions
on Algorithms, 3(2):21, 2007. doi:10.1145/1240233.1240244.

4 Richard Durbin. Efficient haplotype matching and storage using the Positional Burrows–
Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014. doi:10.1093/
bioinformatics/btu014.

5 Hannes P. Eggertsson et al. Graphtyper enables population-scale genotyping using
pangenome graphs. Nature Genetics, 49:1654–1660, 2017. doi:10.1038/ng.3964.

6 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,
52(4):552–581, 2005. doi:10.1145/1082036.1082039.

7 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for BWT-
based data structures. Theoretical Computer Science, 698:67–78, 2017. doi:10.1016/j.
tcs.2017.06.016.

8 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in BWT-
runs bounded space. In Proc. ALENEX 2018, pages 1459–1477. SIAM, 2018. doi:10.
1137/1.9781611975031.96.

9 Erik Garrison et al. Sequence variation aware genome references and read mapping with
the variation graph toolkit. bioRxiv, 2017. doi:10.1101/234856.

http://dx.doi.org/10.1016/j.tcs.2012.02.002
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://dx.doi.org/10.1145/1240233.1240244
http://dx.doi.org/10.1093/bioinformatics/btu014
http://dx.doi.org/10.1093/bioinformatics/btu014
http://dx.doi.org/10.1038/ng.3964
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1016/j.tcs.2017.06.016
http://dx.doi.org/10.1016/j.tcs.2017.06.016
http://dx.doi.org/10.1137/1.9781611975031.96
http://dx.doi.org/10.1137/1.9781611975031.96
http://dx.doi.org/10.1101/234856

J. Sirén, E. Garrison, A.M. Novak, B. J. Paten, and R. Durbin 4:13

10 Simon Gog et al. From theory to practice: Plug and play with succinct data structures.
In Proc. SEA 2014, volume 8504 of LNCS, pages 326–337. Springer, 2014. doi:10.1007/
978-3-319-07959-2_28.

11 Wing-Kai Hon et al. A space and time efficient algorithm for constructing compressed
suffix arrays. Algorithmica, 48(1):23–36, 2007. doi:10.1007/s00453-006-1228-8.

12 Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with popula-
tions of genomes. Bioinformatics, 29(13):i361–i370, 2013. doi:10.1093/bioinformatics/
btt215.

13 Songbo Huang et al. Indexing similar DNA sequences. In Proc. AAIM 2010, volume 6124
of LNCS, pages 180–190. Springer, 2010. doi:10.1007/978-3-642-14355-7_19.

14 Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo as-
sembly. Bioinformatics, 28(14):1838–1844, 2012. doi:10.1093/bioinformatics/bts280.

15 Heng Li. Fast construction of FM-index for long sequence reads. Bioinformatics,
30(22):3274–3275, 2014. doi:10.1093/bioinformatics/btu541.

16 Sorina Maciuca et al. A natural encoding of genetic variation in a Burrows-Wheeler trans-
form to enable mapping and genome inference. In Proc. WABI 2016, volume 9838 of LNCS,
pages 222–233. Springer, 2016. doi:10.1007/978-3-319-43681-4_18.

17 Tom O. Mokveld et al. CHOP: Haplotype-aware path indexing in population graphs.
bioRxiv, 2018. doi:10.1101/305268.

18 Veli Mäkinen et al. Storage and retrieval of highly repetitive sequence collections. Journal
of Computational Biology, 17(3):281–308, 2010. doi:10.1089/cmb.2009.0169.

19 Joong Chae Na et al. FM-index of alignment: A compressed index for similar strings.
Theoretical Computer Science, 638:159–170, 2016. doi:10.1016/j.tcs.2015.08.008.

20 Joong Chae Na et al. FM-index of alignment with gaps. Theoretical Computer Science,
710(148-157), 2018. doi:10.1016/j.tcs.2017.02.020.

21 Adam Novak, Erik Garrison, and Benedict Paten. A graph extension of the positional
Burrows–Wheeler transform and its applications. Algorithms for Molecular Biology, 12:18,
2017. doi:10.1186/s13015-017-0109-9.

22 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/se-
lect dictionary. In Proc. ALENEX 2007, pages 60–70. SIAM, 2007. doi:10.1137/1.
9781611972870.6.

23 Goran Rakocevic et al. Fast and accurate genomic analyses using genome graphs. bioRxiv,
2017. doi:10.1101/194530.

24 Korbinian Schneeberger et al. Simultaneous alignment of short reads against multiple
genomes. Genome Biology, 10(9):R98, 2009. doi:10.1186/gb-2009-10-9-r98.

25 Jouni Sirén. Indexing variation graphs. In Proc. ALENEX 2017, pages 13–27. SIAM, 2017.
doi:10.1137/1.9781611974768.2.

26 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014. doi:10.1109/TCBB.2013.2297101.

27 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–64, 2015. doi:10.1038/nature15393.

28 The Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018. doi:10.1093/
bib/bbw089.

WABI 2018

http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/s00453-006-1228-8
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1093/bioinformatics/btt215
http://dx.doi.org/10.1007/978-3-642-14355-7_19
http://dx.doi.org/10.1093/bioinformatics/bts280
http://dx.doi.org/10.1093/bioinformatics/btu541
http://dx.doi.org/10.1007/978-3-319-43681-4_18
http://dx.doi.org/10.1101/305268
http://dx.doi.org/10.1089/cmb.2009.0169
http://dx.doi.org/10.1016/j.tcs.2015.08.008
http://dx.doi.org/10.1016/j.tcs.2017.02.020
http://dx.doi.org/10.1186/s13015-017-0109-9
http://dx.doi.org/10.1137/1.9781611972870.6
http://dx.doi.org/10.1137/1.9781611972870.6
http://dx.doi.org/10.1101/194530
http://dx.doi.org/10.1186/gb-2009-10-9-r98
http://dx.doi.org/10.1137/1.9781611974768.2
http://dx.doi.org/10.1109/TCBB.2013.2297101
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1093/bib/bbw089
http://dx.doi.org/10.1093/bib/bbw089

Reconciling Multiple Genes Trees via Segmental
Duplications and Losses
Riccardo Dondi
Dipartimento di Filosofia, Lettere, Comunicazione, Università degli Studi di Bergamo, Bergamo,
Italy,
riccardo.dondi@unibg.it

Manuel Lafond
Department of Computer Science, Université de Sherbrooke, Québec, Canada,
manuel.lafond@USherbrooke.ca

Celine Scornavacca
ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France,
celine.scornavacca@umontpellier.fr

Abstract
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution
of gene families. Many existing approaches reconcile each gene tree independently. However, it
is well-known that the evolution of gene families is interconnected. In this paper, we extend a
previous approach to reconcile a set of gene trees with a species tree based on segmental macro-
evolutionary events, where segmental duplication events and losses are associated with cost δ
and λ, respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via
LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree
is given, solving a long standing open problem on the complexity of the reconciliation problem.
On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters
are δ/λ and the number d of segmental duplications, of time complexity O(d δλe

d · n · δλ). Finally,
we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first
show that our method can be used to confirm or refute hypothetical segmental duplications on a
set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.

2012 ACM Subject Classification Applied computing → Computational biology, Theory of
computation → Fixed parameter tractability, Theory of computation → Problems, reductions
and completeness

Keywords and phrases Gene trees/species tree reconciliation, phylogenetics, computational com-
plexity, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.5

Related Version A full version of the paper is available at https://arxiv.org/abs/1806.
03988.

Acknowledgements The authors would like to thank Mukul Bansal for providing the eukaryotes
data set for the experiments section.

1 Introduction

It is nowadays well established that the evolution of a gene family can differ from that of
the species containing these genes. This can be due to quite a number of different reasons,
including gene duplication, gene loss, horizontal gene transfer or incomplete lineage sorting,

© Riccardo Dondi, Manuel Lafond, and Celine Scornavacca;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riccardo.dondi@unibg.it
mailto:manuel.lafond@USherbrooke.ca
mailto:celine.scornavacca@umontpellier.fr
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.5
https://arxiv.org/abs/1806.03988
https://arxiv.org/abs/1806.03988
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Reconciling Multiple Genes with Segmental Duplications

to only name a few [17]. While this discongruity between the gene phylogenies (the gene trees)
and the species phylogeny (the species tree) complicates the process of reconstructing the
latter from the former, every cloud has a silver lining: “plunging” gene trees into the species
tree and analyzing the differences between these topologies, one can gather hints to unveil the
macro-evolutionary events that shaped gene evolution. This is the rationale behind the species
tree-gene tree reconciliation, a concept introduced in [9] and first formally defined in [18].
Gathering intelligence on these macro-evolutionary events permits us to better understand
the mechanisms of evolution with applications ranging from orthology detection [14, 21] to
ancestral genome reconstruction [7], and recently in dating phylogenies [5, 4].

It is well-known that the evolution of gene families is interconnected. However, in
current pipelines, each gene tree is reconciled independently with the species tree, even when
posterior to the reconciliation phase the genes are considered as related, e.g. [7]. A more
pertinent approach would be to reconcile the set of gene trees at once and consider segmental
macro-evolutionary events, i.e. that concern a chromosome segment instead of a single gene.

Some work has been done in the past to model segmental gene duplications and three
models have been considered: the EC (Episode Clustering) problem, the ME (Minimum
Episodes) problem [10, 1], and the MGD (Multiple Gene Duplication) problem [8]. The
EC and MGD problems both aim at clustering duplications together by minimizing the
number of locations in the species tree where at least one duplication occurred, with the
additional requirement that a cluster cannot contain two gene duplications from a same
gene tree in the MGD problem. The ME problem is more biologically-relevant, because it
aims at minimizing the actual number of segmental duplications (more details in Section
2.3). Most of the exact solutions proposed for the ME problem [1, 15, 20] deal with a
constrained version, since the possible mappings of a gene tree node are limited to given
intervals, see for example [1, Def. 2.4]. In [20], a simple O∗(2k) time algorithm is presented
for the unconstrained version (here O∗ hides polynomial factors), where k is the number of
speciation nodes that have descending duplications under the LCA-mapping This shows that
the problem is fixed-parameter tractable (FPT) in k. But since the LCA-mapping maximizes
the number of speciation nodes, there is no reason to believe that k is a small parameter,
and so more practical FPT algorithms are needed.

In this paper, we extend the unconstrained ME model to gene losses and provide a
variety of new algorithmic results. We allow weighing segmental duplication events and
loss events by separate costs δ and λ, respectively. We show that if δ ≤ λ, then an optimal
reconciliation can be obtained by reconciling each gene tree separately under the usual
LCA-mapping, even in the context of segmental duplications. On the other hand, we show
that if δ > λ and both costs are given, reconciling a set of gene trees while minimizing
segmental gene duplications and gene losses is NP-hard. The hardness also holds in the
particular case that we ignore losses, i.e. when λ = 0. This solves a long standing open
question on the complexity of the reconciliation problem under this model (in [1], the authors
already said “it would be interesting to extend the [...] model of Guigó et al. (1996) by
relaxing the constraints on the possible locations of gene duplications on the species tree”.
The question is stated as still open in [20]). The hardness holds also when only a single
gene tree is given. On the positive side, we describe an algorithm that is practical when δ
and λ are not too far apart. More precisely, we show that multi-gene tree reconciliation is
fixed-parameter tractable in the ratio δ/λ and the number d of segmental duplications, and
can be solved in time O(d δλe

d ·n · δλ). The algorithm has been implemented and tested and is

R. Dondi, M. Lafond, and C. Scornavacca 5:3

available1 at https://github.com/manuellafond/Multrec. We first evaluate the potential
of multi-gene reconciliation on a set of 16 eukaryotes, and show that our method can find
scenarios with less duplications than other approaches. While some previously identified
segmental duplications are confirmed by our results, it casts some doubt on others as they do
not occur in our optimal scenarios. We then show how the algorithm can be used to detect
whole genome duplications in yeast genomes. Further work includes incorporating in the
model segmental gene losses and segmental horizontal gene transfers, with a similar flavor
than the heuristic method discussed in [6].

2 Preliminaries

2.1 Basic notions
For our purposes, a rooted phylogenetic tree T = (V (T), E(T)) is an oriented tree, where V (T)
is the set of nodes, E(T) is the set of arcs, all oriented away from r(T), the root. Unless stated
otherwise, all trees in this paper are rooted phylogenetic trees. A forest F = (V (F), E(F))
is a directed graph in which every connected component is a tree. Denote by t(F) the set of
trees of F that are formed by its connected components. Note that a tree is itself a forest.
In what follows, we shall extend the usual terminology on trees to forests.

For an arc (x, y) of F , we call x the parent of y, and y a child of x. If there exists a path
that starts at x and ends at y, then x is an ancestor of y and y is a descendant of x. We say
y is a proper descendant of x if y 6= x, and then x is a proper ancestor of y. This defines
a partial order denoted by y ≤F x, and y <F x if x 6= y (we may omit the F subscript if
clear from the context). If none of x ≤ y and y ≤ x holds, then x and y are incomparable.
The set of children of x is denoted ch(x) and its parent x is denoted par(x) (which is defined
to be x if x itself is a root of a tree in t(F)). For some integer k ≥ 0, we define park(x) as
the k-th parent of x. Formally, par0(x) = par(x) and park(x) = par(park−1(x)) for k > 0.
The number of children |ch(x)| of x is called the out-degree of x. Nodes with no children are
leaves, all others are internal nodes. The set of leaves of a tree F is denoted by L(F). The
leaves of F are bijectively labeled by a set L(F) of labels. A forest is binary if |ch(x)| = 2
for all internal nodes x. Given a set of nodes X that belong to the same tree T ∈ t(F), the
lowest common ancestor of X, denoted LCAF (X), is the node z that satisfies x ≤ z for all
x ∈ X and such that no child of z satisfies this property. We leave LCAF (X) undefined if
no such node exists (when elements of X belong to different trees of t(F)). We may write
LCAF (x, y) instead of LCAF ({x, y}). The height of a forest F , denoted h(F), is the number
of nodes of a longest directed path from a root to a leaf in a tree of F (note that the height
is sometimes defined as the number of arcs on such a path - here we use the number of nodes
instead). Observe that since a tree is a forest, all the above notions also apply on trees.

2.2 Reconciliations
A reconciliation usually involves two rooted phylogenetic trees, a gene tree G and a species
tree S, which we always assume to be both binary. In what follows, we will instead define
reconciliation between a gene forest G and a species tree. Here G can be thought of as a set
of gene trees. Each leaf of G represents a distinct extant gene, and G and S are related by a
function s : L(G)→ L(S), which means that each extant gene belongs to an extant species.

1 To our knowledge, this is the first publicly available reconciliation software for segmental duplications.

WABI 2018

https://github.com/manuellafond/Multrec

5:4 Reconciling Multiple Genes with Segmental Duplications

Note that s does not have to be injective (in particular, several genes from a same gene tree
G of G can belong to the same species) or surjective (some species may not contain any gene
of G). Given G and S, we will implicitly assume the existence of the function s.

In a DL reconciliation, each node of G is associated to a node of S and an event – a
speciation (S), a duplication (D) or a contemporary event (C) – under some constraints. A
contemporary event C associates a leaf u of G with a leaf x of S such that s(u) = x. A
speciation in a node u of G is constrained to the existence of two separated paths from
the mapping of u to the mappings of its two children, while the only constraint given by a
duplication event is that evolution of G cannot go back in time. More formally:

I Definition 1 (Reconciliation). Given a gene forest G and a species tree S, a reconciliation
between G and S is a function α that maps each node u of G to a pair (αr(u), αe(u)) where
αr(u) is a node of V (S) and αe(u) is an event of type S,D or C, such that:
1. if u is a leaf of G, then αe(u) = C and αr(u) = s(u);
2. if u is an internal node of G with children u1, u2, then exactly one of following cases holds:

αe(u) = S, αr(u) = LCAS(αr(u1), αr(u2)) and αr(u1), αr(u2) are incomparable;
αe(u) = D, αr(u1) ≤ αr(u) and αr(u2) ≤ αr(u)

Note that if G consists of one tree, this definition coincides with the usual one given
in the literature (first formally defined in [18]). We say that α is an LCA-mapping if, for
each internal node u ∈ V (G) with children u1, u2, αr(u) = LCAS(αr(u1), αr(u2)). Note that
there may be more than one LCA-mapping, since the S and D events on internal nodes can
vary. The number of duplications of α, denoted by d(α) is the number of nodes u of G such
that αe(u) = D. For counting the losses, first define for y ≤ x the distance dist(x, y) as
the number of arcs on the path from x to y. Then, for every internal node u with children
{u1, u2}, the number of losses associated with u in a reconciliation α, denoted by lα(u), is
defined as follows:

if αe(u) = S, then lα(u) = dist(αr(u), αr(u1)) + dist(αr(u), αr(u2))− 2;
if αe(u) = D, then lα(u) = dist(αr(u), αr(u1)) + dist(αr(u), αr(u2)).

The number of losses of a reconciliation α, denoted by l(α), is the sum of lα(·) for all
internal nodes of G. The usual cost of α, denoted by cost(α), is d(α) · δ + l(α) · λ [16], where
δ and λ are respectively the cost of a duplication and a loss event (it is usually assumed
that speciations do not incur cost). A most parsimonious reconciliation, or MPR, is a
reconciliation α of minimum cost. It is not hard to see that finding such an α can be achieved
by computing a MPR for each tree in t(G) separately. This MPR is the unique LCA-mapping
α in which αe(u) = S whenever it is allowed according to Definition 1 [3].

2.3 Reconciliation with segmental duplications
Given a reconciliation α for G in S, and given s ∈ V (S), write D(G, α, s) = {u ∈ V (G) :
αe(u) = D and αr(u) = s} for the set of duplications of G mapped to s. We define G[α, s] to
be the subgraph of G induced by the nodes in D(G, α, s). Note that G[α, s] is a forest.

Here we want to tackle the problem of reconciling several gene trees at the same time
and counting segmental duplications only once. Given a set of duplications nodes D ∈ V (G)
occurring in a given node s of the species tree, it is easy to see that the minimum the number
of segmental duplications associated with s is the minimal number of parts in a partition of D
in which each part does not contain comparable nodes. See Figure 1.(4) for an example. This
number coincides [1] with hα(s) := h(G[α, s]), i.e. the height of the forest of the duplications
in s. Now, denote d̂(α) =

∑
s∈V (S) hα(s). For instance in Figure 1, under the mapping µ in

R. Dondi, M. Lafond, and C. Scornavacca 5:5

A B C

E

F

a a b

a

e
f

f

c

c c

b

c

e

a a c

a

f
f

f

c c

b

c

e
b b

b

a a b

a

f
f

f

c

c c

b

f

e

a a c

a

f
f

f

c c

b

f

e
b b

f

G[α, f]
S

(1) (2) (3) (4)

Figure 1 (1) A species tree S. (2) A gene forest G with two gene trees reconciled under the MPR
that we denote µ. The nodes are labeled by the lowercase name of the species they are mapped to.
Black squares indicate duplication nodes. Losses are not shown. (3) The same forest G but with
another reconciliation α for the internal nodes. (4) The forest G[α, f], along with a partition into
(possible) segmental duplications.

(2), we have d̂(µ) = 6, because hµ(s) = 1 for s ∈ {A,B,C,E} and hµ(F) = 2. But under
the mapping α in (3), d̂(α) = 4, since hα(A) = 1 and hα(F) = 3. Note that this does not
consider losses though – the α mapping has more losses than µ.

The cost of α is costSD(G, S, α) = δ · d̂(α) + λ · l(α). If G and S are unambiguous, we
may write costSD(α). We have the following problem :

Most Parsimonious Reconciliation of a Set of Trees with Segmental Duplica-
tions (MPRST-SD)
Instance: a species tree S, a gene forest G, costs δ for duplications and λ for losses.
Output: a reconciliation α of G in S such that costSD(G, S, α) is minimum.

Note that, when λ = 0, costSD coincides with the unconstrained ME score defined in [20]
(where it is called the FHS model).

2.4 Properties of multi-gene reconciliations
We finish this section with some additional terminology and general properties of multi-gene
reconciliations that will be useful throughout the paper. The next basic result states that in
a reconciliation α, we should set the events of internal nodes to S whenever it is allowed.

I Lemma 2. Let α be a reconciliation for G in S, and let u ∈ V (G) such that αe(u) = D.
Let α′ be identical to α, with the exception that α′e(u) = S, and suppose that α′ satisfies the
requirements of Definition 1. Then costSD(α′) ≤ costSD(α).

Proof. Observe that changing αe(u) from D to S cannot increase d̂(α). Moreover, as
dist(α′r(u), α′r(u1)) and dist(α′r(u), α′r(u2)) are the same as in α for the two children u1 and
u2 of u, by definition of duplications and losses this decreases the number of losses by 2.
Thus costSD(α′) ≤ costSD(α), and this inequality is strict when λ > 0. J

Since we are looking for a most parsimonious reconciliation, by Lemma 2 we may assume
that for an internal node u ∈ V (G), αe(u) = S whenever allowed, and αe(u) = D otherwise.
Therefore, αe(u) is implicitly defined by the αr mapping. To alleviate notation, we will treat
α as simply as a mapping from V (G) to V (S) and thus write α(u) instead of αr(u). We will
assume that the events αe(u) can be deduced from this mapping α by Lemma 2.

Therefore, treating α as a mapping, we will say that α is valid if for every v ∈ V (G),
α(v) ≥ α(v′) for all descendants v′ of v. We denote by α[v → s] the mapping obtained from
α by remapping v ∈ V (G) to s ∈ V (S), i.e. α[v → s](w) = α(w) for every w ∈ V (G) \ {v},
and α[v → s](v) = s. Since we are assuming that S and D events can be deduced from α, the
LCA-mapping is now unique: we denote by µ : V (G)→ V (S) the LCA-mapping, defined as
µ(v) = s(v) if v ∈ L(G), and otherwise µ(v) = LCAS(µ(v1), µ(v2)), where v1 and v2 are the
children of v. Note that for any valid reconciliation α, we have α(v) ≥ µ(v) for all v ∈ V (G).
We also have the following, which will be useful to establish our results.

WABI 2018

5:6 Reconciling Multiple Genes with Segmental Duplications

t = α(v)

s = α′(v)

x

v1 v2

(t)
(x)

(t)
(x)

v → t

v1 v2

v → s

(t)
(x)

t1 t2 Under α Under α′

S

. . .

.

Figure 2 The Shift-down lemma in action. Here t = par2(s), and remapping v from t to s saves
2 losses – 4 losses are saved below v and 2 are added above.

I Lemma 3. Let α be a mapping from G to S. If α(v) > µ(v), then v is a D node under α.

Proof. Let v1 and v2 be the two children of v. If α(v) 6= LCAS(α(v1), α(v2)), then v must
be a duplication, by the definition of S events. The same holds if α(v1) and α(v2) are not
incomparable. Thus assume α(v) = LCAS(α(v1), α(v2)) > µ(v) and that α(v1) and α(v2)
are incomparable. This implies that one of α(v1) or α(v2) is incomparable with µ(v), say
α(v1) w.l.o.g.. But µ(v1) ≤ α(v1), implying that µ(v1) is also incomparable with µ(v), a
contradiction to the definition of µ = LCAS(µ(v1), µ(v2)). J

I Lemma 4. Let α be a mapping from G to S, and let v ∈ V (G). Suppose that there is some
proper descendant v′ of v such that α(v′) ≥ µ(v). Then v is a duplication under α.

Proof. If α(v) = µ(v), we get µ(v) ≤ α(v′) ≤ α(v) = µ(v), and so α(v′) = µ(v). We must
then have α(v′′) = µ(v) for every node v′′ on the path between v′ and v. In particular, v has
a child v1 with α(v) = α(v1) and thus v is a duplication. If instead α(v) > µ(v), then v is a
duplication by Lemma 3. J

The Shift-down lemma will prove very useful to argue that we should shift mappings of
duplications down when possible, as it saves losses (see Figure 2). For future reference, do
note however that this may increase the height of some duplication forest G[α, s].

I Lemma 5 (Shift-down lemma). Let α be a mapping from G to S, let v ∈ V (G), let s ∈ V (S)
and k > 0 be such that park(s) = α(v). Suppose that α[v → s] is a valid mapping. Then
l(α[v → s]) ≤ l(α)− k.

Proof. Let v1 and v2 be the children of v, and denote t := α(v), t1 := α(v1) and t2 := α(v2).
Moreover denote α′ := α[v → s]. Let P be the set of nodes that appear on the path between
s and t, excluding s but including t (note that s is a proper descendant of t but an ancestor
of both t1 and t2, by the validity of α′). For instance in Figure 2, P = {x, t}. Observe that
|P | = k. Under α, there is a loss for each node of P on both the (v, v1) and (v, v2) branches.
(noting that v is a duplication by Lemma 3). These 2k losses are not present under α′. On
the other hand, there are at most k losses that are present under α′ but not under α, which
consist of one loss for each node of P on the (par(v), v) branch (in the case that v is not the
root of its tree - otherwise, no such loss occurs). This proves that l(α′) ≤ l(α)− k. J

An illustration of the Shift-down lemma can be found in Figure 2.

3 The computational complexity of the MPRST-SD problem

We separate the study of the complexity of the MPRST-SD problem into two subcases:
when λ ≥ δ and when λ < δ.

R. Dondi, M. Lafond, and C. Scornavacca 5:7

3.1 The case of λ ≥ δ.
The following theorem states that, when λ ≥ δ, the MPR (ie the LCA-mapping) is a solution
to the MPRST-SD problem.

I Theorem 6. Let G and S be an instance of MPRST-SD, and suppose that λ ≥ δ, Then
the LCA-mapping µ is a reconciliation of minimum cost for G and S. Moreover if λ > δ, µ
is the unique reconciliation of minimum cost.

Proof. Let α be a mapping of G into S of minimum cost. Let v ∈ V (G) be a minimal
node of G with the property that α(v) 6= µ(v) (i.e. all proper descendants v′ of v satisfy
α(v) = µ(v)). Note that v must exists since, for every leaf l ∈ L(G), we have α(l) = µ(l).
Because α(v) ≥ µ(v), it follows that α(v) > µ(v). Denote s = µ(v) and t = α(v). Then there
is some k ≥ 1 such that t = park(s). Consider the mapping α′ = α[v → s]. This possibly
increases the sum of duplications by 1, so that d̂(α′) ≤ d̂(α) + 1. But by the Shift-down
lemma, l(α′) ≤ l(α)− 1. Thus we have at most one duplication but save at least one loss.

If λ > δ, this contradicts the optimality of α, implying that v cannot exist and thus that
α = µ. This proves the uniqueness of µ in this case.

If δ = λ, then δd̂(α′) + λl(α′) ≤ δd̂(α) + λl(α). By applying the above transformation
successively on the minimal nodes v that are not mapped to µ(v), we eventually reach the
LCA-mapping µ with an equal or better cost than α. J

3.2 The case of δ > λ.
We show that, in contrast with the λ ≥ δ case, the MPRST-SD problem is NP-hard when
δ > λ and the costs are given as part of the input. More specifically, we show that the
problem is NP-hard when one only wants to minimize the sum of duplication heights, i.e.
λ = 0. Note that if λ > 0 but is small enough, the effect will be the same and the hardness
result also holds – for instance, putting δ = 1 and say λ < 1

2|V (G)||V (S)| ensures that even if a
maximum number of losses appears on every branch of G, it does not even amount to the cost
of one duplication. The hardness proof is quite technical, and we refer the interested reader
to the Appendix of the arXiv version of the paper (https://arxiv.org/abs/1806.03988)
for the details.

We briefly outline the main ideas of the reduction. The reduction is from the Vertex
Cover problem, where we are given a graph G and must find a subset of vertices V ′ ⊆ V (G)
of minimum size such that each edge has at least one endpoint in V ′. The species tree S and
the forest G are constructed so that, for each vertex vi ∈ V (G), there is a gene tree Ai in G
with a long path of duplications, all of which could either be mapped to a species called yi
or another species zi. We make it so that mapping to yi introduces one more duplication
than mapping to zi, hence we have to “pay” for each yi. We also have a gene tree Ch in
G for each edge eh ∈ E(G), with say vi and vj being the endpoints of eh. In Ch, there is
a large set of duplications D under the LCA-mapping µ. We make it so that if we either
mapped the duplications in Ai or Aj to yi or yj , respectively, then we may map all the D
nodes to yi or yj without adding more duplications. However if we did not choose yi nor yj ,
then it will not be possible to remap the D nodes without incurring a large duplication cost.
Therefore, the goal becomes to choose a minimum number of yi’s from the Ai trees so that
for each edge eh = {vi, vj}, one of yi or yj is chosen for the tree Ch. This establishes the
correspondence with the vertex cover instance.

I Theorem 7. The MPRST-SD problem is NP-hard for λ = 0 and for given δ > λ.

WABI 2018

https://arxiv.org/abs/1806.03988

5:8 Reconciling Multiple Genes with Segmental Duplications

S G1 G2

G3

S

G1 G2

G3

T1 T2

T3

S′ T

Figure 3 The construction of S′ and T from S and the set of gene trees G1, . . . , Gk (here k = 3).
The black squares indicate the path of k − 1 duplications that must be mapped to r(S′).

The above hardness supposes that δ and λ can be arbitrarily far apart. This leaves
open the question of whether MPRST-SD is NP-hard when δ and λ are fixed constants – in
particular when δ = 1 + ε and λ = 1, where ε < 1 is some very small constant. We end this
section by showing that the above hardness result persists even if only one gene tree is given.
The idea is to reduce from the MPRST-SD show hard just above. Given a species tree S
and a gene forest G, we make G a single tree by incorporating a large number of speciations
(under µ) above the root of each tree of G (modifying S accordingly), then successively
joining the roots of two trees of G under a common parent until G has only one tree.

I Theorem 8. The MPRST-SD problem is NP-hard for λ = 0 and for given δ > λ, even if
only one gene tree is given as input.

Proof. We reduce from the MPRST-SD problem in which multiple trees are given. We
assume that δ = 1 and λ = 0 and only consider duplications – we use the same argument as
before to justify that the problem is NP-hard for very small λ. Let S be the given species tree
and G be the given gene forest. As we are working with the decision version of MPRST-SD,
assume we are given an integer t and asked whether costSD(G, S, α) ≤ t for some α. Denote
n = |L(G)| and let G1, . . . , Gk be the k > 1 trees of G. We construct a corresponding instance
of a species tree S′ and a single gene tree T as follows (the construction is illustrated in
Figure 3). Let S′ be a species tree obtained by adding 2(t + k) nodes “above” the root
of S. More precisely, first let C be a caterpillar with 2(t + k) internal nodes. Let l be a
deepest leaf of C. Obtain S′ by replacing l by the root of S. Then, obtain the gene tree T by
taking k copies C1, . . . , Ck of C, and for each leaf l′ of each Ci other than l, put s(l′) as the
corresponding leaf in S′. Then for each i ∈ [k], replace the l leaf of Ci by the tree Gi (we
keep the leaf mapping s of Gi), resulting in a tree we call Ti. Finally, let T ′ be a caterpillar
with k leaves h1, . . . , hk, and replace each hi by the Ti tree. The resulting tree is T . We
show that cost(G, S, α) ≤ t for some α if and only if cost(T, S′, α′) ≤ t+ k − 1 for some α′.

Notice the following: in any mapping α of T , the k− 1 internal nodes of the T ′ caterpillar
must be duplications mapped to r(S′), so that hα(r(S′)) ≥ k − 1. Also note that under the
LCA mapping µ for T and S′, the only duplications other than those k − 1 mentioned above
occur in the Gi subtrees. The (⇒) is then easy to see: given α such that cost(G, S, α) ≤ t,
we set α′(v) = α(v) for every node v of T that is also in G (namely the nodes of G1, . . . , Gk),
and set α′(v) = µ(v) for every other node. This achieves a cost of t+ k − 1.

As for the (⇐) direction, suppose that costSD(T ′, S′, α′) ≤ t+ k − 1 for some mapping
α′. Observe that under the LCA-mapping in T , each root of each Gi subtree has a path
of 2(t + k) speciations in its ancestors. If any node in a Gi subtree of T is mapped to
r(S′), then all these speciations become duplications (by Lemma 4), which would contradict
costSD(T ′, S′, α′) ≤ t+ k − 1. We may thus assume that no node belonging to a Gi subtree
is mapped to r(S′). Since hα′(r(S′)) ≥ k− 1, this implies that the restriction of α′ to the Gi
subtrees has cost at most t.

R. Dondi, M. Lafond, and C. Scornavacca 5:9

More formally, consider the mapping α′′ from G to S′ in which we put α′′(v) = α′(v) for
all v ∈ V (G). Then costSD(G, S′, α′′) ≤ costSD(T, S′, α′)− (k − 1) ≤ t, because α′′ does not
contain the top k − 1 duplications of α′, and cannot introduce longer duplication paths than
in α′.

We are not done, however, since α′′ is a mapping from G to S′, and not from G to S.
Consider the set Q ⊆ V (G) of nodes v of G such that α′′(v) ∈ V (S) := V (S′) \V (S). We will
remap every such node to r(S) and show that this cannot increase the cost. Observe that if
v ∈ Q, then every ancestor of v in G is also in Q. Also, every node in Q is a duplication (by
invoking Lemma 3).

Consider the mapping α∗ from G to S′ in which we put α∗(v) = α′′(v) for all v /∈ Q, and
α∗(v) = r(S) for all v ∈ Q. It is not difficult to see that α∗ is valid.

Now, hα∗(s) = 0 for all s ∈ V (S) and hα∗(s) = hα′′(s) for all s ∈ V (S)\{r(S)}. Moreover,
the height of the r(S) duplications under α∗ cannot be more than the height of the forest
induced by Q and the duplications mapped to r(S) under α′′. In other words,

hα∗(r(S)) ≤ max
Gi

(hα′′(r(S)) +
∑

s′∈V (S)

h(Gi[α′′, s′]))

= hα′′(r(S)) + max
Gi

(
∑

s′∈V (S)

h(Gi[α′′, s′]))

≤ hα′′(r(S)) +
∑

s′∈V (S)

max
Gi

(h(Gi[α′′, s′]))

= hα′′(r(S)) +
∑

s′∈V (S)

h(G[α′′, s′])

= hα′′(r(S)) +
∑

s′∈V (S)

hα′′(s′)

Therefore, the sum of duplication heights cannot have increased. Finally, because α∗
is a mapping from G to S, we deduce that costSD(G, S, α∗) ≤ costSD(G, S′, α′′) ≤ t, as
desired. J

4 An FPT algorithm

In this section, we show that for costs δ > λ and a parameter d > 0, if there is an optimal
reconciliation α of cost costSD(G, S) satisfying d̂(α) ≤ d, then α can be found in time
O(d δλe

d · n · δλ).
In what follows, we allow mappings to be partially defined, and we use the ⊥ symbol

to indicate undetermined mappings. The idea is to start from a mapping in which every
internal node is undetermined, and gradually determine those in a bottom-up fashion. We
need an additional set of definitions. We will assume that δ > λ > 0 (although the algorithm
described in this section can solve the λ = 0 case by setting λ to a very small value).

We say that the mapping α : V (G) → V (S) ∪ {⊥} is a partial mapping if α(l) = s(l)
for every leaf l ∈ L(G), and it holds that whenever α(v) 6= ⊥, we have α(v′) 6= ⊥ for every
descendant v′ of v. That is, if a node is determined, then all its descendants also are. This
also implies that every ancestor of a ⊥-node is also a ⊥-node. A node v ∈ V (G) is a minimal
⊥-node (under α) if α(v) = ⊥ and α(v′) 6= ⊥ for each child v′ of v. If α(v) 6= ⊥ for every
v ∈ V (G), then α is called complete. Note that if α is partial and α(v) 6= ⊥, one can already
determine whether v is an S or a D node, and hence we may say that v is a speciation or a
duplication under α. Also note that the definitions of d̂(α), l(α) and hα(s) extend naturally
to a partial mapping α by considering the forest induced by the nodes not mapped to ⊥.

WABI 2018

5:10 Reconciling Multiple Genes with Segmental Duplications

If α is a partial mapping, we call α′ a completion of α if α′ is complete, and α(v) = α′(v)
whenever α(v) 6= ⊥. Note that such a completion always exists, as in particular one can
map every ⊥-node to the root of S (such a mapping must be valid, since all ancestors of a
⊥-node are also ⊥-nodes, which ensures that r(S) = α′(v) ≥ α′(v′) for every descendant v′
of a newly mapped ⊥-node v). We say that α′ is an optimal completion of α if costSD(α′) is
minimum among every possible completion of α. For a minimal ⊥-node v with children v1
and v2, we denote µα(v) = LCAS(α(v1), α(v2)), i.e. the lowest species of S to which v can
possibly be mapped to in any completion of α. Observe that µα(v) ≥ µ(v). Moreover, if v
is a minimal ⊥-node, then in any completion α′ of α, α′[v → µα(v)] is a valid mapping. A
minimal ⊥-node v is called a lowest minimal ⊥-node if, for every minimal ⊥-node w distinct
from v, either µα(v) ≤ µα(w) or µα(v) and µα(w) are incomparable.

The following Lemma forms the basis of our FPT algorithm, as it allows us to bound the
possible mappings of a minimal ⊥-node.

I Lemma 9. Let α be a partial mapping and let v be a minimal ⊥-node. Then for any
optimal completion α∗ of α, α∗(v) ≤ pardδ/λe(µα(v)).

Proof. Let α∗ be an optimal completion of α and let α′ := α∗[v → µα(v)]. Note that
d̂(α′) ≤ d̂(α∗) + 1. Now suppose that α∗(v) > pardδ/λe(µα(v)). Then by the Shift-down
lemma, l(α∗) − l(α′) > dδ/λe ≥ δ/λ. Thus costSD(α∗) − costSD(α′) > −δ + λ(δ/λ) = 0.
This contradicts the optimality of α∗. J

A node v ∈ V (G) is a required duplication (under α) if, in any completion α′ of α, v is a
duplication under α′. We first show that required duplications are easy to find.

I Lemma 10. Let v be a minimal ⊥-node under α, and let v1 and v2 be its two children.
Then v is a required duplication under α if and only if α(v1) ≥ µ(v) or α(v2) ≥ µ(v).

Proof. Suppose that α(v1) ≥ µ(v), and let α′ be a completion of α. If α′(v) = α′(v1), then
v is a duplication by definition. Otherwise, α′(v) > α′(v1) = α(v1) ≥ µ(v), and v is a
duplication by Lemma 3. The case when α(v2) ≥ µ(v) is identical.

Conversely, suppose that α(v1) < µ(v) and α(v2) < µ(v). Then α(v1) and α(v2) must be
incomparable descendants of µ(v) (because otherwise if e.g. α(v1) ≤ α(v2), then we would
have µ(v) = LCAS(µ(v1), µ(v2)) ≤ LCAS(α(v1), α(v2)) = α(v2), whereas we are assuming
that α(v2) < µ(v)). Take any completion α′ of α such that α′(v) = µ(v). To see that v is
a speciation under α′, it remains to argue that α′(v) = µ(v) = LCAS(α(v1), α(v2)). Since
µ(v) is an ancestor of both α(v1) and α(v2), we have LCAS(α(v1), α(v2)) ≤ µ(v). We also
have µ(v) = LCAS(µ(v1), µ(v2)) ≤ LCAS(α(v1), α(v2)), and equality follows. J

Lemma 11 and Lemma 12 allow us to find minimal ⊥-nodes of G that are the easiest to
deal with, as their mapping in an optimal completion can be determined with certainty.

I Lemma 11. Let v be a minimal ⊥-node under α. If v is not a required duplication under
α, then α∗(v) = µα(v) for any optimal completion α∗ of α.

Proof. Let v1, v2 be the children of v, and let α∗ be an optimal completion of α. Since v
is not a required duplication, by Lemma 10 we have α(v1) < µ(v) and α(v2) < µ(v) and,
as argued in the proof of Lemma 10, α(v1) and α(v2) are incomparable. We thus have
that µα(v) = µ(v). Then α∗[v → µ(v)] is a valid mapping, and v is a speciation under
this mapping. Hence d̂(α∗[v → µ(v)]) ≤ d̂(α∗). Then by the Shift-down lemma, this new
mapping has fewer losses, and thus attains a lower cost than α∗. J

R. Dondi, M. Lafond, and C. Scornavacca 5:11

I Lemma 12. Let v be a minimal ⊥-node under α, and let αv := α[v → µα(v)]. If
d̂(α) = d̂(αv), then α∗(v) = µα(v) for any optimal completion α∗ of α.

Proof. Let α∗ be an optimal completion of α. Denote s := µα(v), and assume that α∗(v) > s

(as otherwise, we are done). Let α′ = α∗[v → s]. We have that l(α′) < l(α∗) by the Shift-
down lemma. To prove the Lemma, we then show that d̂(α′) ≤ d̂(α∗). Suppose otherwise
that d̂(α′) > d̂(α∗). As only v changed mapping to s to go from α∗ to α′, this implies
that hα′(s) > hα∗(s) because of v. Since under α∗, no ancestor of v is mapped to s, it
must be that under α′, v is the root of a subtree T of height hα′(s) of duplications in s.
Since T contains only descendants of v, it must also be that hαv

(s) = hα′(s) (here αv is
the mapping defined in the Lemma statement). As we are assuming that hα′(s) > hα∗(s),
we get hαv

(s) > hα∗(s). This is a contradiction, since hα∗(s) ≥ hα(s) = hαv
(s) (the left

inequality because α∗ is a completion of α, and the right equality by the choice of αv). Then
l(α′) < l(α∗) and d̂(α′) ≤ d̂(α∗) contradicts the fact that α∗ is optimal. J

We say that a minimal ⊥-node v ∈ V (G) is easy (under α) if v falls into one of the
cases described by Lemma 11 or Lemma 12. Formally, v is easy if either v is a speciation
mapped to µα(v) under any optimal completion of α (Lemma 11), or d̂(α) = d̂(α[v → µα(v)])
(Lemma 12). Our strategy will be to “clean-up” the easy nodes, meaning that we map them
to µα(v) as prescribed above, and then handle the remaining non-easy nodes by branching
over the possibilities. We say that a partial mapping α is clean if every minimal ⊥-node v
satisfies the two following conditions:
[C1] v is not easy;
[C2] for all duplication nodes w (under α with α(w) 6= ⊥), either α(w) ≤ µα(v) or α(w) is

incomparable with µα(v).

Roughly speaking, C2 says that all further duplications that may “appear” in a completion
of α will be mapped to nodes “above” the current duplications in α. The purpose of C2 is to
allow us to create duplication nodes with mappings from the bottom of S to the top. Our
goal will be to build our α mapping in a bottom-up fashion in G whilst maintaining this
condition. The next lemma states that if α is clean and some lowest minimal ⊥-node v gets
mapped to species s, then v brings with it every minimal ⊥-node that can be mapped to s.

I Lemma 13. Suppose that α is a clean partial mapping, and let α∗ be an optimal completion
of α. Let v be a lowest minimal ⊥-node under α, and let s := α∗(v). Then for every minimal
⊥-node w such that µα(w) ≤ s, we have α∗(w) = s.

Proof. Denote α′ := α[v → s]. Suppose first that s = µα(v). Note that since α is clean,
v is not easy, which implies that hα′(s) = hα(s) + 1. Since v is a lowest minimal ⊥-node,
if w is a minimal ⊥-node such that µα(w) ≤ s, we must have µα(w) = s, as otherwise v
would not have the ‘lowest’ property. Moreover, because v and w are both minimal ⊥-nodes
under the partial mapping α, one cannot be the ancestor of the other and so v and w are
incomparable. This implies that mapping w to s under α′ cannot further increase hα′(s)
(because we already increased it by 1 when mapping v to s). Thus d̂(α′) = d̂(α′[w → s]), and
w is easy under α′ and must be mapped to s by Lemma 12. This proves the α∗(v) = µα(s)
case.

Now assume that s > µα(v), and let w be a minimal ⊥-node with µα(w) ≤ s. Let us
denote s′ := α∗(w). If s′ = s, then we are done. Suppose that s′ < s, noting that hα∗(s′) > 0
(because w must be a duplication node, due to α being clean). If s′ = µα(v), then w is also a
lowest minimal ⊥-node. In this case, using the arguments from the previous paragraph and
swapping the roles of v and w, one can see that v is easy in α[w → s′] and must be mapped

WABI 2018

5:12 Reconciling Multiple Genes with Segmental Duplications

A B C D

E

F G

H

I

a a
b

b

c d

da

gf

⊥

⊥
⊥

a ea
b

b
c

a

a i

f

h
⊥

⊥

Map to H

c d

d
g

h

S

e

c
a

i

⊥

Figure 4 An illustration of one pass through the algorithm. The species tree S is left and G has
two trees (middle) and has partial mapping α (labels are the lowercase of the species). Here α is in
a clean state, and the algorithm will pick a lowest minimal ⊥-node (white circle) and try to map it
to, say, H. The forest on the right is the state of α after applying this and cleaning up.

to s′ < s, a contradiction. Thus assume s′ > µα(v). Under α∗, for each child v′ of v, we
have α∗(v′) ≤ µα(v) < s′, and for each ancestor v′′ of v, we have α∗(v′′) ≥ α∗(v) = s > s′.
Therefore, by remapping v to s′, v is the only duplication mapped to s′ among its ancestors
and descendants. In other words, because hα∗(s′) > 0, we have d̂(α∗[v → s′]) ≤ d̂(α∗).
Moreover by the Shift-down lemma, l(α∗[v → s′]) < l(α∗), which contradicts the optimality
of α∗.

The remaining case is s′ > s. Note that hα∗(s) > 0 (because v must be a duplication
node, due to α being clean). Since it holds that v is a minimal ⊥-node, that α is clean and
that s > µα(v), it must be the case that α has no duplication mapped to s (by the second
property of cleanness). In particular, w has no descendant that is a duplication mapped to s
under α (and hence under α∗). Moreover, as s′ = α∗(w) > s, w has no ancestor that is a
duplication mapped to s. Thus d̂(α∗[w → s]) ≤ d̂(α∗), and the Shift-down lemma contradicts
the optimality of α∗. This concludes the proof. J

We are finally ready to describe our algorithm. We start from a partial mapping α with
α(v) = ⊥ for every internal node v of G. We gradually “fill-up” the ⊥-nodes of α in a
bottom-up fashion, maintaining a clean mapping at each step and ensuring that each decision
leads to an optimal completion α∗. To do this, we pick a lowest minimal ⊥-node v, and
“guess” α∗(v) among the dδ/λe possibilities. This increases some hα(s) by 1. For each such
guess s, we use Lemma 13 to map the appropriate minimal ⊥-nodes to s, then take care of
the easy nodes to obtain another clean mapping. We repeat until we have either found a
complete mapping or we have a duplication height higher than d. An illustration of a pass
through the algorithm is shown in Figure 4.

Notice that the algorithm assumes that it receives a clean partial mapping α. In particular,
the initial mapping α that we pass to the first call should satisfy the two properties of cleanness.
To achieve this, we start with a partial mapping α in which every internal node is a ⊥-
node. Then, while there is a minimal ⊥-node v that is not a required duplication, we set
α(v) = µα(v), which makes v a speciation. It is straightforward to see that the resulting α is
clean: C1 is satisfied because we cannot make any more minimal ⊥-nodes become speciations,
and we cannot create any duplication node without increasing costSD because α has no
duplication. C2 is met because there are no duplications at all.

See below for the proof of correctness. The complexity follows from the fact that the
algorithm creates a search tree of degree dδ/λe of depth at most d. The main technicality is
to show that the algorithm maintains a clean mapping before each recursive call2.

2 There is a subtlety to consider here. What we have shown is that if there exists a mapping α of
minimum cost costSD(G, S) with d̂(α) ≤ d, then the algorithm finds it. It might be that a reconciliation
α satisfying d̂(α) ≤ d exists, but that the algorithm returns no solution. This can happen in the case
that α is not of cost costSD(G, S).

R. Dondi, M. Lafond, and C. Scornavacca 5:13

Algorithm 1 FPT algorithm for parameter d.
1: procedure SuperReconcile(G, S, α, d)
G is the set of input trees, S is the species tree, α is a clean partial mapping, d is the
maximum value of d̂(α).

2: if d̂(α) > d then
3: Return ∞
4: else if α is a complete mapping then
5: Return costSD(α)
6: else
7: Let v be a lowest minimal ⊥-node
8: bestCost←∞
9: for s such that µα(v) ≤ s ≤ pardδ/λe(µα(v)) do
10: Let α′ = α[v → s]
11: for minimal ⊥-node w 6= v under α such that µα(w) ≤ s do
12: Set α′ = α′[w → s]
13: while there is a minimal ⊥-node w that is easy under α′ do
14: Set α′ = α′[w → µα′(w)]
15: cost← superReconcile(G, S, α′, d)
16: if cost < bestCost then bestCost← cost

17: Return bestCost

I Theorem 14. Algorithm 1 is correct and finds a minimum cost mapping α∗ satisfying
d̂(α∗) ≤ d, if any, in time O(d δλe

d · n · δλ).

Proof. We show by induction over the depth of the search tree that, in any recursive call
made to Algorithm 1 with partial mapping α, the algorithm returns the cost of an optimal
completion α∗ of α having d̂(α∗) ≤ d, or ∞ if no such completion exists - assuming that the
algorithm receives a clean mapping α as input. Thus in order to use induction, we must also
show that at each recursive call done on line 15, α′ is a clean mapping. We additionally
claim that the search tree created by the algorithm has depth at most d. To show this, we
will also prove that every α′ sent to a recursive call satisfies d̂(α′) = d̂(α) + 1.

The base cases of lines 3 - 5 are trivial. For the induction step, let v be the lowest minimal
⊥-node chosen on line 7. By Lemma 9, if α∗ is an optimal completion of α and s = α∗(v),
then µα(v) ≤ s ≤ pardδ/λe(µα(v)). We try all the dδ/λe possibilities in the for-loop on line 9.
The for-loop on line 11 is justified by Lemma 13, and the for-loop on line 13 is justified by
Lemma 11 and Lemma 12. Assuming that α′ is clean on line 15, by induction the recursive
call will return the cost of an optimal completion α∗ of α′ having d̂(α∗) ≤ d, if any such
completion exists. It remains to argue that for every α′ sent to a recursive call on line 15, α′
is clean and d̂(α′) = d̂(α) + 1 .

Let us first show that such a α′ is clean, for each choice of s on line 9. There clearly
cannot be an easy node under α′ after line 13, so we must show C2, i.e. that for any minimal
⊥-node w under α′, there is no duplication z under α′ satisfying α′(z) > µα′(w). Suppose
instead that α′(z) > µα′(w) for some duplication node z. Let w0 be a descendant of w that
is a minimal ⊥-node in α (note that w0 = w is possible). We must have µα′(w) ≥ µα(w0).
By our assumption, we then have α′(z) > µα′(w) ≥ µα(w0). Then z cannot be a duplication
under α, as otherwise α itself could not be clean (by C2 applied on z and w0). Thus z is a
newly introduced duplication in α′, and so z was a ⊥-node under α. Note that Algorithm 1
maps ⊥-nodes of G one after another, in some order (z1, z2, . . . , zk). Suppose without loss
of generality that z is the first duplication node in this ordering that gets mapped to α′(z).

WABI 2018

5:14 Reconciling Multiple Genes with Segmental Duplications

There are two cases: either α′(z) 6= s, or α′(z) = s.
Suppose first that α′(z) 6= s. Lines 10 and 11 can only map ⊥-nodes to s, and line 13

either maps speciation nodes, or easy nodes that become duplications. Thus when α′(z) 6= s,
we may assume that z falls into the latter case, i.e. z is easy before being mapped, so that
mapping z to α′(z) does not increase hα′(α′(z)). Because z is the first ⊥-node that gets
mapped to α′(z), this is only possible if there was already a duplication z0 mapped to α′(z)
in α. This implies that α(z0) = α′(z) > µα(w0), and that α was not clean (by C2 applied on
z0 and w0). This is a contradiction.

We may thus assume that α′(z) = s. This implies µα′(w) < α′(z) = s. If w was a minimal
⊥-node in α, it would have been mapped to s on line 11, and so in this case w cannot also be
a minimal ⊥-node in α′, as we supposed. If instead w was not a minimal ⊥-node in α, then
w has a descendant w0 that was a minimal ⊥-node under α. We have µα(w0) ≤ µα′(w) < s,
which implies that w0 gets mapped to s on line 11. This makes µα′(w) < s impossible, and
we have reached a contradiction. We deduce that z cannot exist, and that α′ is clean.

It remains to show that d̂(α′) = d̂(α) + 1. Again, let s be the chosen species on line 9.
Suppose first that s = µα(v). Then hα[v→s](s) = hα(s) + 1, as otherwise v would be easy
under α, contradicting its cleanness. In this situation, as argued in the proof of Lemma 13,
each node w that gets mapped to s on line 11 or on line 13 is easy, and thus cannot further
increase the height of the duplications in s. If s > µα(v), then hα[v→s](s) = 1 = hα(s) + 1,
since by cleanness no duplication under α maps to s. Here, each node w that gets mapped on
line 11 has no descendant nor ancestor mapped to s, and thus the height does not increase.
Noting that remapping easy nodes on line 13 cannot alter the duplication heights, we get in
both cases that d̂(α[v → s]) = d̂(α) + 1. This proves the correctness of the algorithm.

As for the complexity, the algorithm creates a search tree of degree dδ/λe and of depth
at most d. Each pass can easily seen to be feasible in time O(δ/λ · n) (with appropriate
pre-parsing to compute µα(v) in constant time, and to decide if a node is easy or not in
constant time as well), and so the total complexity is O(dδ/λedn · δλ). J

5 Experiments

We used our software to reanalyze a data set of 53 gene trees for 16 eukaryotes presented
in [10] and already reanalyzed in [19, 1]. In [1], the authors showed that, if segmental
duplications are not accounted for, we get a solution having d̂ equal to 9, while their software
(ExactMGD) returns a solution with d̂ equal to 5. We were able to retrieve the solution with
maximum height of 5 fixing δ ∈ [28, 61] and λ = 1, but, as soon as δ > 61, we got a solution
with maximum height of 4 where no duplications are placed in the branch leading to the
Tetrapoda clade (see [19, Fig. 1]) while the other locations of segmental duplications inferred
in [10] are confirmed3. This may sow some doubt on the actual existence of a segmental
duplication in the LCA of the Tetrapoda clade.

We also reanalyzed the data set of yeast species described in [2]. First, we selected from
the data set the 2379 gene trees containing all 16 species and refined unsupported branches
using the method described in [12] and implemented in ecceTERA [11] with a bootstrap
threshold of 0.9 and δ = λ = 1. Using our method with δ = 1.5, λ = 1 we were able to
detect the ancient genome duplication in Saccharomyces cerevisiae already established using
synteny information [13], with 216 gene families supporting the event. Other nodes with a

3 Note that for this data set we used a high value for δ
λ since, because of the sampling strategy, we expect

that all relevant genes have been sampled (recall that in ExactMGD, λ is implicitly set to 0).

R. Dondi, M. Lafond, and C. Scornavacca 5:15

S. cerevisiae

S. paradoxus
0

S. mikatae
1

S. bayanus

2

C. glabrata

3

S. castelli

4

A. gossypii

K. lactis
5

K. waltii
6

7

C. albicans

C. tropicalis
8

C. parapsilosis

L. elongisporus
9

10

C. guillermodii

D. hansenii
11

C. lusitaniae
12

13

14

Figure 5 The species tree phylogeny for the yeast data set described in [2]. Numbers at the
internal nodes are meaningless and are only used to refer to the nodes in the main text.

signature of segmental duplication are nodes 7, 6, 13 and 2 (refer to Fig. 5) with respectively
190, 157, 148 and 136 gene families supporting the event. It would be interesting to see if
the synteny information supports these hypotheses.

6 Conclusion

This work poses a variety of questions that deserve further investigation. The complexity of
the problem when δ/λ is a constant remains an open problem. Moreover, our FPT algorithm
can handle data sets with a sum of duplication height of about d = 30, but in the future, one
might consider whether there exist fast approximation algorithms for MPRST-SD in order to
attain better scalability. Other future directions include a multivariate complexity analysis
of the problem, in order to understand whether it is possible to identify other parameters
that are small in practice. Finally, we plan to extend the experimental analysis to other data
sets, for instance for the detection of whole genome duplications in plants.

References
1 Mukul S Bansal and Oliver Eulenstein. The multiple gene duplication problem revisited.

Bioinformatics, 24(13):i132–i138, 2008.
2 Geraldine Butler, Matthew D Rasmussen, Michael F Lin, Manuel AS Santos, Sharadha

Sakthikumar, Carol A Munro, Esther Rheinbay, Manfred Grabherr, Anja Forche, Jennifer L
Reedy, et al. Evolution of pathogenicity and sexual reproduction in eight candida genomes.
Nature, 459(7247):657, 2009.

3 Cedric Chauve and Nadia El-Mabrouk. New perspectives on gene family evolution: losses in
reconciliation and a link with supertrees. In Annual International Conference on Research
in Computational Molecular Biology, pages 46–58. Springer, 2009.

4 Cedric Chauve, Akbar Rafiey, Adrian A. Davin, Celine Scornavacca, Philippe Veber, Bas-
tien Boussau, Gergely Szollosi, Vincent Daubin, and Eric Tannier. Maxtic: Fast ranking

WABI 2018

5:16 Reconciling Multiple Genes with Segmental Duplications

of a phylogenetic tree by maximum time consistency with lateral gene transfers. bioRxiv,
2017. URL: https://www.biorxiv.org/content/early/2017/11/07/127548.

5 Adrián A Davín, Eric Tannier, Tom A Williams, Bastien Boussau, Vincent Daubin, and
Gergely J Szöllősi. Gene transfers can date the tree of life. Nature ecology & evolution,
page 1, 2018.

6 Wandrille Duchemin. Phylogeny of dependencies and dependencies of phylogenies in genes
and genomes. PhD thesis, Université de Lyon, 2017.

7 Wandrille Duchemin, Yoann Anselmetti, Murray Patterson, Yann Ponty, Sèverine Bérard,
Cedric Chauve, Celine Scornavacca, Vincent Daubin, and Eric Tannier. Decostar: Re-
constructing the ancestral organization of genes or genomes using reconciled phylogenies.
Genome biology and evolution, 9(5):1312–1319, 2017.

8 Michael Fellows, Michael Hallett, and Ulrike Stege. On the multiple gene duplication
problem. In International Symposium on Algorithms and Computation, pages 348–357.
Springer, 1998.

9 Morris Goodman, John Czelusniak, G William Moore, Alejo E Romero-Herrera, and Genji
Matsuda. Fitting the gene lineage into its species lineage, a parsimony strategy illustrated
by cladograms constructed from globin sequences. Systematic Biology, 28(2):132–163, 1979.

10 Roderic Guigo, Ilya Muchnik, and Temple F Smith. Reconstruction of ancient molecular
phylogeny. Molecular phylogenetics and evolution, 6(2):189–213, 1996.

11 Edwin Jacox, Cedric Chauve, Gergely J. Szöllősi, Yann Ponty, and Celine Scornavacca. ec-
cetera: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics,
32(13):2056–2058, 2016.

12 Edwin Jacox, Mathias Weller, Eric Tannier, and Céline Scornavacca. Resolution and recon-
ciliation of non-binary gene trees with transfers, duplications and losses. Bioinformatics,
33(7):980–987, 2017.

13 Manolis Kellis, Bruce W Birren, and Eric S Lander. Proof and evolutionary analysis of
ancient genome duplication in the yeast saccharomyces cerevisiae. Nature, 428(6983):617,
2004.

14 Manuel Lafond, Mona Meghdari Miardan, and David Sankoff. Accurate prediction of
orthologs in the presence of divergence after duplication. Bioinformatics, In press, 2018.

15 Cheng-Wei Luo, Ming-Chiang Chen, Yi-Ching Chen, Roger WL Yang, Hsiao-Fei Liu,
and Kun-Mao Chao. Linear-time algorithms for the multiple gene duplication problems.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, 8(1):260–265, 2011.

16 Bin Ma, Ming Li, and Louxin Zhang. From gene trees to species trees. SIAM Journal on
Computing, 30(3):729–752, 2000.

17 Wayne P Maddison. Gene trees in species trees. Systematic biology, 46(3):523–536, 1997.
18 Roderic DM Page. Maps between trees and cladistic analysis of historical associations

among genes, organisms, and areas. Systematic Biology, 43(1):58–77, 1994.
19 Roderic DM Page and JA Cotton. Vertebrate phylogenomics: reconciled trees and gene

duplications. In Pacific Symposium on Biocomputing, volume 7, pages 536–547, 2002.
20 Jaroslaw Paszek and Pawel Gorecki. Efficient algorithms for genomic duplication models.

IEEE/ACM transactions on computational biology and bioinformatics, 2017.
21 Ikram Ullah, Joel Sjöstrand, Peter Andersson, Bengt Sennblad, and Jens Lagergren. In-

tegrating sequence evolution into probabilistic orthology analysis. Systematic Biology,
64(6):969–982, 2015.

https://www.biorxiv.org/content/early/2017/11/07/127548

Protein Classification with Improved Topological
Data Analysis
Tamal K. Dey
Department of Computer Science and Engineering, The Ohio State University, Columbus, USA
http://web.cse.ohio-state.edu/~dey.8/
dey.8@osu.edu

Sayan Mandal
Department of Computer Science and Engineering, The Ohio State University, Columbus, USA
http://web.cse.ohio-state.edu/~mandal.25/
mandal.25@osu.edu

Abstract
Automated annotation and analysis of protein molecules have long been a topic of interest due to
immediate applications in medicine and drug design. In this work, we propose a topology based,
fast, scalable, and parameter-free technique to generate protein signatures.

We build an initial simplicial complex using information about the protein’s constituent atoms,
including its radius and existing chemical bonds, to model the hierarchical structure of the mo-
lecule. Simplicial collapse is used to construct a filtration which we use to compute persistent
homology. This information constitutes our signature for the protein. In addition, we demon-
strate that this technique scales well to large proteins. Our method shows sizable time and
memory improvements compared to other topology based approaches. We use the signature to
train a protein domain classifier. Finally, we compare this classifier against models built from
state-of-the-art structure-based protein signatures on standard datasets to achieve a substantial
improvement in accuracy.

2012 ACM Subject Classification Applied computing → Life and medical sciences

Keywords and phrases topological data analysis, persistent homology, simplicial collapse, super-
vised learning, topology based protein feature vector, protein classification

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.6

Supplement Material http://web.cse.ohio-state.edu/~dey.8/proteinTDA

Acknowledgements This work has been supported by NSF grants CCF-1318595, CCF-1526513,
and CCF-1733798.

1 Introduction

Proteins are by far the most anatomically intricate and functionally sophisticated molecules
known. The benchmarking and classification of unannotated proteins have been done by
researchers for quite a long time. This effort has direct influence in understanding behavior of
unknown proteins or in more advanced tasks as genome sequencing. Since the sheer volume
of protein structures is huge, up till the last decade, it had been a cumbersome task for
scientists to manually evaluate and classify them. For the last decade, several works aiming
at automating the classification of proteins have been developed. The majority of annotation
and classification techniques are based on sequence comparisons (for example in BLAST [19],
HHblits [2] and [18]) that try to align protein sequences to find homologs or a common
ancestor. However, since those methods focus on finding sequence similarity, they are more

© Tamal K. Dey and Sayan Mandal;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://web.cse.ohio-state.edu/~dey.8/
mailto:dey.8@osu.edu
http://web.cse.ohio-state.edu/~mandal.25/
mailto:mandal.25@osu.edu
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.6
http://web.cse.ohio-state.edu/~dey.8/proteinTDA
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Protein Classification with Improved Topological Data Analysis

Figure 1 Workflow of our technique.

efficient in finding close homologs. Some domains such as remote homologs are known to
have less than 25% sequential similarity and yet have common ancestors and are functionally
similar. So, we miss out important information on structural variability while classifying
proteins solely based on sequences. Even though, sometimes, homology is established by
comparing structural alignment [14], accurate and fast structural classification techniques for
the rapidly expanding Protein Data Bank remains a challenge.

Several works on the classification of protein structures exist in the literature. The main
intuition behind these works draws upon a heuristic that generates a signature for each
protein strand so that structurally close proteins have similar signatures. Essentially, the
signature alignment quantifies the similarity between two protein structures. The problem,
however, remains with the speed of computing these signatures and the degree of their
representative power. We want a fingerprint for the protein that can be computed fast and
can tell whether two proteins are dissimilar or even marginally similar.

Some works use vector of frequencies to describe structural features while others take vari-
ous physical properties into account such as energy, surface area, volume, flexibility/rigidity
or use other features from geometric modeling. The "Bag-Of-Word" (BOW) representation
to describe an object has been used in computer vision, natural language processing and
various other fields. The work by Budowski-Tal [3] have described protein structure using a
fragment library in a similar context. Since we use this work for comparison, we shall discuss
its details later.

Topological data analysis [10], a newly developed data analysis technique has been
shown to give some encouraging results in protein structure analysis. Topological signatures,
particularly based on Persistent Homology, enjoy some nice theoretical properties including
their robustness and scale invariance. These features are global and more resilient to local
perturbations. Moreover, they are invariant to scaling and any isometric transformation of
the input. The authors in [23] extract topological fingerprints based on the alignment of
atoms and molecules in three dimensional space. Their work shows the impact of persistent
homology in the modeling of protein flexibility which is ultimately used in protein B-factor
analysis. This work also characterizes the evolution of topology during protein folding and
thereby predicts its stability. For this task, the authors have introduced a coarse grain (CG)
representation of proteins by considering an amino acid molecule as an atom Cα. This helps
them describe the higher level protein structures using the topological fingerprint perfectly.
However, since the CG homology may be inconsistent due to ambiguity in choosing the CG
particle, we present a similar study on secondary structures using our signature and show that
our method does not require such a representation as it is inherently scaling independent.

T.K. Dey and S. Mandal 6:3

Figure 2 Persistence of a point cloud in R2 and its cor-
responding barcode

Figure 3 Weighted Alpha complex
for protein structure

The authors in [4] have used persistent homology to generate feature vector in the context
of machine learning algorithms applied to protein structure explorations. We explore further
to improve upon the technique to eliminate its deficiencies. First, the approach in [4] does not
differentiate between atoms belonging to different elements. Also, it does not account for the
existing chemical bonds between the atoms while building the signature. Most importantly
it uses Vietoris Rips(VR) complex to generate the topological features for protein complex
which suffers from the well-known problem of scalability. As we will describe later, the VR
complex developed in the early 20th century grows rapidly in size even for moderate size
protein structures. Current state-of-the-art techniques, which have addressed the problem to
some extent, are still very cumbersome and slow especially for structures having about 30,000
atoms on an average. Among the several methods that generate persistence signature from a
point cloud, the PHAT toolbox [1] based on several efficient matrix reduction strategies and
GUDHI [22] library based on some compression techniques have been popular because of
their space and time efficiencies. A recent software called SimBa [8] published last year, has
been shown to work faster for large datasets. Yet, for our application, SimBa falls short as
we shall see later.

The algorithm that we present here is a fast technique to generate a topological signature
for protein structures. We build our signature based on the coordinates of the atoms in R3

using their radius as weights. Since we also consider existing chemical bonds between the
atoms while building the signature, we believe that the hierarchical convoluted structure of
protein is captured in our features. Finally, we have developed a new technique to generate
persistence that is much quicker and uses less space than even the current state-of-the-art
such as SimBa. It helps us generate the signature even for reasonably large protein structures.
In sum, in this paper, we focus on three problems: (1) effectively map a protein structure into
a suitable complex; (2) develop a technique to generate fast persistent signature from this
complex; (3) use this signature to train a machine learning model for classification and compare
against other techniques. Our entire method is summarized in figure 1. We also illustrate
this method using a supplementary video available at https://youtu.be/yfcf9UWgdTo.

2 Methods

We use the theory of topological persistence to generate features for protein structures. These
topological features serve as a distinct signature for each protein strand. In this section, we
give some background on persistent homology followed by how we construct our signature.

2.1 Persistence signature of point cloud data
We start with a point cloud data in any n-dimensional Euclidean space. These will essentially
be the centers of protein atoms in the three dimensional space. However, to illustrate the
theory of persistent homology, we consider a toy example of taking a set of points in two

WABI 2018

https://youtu.be/yfcf9UWgdTo

6:4 Protein Classification with Improved Topological Data Analysis

dimensions sampled uniformly from a two-hole structure (Fig. 2). We start growing balls
around each point, increasing their radius r continually and tracking the behavior of the
union of these growing balls. If we start increasing r from zero, we notice that at r = r1
(third from left in Fig 2) both holes are prominent in the union of ball structure. Further
increasing r to r2, leads to filling of the smaller hole (fourth figure from left). This continues
till the value of r is large enough for the union of balls to fill the entire structure. During the
change in the structure of the union of balls due to increase in radius, the larger of the two
holes ‘persists’ for a larger range of r compared to the smaller one. Hence features that are
more prominent are expected to persist for longer periods of increasing r. This is the basic
intuition for topological persistence. The holes in this example are captured by calculating a
set of birth-death pairs of homology cycle classes that indicate at which value of r the class
is born and where it dies. The persistence is visualized in R2 using horizontal line segments
that connect two points whose x-coordinates coincide with the birth and death values of
the homology classes. These collection of line segments, as shown in Figure 2, are called
barcodes [5]. The length of each line segment corresponds to the persistence of a cycle in the
structure. Hence, the short blue line segments correspond to the tiny holes that are formed
intermittently as the radius increases. The two long red line segments correspond to the two
holes in the structure, the largest being the bigger hole. For computational purposes, the
growing sequence of the union of balls is converted to a growing sequence of triangulations,
simplicial complexes in general, called a filtration. In some cases, some cycles called the
‘essential cycles’ persists till the end of the filtration.

The rank of the persistent homology group called the persistent Betti numbers capture
the number of persistent features. For n-dimensional homology group, we denote this number
as βn. This means β0 counts the number of connected components that arise in the filtration.
Similarly, β1 counts the number of circular holes being born as we proceed through the
filtration. It is due to this fact that all the folds in the tertiary structure, as well as the helix
and strands in the secondary structure of proteins, are recorded in our signature.

With the above technique, difficulties are faced as r increases. An average protein in
a database such as CATH [20] has 20,0000~30,000 atoms, thus creating a point cloud of
the same size in R3. Furthermore, the initial complex including 3-simplices (or tetrahedra)
becomes quite large. On an average, this complex size grows to (50~100)x104 simplices of
dimension upto 4 and becomes quite difficult to process. Building a filtration using this
growing sequence of balls is thus not scalable. We attack the problem with two strategies: (1)
we only consider simplices on the boundary of the entire simplicial complex in our algorithm
and (2) compute a new filtration technique that is based on collapsing simplices rather than
growing their numbers by addition.

Topological persistence
Traditionally, given a point cloud, its persistence signature is calculated by building

a filtration over a simplicial complex called Vietoris-Rips(VR). This technique is also
used in [4] which takes the 3D position of the centers of the atoms as points in the
point cloud. Given a parameter α, we can define VR complex over a point cloud P as:
VRα(P) = {σ | d(p,q) < α ∀ p,q ∈ σ}.

As the value of α increases, more edges and higher order simplices are introduced, and
a filtration is obtained. Finally, the persistence of this filtration is computed. For a better
representation of protein molecules, we take into account the radius of different atoms as
weight of the points. So, we replace each point p ∈ P with a tuple p̂ = (p, rp) where rp is the
radius of the atom represented by p. For the resulting weighted point cloud P̂ = {(p, rp)},
we consider the weighted VR complex: VRα(P̂) = {σ | d(p,q) < α(rp + rq) ∀ p,q ∈ σ}.

T.K. Dey and S. Mandal 6:5

The VR complex is easy to implement, but its size can become a hindrance for an even a
moderate size protein molecule. Thus, instead of a VR complex, we use the (weighted) alpha
complex that is sparser and has been used to model molecules in earlier works [11].

Alpha complex AC(α): For a given value of α, a simplex σ ∈ AC(α) if:
The circumball of σ is empty and has radius < α, or
σ is a face of some other higher dimensional simplex in AC(α).

Weighted Alpha Complex WACP̂ (α): Let Bk(p̂) be a k-dimensional closed ball with
center p, and weight rp. It is orthogonal or sub-orthogonal to a weighted point (p′,rp′) iff
||p− p′||2 = r2

p + r2
p′ or ||p− p′||2 < r2

p + r2
p′ respectively.

An orthoball of a k-simplex σ = {p̂0, . . . , p̂k} is a k-dimensional ball that is orthogonal to
every vertex pi. A simplex is in the weighted alpha complex WACP̂ (α) iff its orthoball has
radius less than α and is suborthogonal to all other weighted points in P̂ .

2.2 Collapse-induced persistent homology from point clouds

The following procedure computes a topological signature for a weighted point cloud
P̂ = {p, rp} using subsamples and subsequent collapses:
1. Compute a weighted alpha complex C0 on the point set P̂ = {p, rp} using the algorithm

described in [22]. Let V 0 be the vertex set of C0.
2. Compute a sequence of subsamples V 0 ⊃ V 1 ⊃ ... ⊃ V k of the initial vertex set V 0 based

on the Morton Ordering as discussed later. (For every V i, we remove every nth point
in the Morton Ordering from V i to form V i+1. We choose ‘n’ based on the number of
initial points).

3. This sequence of subsets of V i allows us to define a simplicial map between any two

adjacent subsets V i and V i+1: f i(p) =

p if p ∈ V i+1

argmin
v∈V i+1

d(p, v) otherwise

4. This vertex map f i : V i → V i+1 in turn generates a sequence of collapsed complexes:
C0,C1, ...,Cn. Each vertex map induces a simplicial map f i : Ci−1 → Ci that associates
simplices in Ci−1 to simplices in Ci(see Figure 4)

5. Compute the persistence for the simplicial maps in the sequence C0 f1−→ C1 f2−→ ...
fk−→ Ck

to generate the topological signature of the point set P̂ .

In step 1 of the procedure, weighted points alone lead to disconnected weighted atoms in
C0 rather than capturing the actual protein structure. To sidestep this difficulty, we increase
the weights of these points based on the existence of covalent or ionic bonds in the structure.
That is, if there exists a chemical bond between two atoms (which we get from the input
.pdb file), we scale-up the weight of each point so that they are connected in the weighted
alpha complex WACP̂ (α) (see Fig. 3). We determine a global multiplying factor ρ ≥ 1 for
this purpose. As mentioned earlier, we take the boundary of this weighted complex which
forms our initial simplicial complex C0.

In step 2, in order to generate the sequence of subsamples, we pick vertices uniformly
from the simplicial complex to be collapsed to their respective nearest neighbors. To choose
a subsample that respects local density, we use a space curve generation technique called
Morton Ordering [15]. The Morton curve generates a total ordering on the point set V 0.

WABI 2018

6:6 Protein Classification with Improved Topological Data Analysis

Figure 4 (a) Collapse of weighted alpha complex generated from protein structure via simplicial
map. (b) Same algorithm applied to a kitten model in R3.

This ordering is explicitly defined by the Morton Ordering map M : ZN 7→ Z given by:

M(p) =
B∨

b=0

N∨
i=0

xi,b
2 � N(b + 1)− (i + 1),

where xi,b2 : bth bit value of the binary representation of the ith component of x.
This map merely interleave bits of the different components of p. Application of M to V 0

yields a total ordering on our initial point set. To generate a new subset V 1 ⊂ V 0, we simply
choose a value n such that 1 < n ≤ ‖V 0‖. Then, V i+1 is taken as:

Vi+1 = {xj | xj ∈ Vi, j 6≡ 0 mod n},

where xj is the jth vertex in the Morton Ordering of V i. We choose n = 12 as it has
procured good results for the datasets we experimented on (having 20,000~30,000 atoms on
an average). Following this approach, the process can be repeated to create a sequence of
subsets V 0 ⊃ V 1 ⊃ ... ⊃ V n, ‖V n‖≤ k as done in step 2 of our procedure above.

Finally, as described in step 3, instead of constructing the filtration by increasing the
value of α, we perform a series of successive collapses starting with the initial simplicial
complex. This leads to a sequence of complexes that decreases in size instead of growing as
we proceed forward. Effectively, it generates a sequence called tower of simplicial complexes
where successive complexes are connected by simplicial maps. These maps which are the
counterpart of continuous maps for the combinatorial setting extend maps on vertices (vertex
maps) to simplices (see [16] for details). In our case, collapses of vertices generate these
simplicial maps between a simplicial complex in the tower to the one it is collapsed to.
Persistence for towers under simplicial maps can be computed by the algorithm introduced
in [7]. We use the package called Simpers that the authors have reported for the same.

To summarize, the algorithm generates an initial weighted alpha complex. It then
proceeds by recursively choosing vertices based on Morton Ordering to be collapsed to their
nearest neighbors resulting in vertex maps. These vertex maps are then extended to higher
order simplices (such as triangles and tetrahedra) using the simplicial map. Finally given
the simplicial map, we generate the persistence and get the barcodes for the zero and one
dimensional homology groups.

2.3 Feature vector generation
We discuss how we generate a feature vector given a protein structure. We take protein data
bank (*.pdb) files as input to extract protein structures. It contains the coordinates of every
atom, their name, chemical bond with neighboring atoms and other meta-data such as helix,
sheet and peptide residue information. We introduce a weighted point for each atom in the
protein where the point is the center of the atom and its weight is the specified radius. For
instance, for a Nitrogen atom in the amino acid, we assign a weight equal to its covalent

T.K. Dey and S. Mandal 6:7

Figure 5 (a) Left: Alpha helix from PCB 1C26 , Middle: Barcode of [23], Right: Our Barcode,
(b) Left: Beta sheet from PCB 2JOX, Middle: Barcode of [23], Right: Our Barcode. Each segment
of the barcodes shows β0(top) and β1(bottom).

radius of 71(pm). On this weighted point cloud p̂ = (p, rp), if two atoms p̂ and q̂ are involved
in a chemical bond, we increase their weights so that p and q get connected in the alpha
complex. We compute the persistence by generating the initial alpha complex and undergoing
a series of collapses as described in the previous section. For computational efficiency, we
only consider the barcodes in zero and one dimensional homology groups. Note that some of
the barcodes can have death time equal to infinity indicating an essential feature. For finite
barcodes, shorter lengths (death− birth) indicate noise. Elimination of these intermittent
features serves some interesting purpose as we will see in section 3. To find relatively long
barcodes, we sort them in descending order of their lengths. Let {l1, l2, ..., lk} be this sorted
sequence. Consider the sequence {l′1, l′2, ..., l′k−1} where l′i = li+1 − li and let l′m be a
maximal element for 1 ≤ m ≤ k − 1. All barcodes with the lengths [l1..lm] form part of the
feature vector. Essentially we remove all barcodes whose lengths are shorter than the largest
gap between two consecutive barcodes when sorted according to their lengths. A similar
technique used in [13] has shown improved results in image segmentation over other heuristics
and parameterizations. Since the feature vector needs to be of a fixed length for feeding into
a classifier, we compute the index m of lm over all protein structures and take an average.
The feature vector also includes the number of essential zero and one dimensional cycles.
Therefore, we have a feature vector of length 2 ×m + 2 : {l01, l02, ...l0m, l11, l12, ...l1m, cβ0 , cβ1}.
Here l0i and l1i are the lengths of zero and one dimensional homology cycles respectively
whereas cβi are the total number of essential cycles in i-dimensional homology.

3 Experiments and results

We perform several experiments to establish the utility of the generated topological signature.
First, we show how our feature vector captures various connections in the single strands
of secondary structures and compare them against the signatures obtained in [23]. Then
we investigate if there is a correlation between the count of such secondary structures and
our feature vector. Next, we describe the topological feature vector obtained from two
macromolecular proteins structures. We also compare the size and time needed by our
algorithm (software) over the other commonly used persistence software (as in [4]). Lastly,
we show the effectiveness of our approach in classifying protein structures using machine
learning models.

Topological description of alpha helix and beta sheet
It is known that barcodes can explain the structure of an alpha helix and a beta sheet [23].
The authors in [23] use a coarse-grain(CG) representation of the protein by replacing each
amino acid molecule with a single atom. This representation removes the short barcodes
corresponding to the edges and cycles of the chemical bonds inside the amino acid molecule.

WABI 2018

6:8 Protein Classification with Improved Topological Data Analysis

Figure 6 Barcode and Ribbon diagram of (Left): PDB: 1c26. (Right): PDB: 1o9a. Diagram
courtesy NCBI [17].

We do not need this CG representation as our procedure can implicitly determine a threshold
lm and therefore delete all barcodes of length shorter than the largest gap between two
consecutive barcodes (as described in section 2.3). So, we get a barcode that describes the
essential features of the secondary structures without including noise or short lived cycles
from the amino acids. For a fair comparison, we compute our barcodes on the same alpha
helix residue as in [23] with 19 residues extracted from the protein strand having PDB ID
1C26 (see figure 5). Analogous to the barcode of [23] (as shown in the middle diagram of
figure 5a), we have 19 bars in the zero-dimensional homology for the alpha helix representing
the nineteen initial residues. These components die as edges are introduced in the weighted
alpha complex which gets them connected. For one-dimensional homology, an initial ring
with 4 residues is formed followed by additional rings resulting from the growing connections
in each amino acid. These cycles eventually die by the collapse operations in our algorithm.

The same process is followed for beta sheets after we extract two parallel beta sheet
strands from the protein structure with PDB ID 2JOX. The zero-dimensional homology
cycles are killed when individual disconnected amino acid residues belonging to the same
beta sheet strand are connected by edges, as represented in the top 17 barcodes (leftmost
figure of 5b). However, other than these barcodes and the longest bar corresponding to the
essential cycle, there is one bar in the zero-dimensional homology which is longer than the
top 17 bars. This bar represents the component which is killed by joining the closest adjacent
amino acid molecules from the two parallel beta strands. The one dimensional homology
bars are formed as more adjacent amino acid molecules are connected and killed once the
collapse operation starts. Note that the two barcodes shown in figure 5 comparing our work
with [23] are not to scale. This is because, in contrast to [23], the barcodes in our figure are
not plotted against Euclidean distance rather the step at which each insertion and collapse
operation occurs.

A caveat
Our aim is to compute signatures that capture discriminating structural information

useful for classifying proteins. Even though we can use our signature to describe secondary
structures, we do not want our signature to be directly correlated to the number of alpha
helix or beta sheet as it would mean they are redundant. We generate a 2× 12 matrix where
each cell contains the correlation value between beta-sheet(top row) and alpha-helix(bottom
row) with each individual component in the feature vector: {l01, l02, ...l0m, l11, l12, ...l1m, cβ0, cβ1}.
We use proteins in the PCB00020 record of the PCBC database to compute this matrix and
depict it by a heatmap (Fig 7). Essentially, we first generate two vectors vα and vβ of the
number of alpha helices and beta sheets respectively in each protein over all entries in the
database. Similarly, we produce a vector for each value in the feature vector: {vl01 , ..., vcβ1}.
Now we populate the matrix by calculating the correlation between each of these individual
vectors with vα and vβ . For example, row 1 and column 1 of the matrix contain the cor-
relation value between the vectors vl01 and vβ . The heat map color ranges from blue for

T.K. Dey and S. Mandal 6:9

Figure 7 Heatmap correlating secondary
structure against our feature vector. Each
column in the heatmap is the feature vector.

Figure 8 Plot showing accuracy against vary-
ing training data size. 100(%) indicates the
entire training and test data.

zero correlation to dark-red for complete correlation. As we can see from the figure, almost
all matrix entries have a blue tinge indicating low correlation. This shows that our feature
vector is non-redundant over the frequency of secondary structures.

Topological Description of macromolecular structures

In the previous section, we use our signature to describe the secondary structures and
compare it with the work in [23]. In this section, we further show how our signature works
by describing two macromolecular protein structures that are built on multiple secondary
structures. We start by describing the tetrametric protein: 1C26. The ribbon diagram
and associated barcode after noise removal is given in figure 6 . It essentially contains four
monomers, associated pairwise to form two dimers. These two dimers, in turn, join across a
distinct parallel helix-helix interface to form the tetramer. When we build the filtration on
this protein structure, two monomers on opposite sides are killed first by connecting to their
adjacent monomers to form two distinct dimers. This is evident as there are two short bars
in the zero dimensional barcode (Fig. 6 right: shown in red). We now have two dimers, one
of which is killed when it joins with the other to form a third slightly longer non-essential
barcode (shown in purple). The second dimer lives on as the tetramer and forms an essential
barcode (shown in black). Next, if we look into the one dimensional homology (shown as blue
lines), we notice that the most notable feature for the protein is the tetramer structure which
contains a large loop when the two dimers are connected. This is evident in our 1D-barcode
as there is a distinct long bar representing the large one dimensional cycle. Note that the
birth time of this cycle in 1D corresponds with the death time of the non-essential dimer
in 0D.

Next, we consider the protein structure 1O9A. The structure contains several antiparallel
beta-strands and is an example of a tandem beta-zipper. As we can see from the ribbon
diagram in Fig. 6, there are six beta sheets on one side and five on another, connected
together to form a fibronectin. This is evident as there are ten non essential and one essential
bar in the zero dimensional homology owing to the six beta sheets on one side and five on
the other. Each component is killed as the beta sheets join with another as the filtration
proceeds. Note that the last connected component after joining all beta sheets forms an
essential bar. Moreover, since there is no distinct cycle in the structure, we do not get any
distinct long bar in the one dimensional homology. The presence of multiple one dimensional
bars of similar size are probably due to the antiparallel beta-strands on either side which
form a ring once joined. Thus, we can see that using the same signature generation method,
we can describe secondary structures (as in the previous section) as well as macromolecular
proteins without any change in the parameter. It is therefore evident that our signature is
intrinsic and scale independent.

WABI 2018

6:10 Protein Classification with Improved Topological Data Analysis

Table 1 Time comparison of our algorithm
against SimBa [8] and VR complex.

Size Time (in sec)
Data Dim VR SimBa Our VR SimBa Our
CATH 3 – 1422 443 – 1.75 0.35
Soneko 3 324802 10188 576 32 6.77 2.05
Surv-l 150 – 3.1 × 106 1.09 × 106 – 5.08 × 103 884
PrCl-I 25 – 10.2 × 106 0.22 × 106 – 585 141.3

Table 2 Accuracy comparison with Frag-
Bag and Cang.

SVM KNN
FB Cang Our FB Cang Our

Class 91.08 89.07 92.36 86.01 86.40 86.39
Architecture 90.26 91.11 92.20 88.17 87.47 89.11
Topology 92.19 94.87 96.71 91.54 94.02 96.20
Homology 93.33 94.06 94.17 90.28 91.11 93.30

Time and space comparison with VR-complex and SimBa
The method in [4] uses persistent homology as feature vectors for machine learning.

However, as mentioned earlier, the use of Veitoris-Rips (VR) complex leads to a size blow up
that not only increases runtime but also in most cases, causes the operating system to abort
the process due to space requirements. Results in [4] procure good results as the datasets
are of moderate size, but the same could not be reported for larger and real life protein
structures. In table 1, we show a size and time comparison of our approach with the original
feature generation technique used in [4]. We also tabulate the size and time to generate the
same feature vector in [4] using a state-of-the-art persistence algorithm called SimBa [8].
Table 2 contains a mix of protein databases and other higher dimensional datasets. As we
see in the table, our algorithm is faster even when the features in [4] are generated with SimBa.

3.1 Supervised learning based classification models
Classification model. For the purpose of protein classification, we train two classifiers: an
SVM model and a k-nn model on some protein databases. Once the model is trained, we test
it to find accuracy, precision, and recall. The reason behind choosing Support Vector Machine
and k-nn based supervised learning technique over other sophisticated and state-of-the-art
classifiers is their basic nature. Results obtained from basic learning techniques prove the
effectiveness of the feature vectors rather than that of the classifier. We can further improve
the classification accuracy for proteins using some advanced supervised learning or Neural
Network based classifiers using our proposed features.

Benchmark techniques. In order to test the effectiveness of our protein signature, we need
to compare it against some of the state-of-the-art protein structure classification techniques.
We generate feature vectors through these techniques and train and test the same classification
models as before. The first technique, known as PRIDE [9], classifies proteins at the Homology
level in the CATH database. It represents protein structures by distance distributions and
compares two sets of distributions via contingency table analysis. The more recent work by
Budowski-Tal et al. [3], which has achieved significant improvement in protein classification
is used as our second benchmark technique. Their work, known as FragBag mimics the
bag of word representation used in natural language processing and computer vision. They
maintain protein fragments as a benchmark. Given a large protein strand, they generate
a vector which is essentially a count of the number of times each fragment approximates a
segment in this strand. This vector now acts as a signature for the protein structure and that
is what forms the basis for their feature vector which we use to train and test our classifier.
The protein fragment benchmark is available from the library [12]. We choose 250 protein
fragments of length 7. The third work that we test against is the topological approach to
generate a protein fingerprint [4]. However, as we saw earlier, it is not possible to generate

T.K. Dey and S. Mandal 6:11

Figure 9 Left:a) Difference in precision and recall from FragBag. Middle: b) Difference in
precision and recall from [4]. Right: c) ROC curve for SVM classification of our algorithm.

all the protein signatures using the original algorithm used by the authors. Therefore, we
replace the Vietoris-Rips filtration by the state-of-the-art SimBa and generate feature vectors
the same way as mentioned in their paper.

Database. The database that we use is called Protein Classification Benchmark Collection
(PCBC) [21]. It has 20 classification tasks, each derived from either the SCOP or CATH
databases, each containing about 12000 protien structures. The classification experiment
involves the group of the domain as positive set, and the positive test set is the sub-domain
group. The negative set includes the rest of the database outside the superfamily divided
into a negative test or negative training set. The result for some of the classification tasks
for the database is given in Table 3. As evident from the table, the accuracy obtained by
using our signature has a considerable improvement over the state of the art techniques. The
only classification task in which our algorithm under-performs is with the protein domain
CATH95_Class_5fold_Filtered (fourth row of table 3). The class domain is randomly
sub-divided into 5 subclasses in this task. Since the class is divided randomly into subclasses,
we believe some proteins belonging to different sub-classes have generated a similar initial
complex resulting in a similar filtration and ultimately a decrease in performance.

The PCBC dataset, even though suitable for learning algorithms, suffers from being
skewed as the number of negative instances in any classification is much larger than the
number of positive instances, leading to probable incorrect classifications. Therefore, we test
on one of the most popular protein databases known as CATH [6]. The CATH database
contains proteins divided into different domains (C: class; A: architecture; T: topology; H:
homologous superfamily). For each domain, we get protein structures and their labels in
accordance with the sub-domain they belong to. For any classification task, we randomly
choose positive instances from one sub-domain and the same number of negative instances
sampled equally from the other sub-domains. Each such task, on average has 400 protein
structures containing approximately 30,000 atoms each. We then divide this into 80%-training
and 20%-test set. The result of classification on the CATH database averaged over several
such randomly chosen sub-domains as positive classes, are illustrated in table 2. We see
yet again that for each case, there is an improvement of about 3-4% over the benchmark
techniques.

3.1.1 Classification result
We have listed our main results in tables 2 and 3 showing the improvement in accuracy
using our method over the state-of-the-art techniques of FragBag, PRIDE and the preceding
work on topology by Cang et al. [4]. We provide further evidence of the efficiency of our
algorithm by comparing the precision and recall in figures 9a and b. In these plots, we show

WABI 2018

6:12 Protein Classification with Improved Topological Data Analysis

Table 3 Classification accuracy for different techniques on Protein dataset. SC: SCOP95, CA:
CATH95, Sf: Superfamily, Fm: Family, F: Filtered, T: Topology, H: Homology, C: Class, 5f: 5fold,
A: Architecture, Si: Similarity.

SVM k-NN
Pride Fragbag Cang Our Pride Fragbag Cang Our

SC_Sf_Fm_F 90.09 93.01 93.39 95.24 89.58 87.31 89.83 91.66
CA_T_5f 94.23 92.97 94.87 99.53 90.96 91.16 94.57 97.87
CA_T_H_F 90.15 89.89 95.06 98.80 84.98 81.11 86.65 95.51
CA_C_5f_F 85.09 84.76 80.98 82.36 80.18 84.74 83.83 78.81
CA_H_Si_F 98.60 95.89 98.24 99.05 95.45 91.11 79.469 97.56
CA_A_T_F 87.56 91.58 74.58 90.95 67.47 89.00 68.90 87.00

the difference between the precision and recall obtained using our algorithm against that of
FragBag(9a) and Cang(9b). A green bar indicates that our algorithm performed better and
the difference is positive while a red bar suggests the opposite. This experiment is done on
the CATH database and the figure shows the precision and recall for each domain: class(C),
architecture(A), topology(T) and homology(H). Notice that, since the classification is binary,
we get two precision and two recall for every class in each domain. Thus, there are four
bars for each of C,A,T,H. Yet again, other than a few marginal cases, our algorithm largely
performs better. Finally, we calculate the ROC curve using SVM on a subset of the CATH
dataset, the result of which is shown in figure 9c. The ROC curve is a plot of the true
positive rate against false positive rate obtained by changing the input size and parameter.
This means that the further the lines are away from the diagonal, the better is the classifier.

For the positive test cases, we investigate further the trend of the output. We try to see
the correlation of accuracy with the change in training set size. We therefore change the
training and test set sizes by taking a fraction of the entire dataset and trace the accuracy in
each case. This is done over all the test cases shown in Table 3 and the average is shown in
Fig 8. We have plotted the output of our algorithm in blue with two instances of FragBag
with (fragment, library) sizes (5,225) and (7,250) in red and green respectively. In addition,
we have plotted the output of PRIDE as well. Ideally, the accuracy should decrease uniformly
with a decrease in training set size and we should get a straight line across the diagonal.
In this case, all the trendlines are almost close to the diagonal and hence we can say that
they are correlated. Moreover, we observe that even as the training data size decreases,
the accuracy of our algorithm remains better or comparable to the other algorithms. This
indicates that topological features work better with a lower number of samples as well.

4 Conclusion

We present a practical topological technique to generate signatures for protein molecules
that can be used as feature vectors for its classification. Since we investigated the descriptive
power of our signature, we believe it can be used for other purposes such as protein energy
computation, or finding protein B-factor. We believe that this signature can be extended to
other biomolecular data such as DNA or enzymes.

References
1 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat - persistent

homology algorithms toolbox. J. Symb. Comput., 78(C):76–90, 2017.
2 Juliana Bernardes, Gerson Zaverucha, Catherine Vaquero, Alessandra Carbone, and Levitt

Michael. Improvement in protein domain identification is reached by breaking consensus,

T.K. Dey and S. Mandal 6:13

with the agreement of many profiles and domain co-occurrence. PLoS Computational Bio-
logy, 12, 07 2016.

3 Inbal Budowski-Tal, Yuval Nov, and Rachel Kolodny. Fragbag, an accurate representa-
tion of protein structure, retrieves structural neighbors from the entire pdb quickly and
accurately. PNAS, 107(8):3481–3486, February 2010.

4 Zixuan Cang, Lin Mu, Kedi Wu, Kristopher Opron, Kelin Xia, and Guo-Wei Wei. A topo-
logical approach for protein classification. In Computational and Mathematical Biophysics.
MBMB, Nov 2015.

5 Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas. Persistence bar-
codes for shapes. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing, SGP ’04, pages 124–135. ACM, 2004.

6 Natalie Dawson, Tony E Lewis, Sayoni Das, Jonathan Lees, David Lee, Paul Ashford,
Christine Orengo, and Ian Sillitoe. Cath: An expanded resource to predict protein function
through structure and sequence. Nucleic Acids Research, 45, 11 2016.

7 Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for sim-
plicial maps. Symposium on Computational Geometry, pages 345–354, june 2014.

8 Tamal K. Dey, Dayu Shi, and Yusu Wang. Simba: An efficient tool for approximating
rips-filtration persistence via simplicial batch-collapse. In ESA, volume 57 of LIPIcs, 2016.

9 Zoltán Gáspári, Kristian Vlahovicek, and Sándor Pongor. Efficient recognition of folds in
protein 3d structures by the improved pride algorithm. Bioinformatics, 21(15), 2005.

10 Edelsbrunner Herbert and John Harer. Computational topology: an introduction. American
Mathematical Society, 2010.

11 Liang J, Edelsbrunner H, Fu P, Sudhakar PV, and Subramaniam S. Analytical shape
computation of macromolecules: Ii. molecular area and volume through alpha shape. In
Proteins, volume 33, pages 18–29, 1998.

12 Rachel Kolodny, Patrice Koehl, Leonidas Guibas, and Michael Levitt. Small libraries of
protein fragments model native protein structures accurately. JMB, 323, 2002.

13 Vitaliy Kurlin. A fast persistence-based segmentation of noisy 2D clouds with provable
guarantees. Pattern Recognition Letters, 83:3–12, 2015.

14 Holm Liisa and Rosenström Päivi. Dali server: conservation mapping in 3d. Nucleic Acids
Research, 38:W545–W549, 2010. doi:10.1137/070711669.

15 G. M. Morton. A computer oriented geodetic data base; and a new technique in file
sequencing. International Business Machines Co., 1966.

16 J. R. Munkres. Elements of Algebraic Topology, chapter 1. CRC Press, 1 edition, 1984.
17 USA National Institutes of Health, 1988. URL: https://www.ncbi.nlm.nih.gov/.
18 M Remmert, A Biegert, and Söding J. Hauser A. Hhblits: lightning-fast iterative protein

sequence searching by hmm-hmm alignment. Nature Methods, 9, Dec 2011.
19 Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J.n. Basic local alignment

search tool. Journal of Molecular Biology, 215:403–410, 1990.
20 Ian Sillitoe, Tony E Lewis, and et al. Cath: Comprehensive structural and functional

annotations for genome sequences. Nucleic Acids Research, 43, 01 2015.
21 Paolo Sonego, Mircea Pacurar, Somdutta Dhir, Attila Kertesz-Farkas, András Kocsor,

Zoltán Gáspári, Jack A M Leunissen, and Sándor Pongor. A protein classification bench-
mark collection for machine learning. Nucleic acids research, 35:D232–6, 02 2007.

22 The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL: http://gudhi.gforge.inria.fr/doc/latest/.

23 Kelin Xia and Guo-Wei Wei. Persistent homology analysis of protein structure, flexibility
and folding. IJNMBE, 30(8):814–844, 2014. URL: doi:10.1002/cnm.2655.

WABI 2018

http://dx.doi.org/10.1137/070711669
https://www.ncbi.nlm.nih.gov/
http://gudhi.gforge.inria.fr/doc/latest/
doi:10.1002/cnm.2655.

A Dynamic Algorithm for Network Propagation
Barak Sternberg
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
barakolo@gmail.com

https://orcid.org/0000-0002-1803-6437

Roded Sharan1

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
roded@post.tau.ac.il

Abstract
Network propagation is a powerful transformation that amplifies signal-to-noise ratio in biological
and other data. To date, most of its applications in the biological domain employed standard
techniques for its computation that require O(m) time for a network with n vertices and m edges.
When applied in a dynamic setting where the network is constantly modified, the cost of these
computations becomes prohibitive. Here we study, for the first time in the biological context, the
complexity of dynamic algorithms for network propagation. We develop a vertex decremental
algorithm that is motivated by various biological applications and can maintain propagation
scores over general weights at an amortized cost of O(m/n1/4) per update. In application to real
networks, the dynamic algorithm achieves significant, 50- to 100-fold, speedups over conventional
static methods for network propagation, demonstrating its great potential in practice.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Network propagation, Dynamic graph algorithm, protein-protein inter-
action network

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.7

Supplement Material https://github.com/barakolo/dygraph_bio

Funding R. S. was supported a grant from the Ministry of Science, Technology and Space of the
State of Israel and the Helmholtz Centers, Germany.

1 Introduction

Network propagation has become a central technique in biology, as in other domains, to
rank the relevance of genes to a process under investigation [7]. However, its complexity
is becoming a bottleneck in dynamic settings where the network is subjected to multiple
changes. In the biological domain, dynamic computations are essential not only because the
network is updated with time but also because certain applications involve the systematic
evaluation of propagation results under many network modifications. For example, in [12]
the propagation over a network with n nodes is compared to n other propagations that are
performed on modifications of the network where each time a different vertex is removed
(simulating a knockout). Another application of the dynamic setting is when working with
tissue-specific networks. As an example, in [14] multiple tissue-specific networks are formed
from a given protein-protein interaction network by removing vertices with low expression,
and propagation computations are applied to each.

1 Corresponding author

© Barak Sternberg and Roded Sharan;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barakolo@gmail.com
https://orcid.org/0000-0002-1803-6437
mailto:roded@post.tau.ac.il
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.7
https://github.com/barakolo/dygraph_bio
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 A Dynamic Algorithm for Network Propagation

While the computation of network propagation requires matrix inversion, a common and
more efficient alternative utilizes the power iteration method [6]. This method approximates
the propagation scores to within some additive constant at a cost of O(m). An alternative
local approach for obtaining approximate propagation was also suggested [3], yielding O(m)
time for a single propagation at worst case.

Focusing on a dynamic setting in which vertices are removed one by one [12], the total
complexity of maintaining the propagation vectors after each removal becomes O(mn) for
n vertices when computing each propagation afresh. There is relatively scarce prior work
regarding the computation of network propagation in a dynamic fashion which can be applied
to the above setting. Specifically, Zhang et al. [5] and Ihsaka et al. [10] provide a fully
dynamic propagation algorithm whose expected time per edge update is O(1). However,
both algorithms are limited to unweighted graphs and expected time analysis and might
yield O(mn) time under the settings considered here (of n vertex removals). This is true
also for Yoon et al. [8], who provide a fully dynamic algorithm for network propagation but
may lead to O(mn) time under the settings considered here.

To tackle the dynamic computation challenge, we propose a novel algorithm that can
handle general weights and several normalizations, including a symmetric normalization,
a variant of which has been shown to be powerful in the biological domain [11, 12]. Our
algorithm can handle n vertex removals in O(mn3/4) total time. This yields a speedup of
Ω(n1/4) over previous work. For real biological networks, this leads to a 50-fold to 100− fold
speedup in the computations.

2 Preliminaries

We focus on undirected and weighted networks that represent protein-protein interactions.
For a network G with n vertices and m edges, we denote by w the symmetric weighted
adjacency matrix of the network. For a vertex u, we denote its set of neighbors by N(u)
and their number, i.e., the degree of u, by d(u). The weighted degree w(u) of u is the sum of
weights of its adjacent edges. Two common normalizations of w to form a normalized matrix
W are as follows: (i) normalizing each column of w to sum to 1, henceforth weighted degree
normalization, and (ii) dividing each entry of w by the squared product of the weighted
degrees of the corresponding nodes, i.e., Wij = wij/(

√
w(i)

√
w(j)), henceforth symmetric

normalization as used in [11].
Given a network G, a prior vector p of node relevance values (in [0,1]; typically 0 or 1),

and a parameter 0 < α < 1, the network propagation transformation computes a score s(v)
for every node v that is a linear combination of its prior value and the average score of its
network neighbors, reflecting its network proximity to the a-priori relevant nodes. Formally,

s(v) = αp(v) + (1− α)
∑

u∈N(v)

s(u)Wuv

where 0 ≤ α ≤ 1 controls the tradeoff between prior information and network smoothing [7].
s, the propagation vector, can be computed analytically via matrix inversion or approximated
using the "power iteration" algorithm which works as follows ([1, 9]):
1. Define v0 = p, i = 0.
2. Compute vi+1 = αp+ (1− α)Wvi.
3. While i < log(ε)

log(1−α) increment i and goto (2).

The "power iteration" process is known to converge to the propagation vector (limi→∞ vi =
s), whenever the eigenvalues of W are at most 1 in absolute value, a condition satisfied

B. Sternberg and R. Sharan 7:3

Algorithm 1 ForwardPush for weighted degree normalization.
1: procedure push(v,R, P, α,W)
2: P (v)+ = αR(v)
3: for n ∈ N(v) do
4: R(n)+ = (1− α)R(v)Wvn

5: R(v) = 0
6: procedure ForwardPush(W,α, ε, R, P)
7: while ∃u|R(u)| > εd(u) do
8: push(u,R, P, α,W)
9: return P

by both normalizations presented above [7]. Here ε > 0 is the required approximation
bound on the sum of differences in absolute value (L1 error) between the computed and true
propagation score. ε is typically chosen to be a constant smaller than 0.01. The following
lemma characterizes the resulting propagation vector.

I Lemma 2.1 ([2, 7]). The propagation vector converges to α(I − (1− α)W)−1p.

Our algorithmic approach is motivated by the following lemma:

I Lemma 2.2 ([6]). Consider a random walk from prior distribution p using the weighted-
degree normalized adjacency matrix W , where at each node u the walk stops with probability
α. Then the total probability of the walk to stop at u is s(u).

3 The Forward-Push algorithm

In the following we describe our dynamic algorithms for the case of symmetric and weighted
degree normalization. Our algorithm builds on the Forward-Push algorithm for the static
case [3] which can be viewed as "simulating" random walks, “pushing” walks from one node
to another and taking into account walks that stopped at any node, adding their probability
to the node’s score. The algorithm is run until the residual walks have neglible effects (ε).
For clarity, we fix the prior vector to p. The algorithm maintains two estimates per node u:
the current estimate P (u) of the probability to stop at u and the remaining probability R(u)
of walks that have reached u without stopping. The algorithm is given below and is called by
initializing P = 0n (the zero vector) and R = p. For any nodes s, t we denote by π(s, t) the
score of t when propagating from s. Generalizing it, for any prior vector p and node u we
denote by π(p, u) the score of u when propagating from p. In the symmetric normalization
case, π(s, t) = π(t, s) for any two nodes s, t, while in the weighted degree normalization case
it can be shown that π(s, t)w(s) = π(t, s)w(t) (see, e.g., Lemma 1 in [13]). The following
lemma is key in proving the correctness of the algorithm.

I Lemma 3.1. The following equalities (algorithm’s invariants) are equivalent:
1. P (u) + αR(u) = (1− α)

∑
x∈N(u)

P (x)Wxu + αpu

2. π(p, u) = P (u) +
∑
x∈V

R(x)π(x, u)

Proof. Denote π = α(I − (1 − α)W)−1. Note that (πp)u =
∑
x∈V

π(x, u)px, (πR)u =∑
x∈V

π(x, u)R(x). We can write (2) in vector form as: πp = P + πR. Multiplying both

WABI 2018

7:4 A Dynamic Algorithm for Network Propagation

sides by π−1 from the left we get: p = π−1P +R↔ αp = P − (1−α)WP +αR. Rearranging
terms we get the desired result. J

Using this lemma we can now justify the propagation approximation achieved by the
ForwardPush algorithm.

I Lemma 3.2. The ForwardPush algorithm maintains the invariants in 3.1.

Proof. It suffices to prove that the first invariant holds. On initialization, P = 0n and
R = p, hence the invariant holds. Suppose an arbitrary node u is pushed and denote by
P ′, R′ the updated values of P and R. Since P ′(u) = P (u) + αR(u) and R′(u) = 0, we have
P ′(u) + αR′(u) = P (u) + αR(u). Clearly, the right hand side of invariant (1) did not change
for u as for any x ∈ N(u) only R(x) is changed while pushing u. For any other node x that
is adjacent to u, R′(x) = R(x) + (1− α)R(u)Wxu. Thus, the addition to the left hand side
of the equation is α(1− α)R(u)Wxu which is exactly the addition to the right hand side due
to the update of P (u). J

I Lemma 3.3. For weighted-degree normalization, when ForwardPush() terminates:∑
t∈V
|P (t)− π(p, t)| ≤ 2εm

Proof. Consider any node t and let et be the unit vector with 1 at coordinate t and 0
elsewhere. It follows from lemma 2.2 that for any node u ∈ V ,

∑
t∈V

π(u, t) ≤ 1. By Lemma

3.1 and since |R|∞ ≤ ε upon termination,∑
t∈V
|P (t)− π(p, t)| =

∑
t∈V

∑
u∈V
|R(u)|π(u, t) ≤

∑
t∈V

∑
u∈V

εd(u)π(u, t) =∑
u∈V

εd(u)
∑
t∈V

π(u, t) ≤
∑
u∈V

εd(u) = 2εm

J

Note that the above lemma bounds the overall L1 approximation of the algorithm at 2εm,
hence ε is typically chosen to be smaller than 1/m to guarantee a constant overall error.
After proving the correctness of the algorithm, we turn to bound its complexity:

I Lemma 3.4. Every push of the algorithm, |R|1, the sum of residuals in absolute value,
decreases by at least αεd(v) where v is the node being pushed.

Proof. Let R,R′ denote the residuals before and after the push, respectively. Then∑
u∈V
|R(u)| −

∑
u∈V
|R′(u)| = |R(v)|+

∑
u∈N(v)

|R(u)| − |R′(u)| ≥ (1)

|R(v)| −
∑

u∈N(v)

|R′(u)−R(u)| = |R(v)| − (1− α)|R(v)|
∑

u∈N(v)

|Wvu| ≥ (2)

|R(v)| − (1− α)|R(v)| = |R(v)|(1− (1− α)) = α|R(v)| ≥ αεd(v) (3)

J

I Lemma 3.5. The ForwardPush algorithm with weighted degree normalization takes O(|p|1αε)
time.

B. Sternberg and R. Sharan 7:5

Proof. On initialization
∑
v∈V
|R(v)| = |p|1. Denote by ui the vertex being pushed at step i of

the algorithm. By Lemma 3.4,
∑
v∈V
|R(v)| decreases by at least αεd(ui) at step i, thus the

following holds:
∑
i αεd(ui) ≤ |p|1. Hence,

∑
i d(ui) ≤ |p|1αε . As each push step of a node ui

can be implemented in O(d(ui)) time, the total time is O(|p|1αε). The residuals with absolute
values greater than εd(ui) can be maintained in a linked list and an associated array at the
same cost. J

We can generalize the above algorithm to any similar matrix W = L−1SL where L is an
invertible diagonal matrix, S is a stochastic matrix, i.e: S = wD−1, and D is the diagonal
weighted degree matrix. For example, choosing L = D1/2 yields the symmetric normalization.
Note that such matrices satisfy the convergence condition as their eigenvalues are the same
as those of S. The generalization is based on the following lemma:

I Lemma 3.6. (Stochastic Lemma) Let ψ(W,p, α) be the result of network propagation with
matrix W = L−1SL over prior p. Then ψ(W,p, α) = L−1ψ(S,Lp, α).

Proof. Denote by vn and v′n the propagation vectors on W and S, respectively, after the nth
step of the propagation process. We prove by induction that for every n, vn = L−1v′n. For
the base case v0 = p and v′0 = Lp so the claim trivially holds. Suppose the claim is true for n,
then: vn+1 = αp+ (1−α)Wvn = αp+ (1−α)L−1SL(L−1v′n) = L−1(α(Lp) + (1−α)Sv′n) =
L−1v′n+1. J

4 A dynamic decremental algorithm for vertex removals

Lemma 3.6 naturally suggests an adaptation for the ForwardPush algorithm for any
normalization matrix W which is similar to a stochastic matrix. For concreteness and
clarity, we will present a dynamic decremental algorithm for removing nodes under weighted
symmetric normalization as used in [12]. The main idea is first to maintain a valid propagation
result for weighted-degree normalization, and on deletion, using lemma 3.6, we fix the invariant.
If this leads to high residuals, we will re-push them over the graph locally, to fix the total
scores. In the following we set L = D1/2 for symmetric normalization and p′ = LP . For a
removal of any node v, denote by S′, D′ the resulting matrices, by w′ the updated network
weights and by π′ the updated propagation scores. Further denote by LeafN(v) the set
of neighbors of v of degree 1. W.l.o.g. v has at least one neighbor which is of degree
greater than 1, otherwise the connected component of v will vanish after its removal. The
algorithm is given below (Algorithm 2). ForwardPushSym computes the initial propagation.
FixRemoveEdge handles edge removals and is used as a subroutine by V ertexRemoveProp
which handles the node removals.

The following lemmas, proved in the Appendix, establish the correctness and accuracy of
the algorithm. Denote φ := max

v
{
√
w(v), 1/

√
w(v)}. In all our applications reported below,

for both yeast and human, φ < 36.

I Lemma 4.1. When ForwardPushSym(W,α, ε, p) returns,
∑
t∈V
| P (t)√

w(t)
− π(p, t)| < 2εmφ

where π(p, t) is the propagation score for node t with prior p under symmetric normalization.

I Lemma 4.2. When V ertexRemoveProp(v,R, P,W, ε) returns,
∑
t∈V
| P (t)√

w′(t)
− π′(p, t)| <

2εmφ where π′(p, t) is the propagation score for node t with prior p under symmetric nor-
malization after node v removal.

WABI 2018

7:6 A Dynamic Algorithm for Network Propagation

Algorithm 2 ForwardPush for symmetric normalization.
1: procedure ForwardPushSym(W = D−1/2SD1/2, α, ε, p)
2: R← D1/2p, P ← 0n
3: R,P ← ForwardPush(S,R, P, α, ε)
4: return R,P

5: procedure FixRemoveEdge(u, v,R, P,W = D−1/2SD1/2)
6: w(v), wu(v) :=

∑
x∈V

wxv,
∑

x∈V,x6=u
wxv

7: Fu(v) = w(v)
wu(v)

8: R(v)+ = 1
α (1− 1

Fu(v))P (v)− (1−α)
α P (u)Suv + (

√
wu(v)−

√
w(u))pv

9: P (v)/ = Fu(v)
10: Remove (u, v) from S and normalize v.
11: procedure V ertexRemoveProp(v,R, P,W = D−1/2SD1/2, ε)
12: for u ∈ LeafN(v) do
13: R(u) = 0, P (u) = αpu

14: for u ∈ N(v)\LeafN(v) do
15: FixRemoveEdge(v, u,R, P,W)
16: R(v) = 0, P (v) = αpv
17: ForwardPush(S′, R, P, α, ε)
18: return R,P

Algorithm 3 Multiple-vertex removal
1: procedure RemoveNodes(node_list,W = D−1/2SD1/2, α, ε0, ε1, p)
2: R,P ← ForwardPushSym(W,α, ε0, p)
3: for u ∈ node_list do
4: Backup R,P
5: R,P ← V ertexRemoveProp(u,R, P,W, ε1)
6: res(u)← D−1/2P

7: Restore R,P
8: return res

Given the vertex removal routine, we can perform n removals and corresponding prop-
agations using Algorithm 3. For efficiency, we can choose different accuracies (ε0, ε1 = ε)
for different stages of the propagation with ε0 ≤ ε1. This allows us to invest more time
in the initial propagation in order to reduce the resulting residual sum, leading to time
savings in subsequent computations. In order to bound the complexity of the algorithm we
denote by Ru the vector of residuals after fixing invariants in V ertexRemoveProp (line (16)
completion) and define the total sum in absolute value of residual changes following the
removal of a vertex u:

∆Ru :=
∑
v∈V
|Ru(v)−R(v)|

I Lemma 4.3. The total residual sum being pushed over n vertex removals is bounded by:

T :=
∑
u∈V

(
∑
v∈V
|R(v)|+ ∆Ru)

Proof. The total sum of residuals being pushed when removing a vertex u is bounded by

B. Sternberg and R. Sharan 7:7

∑
v∈V \{u} |Ru(v)|. By the triangle inequality,

∑
v∈V \{u}

|Ru(v)| ≤
∑
v∈V
|R(v)|+ ∆Ru. J

I Corollary 4.4. The removal of n vertices and subsequent propagations take O(T
αε1

) time.

I Lemma 4.5. Let u be a node being removed, and Fu(v) the expression described in
Algorithm (2). Then,

∆Ru ≤ R(u) +
∑

v∈LeafN(u)

R(v) +
∑

v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv+

(1− α
α

)P (u)
∑

v∈N(u)\LeafN(u)

Suv + 1
α

∑
v∈N(u)\LeafN(u)

P (v)(1− 1
Fu(v))

Proof. Note that R(v), P (v) are positive for any v as they represent the initial ForwardPush
result. Assume that u is removed and consider the changes to its neighbors in VertexRemove().
Clearly, for each leaf neighbor v, the change in residuals is R(v). For non-leaf neighbors v,
we can upper bound the residual change by:

1
α

(
1− 1

Fu(v)

)
P (v) + |

√
wu(v)−

√
w(v)|pv + 1− α

α
P (u)Suv

Hence, summing over all of these neighbors and u itself leads to the required result. J

To bound the complexity of the algorithm we need the following notation and auxiliary
lemmas.

I Lemma 4.6. 1− 1
Fu(v) = Suv

Proof. 1− 1
Fu(v) =

∑
x∈V

wxv∑
x∈V

wxv
−

∑
x6=u

wxv∑
x∈V

wxv
= Suv J

I Lemma 4.7. After the initial ForwardPushSym,
∑
v∈V

P (v) ≤ φ

Proof. Initially,
∑
v∈V P (v) = 0 and

∑
v∈V |R(v)| = |p′|1. Anytime we increase P (u) by

αR(u) for some u,
∑
v∈V |R(v)| is reduced by at least α|R(u)| by Lemma 3.4. Therefore,∑

v∈V |R(v)| ≤ |p′|1 throughout, implying that
∑
v∈V

P (v) ≤ |p′|1.

By definition, |D1/2|1 = sup
v 6=0

|D1/2v|1
|v|1 . Hence, |p′|1 = |D1/2p|1 ≤ |D

1/2p|1
|p|1 |p|1 ≤ |D1/2|1|p|1 ≤

φ. J

I Lemma 4.8.
∑

u∈N(v)
|
√
wu(v)−

√
w(v)| ≤

√
w(v)

Proof. First, note that:

|
√
wu(v)−

√
w(v)| =

∣∣ (√wu(v)−
√
w(v))(

√
wu(v) +

√
w(v))√

wu(v) +
√
w(v)

∣∣
= |wu(v)− w(v)|
|
√
wu(v) +

√
w(v)|

≤ wvu√
w(v)

Then, summing over all neighbors of v:∑
u∈N(v)

|
√
wu(v)−

√
w(v)| ≤

∑
u∈N(v)

wvu√
w(v)

=
√
w(v) J

WABI 2018

7:8 A Dynamic Algorithm for Network Propagation

I Lemma 4.9.
∑
u∈V

∆Ru ≤ 5φ
α .

Proof. Let R,P be the updated residuals and the estimates after the initial application of
ForwardPush() in line 2 of the RemoveNodes() algorithm. By Lemma 4.5, the total changes
to the residuals are

part 1︷ ︸︸ ︷∑
u∈V

R(u) +
∑
u∈V

∑
v∈LeafN(u)

R(v) +

part 2︷ ︸︸ ︷∑
u∈V

∑
v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv +

part 3︷ ︸︸ ︷∑
u∈V

(1− α
α

)P (u)
∑

v∈N(u)\LeafN(u)

Suv + 1
α

part 4︷ ︸︸ ︷∑
u∈V

∑
v∈N(u)\LeafN(u)

P (v)(1− 1
Fu(v))

We will bound each part separately.
1. By definition,

∑
u∈V

R(u) ≤ |D1/2p|1. For a leaf v ∈ V , its residual will be summed once

as its degree is 1. Overall, the sum is bounded by 2
∑
u∈V

R(u) ≤ 2|D1/2p|1 ≤ 2φ.

2. By changing the summation order we get∑
u∈V

∑
v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv =

∑
v∈V, not a leaf

pv
∑

u∈N(v)

|
√
wu(v)−

√
w(v)| 4.8

≤∑
v∈V, not a leaf

pv
√
w(v) ≤ |p|1φ = φ

3. we bound this part and get:∑
u∈V

(1− α
α

)P (u)
∑

v∈N(u)

Suv≤
(1− α)
α

∑
u∈V

P (u)4.7≤
(1− α)
α

φ

4. Similar to part (1), by changing the order of summation we get that:

1
α

∑
v∈V, not a leaf

P (v)
∑

u∈N(v)

(1− 1
Fu(v))4.6=

1
α

∑
v∈V, not a leaf

P (v)
∑

u∈N(v)

Suv ≤

1
α

∑
v∈V, not a leaf

P (v) ≤ φ/α

Overall we obtain a bound of 5φ
α . J

We are now ready to state our main result:

I Lemma 4.10. The total complexity of the propagation algorithm with n vertex removals is
(φ
αε0

+ mnε0
αε1

+ φ
ε1

) = O(m
√
nφ)

Proof. The initialization takes O(φ/(αε0)) time. By Lemmas 4.3 and 4.9, the total time for
n vertices removals and subsequent propagations is bounded by:∑
u∈V

(
∑
v∈V
|R(v)|) + ∆Ru

αε1
≤

∑
u∈V

(
∑
v∈V

ε0d(v)) + ∆Ru

αε1
=

∑
u∈V

(2mε0) + ∆Ru

αε1
= 2mnε0

αε1
+

5φ
α

αε1

B. Sternberg and R. Sharan 7:9

Table 1 Tested Networks and their properties.

Graph #Nodes #Edges Maximal Degree Average Degree φ

Human (HIPPIE) [4] 19,796 339,788 2173 17.1 35.67
Yeast (ANAT [15]) 5138 76,467 2040 13.82 19.9
Human (ANAT [15]) 15,517 259,161 2086 15.73 27.75

Table 2 Performance evaluation on a human network (ANAT) upon 1,000 vertex removals.

Algorithm DynamicFP ForwardPush Power Iteration
Time 10.1s 9417.89s 886.54s
#node visits per update 302.24 55,175,737 2,618,256
L1-error 0.00121 0.00119 0.00101

Hence, The complexity is:

O(φ

αε0
+ mnε0

αε1
+ φ

ε1
)
ε0 =

√
φε1
mn

= O(
√
mnφ

ε1
)
ε1 = Θ(1

m)
= O(m

√
nφ)

The first equality follows by finding the minimal solution for ε0, ε1, where ε1 is chosen to be
c/m to bound the overall L1 error by some additive constant. As the edge weights are at
most 1 and at least some positive constant (otherwise, the edges are considered unreliable),
φ ≤
√
n. Hence, the total time is O(mn3/4) and the amortized cost per node knockout is

O(m
n1/4). J

5 Results

We benchmark our algorithm, Dynamic ForwardPushSym (DynamicFP), against a static
implementation of the power iteration method, as well as against the static ForwardPush
algorithm (ForwardPushSym from scratch). We measure the performance of each algorithm
in terms of time (seconds) and the number of nodes it visits throughout its execution. In
order to evaluate the accuracy of the different algorithms we measured their L1 deviation
from the true propagation vector (sum of absolute differences). All tests were done in Intel(R)
Xeon(R) E5410 @ 2.33Ghz, 16GB RAM. We used the latest yeast and human protein-
protein interaction (PPI) networks from ANAT [15] as well as the human PPI network
of [4]. The tested networks and their properties are summarized in Table 1. To perform a
comparative analysis of different propagation algorithms, we fixed the propagation parameters
to α = 0.4 and a prior set size of 100. In order to compute accurate propagation scores
against which we could benchmark the different methods, we applied the power iteration
method with ε′ = ε/n. In the comparison itself, we applied the power iteration method
with the maximal ε that leads to an overall L1 error of at most 10−2. For Forward-Push
we used the maximal ε1 that leads to an overall L1 error of at most 10−2. We also set
ε0 =

√
ε1φ
mn . The results upon making 1,000 vertex removals, where each vertex is removed

separately from the original network, are summarized in Tables 2 and 3. Next, we compared
our performance to the previous approach LazyFwdUpdate of [5]. To this end, we used
a larger human PPI network from [4] and observed the performance of the two methods
upon knockouts of all (non-prior) vertices, simulating a real application of these methods.
Since LazyFwdUpdate handles only unweighted networks with degree-based normalization,

WABI 2018

7:10 A Dynamic Algorithm for Network Propagation

Table 3 Performance evaluation on a yeast network (ANAT) upon 1,000 vertex removals.

Algorithm DynamicFP ForwardPush Power Iteration
Time 2.44s 2132.2s 102.91s
#node visits per update 1443.904 22,103,498 765,310
L1-error 0.0013 0.00121 0.0017

Table 4 Performance comparison with ε0 = ε1 (1) and ε0 =
√

ε1φ
mn

(2).

Algorithm LazyFwdUpdate DynamicFP (1) DynamicFP (2)
Time 36.01s 23.60 9.71s
#node visits per-update 13,925 8024 2749
L1-error 0.0047 0.0056 0.0061

we used the corresponding variant (unweighted network; weighted-degree normalization) of
the DynamicFP algorithm. The results, summarized in Table 4, show that our algorithm
compares favorably to LazyFwdUpdate, especially when varying the ratio between ε0 and ε1.

6 Conclusions

We have devised a dynamic algorithm for network propagation that can handle a vertex
deletion in O(m

n1/4) time and provides a speedup of Ω(n1/4) over previous work. Importantly,
the algorithm leads to huge speedups of up to a 50-100 fold on real data. Thus, it allows,
for the first time, the application of costly methods (such as [12] and [14]) to examine
multiple gene knockouts simultaneously. The proposed algorithm can substantially increase
the number of different knockout effects that can be simulated in a reasonable time. While
our work focused on vertex deletions that are very common in the biological domain, it would
be interesting to extend our algorithm to a fully dynamic one. This may result in various
applications that concern situations in which edges rather than nodes are perturbed.

References

1 Amy N. Langville and Carl D. Meyer. Deeper Inside PageRank. Internet Mathematics,
1(3), jan 2004. doi:10.1080/15427951.2004.10129091.

2 Dengyong Zhou, Olivier Bousquet, Thomas N. Lal, Jason Weston, and Bern-
hard Scholkopf. Learning with Local and Global Consistency. In Proceed-
ings of the 16th International Conference on Neural Information Processing Sys-
tems, pages 321–328. MIT Press, 2004. URL: http://papers.nips.cc/paper/
2506-learning-with-local-and-global-consistency.pdf.

3 Glen Jeh and Jennifer Widom. Scaling Personalized Web Search. In Proceedings of the
Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hungary, May
20-24, 2003, WWW ’03, pages 271–279, New York, NY, USA, 2003. ACM. doi:10.1145/
775152.775191.

4 Gregorio Alanis-Lobato, Miguel A. Andrade-Navarro, and Martin H. Schaefer. HIPPIE
v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nu-
cleic Acids Research, 45(D1):D408–D414, jan 2017. doi:10.1093/nar/gkw985.

http://dx.doi.org/10.1080/15427951.2004.10129091
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://dx.doi.org/10.1145/775152.775191
http://dx.doi.org/10.1145/775152.775191
http://dx.doi.org/10.1093/nar/gkw985

B. Sternberg and R. Sharan 7:11

5 Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate Personalized PageRank on
Dynamic Graphs. arXiv:1603.07796 [cs], 2016. arXiv: 1603.07796. URL: http://arxiv.
org/abs/1603.07796.

6 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Cita-
tion Ranking: Bringing Order to the Web., nov 1999. URL: http://ilpubs.stanford.edu:
8090/422/.

7 Lenore Cowen, Trey Ideker, Benjamin J. Raphael, and Roded Sharan. Network propagation:
a universal amplifier of genetic associations. Nature Reviews. Genetics, 18(9):551–562, 2017.
doi:10.1038/nrg.2017.38.

8 Minji Yoon, WooJeong Jin, and U Kang. Fast and Accurate Random Walk with Restart on
Dynamic Graphs with Guarantees. arXiv:1712.00595 [cs], 2017. arXiv: 1712.00595. URL:
http://arxiv.org/abs/1712.00595.

9 Monica Bianchini, Marco Gori, and Franco Scarselli. PageRank and Web communities. In
Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pages
365–371, oct 2003. doi:10.1109/WI.2003.1241217.

10 Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. Efficient PageRank
Tracking in Evolving Networks. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, KDD ’15, pages 875–884, New York, NY, USA, 2015. ACM. doi:
10.1145/2783258.2783297.

11 Oron Vanunu, Oded Magger, Eytan Ruppin, Tomer Shlomi, and Roded Sharan. Associating
Genes and Protein Complexes with Disease via Network Propagation. PLOS Computational
Biology, 6(1):e1000641, 2010. doi:10.1371/journal.pcbi.1000641.

12 Ortal Shnaps, Eyal Perry, Dana Silverbush, and Roded Sharan. Inference of Personalized
Drug Targets via Network Propagation. Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, 21:156–67, 2016. URL: https://www.semanticscholar.
org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/
b57104bd662ffeb95bb150d00adb381caffce013.

13 Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Bidirectional PageRank Estimation:
From Average-Case to Worst-Case. In Algorithms and Models for the Web Graph - 12th
International Workshop, WAW 2015, Eindhoven, The Netherlands, December 10-11, 2015,
Proceedings, WAW 2015, pages 164–176, New York, NY, USA, 2015. Springer-Verlag New
York, Inc. doi:10.1007/978-3-319-26784-5_13.

14 Sushant Patkar, Assaf Magen, Roded Sharan, and Sridhar Hannenhalli. A network diffusion
approach to inferring sample-specific function reveals functional changes associated with
breast cancer. PLoS Computational Biology 13(11): e1005793, in press, 13, nov 2017.
doi:10.1371/journal.pcbi.1005793.

15 Yomtov Almozlino, Nir Atias, Dana Silverbush, and Roded Sharan. ANAT 2.0: recon-
structing functional protein subnetworks. BMC bioinformatics, 18(1):495, 2017. doi:
10.1186/s12859-017-1932-1.

A Supplementary proofs

I Lemma A.1. When ForwardPushSym(W,α, ε, p) returns,
∑
t∈V
| P (t)√

w(t)
− π(p, t)| < 2εmφ

where π(p, t) is the propagation score for node t with prior p under symmetric normalization.

Proof. By Lemma 3.3, ForwardPush applied on S with prior p′ returns a vector P of

WABI 2018

http://arxiv.org/abs/1603.07796
http://arxiv.org/abs/1603.07796
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://dx.doi.org/10.1038/nrg.2017.38
http://arxiv.org/abs/1712.00595
http://dx.doi.org/10.1109/WI.2003.1241217
http://dx.doi.org/10.1145/2783258.2783297
http://dx.doi.org/10.1145/2783258.2783297
http://dx.doi.org/10.1371/journal.pcbi.1000641
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
http://dx.doi.org/10.1007/978-3-319-26784-5_13
http://dx.doi.org/10.1371/journal.pcbi.1005793
http://dx.doi.org/10.1186/s12859-017-1932-1
http://dx.doi.org/10.1186/s12859-017-1932-1

7:12 A Dynamic Algorithm for Network Propagation

estimated scores, where
∑
t∈V
|P (t)− π(p′, t)| = |P − πp′|1 ≤ 2εm.

|P − ψ(S,D1/2p, α)|1 ≤ 2εm→
|P − ψ(S,D1/2p, α)|1 ≤ 2εm|D−1/2|1|D1/2|1 →

|D−1/2|1|P − ψ(S,D1/2p, α)|1 ≤ 2εm|D−1/2|1 →
|D−1/2|1|P − ψ(S,D1/2p, α)|1 ≤ 2εmφ

Since |D−1/2|1 = sup
v 6=0

|D−1/2v|1
|v|1 it follows that |D−1/2v|1 = |D−1/2v|1

|v|1 |v|1 ≤ |D−1/2|1|v|1.

Therefore: |D−1/2P −D−1/2ψ(S,D1/2p, α)|1 ≤ 2εmφ.
Note that ψ(W,p, α) is a vector of propagation scores π(p, t) for all nodes t. By the stochastic
Lemma 3.6, ψ(W,p, α) = D−1/2ψ(S,D1/2p, α). Thus,

|D−1/2P − ψ(W,p, α)|1 ≤ 2εmφ→
∑
t∈V
| P (t)√

w(t)
− π(p, t)| ≤ 2εmφ J

I Lemma A.2. When V ertexRemoveProp(v,R, P,W, ε) returns,
∑
t∈V
| P (t)√

w′(t)
− π′(p, t)| <

2εmφ where π′(p, t) is the propagation score for node t with prior p under symmetric nor-
malization after node v removal.

Proof. Denote by R′, P ′, S′, D′ the changed residuals and estimates, weights and sum
of degrees (for an isolated vertex u we define D−1

uu = Duu = 1), respectively, after line
(16) in V ertexRemoveProp and p′ := D1/2p, p′′ := D′1/2p. Note that p′u :=

√
w(u)pu,

p′′u :=
√
wv(u)pu by definition of D′ (after node removal). We will first prove the following:

I Lemma A.3. The following holds:
1. if x 6= v then P ′(x)S′xu = P (x)Sxu
2. if x = v and u ∈ N(v) then P ′(x)S′xu = 0
3. if x = v and u /∈ N(v) then P ′(x)S′xu = P (x)Sxu

Proof.
1. Let x 6= v, if P (x) 6= P ′(x) then x ∈ N(v) by algorithm def, hence P ′(x) = P (x)/Fu(v)

and S′xu = SxuFu(v). Then for sure P ′(x)S′xu = P (x)Sxu. If P (x) = P ′(x) then x is not
a neighbor of v, hence by algorithm def. S′xu = Sxu.

2. Let x = v and u ∈ N(v), by algorithm def, S′xu = S′vu = 0 as the edge was removed, and
P ′(x)S′xu = 0.

3. Let x = v and u /∈ N(v), by algorithm def, P ′(x) = P (x), as no edge that connects to u
was removed, also S′xu = Sxu hence P (x)Sxu = P ′(x)S′xu. J

We will show that after line (16) in V ertexRemoveProp (2), the invariants of
ForwardPush (3.1) are kept with respect to p′′ as the prior, S′ as the weights matrix and α.

Let u ∈ LeafN(v), then after line (16) node u becomes isolated and
P ′(u) + αR′(u) = αpv = αp′′v as required.
Let u ∈ N(v), we will show the invariant is kept for u. We know:

P (u) + αR(u) = (1− α)
∑
x∈V

P (x)Sxu + αp′u (4)

We want to show:
P ′(u) + αR′(u) = (1− α)

∑
x∈V

P ′(x)S′xu + αp′′u (5)

B. Sternberg and R. Sharan 7:13

Hence, it is enough to show that RHS of (5) minus the RHS of (4) equals to the LHS of
(5) minus the LHS of (4).
Using Lemma A.3, for any node x 6= v it holds P ′(x)S′xu = P (x)Sxu and for x = v it
holds P ′(x)S′xu = 0. Then:

((1− α)
∑
x∈V

P ′(x)S′xu + αp′′u) − ((1− α)
∑
x∈V

P (x)Sxu + αp′u) =

−(1− α)P (v)Svu − α(p′u − p′′u)
By Algorithm 2, line 8:

(P ′(u) + αR′(u))− (P (u) + αR(u)) = (P ′(u)− P (u)) + α(R′(u)−R(u))

= −(1− 1
Fv(u))P (u) + α[1

α
(1− 1

Fv(u))P (u)

− (1− α)
α

P (v)Svu + (
√
wv(u)−

√
w(u))pu]

= −(1− α)P (v)Svu + α(p′′u − p′u)
Let u /∈ N(v), using Lemma A.3, P ′(x)S′xu = P (x)Sxu for any x. By algorithm def.
P ′(u) = P (u), R′(u) = R(u) and p′u = p′′u. Then:

P ′(u) + αR′(u) = P (u) + αR(u) =
(1− α)

∑
x∈V

P (x)Sxu + αp′u = (1− α)
∑
x∈V

P ′(x)S′xu + αp′′u

Therefore, after applying V ertexRemoveProp we compute a valid propagation vector
over the weights S′′ with p′′ as prior and α after node v removal. using A.1 we get the same
approximation. J

WABI 2018

New Absolute Fast Converging Phylogeny
Estimation Methods with Improved Scalability
and Accuracy

Qiuyi (Richard) Zhang1

Department of Mathematics, University of California at Berkeley, Berkeley CA 94720
qiuyi@math.berkeley.edu

Satish Rao2

Division of Computer Science, University of California at Berkeley, Berkeley CA 94720
satishr@berkeley.edu

Tandy Warnow3

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
61801, USA
warnow@illinois.edu

Abstract
Absolute fast converging (AFC) phylogeny estimation methods are ones that have been proven
to recover the true tree with high probability given sequences whose lengths are polynomial in
the number of number of leaves in the tree (once the shortest and longest branch lengths are
fixed). While there has been a large literature on AFC methods, the best in terms of empirical
performance was DCMNJ , published in SODA 2001. The main empirical advantage of DCMNJ

over other AFC methods is its use of neighbor joining (NJ) to construct trees on smaller taxon
subsets, which are then combined into a tree on the full set of species using a supertree method;
in contrast, the other AFC methods in essence depend on quartet trees that are computed
independently of each other, which reduces accuracy compared to neighbor joining. However,
DCMNJ is unlikely to scale to large datasets due to its reliance on supertree methods, as no
current supertree methods are able to scale to large datasets with high accuracy. In this study
we present a new approach to large-scale phylogeny estimation that shares some of the features
of DCMNJ but bypasses the use of supertree methods. We prove that this new approach is AFC
and uses polynomial time. Furthermore, we describe variations on this basic approach that can be
used with leaf-disjoint constraint trees (computed using methods such as maximum likelihood) to
produce other AFC methods that are likely to provide even better accuracy. Thus, we present a
new generalizable technique for large-scale tree estimation that is designed to improve scalability
for phylogeny estimation methods to ultra-large datasets, and that can be used in a variety of
settings (including tree estimation from unaligned sequences, and species tree estimation from
gene trees).

2012 ACM Subject Classification Applied computing → Molecular evolution

Keywords and phrases phylogeny estimation, short quartets, sample complexity, absolute fast
converging methods, neighbor joining, maximum likelihood

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.8

1 Supported by NSF grant 1535989
2 Supported by NSF grant 1535989
3 Supported by NSF grant 1535977

© Qiuyi Zhang, Satish Rao, and Tandy Warnow;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 8; pp. 8:1–8:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qiuyi@math.berkeley.edu
mailto:satishr@berkeley.edu
mailto:warnow@illinois.edu
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 New AFC Phylogeny Estimation Methods

1 Introduction

The inference of phylogenies from molecular sequence data is generally approached as a
statistical estimation problem, in which a model tree (equipped with a model of sequence
evolution) is assumed to have generated the observed data, and the properties of the statistical
model are then used to infer the tree. Various statistical approaches can be applied for this
estimation, including maximum likelihood, Bayesian techniques, and methods that operate
by computing a distance matrix and then computing the tree from the distance matrix.

Many stochastic sequence evolution models have been developed, starting with the
Cavender-Farris-Neyman [15, 6, 15] symmetric two-state model (referred to henceforth as
“CFN") and including increasingly complex molecular sequence evolution models (with four
states for DNA, 20 states for amino acids, and 64 states for codon sequences). However,
typically the theory that can be established under the CFN model can also be established
under the more complex molecular sequence evolution models used in phylogeny estimation.

Under standard sequence evolution models, many methods are known to be statistically
consistent (meaning that they will provably converge to the true tree as the sequence lengths
increase), including maximum likelihood [19] and many distance-based methods [1, 23]. A
key challenge is to have methods that can scale to large datasets; hence, polynomial time
methods are desirable. High accuracy is also needed, so methods that recover the true tree
with high probability from limited numbers of sites are best. In this respect, methods that
are “absolute fast converging" [8, 9, 25] (i.e., methods that recover the true tree with high
probability from polynomial length sequences) are the most promising.

There are several methods that have been established to be absolute fast converging
(AFC) under the CFN model, including maximum likelihood [19] (if solved exactly) and
various distance-based methods [8, 9, 25, 14, 17, 18, 12, 4]. Some of these algorithms achieve
a poly-logarithmic sample complexity but require a balanced model tree and an upper bound
on g, the maximum edge length (defining the expected number of changes of a random site)
in the CFN model. Specifically, methods based on reconstruction of ancestral sequences
provide the best sample complexity bounds but cannot handle the case where g is larger
than what is known as the Kesten-Stigum threshold, which is ln(

√
2) [13] for the CFN model.

Other methods, which are AFC in the regime where g is unbounded, are not guaranteed
to recover a tree in certain situations [8, 9, 25]. Two of the fastest AFC methods are the
Harmonic Greedy Triplets (HGT+FP) method by Csűrös [7] and a method developed by
King et al. [11]; these methods use O(n2) time and are based on quartet trees. Another
approach is DCMNJ , which uses a divide-and-conquer technique [25]. In the first phase, O(n2)
trees are computed, each based on dividing the sequence dataset into overlapping subsets,
constructing trees on each subset using the polynomial time distance-based method neighbor
joining (NJ) [20], and then combining the subset trees using a supertree method. This
approach differs from other AFC methods in its use of neighbor joining to construct trees
on subsets, whereas the other AFC methods in essence construct the tree by independently
constructing quartet trees, and then assembling the quartet trees together using a quartet
amalgamation method.

Very few AFC methods have been implemented; however, a study [14] comparing HGT+FP
[7] and DCMNJ [25] showed that DCMNJ had better accuracy despite being slower. Since the
theory does not predict this, the results on simulated data suggest that the use of NJ to
construct trees on subsets and then combine the trees using a supertree method may be
empirically advantageous compared to methods that combine quartet trees that are estimated
independently. Unfortunately, the reliance on a supertree method to combine subset trees

Q. Zhang, S. Rao, and T. Warnow 8:3

means that DCMNJ is unlikely to scale to ultra-large datasets, because no current supertree
method has shown the ability to maintain good accuracy and reasonable running times on
large datasets [24].

The purpose of this paper is to describe a new polynomial time AFC phylogeny estimation
method that should improve on DCMNJ : it is designed to have comparable accuracy to DCMNJ

but also to be able to analyze ultra-large datasets (i.e., more than 100,000 sequences). The
basic approach of this new method is similar to DCMNJ in that it uses divide-and-conquer,
applies neighbor joining to subsets of the sequence dataset, and then merges the subtrees
together. However, it differs from DCMNJ in a few important ways, which we describe below.
Most importantly, it divides the taxon set into disjoint subsets and then merges the subset
trees without relying on any supertree method; thus, it avoids the challenge of relying on
existing supertree methods, none of which are likely to scale to large datasets. We present the
results here for the CFN model, but the extension to even complex DNA sequence evolution
models is straightforward (e.g., see [9]). Our arguments for correctness are very similar to
those in [7, 11]. The rest of the manuscript is organized as follows. We provide background
material in Section 2. We present the basic method, INC, in Section 3, and its extension
to allow for disjoint constraint trees (computed using various methods) in Section 4. We
conclude with a discussion of future work in Section 5.

2 Background Material

2.1 Absolute Fast Convergence under the CFN Model.
Under the Cavender-Farris-Neyman (CFN) Model, we have a rooted binary tree T and
substitution probabilities p(e) on the edges e of T . The state at the root is 0 of 1 with equal
probability, and the state changes on edge e with probability p(e), with 0 < p(e) < 0.5 for all
edges e. This model can be used for sequence evolution by requiring that all the sites evolve
i.i.d. down the tree. Finally, we define w(e) = − 1

2 log(1− 2pe). We also define CFNf,g to
be the set of all CFN model trees (T,Θ) (where Θ denotes the set of numeric parameters on
the edges) with f ≤ w(e) ≤ g for all edges in T , for arbitrarily selected positive real numbers
f ≤ g.

I Definition 1. A phylogeny estimation method Φ is said to be absolute fast converging
(AFC) under the CFN model if, for all positive values f, g, ε (with f ≤ g), there is a
polynomial p such that for all CFN model trees (T,Θ) in CFNf,g the method Φ will recover
the unrooted tree topology T given sequences of length p(n) with probability at least 1− ε.
Note that the polynomial will in general depend on f, g and ε.

2.2 DCMNJ+SQS: an AFC method with good empirical performance
but low scalability

Here we describe the approach used in [25] called “DCMNJ+SQS”, which was shown to
have high accuracy in simulation studies with up to 1600 sequences [14]. (Note: “DCM"
refers to “disk-covering method" and “SQS" refers to the “short quartet support" criterion;
see [25, 23]). The input is a set of sequences generated by an unknown model tree and a
dissimilarity matrix d (i.e., a symmetric matrix that is zero on the diagonal) where dij is the
estimated distance between taxa si and sj , based on the selected sequence evolution model.
For example, when the model is CFN, then dij = − 1

2 ln(1 − 2Hij) will be the “empirical
CFN distance", where Hij is the Hamming distance between sequences i and j divided by
the sequence length (i.e., the normalized Hamming distances). Note that these empirical

WABI 2018

8:4 New AFC Phylogeny Estimation Methods

CFN distances converge in probability to Dij = − 1
2 log(1− 2Eij) where Eij is the expected

normalized Hamming distance between leaves i and j, and that D is an additive matrix for
the model tree. DCMNJ+SQS uses a two-phase structure, as follows:

Phase 1: A set T of O(n2) trees is computed, with at most one tree tq for each entry q in
the dissimilarity matrix d.
Phase 2: All the trees in T are scored using the SQS criterion (where “SQS” refers to
the short quartet support, defined in [25]) and the best-scoring tree is returned.

Before we can describe these phases, we need to provide some definitions:

I Definition 2. (From [10].) For the given dissimilarity matrix d and positive real number q,
we define the threshold graph TG(d, q) to be the graph with the n taxa as the vertex set and
edges (i, j) if and only if dij ≤ q. We also assign weight dij to each edge (i, j) in TG(d, q).

We use a standard technique, called the Four Point Method, to compute quartet trees
(i.e., unrooted binary trees on four leaves) that is based on the Four Point Condition [5].

I Definition 3. (From [8]) Given a four taxa set {u, v, w, z} and a dissimilarity matrix d,
the Four Point Method (FPM) infers tree uv|wz (meaning the quartet tree with an edge
separating u, v from w, z) if d(u, v) + d(w, z) ≤ min{d(u,w) + d(v, z), d(u, z) + d(v, w)}. If
equality holds, then the FPM infers an arbitrary topology.

Phase 1 for DCMNJ+SQS is performed as follows. Given q (the selected threshold), a
threshold graph TG(d, q) is computed, then edges are added to the graph to make it
triangulated (if necessary), where a triangulated graph is one that has no simple cycles of
size four or more; furthermore, if d is additive, then TG(d, q) is triangulated. Once the
triangulated graph is computed, the set of all maximal cliques can be extracted in polynomial
time. See [25] for additional details and proofs.

Trees are computed for each maximal clique using neighbor joining [20], and the trees on
these cliques are then combined into a tree on the full set of species using a selected supertree
method. Phase 2 uses the SQS criterion, but other criteria also have good theoretical
properties. The SQS score of a tree T , defined by SQS(T), is the maximum l such that
for all quartets {u, v, w, x} of taxa with diameter at most l, the Four Point Method on
{u, v, w, x} produces a four-leaf tree that agrees with the T .

I Theorem 4 (From [25, 14]). The short quartet support (SQS) criterion score can be
calculated for each tree tq ∈ T in polynomial time. Also, there is a polynomial p(n) such that
if T contains the true tree T and the sequences are of length p(n) (where n is the number of
leaves), then with probability at least 1− ε, the tree in T with the highest SQS score is the
true tree.

The basic approach has good theoretical guarantees (i.e., it is AFC, and more generally
if X is any exponentially converging base method (meaning X recovers the tree with high
probability given exponentially many sites) and Y is any true tree selection criteria that has the
same theoretical properties as SQS (as given in Theorem 4), then DCMX+Y is AFC. Empirical
performance of DCMNJ+SQS on simulated data was excellent, substantially outperforming
NJ and fast triplet/quartet-based greedy tree growing methods, such as HTP+FP, on large
datasets especially when there is a high rate of evolution [14]. However, these studies were
limited to datasets with at most 1600 sequences. In other words, DCMNJ+SQS was not tested
on very large datasets, which is to some extent the point of absolute fast converging methods.

Furthermore, the design of DCMNJ suggests some definite problems in terms of scalability
to large datasets. Most importantly, supertree methods do not have good scalability, as all

Q. Zhang, S. Rao, and T. Warnow 8:5

current supertree methods with good accuracy are attempts to solve NP-hard optimization
problems, and so become computationally intensive on large datasets [24]. Any reasonably
fast method will need to completely avoid the supertree calculation step.

3 The basic technique: Incremental Tree-Building

We begin by describing the INC method in the unconstrained condition, which uses short
quartet trees to build a tree, and we prove that the method is AFC. We then show how
INC can be modified to take an arbitrary set of disjoint constraint trees, and we prove that
when the constraint trees are constructed using an AFC method then the result is also AFC.
We then present the O(n2) INC-NJ method, which is AFC and uses neighbor joining on
carefully selected subsets to achieve this optimal running time. We then discuss the use of
constrained-INC with maximum likelihood methods (or other computationally intensive but
highly accurate methods) to construct the subset trees.

Throughout this section, we denote dij to be the empirical CFN dissimilarity between
taxa i, j and Dij to be the underlying CFN model distance between taxa i, j defined
by the model tree (T,Θ). Given matrices d and D and positive real q, we define the
ε(q) = max{|dij −Dij | : dij ≤ q or Dij ≤ q}.

We now describe the fast incremental tree-growing method (INC) that inserts taxa in a
specific order and outputs a binary tree. We note that the structure of our method is similar
to that of HGT+FP. INC achieves a faster runtime when compared to DCMNJ for two primary
reasons. First, our method simply requires a minimum spanning tree of our dissimilarity
matrix without the need to triangulate and compute maximal cliques, as well as iterate over
multiple thresholding values. Second, our method uses the spanning tree as a guide for an
incremental tree-growing method that runs in O(n2), as opposed to the slower runtimes
required by NJ techniques. Together, this algorithm runs in the optimal O(n2) time.

The input is the dissimilarity matrix d (which is based on computing CFN distances,
and so will converge to an additive matrix as the sequence length increases). We begin by
constructing the minimum spanning tree S of TG(d,∞) and use S during an incremental
tree growing procedure that inserts taxa one by one in an order such that the subgraph
induced by the inserted vertices is connected in S. We let q0 be the maximum distance of an
edge in S. We will show that by setting q = 8q0, we can develop a tree construction method
based on this threshold q that runs in polynomial time and is AFC. Specifically, we order
the vertices as follows.

Insertion Ordering: Choose an arbitrary leaf in S to be the starting vertex in the ordering.
Then, order the vertices according to order of traversal in a BFS (or DFS) from the starting
vertex.

We initialize our tree t by choosing the first three taxa according to our insertion ordering
and forming the three-leaf tree with an internal node that connects to all three taxa. Now
suppose we wish to add a vertex x into t. We will select the edge of t into which we add x by
performing a collection of “short quartet queries" (see [8, 9] for definition and discussion of
short quartets) at the different internal nodes of t, and then insert x into the edge that has
the highest support (in the best case, it “agrees" with each query). Note that this node query
insertion procedure was explored earlier in [3, 22] to produce a fast O(n logn) tree-growing
algorithm, but analyzed under a different model of quartet tree error than we use here and a
direct implementation of their model does not produce an AFC algorithm.

WABI 2018

8:6 New AFC Phylogeny Estimation Methods

Given an internal node u of t, because t is binary the removal of u splits t into three
non-empty vertex components t1, t2, t3 (with internal nodes included). Because the leaves of
t form a connected induced subtree of S, we can find some taxon ui in ti such that (ui, vi) is
an edge in S and vi ∈ V (t) \ ti is also a taxon, where V (t) is the vertex set of t.

I Definition 5. Let u be an internal node of a binary tree t and let u1, u2, u3 be leaves in
the three components of t upon removing u such that vi is not in the same component as ui

and there exists vi with (ui, vi) an edge in S. Then, for some choice of q, a quartet query on
{u1, u2, u3, x} is q-valid iff the d-diameter (maximum pairwise distance with respect to the
input matrix d) of {u1, u2, u3, x} is less than q. We use valid when q is clear from context.

By looking at all the valid queries and the corresponding quartet trees calculated using
the Four Point Method, we can choose an edge e in the tree t on which to add x that
maximizes the support for the placement; we then subdivide e and then make x adjacent to
the node created. To choose an edge, each valid short quartet query identifies some subset of
edges of t into which x should be placed. Specifically, we assign votes according to a valid
query as follows:

Vote Assignment: If the valid query on internal node u shows that ti and x should be on
the same side of the quartet using the Four Point Method, then all edges in the induced
subtree on ti ∪ u will receive a vote.

The support for an edge e is then the total number of votes it receives from all the short
quartets, and the edge that receives the highest number of votes wins. If there is a tie, then
one of the edges receiving the most votes is selected (randomly). However, for favorable
values of d and q, there will be a unique edge on which all queries agree, and so the algorithm
will correctly add x into t (in such a way that it agrees with the model tree T), and so
inductively the greedy algorithm will construct the model tree. In particular, we show that
for our choice of q = 8q0, if ε(q) < f/2, then there is always a unique edge chosen by this
voting procedure, and furthermore that unique edge is the correct edge. Hence, this greedy
algorithm will correctly reconstruct the true tree.

t = INC(d)

1. Calculate a spanning tree S of T G(d, ∞).
2. Set q = 8q0, where q0 is the maximum edge length of S.
3. Find the insertion ordering according to a BFS of S.
4. Initialize t as the three-leaf tree on the first three taxa in the ordering.
5. Insert each taxon according to the ordering on the edge with the most votes from valid queries.
6. Return the resulting tree t.

I Theorem 6. Let d be a dissimilarity matrix, D an additive matrix defining a model tree T
with edge weights w : E(T) → R+, and q = 8q0, where q0 is the maximum distance in the
minimum spanning tree of TG(d,∞). Let f be the length of the shortest internal edge in T
and suppose ε(q) < f/2 and q0 ≥ f/2, then INC(d) returns T .

Proof. We proceed by induction on the size of T . Our claim holds when T is size 3, since
there is only one such topology. Let t be the tree maintained by INC before the insertion of
the last taxon x according to our insertion ordering. By induction, t must have the correct
topology. It suffices to show that valid queries can determine the accurate placing of x.
Assume that the correct location on which to place x is e = (u, v) of t. Note that when

Q. Zhang, S. Rao, and T. Warnow 8:7

ε(q) < f/2, all valid node queries will return the correct quartet tree. Therefore, e will
receive all possible votes.

To show that all other edges will miss at least one vote, it suffices to show that node
queries are valid at u, v because all other edges will miss a vote from one of the two such
queries, confirming that x is inserted at e (if one of u, v is a leaf vertex, the same conclusion
is achieved).

We will show that a node query at u is valid; a similar argument is done for v. Let
u1, u2, u3 be selected upon the deletion of u with their corresponding vi. First, for all i,
D(ui, vi) ≤ q0 + f/2 since d(ui, vi) ≤ q0 and ε(q) ≤ f/2. Then, since vi ∈ V \ ti and t is the
correct tree topology, D(ui, u) ≤ D(ui, vi) ≤ q0 + f/2, where D is the true distance matrix
and u is the corresponding internal node in T .

Next, we claim that D(x, u) ≤ 2q0 + f and together we will have concluded that
{u1, u2, u3, x} is a quartet of d-diameter at most 3q0 + 2f since by triangle inequality,
we deduce {u1, u2, u3, x} is of D-diameter 3q0 + 3f/2 and so the d-diameter is bounded at
3q0 + 2f ≤ 7q0 ≤ q, proving validity.

For the last claim, since x is within q0 of some leaf x′ in t, D(x, x′) ≤ d(x, x′) + f/2 ≤
q0 + f/2. Since the path x to x′ must pass through u or v in T and e = (u, v) is the correct
edge insertion location, we conclude that min(D(x, u), D(x, v)) ≤ q0 + f/2.

If D(x, u) ≤ q0 + f/2, then our claim follows (we automatically get D(x, u) ≤ 2q0 + f).
Else, D(x, v) ≤ q0 +f/2. Since v ∈ V (t3), D(x, u) ≤ D(x, v)+D(u, v) ≤ q0 +f/2+D(u, v) ≤
q0 + f/2 +D(u, u3) ≤ q0 + f/2 + q0 + f/2 ≤ 2q0 + f .

Therefore, if the correct edge is u, v, then the query at u votes against all edge placements
for x in t1∪ t2, and symmetrically for v. Hence all other edges will miss at least one vote. J

I Theorem 7. Given the n× n dissimilarity matrix d and a given q, INC(d) can be imple-
mented in O(n2).

Proof. It suffices to show that as we grow our tree t, each insertion step can be implemented
to take O(n) time. First, each internal node, when initialized due to an inserted taxon, can
store the necessary vertices u1, u2, u3 and that can be done in O(n) time. Each node query
is O(1), so in total the |V (t)| node queries take O(n) time.

The only possible difficulty is efficiently finding the edge with the most votes. A naive
implementation will lead to an O(n3) runtime. For any edge e = (u, v) on the tree, let
n(e) denote the total number of votes that e has. Note that if e, e′ are adjacent edges in t
with common vertex u , then n(e)− n(e′) can be determined by simply looking at the short
quartet query at u. Specifically, let e = (u, v) and e′ = (u, v′) be adjacent edges at vertex
u. If the query at u was invalid or it showed that x should be in tj with v, v′ 6∈ tj , then
n(e)− n(e′) = 0. Otherwise, if the query returned tj with v ∈ tj , then n(e)− n(e′) = 1; a
similar argument shows that if v′ ∈ tj then n(e)− n(e′) = −1. Therefore, by using this local
property, we can calculate n(e) + C for some constant C in O(n) time by performing BFS
starting from any leaf of the tree. The BFS then simply returns the edge with the highest
score. J

I Theorem 8. [2](Azuma’s Inequality) Suppose X = (X1, X2, ..., Xk) are independent random
variables taking values in any set S, and let L : Sk → R be any function that satisfies the
condition: |L(u)− L(v)| ≤ t whenever u and v differ in just one coordinate. Then,

P (|L(X)− E[L(X)]| ≥ λ) ≤ 2 exp(− λ2

2t2k).

WABI 2018

8:8 New AFC Phylogeny Estimation Methods

I Theorem 9. For k = Ω(ln(n)e4q

f2), with high probability, we have ε(q) < f/2 for all
q = O(g logn). Furthermore, if q0 is the minimum value of q such that TG(d, q) is connected,
then q0 = O(g logn). and q0 ≥ f/2.

Proof. To show that ε(q) < f/2, we must show that |Dij − dij | < f/2 when Dij < q or
dij < q. First, if Dij < q we show that k = Ω(ln(n)e2q

f2) suffices to show |Dij − dij | < f/2
with high probability. We express our probability of failure as:

P (|Dij − dij | ≥ f/2) = P (| log(1− 2Hij

1− 2Eij
)| ≥ f)

≤ P ((1− 2Eij)e−f ≥ 1− 2Hij) + P (1− 2Hij ≥ (1− 2Eij)ef)

The first expression can be written as:

P (Hij − Eij ≥
1
2(1− e−f)(1− 2Eij)) ≤ P (Hij − Eij ≥

1
2(1− e−f)e−2Dij)

≤ 2 exp(−Ω(k(1− e−f)2e−2q))
≤ 2 exp(−Ω(lnn))

The second line follows from Azuma’s with t = 1/k. Similarly, the second expression is
equivalent to:

P (Eij −Hij ≥
1
2(ef − 1)(1− 2Eij)) ≤ P (Eij −Hij ≥

1
2(ef − 1)e−2Dij)

≤ 2 exp(−Ω(k(ef − 1)2e−2q))
≤ 2 exp(−Ω(lnn))

Next, if dij < q, then we show that Dij < 2q + 1 with high probability and then apply the
previous result with q′ = 2q + 1. First, if we let rij = Dij − q, then by simple algebra our
probability that dij < q when rij > q + 1 is bounded by

P (dij < q) = P (Dij − dij > Dij − q)

= P (−1
2 log(1− 2Eij

1− 2Hij
) > Dij − q)

= P (1− 2Hij > e2rij (1− 2Eij))

= P (Eij −Hij >
1
2(e2rij − 1)e−2Dij)

= P (Eij −Hij >
1
4e

2rij−2Dij)

≤ 2 exp(−Ω(ke−2q))
≤ 2 exp(−Ω(lnn))

The fourth to fifth line follows since e2rij − 1 > 1
2e

2rij whenever rij > 1. Therefore, we
conclude our claim that ε(q) < f/2 with high probability.

We now show that q0 = O(g logn). Note that in our model tree, since g is the maximum
length of an edge in a binary tree with n leaves, it follows that TG(D,O(g logn)) is connected.
By our previous part, we know that |dij − Dij | < f/2 for all edges in TG(D,O(g logn)).
Therefore, we conclude that TG(d,O(g logn)) is also connected, and so q0 = O(g logn).

Lastly, we show q0 ≥ f/2. Consider all edges in the minimum spanning tree of TG(d,∞).
These edges have true length (in D) at least f and by our previous part the length of the
edges in the minimum spanning tree deviate from the true length (as defined by the model
tree) by at most f/2 with high probability. Thus, we conclude that q0 ≥ f/2. J

Q. Zhang, S. Rao, and T. Warnow 8:9

I Theorem 10. INC is absolute fast converging for the CFN model and takes O(n2) time
(assuming distances are precomputed).

Proof. All we need to establish is that for every triplet ε, f, g with 0 < f < g <∞ and ε > 0,
there is a polynomial p(n) such that for all model trees (T,Θ) in CFNf,g, given sequences of
length at least p(n) generated by (T,Θ) and empirical CFN dissimilarity matrix d computed
on these sequences, the tree returned by INC(d) is the model tree T with probability at least
1− ε.

Let q0 be the maximum edge length on the minimum spanning tree. By Theorem 9,
with high probability, we know q0 = O(g logn) and thus q = 8q0 = O(g logn). Thus, when
k = Ω(ln(n)e4q/f2) = poly(n), we have ε(q) < f/2. Furthermore, q0 ≥ f/2. Therefore, by
Theorem 12, the insertion algorithm will return the model tree T . Hence, INC is absolute
fast converging for the CFN model.

Finally, given the dissimilarity matrix, the running time to compute the constraint
trees andthe minimum spanning tree and to run the insertion algorithm are all O(n2) by
Theorem 7. J

The method we described runs in O(n2) time and is AFC. As shown by [11], any algorithm
that reconstructs the true tree with high probability and uses distance calculations as its
only source of information about the phylogeny on sequences of length O(poly logn) will
have Ω(n2) runtime, up to logarithmic factors. Hence, our runtime is optimal.

4 Boosting INC using constraint trees

We show how INC can be modified to take an arbitrary set of disjoint constraint trees, and
we prove that when the constraint trees are constructed using an AFC method then the
result is also AFC. We present several variants of this method: one that optimizes speed
while still guaranteeing that the resultant algorithm is AFC, and other AFC variants that
are designed for improved accuracy but with an increase in running time.

4.1 Constrained INC
The input to the constrained version of INC includes a set of leaf-disjoint trees. Therefore,
the constraint set is compatible (i.e., a compatibility tree exists). We will describe a
straightforward modification to INC so that it never violates the topological information in
the constraint trees, by which we mean only that the final output tree is required to induce
each constraint tree, when restricted to that specific set of leaves. Thus, the constraint trees
are not required to be clades in the output tree.

Before proceeding, we define the induced tree topology, tA, on a tree t and a subset
of leaves A as follows. Consider the minimal subtree of t that contains the leaves A, and
then suppress all nodes of degree two (i.e., replace all maximal paths of degree two nodes by
a single edge). For an edge e ∈ tA, note that its endpoints correspond to vertices in t, and
that e corresponds to a (possibly length 1) path in t; we denote the corresponding endpoints
of e as et(u) and et(v). For an induced tree tA, the component in t corresponding to
an edge e ∈ tA is the set of edges and vertices that can be reached by a walk starting from
et(u) and ending at et(v) without using et(u) or et(v) multiple times. Note this will be a
subgraph of t that includes et(u) and et(v) as leaves.

When working with constraint trees, we alter the insertion algorithm to account for the
constraints. Recall that the constraint trees are on disjoint sets of taxa. Thus, when inserting
a taxon, we identify the corresponding constraint tree tc that includes that new taxon. Let

WABI 2018

8:10 New AFC Phylogeny Estimation Methods

A be the taxa shared between tc and t and note that tAc = tA since the trees are consistent.
Thus, in tA∪{x}c , the taxon x can be viewed as being attached to some edge e in tA. The
eligible edges are in the component in t corresponding to e. We then simply run INC on the
component to find the desired edge of insertion.

4.2 INC-NJ
We continue by presenting the O(n2) INC-NJ method, which is AFC and uses neighbor joining
on carefully selected subsets to achieve this running time. Given the selected threshold q,
we take our threshold graph TG(d, q) and compute a greedy disjoint clique decomposition,
such that each clique is of size O(

√
n). This is done by a simple ball-growing procedure

that is interrupted when the ball includes more than O(
√
n) vertices; it is easy to see this

takes O(n2) time. Next, we run NJ on each of these clique; this produces a set of neighbor
joining subset trees that will serve as our constraint trees. Note that since the subsets are
disjoint, the subset trees are compatible (in that a compatibility supertree exists). Finally, if
ε(q) < f/2, then the following theorem guarantees that all constraint trees produced by our
technique are correct. Furthermore, since NJ applied to each clique of size O(

√
n) takes at

most O(n1.5) time, our total runtime over all cliques is O(n2).

I Theorem 11. [From [1]] Neighbor Joining (NJ) will recover the true tree T whenever
the input matrix d satisfies L∞(d,D) < f/2, where D is an additive matrix defining an
edge-weighted version of the true tree T and f is the shortest internal branch length in T .
Furthermore, the runtime is O(n3).

I Theorem 12. INC-NJ is AFC and takes O(n2) (assuming distances are precomputed).

Proof. Follows directly from combining Theorem 10 and 11. J

4.3 Boosting INC using other constraint trees
The version of constrained-INC we presented in the previous section achieves an optimal
running time, but is based on obtaining constraint trees using neighbor joining on small
subsets. However, we could modify the decomposition to produce larger subsets and thus
take advantage of the likely improvement in accuracy obtained by using neighbor joining on
these larger subsets to produce the constraint trees. This would still produce a polynomial
time algorithm, but one with a higher (and hence suboptimal) running time.

Another variation would be to use other phylogeny estimation methods besides neighbor
joining. In particular, maximum likelihood could be used to construct the constraint trees. As
shown in [19], maximum likelihood under the CFN model is AFC. Hence, running maximum
likelihood on any subsets of the taxon set will provide correct subset trees from polynomial
length sequences with high probability. Hence, the same approach we describe for use with
neighbor joining (where that subset trees are computed using neighbor joining) can be
modified to be used with maximum likelihood, and will be an AFC method. Furthermore,
because maximum likelihood is AFC, we can afford to use maximum likelihood on arbitrarily
large subsets, without losing the overall AFC property (as we show below); the only negative
impact of doing this would be running time, since maximum likelihood is NP-hard [16] and
heuristics for maximum likelihood are computationally more intensive than neighbor joining.

I Theorem 13. If the disjoint constraint trees are estimated by a method that is AFC under
the CFN model, then constrained INC with the estimated constraint trees is AFC under the
CFN model. Hence, using maximum likelihood to produce constraint trees and combining the
constraint trees using INC is AFC under the CFN model.

Q. Zhang, S. Rao, and T. Warnow 8:11

Proof. Let Φ be an AFC method, and fix ε, f, g and some CFN model tree (T,Θ). Hence,
we can find a polynomial p1(n) (where the degree may depend on f, g) such that given
sequences of length p1(n) guarantees that with probability at least 1− ε, all the constraint
trees computed using Φ are correct. Then, by Theorem 10, we can find p2(n) (where the
degree may depend on f, g) such that INC returns the model tree with probability at least
1− ε given sequences of length p2(n). Hence, given sequences of length max{p1(n), p2(n)},
constrained INC returns the model tree with probability at least 1− 2ε. Thus, constrained
INC is AFC. By [19], maximum likelihood is AFC. Hence, using INC with disjoint maximum
likelihood constraint trees is AFC, for all ways of decomposing the dataset into disjoint
subsets. J

5 Discussion

This paper presents a novel algorithmic technique for constructing phylogenetic trees, which
allows statistically consistent and highly accurate methods to be used on subsets of the taxa
in a divide-and-conquer framework. We proved that several of these variants are absolute fast
converging (AFC) under the CFN sequence evolution model, and that some of these achieve
O(n2) time (where n is the number of sequences) once the dissimilarity matrix relating the
sequences is computed. Although this theory was presented for the CFN model, the extension
to the Jukes-Cantor DNA sequence evolution models is trivial (i.e., just substitute the CFN
distances by Jukes-Cantor distances), and equally simple for more complex models, provided
that statistically consistent distance estimators exist (see discussion in [23]). Fortunately,
all the standard sequence evolution models, including the General Markov Model [21], have
such distance estimators. More generally, tree estimation methods could be scaled to large
datasets using this approach, provided that it is possible to compute a matrix of pairwise
distances that is guaranteed to converge to an additive matrix as the amount of data increases.
The goal of this work was improved empirical performance, compared to prior AFC methods.
Thus, additional work is needed to evaluate the empirical benefits of this approach in these
various applications.

References
1 Kevin Atteson. The performance of neighbor-joining methods of phylogenetic reconstruc-

tion. Algorithmica, 25(2-3):251–278, 1999.
2 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathem-

atical Journal, Second Series, 19(3):357–367, 1967.
3 Daniel G Brown and Jakub Truszkowski. Fast error-tolerant quartet phylogeny algorithms.

In Annual Symposium on Combinatorial Pattern Matching, pages 147–161. Springer, 2011.
4 Daniel G Brown and Jakub Truszkowski. Fast phylogenetic tree reconstruction using

locality-sensitive hashing. In Workshop on Algorithms for Bioinformatics (WABI), pages
14–29. Springer, 2012.

5 Peter Buneman. A note on the metric properties of trees. Journal of Combinatorial Theory
(B), 17:48–50, 1974.

6 James A Cavender. Taxonomy with confidence. Mathematical biosciences, 40(3-4):271–280,
1978.

7 Miklós Csűrös. Fast recovery of evolutionary trees with thousands of nodes. Journal of
Computational Biology, 9(2):277–297, 2002.

8 Peter L. Erdös, Michael A. Steel, Laszlo Székely, and Tandy Warnow. A few logs suffice to
build (almost) all trees (i). Random Structures and Algorithms, 14:153–184, 1999.

WABI 2018

8:12 New AFC Phylogeny Estimation Methods

9 Peter L. Erdös, Michael A. Steel, Laszlo Székely, and Tandy Warnow. A few logs suffice to
build (almost) all trees (ii). Theoretical Computer Science, 221:77–118, 1999.

10 Daniel Huson, Scott Nettles, Laxmi Parida, Tandy Warnow, and Shibu Yooseph. The disk-
covering method for tree reconstruction. In Algorithms and Experiments (ALEX), pages
62–75, 1998.

11 Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolution-
ary tree reconstruction. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 444–453. Society for Industrial and Applied Mathematics, 2003.

12 Radu Mihaescu, Cameron Hill, and Satish Rao. Fast phylogeny reconstruction through
learning of ancestral sequences. Algorithmica, 66(2):419–449, 2013.

13 Elchanan Mossel. Phase transitions in phylogeny. Transactions of the American Mathem-
atical Society, 356(6):2379–2404, 2004.

14 Luay Nakhleh, Usman Roshan, Katherine St. John, Jerry Sun, and Tandy Warnow. Design-
ing fast converging phylogenetic methods. Bioinformatics, 17(suppl_1):S190–S198, 2001.

15 Jerzy Neyman. Molecular studies of evolution: a source of novel statistical problems. In
Statistical decision theory and related topics, pages 1–27. Elsevier, 1971.

16 Sébastien Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood
is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(1):92–
94, 2006.

17 Sébastien Roch. Sequence-length requirement for distance-based phylogeny reconstruction:
Breaking the polynomial barrier. In Proc. of the IEEE Symposium on Foundations of
Computer Science (FOCS), pages 729—-738, 2008.

18 Sébastien Roch. Towards extracting all phylogenetic information from matrices of evolu-
tionary distances. Science, 327(5971):1376–1379, 2010.

19 Sébastien Roch and Allan Sly. Phase transition in the sample complexity of likelihood-based
phylogeny inference. Probability Theory and Related Fields, 169(1):3–62, Oct 2017.

20 Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.

21 Michael A. Steel. Recovering a tree from the leaf colourations it generates under a Markov
model. Applied Mathematics Letters, 7(2):19 – 23, 1994.

22 Jakub Truszkowski, Yanqi Hao, and Daniel G Brown. Towards a practical O(n log n)
phylogeny algorithm. Algorithms for Molecular Biology, 7(1):32, 2012.

23 Tandy Warnow. Computational Phylogenetics: An introduction to designing methods for
phylogeny estimation. Cambridge University Press, 2018.

24 Tandy Warnow. Supertree construction: Opportunities and challenges. arXiv:1805.03530
[q-bio.PE], 2018.

25 Tandy Warnow, Bernard M.E. Moret, and Katherine St. John. Absolute convergence: true
trees from short sequences. In Proceedings of SODA, pages 186–195. ACM, 2001.

An Average-Case Sublinear Exact Li and Stephens
Forward Algorithm

Yohei M. Rosen1

University of California, Santa Cruz, California
New York University School of Medicine, New York, New York
yohei@ucsc.edu

https://orcid.org/0000-0002-3870-2169

Benedict J. Paten
University of California, Santa Cruz, California
bpaten@ucsc.edu

Abstract
Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for
computationally tractable probability calculations using the forward algorithms as long as the
representative reference panel used in the model is sufficiently small. Specifically, the monoploid
Li and Stephens model and its variants are linear in reference panel size unless heuristic approx-
imations are used. However, sequencing projects numbering in the thousands to hundreds of
thousands of individuals are underway, and others numbering in the millions are anticipated.

To make the Li and Stephens forward algorithm for these datasets computationally tractable,
we have created a numerically exact version of the algorithm with observed average case O(nk0.35)
runtime in number of genetic sites n and reference panel size k. This avoids any tradeoff between
runtime and model complexity. We demonstrate that our approach also provides a succinct
data structure for general purpose haplotype data storage. We discuss generalizations of our
algorithmic techniques to other hidden Markov models.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms, Applied computing → Bioinformatics

Keywords and phrases Haplotype, Hidden Markov Model, Forward Algorithm, Lazy Evaluation

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.9

Related Version https://doi.org/10.1101/322396

Supplement Material https://github.com/yoheirosen/sublinear-Li-Stephens/

Funding This work was supported by the National Human Genome Research Institute of the
National Institutes of Health under Award Number 5U54HG007990, the National Heart, Lung,
and Blood Institute of the National Institutes of Health under Award Number 1U01HL137183-01,
and grants from the W.M. Keck foundation and the Simons Foundation.

Acknowledgements We would like to thank Jordan Eizenga for his helpful discussions through-
out the development of this work.

1 Yohei Rosen was supported in part by a Howard Hughes Medical Institute Medical Research Fellowship.

© Yohei M. Rosen and Benedict J. Paten;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yohei@ucsc.edu
https://orcid.org/0000-0002-3870-2169
mailto:bpaten@ucsc.edu
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.9
https://doi.org/10.1101/322396
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

1 Introduction

Probabilistic models of haplotypes describe how variation is shared in a population. One
application of these models is to calculate the probability P (o|H) of a haplotype o given the
assumption that it is a member of a population represented by a reference panel of haplotypes
H. This computation has been used in estimating recombination rates [8], a problem of
interest in genetics and in medicine. It may also be used to detect errors in genotype calls.

Early approaches to haplotype modeling used coalescent [7] models which were accurate
but computationally complex, especially when including recombination. Li and Stephens
wrote the foundational computationally tractable haplotype model [8] with recombination.
Under their model, the probability P (o|H) can be calculated using the forward algorithm
for hidden Markov models. Generalizations of their model have been used for haplotype
phasing and genotype imputation. Most of these algorithms [10, 1, 14, 3, 12] use the forward
probabilities calculated as intermediate values in the forward algorithm.

1.1 The Li and Stephens model
Consider a reference panel H of k haplotypes sampled from some population. Each haplotype
hj ∈ H is a sequence (hj,1, . . . , hj,n) of alleles at a contiguous sequence 1, . . . , n of genetic
sites. Classically [8], the sites are biallelic, but the model extends to multiallelic sites. [11]

Consider an observed sequence of alleles o = (o1, . . . , on) representing another haplotype.
The monoploid Li and Stephens model (LS) [8] specifies a probability that o is descended
from the population represented by H. LS can be written as a hidden Markov model
wherein the haplotype o is assembled by copying (with possible error) consecutive contiguous
subsequences of haplotypes hj ∈ H.

I Definition 1 (Li and Stephens HMM). Define xj,i as the event that the allele oi at site i of
the haplotype o was copied from the allele hj,i of haplotype hj ∈ H. Take parameters

ρ∗i−1→i the probability of any recombination between sites i− 1 and i (1)
µi the probability of a mutation from one allele to another at site i (2)

and from them define the transition and recombination probabilities

p(xj,i|xj′,i−1) =
{

1− (k − 1)ρi if j = j′

ρi if j 6= j′
where ρi =

ρ∗i−1→i
k − 1 (3)

p(oi|xj,i) =
{

1− (A− 1)µi if oi = hj,i

µi if oi 6= hj,i
where A = number of alleles (4)

We will write µi(j) as shorthand for p(oi|xj,i). We will also define the values of the initial
probabilities p(xj,1, o1|H) = µ1(j)

k .
Let P (o|H) be the probability that haplotype o was produced from population H. The

forward algorithm for hidden Markov models allows calculation of this probability in O(nk2)
time using an n× k dynamic programming matrix of forward states

pi[j] = P (xj,i, o1, . . . , oi|H) (5)

In practice, the Li and Stephens forward algorithm is O(nk). (See §3)

Y. M. Rosen and B. J. Paten 9:3

1.1.1 Li and Stephens like algorithms for large populations
The O(nk) time complexity of the forward algorithm is intractable for reference panels with
large size k. The UK Biobank has amassed k = 500, 000 array samples. Whole genome
sequencing projects, with a denser distribution of sites, are catching up. Major sequencing
projects with k = 100, 000 or more samples are nearing completion. Others numbering k in
the millions have been announced. These large population datasets have significant potential
benefits: They are statistically likely to more accurately represent population frequencies
and those employing genome sequencing can provide phasing information for rare variants.

In order to handle datasets with size k even fractions of these sizes, modern haplotype
inference algorithms depend on models which are simpler than the Li and Stephens model or
which sample subsets of the data. For example, the common tools Eagle-2, Beagle, HAPI-UR
and Shapeit-2 and -3 [10, 1, 14, 3, 12] either restrict where recombination can occur, fail to
model mutation, model long-range phasing approximately or sample subsets of the reference
panel.

Lunter’s “fastLS” algorithm [11] demonstrated that haplotypes models which include all
k reference panel haplotype could find the Viterbi maximum likelihood path in time sublinear
in k, using preprocessing to reduce redundant information in the algorithm’s input. However,
his techniques do not extend to the forward and forward-backward algorithms.

1.2 Our contributions
We have developed an arithmetically exact forward algorithm whose expected time complexity
is a function of the expected allele distribution of the reference panel. This expected time
complexity proves to be O(k0.35) in reference panel size. We have also developed a technique
for succinctly representing large panels of haplotypes whose size also scales as a sublinear
function of the expected allele distribution.

Our forward algorithm contains three optimizations, all of which might be generalized to
other bioinformatics algorithms. In (§2), we rewrite the reference panel as a sparse matrix
containing the minimum information necessary to directly infer all allele values. In (§3), we
define recurrence relations which are numerically equivalent to the forward algorithm but use
minimal arithmetic operations. In (§4), we delay computation of forward states using a lazy
evaluation algorithm which benefits from blocks of common sequence. Our methods apply to
other models which share certain properties with the monoploid Li and Stephens model.

2 Sparse representation of haplotypes

The forward algorithm to calculate the probability P (o|H) takes as input a length n vector
o and a k × n matrix of haplotypes H. Therefore time complexity better than O(nk) is
impossible unless there is preprocessing of its input. However, such preprocessing can be
amortized over many queries o.

2.1 Information content of a reference panel
Recall that (oi)ni=1 is the allele sequence of the emitted haplotype o. (§3) will show that
φi(oi), 1 ≤ i ≤ n defined below are sufficient data to calculate P (o|H).

I Definition 2. The information content φ of H for allele a at site i is defined as

φi(a) =
{
Matchi(a) :=

{
hj | hj,i = a

}
if |Matchi(a)| ≤ |NonMatchi(a)|

NonMatchi(a) :=
{
hj | hj,i 6= a

}
if |NonMatchi(a)| < |Matchi(a)|

(6)

WABI 2018

9:4 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

G

G
G
G
G
C

A

A
T
T
A
A

T

T
C
T
T
T

T

T
C
G
T
T

A

A
A
T
T
T

C

G
C
C
A
A

A

A
T
T
T
T

o

h
1

h
2

h
3

h
4

h
5

i) G

G
G
G
G
C

A

A
T
T
A
A

T

T
C
T
T
T

T

T
C
G
T
T

A

A
A
T
T
T

C

G
C
C
A
A

A

A
T
T
T
T

ii) G

h
5

A

h
2

h
3

T

h
2

T

h
2

h
3

A

h
1

h
2

C

h
2

h
3

A

h
1

iii)

Figure 1 i) Reference panel {h1, . . . , h5} with mismatches to haplotype o shown in yellow. ii)
Alleles at site i of elements of φi(oi) in black. iii) Vectors to encode φi(oi) at each site.

We will often abuse notation and refer to the hj ∈ φi(a) by their indices j alone.

2.2 Relation of information content to allele frequency spectrum
Our sparse representation of the haplotype reference panel benefits from the recent finding [6]
that the distribution over sites of minor allele frequencies is biased towards low frequencies2.

We will compute the expected time sum of the information content over all sites assuming
first that all sites are biallelic3. In the biallelic case φi(·) is always the set of haplotypes
displaying the minor allele at site i and the distribution of φi(a) is the allele frequency
spectrum.

I Lemma 3. Let E[f](k) be the expected mean minor allele frequency for k genotypes. Then

E
[

1
n

n∑
i=1

∣∣φi(a)
∣∣] = E[f](k) (7)

I Corollary 4. If O(E[f]) < O(k), then O(
∑
i

∣∣φi(a)
∣∣) < O(nk) in expected value.

2.3 Implementation
For biallelic sites, we store our φi’s using a length-n vector of length |φi| vectors containing
the indices j of the haplotypes hj ∈ φi and a length-n vector listing the major allele at each
site. (See Figure 1 panel iii) Random access by key i to iterators to the first elements of sets
φi(a) is O(1) and iteration across these φi(a) is linear in the size of φi(a). For multiallelic
sites, the data structure uses slightly more space but has the same speed guarantees.

Generating these data structures takes O(nk) time but is embarrassingly parallel in n.
Our “*.slls” data structure doubles as a succinct haplotype index which could be distributed
instead of a large vcf record. A vcf → slls conversion tool is found in our github repository.

Adding or rewriting a haplotype is constant time per site per haplotype unless this edit
changes which allele is the most frequent. This allows our algorithm to extend to uses of the
Li and Stephens model where one might want to dynamically edit the reference panel.

3 Efficient dynamic programming

We begin with the recurrence relation of the O(nk) Li and Stephens forward algorithm [8].
To establish our notation, recall that pi[j] = P (xj,i, o1, . . . , oi|H), that we write µi(j) as

2 We confirm these results in section 5.2
3 The generalization is trivial

Y. M. Rosen and B. J. Paten 9:5

shorthand for p(oi|xj,i) and that we have initialized p1[j] = p(xj,1, o1|H) = µ1(j)
k . For i > 1,

we may then write:

pi[j] = µi(j)
(
(1− kρi)pi−1[j] + ρiSi−1

)
(8)

Si =
k∑
j=1

pi[j] (9)

We will reduce the number of summands in (9) and reduce the number indices j for which
(8) is evaluated. This will use the information content defined in (§2.1).

I Lemma 5. The summation (9) is calculable using strictly fewer than k summands.

Proof. Suppose first that µi(j) = µi for all j. Then

Si =
k∑
j=1

pi[j] = µi

k∑
j=1

(
(1− kρi)pi−1[j] + ρiSi−1

)
(10)

= µi
(
(1− kρi)Si−1 + kρiSi−1

)
= µiSi−1 (11)

Now suppose that µi(j) = 1− µi for some set of j. We must then correct for these j. This
gives us

Si = µiSi−1 + 1− µi − µi
1− µi

∑
j where µi(j) 6=µi

pi[j] (12)

The same argument holds when we reverse the roles of µi and 1− µi. Therefore we can
choose which calculation to perform according to which involves a sum with fewer summands.
This gives us the following formula:

Si = αSi−1 + β
∑

j∈φi(oi)

pi[j] (13)

where

α = µi β = 1− 2µi
1− µi

if φi(a) = Matchi(a) (14)

α = 1− µi β = 2µi − 1
µi

if φi(a) = NonMatchi(a) (15)

J

I Lemma 6. If j /∈ φi(oi) and j /∈ φi−1(oi−1), then Si can be calculated without knowing
pi−1[j] and pi[j], as can pi[j′] for j′ 6= j.

Proof. By inspection of equation (13). J

I Corollary 7. The recurrences (9) and the minimum set of recurrences (8) needed to compute
(9) can be evaluated in O(|φ|) time, assuming that pi−1[j] have been computed ∀j ∈ φi(oi).

We address the assumption on prior calculation of the necessary pi−1[j]’s in section 4.

3.1 Time complexity
Recall that we defined E[f](k) as the expected mean minor allele frequency in a sample of
size k. By Corollary 7 the procedure in eq. (13) has expected time complexity O

(
nE[f](k)

)
.

WABI 2018

9:6 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

i)
pi - 1 [1]

pi - 1 [2]

pi - 1 [3]

pi - 1 [4]

pi [1]

pi [2]

pi [3]

pi [4]

Si - 1 ii)
pi [1]

pi [2]

pi [3]

pi [4]

Si - 1 Si

Figure 2 Using the example that at site i, φi(oi) = {h3}, we illustrate the number of arithmetic
operations used in i) the conventional O(nk) Li and Stephens HMM recurrence relations ii) Our
procedure specified in equation (13). Black lines correspond to arithmetic operations; operations
which cannot be parallelized over j are colored yellow.

4 Lazy evaluation of dynamic programming rows

Corollary 7 was conditioned on the assumption that specific forward probabilities had already
been evaluated. We will describe a second algorithm which performs this task efficiently by
avoiding arithmetic which will prove unnecessary at future steps.4

4.1 Eliminating redundant recurrence evaluations
The recurrence relations (8) are linear maps ri[j] : R→ R of the form

ri[j] : xj 7−→ αixj + βi (16)

Let us formalize this notion of recurrence relation as linear map:

I Definition 8. For any i1 < i2, define the update map ri1→i2 [j] = ri2 [j]◦ri2−1[j]◦· · ·◦ri1+1[j]

This update map is defined such that ri1→i2 [j](pi1 [j]) = pi2 [j].

I Lemma 9. At each i there exist only two unique maps among the ri[j].

Proof. Assume, without loss of generality, that φi(a) = Matchi(a). Then define µ◦i = µi
and µ•i = 1− µi. Then

r◦i (x) = µ◦i
(
(1− kρ)x+ ρSi) (17)

r•i (x) = µ•i
(
(1− kρ)x+ ρSi) = µ•i

µ◦i
r◦i (18)

J

If φi(a) 6= Matchi(a) then the same is true with the definitions of µ◦i and µ•i switched. This
lemma allows us to rewrite each ri1→i2 [j] as a binary vector of the form (◦, ◦, •, . . . , ◦, •, ◦).

We start with a sketch of the general concept of our algorithm
When Algorithm 1 is applied independently to all hj , the aggregate algorithm has O(nk)

time complexity, so we will share work between haplotypes j using equivalence classes
segregated by runs of homology.

4 This approach is known as lazy evaluation.

Y. M. Rosen and B. J. Paten 9:7

Algorithm 1: General approach to evaluating p(·)[j] for a given haplotype j.
Calculate p1[j] and set `← 1
for all sites i > 1 do

if r`→i[j] = (◦, ◦, . . . , ◦) then Do nothing
if r`→i[j] = (◦, ◦, . . . , •) then Evaluate pi[j] = r`→i(p`[j]) and set `← i

4.2 Equivalence classes of update map prefixes
Consider two different instances of the for loop in Algorithm 1, where the first is to evaluate
p(·)[j1] and the second to evaluate p(·)[j2]. Suppose that both are halted at the same step i,
and suppose that at this step, the marker variable ` is the same for both of them. Then the
sequences of hj1 and hj2 are identical between ` and i, and therefore

r`→i[j1] = r`→i[j2] = (◦, ◦, . . . , ◦)︸ ︷︷ ︸
i−`

(19)

Therefore at each step i, we can divide the haplotype indices j into equivalence classes J [`]
for which
1. The current marker variable ` is the same for all j in this equivalence class
2. The map r`→i[j] is the same for all j in this equivalence class
And so we only need to calculate r`→i[j] at most once per nonempty equivalence class J [`],
and for this map we write r`→i. The following lemma allows us to be even more efficient.

I Lemma 10. If i1 < i2 < i, then ri1→i = ri2→i ◦ ri1→i2

Lemma 10 allows us to calculate intermediate prefixes of the maps r`→i and extend them
at a later time. To make this concrete, suppose that we have an index π` (“prefix”) where
` < π` < i. Then we can evaluate the prefix r`→π`

of r`→i knowing that r`→i = rπ`→i ◦ r`→π`

can be evaluated at a later time.

4.3 The lazy evaluation algorithm
Our full lazy evaluation algorithm stores the following state data at each step. The algorithm
initialization is described in Algorithm 2 and the recurrence in Algorithm 3.

The maps j 7→ J [`] from haplotype to its equivalence class; ` defined as the index at
which p(·)[j] was most recently calculated
The maps ` 7→ π` mapping ` to the index π` for which a prefix r`→π`

of r`→i which was
most recently calculated
The maps ` 7→ r`→π`

mapping ` to the the prefix r`→π`
of r`→i which was most recently

calculated
The maps r◦1 , r◦2 , . . . , r◦i from which all maps r(·)→(·) are formed

Calculating a closed form expression for the time complexity of the lazy evaluation
algorithm 3 is not straightforward. It is easy to show that it bounded by O(nk), since
the first loop is worst-case O(k). However, we find experimentally, this lazy evaluation
component does not contribute to overall computational complexity. (See Fig. 6)

WABI 2018

9:8 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

Algorithm 2: Lazy evaluation initialization.
Input: reference panel size k and active rows φ1(o1)
All j /∈ φ1(o1) are assigned to equivalence class J [0]
r0→π0 ← r◦1 and π0 ← 1
All j ∈ φ1(o1) are assigned to equivalence class J [1]
r1→π1 ← identity and π1 ← 1

Algorithm 3: Lazy evaluation recurrence.
Input: active rows φi(oi) and previous lazy evaluation state

Jactive ← subset of
{
J [`]

}
`≤i consisting of equivalence classes containing at least one

index from the set of active indices φi(oi)
`min ← smallest ` such that J [`] ∈ Jactive
σi→i ← r◦i
for λ = i− 1 to `min do

σλ→i ← σλ+1→i ◦ r◦λ
For one ` with π` = λ, Jactive ← Jactive ∪ J [`]

for J [`] ∈ Jactive with π` 6= i do
r`→π`

← σπ`+1→i ◦ r`→π`
and π` ← i

for j ∈ φi do
`← index for which j ∈ J [`]
Evaluate pi[j] = r`→π`

(p`[j]) and reassign j to the new class J [i]
ri→πi

← identity and πi ← i

5 Results

5.1 Implementation
Our algorithm was implemented as a C++ library located at https://github.com/yoheirosen/
sublinear-Li-Stephens Details of Algorithm 3 will be found there.

We also implemented the linear time monoploid Li and Stephens forward algorithm in
C++ as to evaluate it on identical footing. Profiling was performed using a single Intel Xeon
X7560 core running at 2.3 GHz on a shared memory machine. Our reference panels H were
the phased haplotypes from the 1000 Genomes [2] phase 3 vcf records for chromosome 22
and subsamples thereof. Haplotypes o were randomly generated simulated descendants.

5.2 Minor allele frequency distribution for the 1000 Genomes dataset
We simulated haplotypes o of 1, 000, 000 bp length on chromosome 22 and recorded the sizes
of the sets φi(oi) for k = 5008. These data produced a mean |φi(oi)| of 59.9, which is 1.2%
of the size of k. We have plotted the distribution of |φi(oi)| which we observed from this
experiment in (Fig. 4). It is skewed toward low frequencies; the minor allele is unique at
71% of sites, and it is below 1% frequency at 92% of sites.

5.3 Comparison of our algorithm with the linear time forward algorithm
In order to compare the dependence of our algorithm’s runtime on haplotype panel size k
against that of the standard linear LS forward algorithm, we measured the CPU time per

https://github.com/yoheirosen/sublinear-Li-Stephens
https://github.com/yoheirosen/sublinear-Li-Stephens

Y. M. Rosen and B. J. Paten 9:9

Legend π ℓ last partial update map calculation time

rℓ → π ℓ current partial update map, initialized to identity

 equivalence class J[ℓ] containing index jpℓ[j]
σ

π ℓ + 1 → i suffix to update rℓ → π ℓ to rℓ → i

i) State before update

ii) Update for evaluation
 of pi [2] and pi [3]

ℓ = i - 4

ℓ = i - 3 : active

ℓ = i - 2 : active

ℓ = i - 1 pi - 1 [5]

π ℓ = i

pi - 2 [3]

pi - 3 [2]

pi - 3 [4]

pi - 4 [1]

σ
π ℓ + 1 → i

 = r◦

i - 1 ◦ r◦

i

σ = r◦

i

: rℓ → π ℓ

 = r◦

i - 2

also updated

ℓ = i - 4

ℓ = i - 3

ℓ = i - 1

ℓ = i

pi - 4 [1]

ℓ = i - 2 empty
pi - 1 [5]

pi - 3 [2] : rℓ → π ℓ = r◦

i - 2 ◦ r◦

i - 1 ◦ r◦

i
: rℓ → π ℓ = r◦

i
pi [3]

pi [4]

iii) State after update

ℓ = i - 4

ℓ = i - 3

ℓ = i - 2

ℓ = i - 1 pi - 1 [5]

pi - 2 [3]

pi - 3 [2]

pi - 3 [4]

π ℓ = i - 4

pi - 4 [1]

: rℓ → π ℓ = id

: rℓ → π ℓ = id

π ℓ = i - 2 π ℓ = i - 1

: rℓ → π ℓ
= id
: rℓ → π ℓ

 = r◦

i - 2

Figure 3 An illustration of the lazy evaluation states defined above as well as the steps of
Algorithm 3. In this case, we have a lazy evaluation state at i = 5, which is updated with
φi(oi) = {2, 4}. j = 3 is updated as well as specified by the first loop in the algorithm.

genetic site of both across a range of haplotype panel sizes from 30 to 5008. Figure 5 shows
this comparison. Observed time complexity of our algorithm was O(k0.35) as calculated from
the slope of the line of best fit to a log-log plot of time per site versus haplotype panel size.

For data points where we used all 1000 Genomes project haplotypes (k = 5008), on
average, time per site is 37 µs for our algorithm and 1308 µs for the linear LS algorithm.
For the forthcoming 100,000 Genomes Project, these numbers can be extrapolated to 251 µs
for our algorithm and 260,760 µs for the linear LS algorithm.

5.3.1 Lazy evaluation of dynamic programming rows

We also measured the time which our algorithm spent within its lazy evaluation subalgorithm.
In the average case, the time complexity of our lazy evaluation subalgorithm does not
contribute to the overall algebraic time complexity of the algorithm. (Fig. 6, right) The lazy
evaluation runtime also contributes minimally to the total actual runtime of our algorithm.
(Fig. 6, left)

WABI 2018

9:10 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

Figure 4 Biallelic site minor allele frequency distribution from 1000 Genomes chromosome 22.

Figure 5 Runtime per site as a function of haplotype reference panel size k for our algorithm
(blue) as compared to the classical linear time algorithm (black).

5.4 Sparse haplotype encoding

5.4.1 Generating our sparse vectors

We generated the haplotype panel data structures from (§2) using the vcf-encoding tool
vcf2slls which we provide. We built indices with multiallelic sites, which increases their
time and memory profile relative to the results in (§5.2) but allows direct comparison to vcf
records. Encoding of chromosome 22 was completed in 38 minutes on a single CPU core.
Use of M CPU cores will reduce runtime proportional to M .

5.4.2 Size of sparse haplotype index

In uncompressed form, our whole genome *.slls index for chromosome 22 of the 1000
genomes dataset was 285 MB in size versus 11 GB for the vcf record using uint16_t’s to
encode haplotype ranks. When compressed with gzip, the same index was 67 MB in size
versus 205 MB for the vcf record.

In the interest of speed (both for our algorithm and the O(nk) algorithm) our experiments
loaded entire chromosome sparse matrices into memory and stored haplotype indices as
uint64_t’s. This requires on the order of 1 GB memory for chromosome 22. For long
chromosomes or larger reference panels on low memory machines, algorithm can operate on
sequential chunks of the reference panel.

Y. M. Rosen and B. J. Paten 9:11

Figure 6 Time per site for the lazy evaluation subalgorithm (yellow) vs. the full algorithm (blue).

6 Discussion and significance

To the best of our knowledge, ours is the first forward algorithm for any haplotype model to
attain sublinear time complexity with respect to reference panel size. Our algorithms could
be incorporated into haplotype inference strategies by interfacing with our C++ library.
This opens the potential for tools which are tractable on haplotype reference panels at the
scale of current 100,000 to 1,000,000+ sample sequencing projects.

6.1 Applications which use individual forward probabilities
Our algorithm attains its runtime specifically for the problem of calculating the single overall
probability P (o|H, ρ, µ) and does not compute all nk forward probabilities. We can prove
that if m many specific forward probabilities are also required as output, and if the time
complexity of our algorithm is O(

∑
i

∣∣φi∣∣), then the time complexity of the algorithm which
also returns the m forward probabilities is O(

∑
i

∣∣φi∣∣+m).
In general, haplotype phasing or genotype imputation tools use stochastic traceback or

other similar sampling algorithms. The standard algorithm for stochastic traceback samples
states from the full posterior distribution and therefore requires all forward probabilities.
The algorithm output and lower bound of its speed is therefore O(nk). The same is true for
many applications of the forward-backward algorithm.

There are two possible approaches which might allow runtime sublinear in k for these
applications. Using stochastic traceback as an example, first is to devise an O(f(m)) sampling
algorithm which uses m = g(k) forward probabilities such that O(f ◦ g(k)) < O(k). The
second is to succinctly represent forward probabilities such that nested sums of the nk
forward probabilities can be queried from O(φ) < O(nk) data. This should be possible,
perhaps using the positional Burrows-Wheeler transform [5] as in [11], since we have already
devised a forward algorithm with this property for a different model in [13].

6.2 Generalizability of algorithm
The optimizations which we have made are not strictly specific to the monoploid Li and
Stephens algorithm. Necessary conditions for our reduction in the time complexity of the
recurrence relations are

I Condition 1. The number of distinct transition probabilities is bounded.

I Condition 2. The number of distinct emission probabilities is bounded.

WABI 2018

9:12 An Average-Case Sublinear Exact Li and Stephens Forward Algorithm

Favourable conditions for efficient time complexity of the lazy evaluation algorithm are

I Condition 1. The number of unique update maps added per step is bounded.

I Condition 2. The update map extension operation is composition of matrices of bounded
size. This can be generalized to a broad algebraic class5 of update operations provided that
they have bounded runtime.

The reduction in time complexity of the recurrence relations depends on the Markov property,
however we hypothesize that the delayed evaluation needs only the semi-Markov property.

6.2.1 Other haplotype forward algorithms
Our optimizations are of immediate interest for other haplotype copying models. The
following related algorithms have been explored without implementation.

I Example (Diploid Li and Stephens). We have yet to implement this model but expect average
runtime at least subquadratic in reference panel size k. We build on the statement of the
model and its optimizations in [9]. We have found the following recurrences which we believe
will work when combined with a system of lazy evaluation algorithms:

I Lemma 11. The diploid Li and Stephens HMM may be expressed using recurrences of the
form

pi[j1, j2] = αppi−1[j1, j2] + βp(Si−1(j1) + Si−1(j2)) + γpS (20)

which use on the intermediate sums

Si := αcSi−1 + βc
∑
j∈φi

Si−1(j) + γc
∑

(j1,j2)∈φ2
i

pi−1[j1, j2] O(|φi|2) (21)

Si(j) := αcSi−1 + βcSi−1(j) + γc
∑
j2∈φi

pi−1[j, j2] O(|φi|2) (22)

where α(·), β(·), γ(·) depend only on the diploid genotype oi.

Implementing and verifying this extension of our algorithm will be among our next steps.

I Example (Multipopulation Li and Stephens). [4] We maintain separate sparse haplotype
panel representations φAi (oi) and φBi (oi) and separate lazy evaluation mechanisms for the
two populations A and B. Expected runtime guarantees are similar.

This model, and versions for > 2 populations, will be important in large sequencing
cohorts (such as NHLBI TOPMed) where assuming a single related population is unrealistic.

I Example (More detailed mutation model). It may also be desirable to model distinct mutation
probabilities for different pairs of alleles at multiallelic sites. Runtime is worse than the
biallelic model but remains average case sublinear.

I Example (Sequence graph Li and Stephens analogue). In [13] we described a hidden Markov
model for a haplotype-copying with recombination but not mutation in the context of sequence
graphs. Assuming we can decompose our graph into nested sites then we can achieve a fast
forward algorithm with mutation.

I Example (Semi-Markovian recombination model). The lazy evaluation algorithm 3 may
efficiently allow time-since-recombination dependent transition probabilities.

5 Specifically, any collection of operations forming a category in the sense of category theory

Y. M. Rosen and B. J. Paten 9:13

References
1 Brian L Browning and Sharon R Browning. A unified approach to genotype imputation

and haplotype-phase inference for large data sets of trios and unrelated individuals. The
American Journal of Human Genetics, 84(2):210–223, 2009.

2 1000 Genomes Project Consortium et al. A global reference for human genetic variation.
Nature, 526(7571):68, 2015.

3 Olivier Delaneau, Jean-Francois Zagury, and Jonathan Marchini. Improved whole-
chromosome phasing for disease and population genetic studies. Nature methods, 10(1):5,
2013.

4 Peter Donnelly and Stephen Leslie. The coalescent and its descendants. arXiv preprint
arXiv:1006.1514, 2010.

5 Richard Durbin. Efficient haplotype matching and storage using the positional burrows–
wheeler transform (pbwt). Bioinformatics, 30(9):1266–1272, 2014.

6 Alon Keinan and Andrew G Clark. Recent explosive human population growth has resulted
in an excess of rare genetic variants. science, 336(6082):740–743, 2012.

7 John Frank Charles Kingman. The coalescent. Stochastic processes and their applications,
13(3):235–248, 1982.

8 Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recom-
bination hotspots using single-nucleotide polymorphism data. Genetics, 165(4):2213–2233,
2003.

9 Yun Li, Cristen J Willer, Jun Ding, Paul Scheet, and Gonçalo R Abecasis. Mach: using
sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic
epidemiology, 34(8):816–834, 2010.

10 Po-Ru Loh, Petr Danecek, Pier Francesco Palamara, Christian Fuchsberger, Yakir A
Reshef, Hilary K Finucane, Sebastian Schoenherr, Lukas Forer, Shane McCarthy, Gon-
calo R Abecasis, et al. Reference-based phasing using the haplotype reference consortium
panel. Nature genetics, 48(11):1443, 2016.

11 Gerton Lunter. Fast haplotype matching in very large cohorts using the li and stephens
model. bioRxiv, 2016. doi:10.1101/048280.

12 Jared O’Connell, Kevin Sharp, Nick Shrine, Louise Wain, Ian Hall, Martin Tobin, Jean-
Francois Zagury, Olivier Delaneau, and Jonathan Marchini. Haplotype estimation for
biobank-scale data sets. Nature genetics, 48(7):817, 2016.

13 Yohei Rosen, Jordan Eizenga, and Benedict Paten. Modelling haplotypes with respect to
reference cohort variation graphs. Bioinformatics, 33(14):i118–i123, 2017.

14 Amy L Williams, Nick Patterson, Joseph Glessner, Hakon Hakonarson, and David Reich.
Phasing of many thousands of genotyped samples. The American Journal of Human Ge-
netics, 91(2):238–251, 2012.

WABI 2018

http://dx.doi.org/10.1101/048280

External memory BWT and LCP computation for
sequence collections with applications
Lavinia Egidi1

University of Eastern Piedmont, Alessandria, Italy
lavinia.egidi@uniupo.it

https://orcid.org/0000-0002-9745-0942

Felipe A. Louza2

Department of Computing and Mathematics, University of São Paulo, Ribeirão Preto, Brazil
louza@usp.br

https://orcid.org/0000-0003-2931-1470

Giovanni Manzini3

University of Eastern Piedmont, Alessandria, Italy
IIT CNR, Pisa, Italy
giovanni.manzini@uniupo.it

https://orcid.org/0000-0002-5047-0196

Guilherme P. Telles4

Institute of Computing, University of Campinas, Campinas, Brazil
gpt@ic.unicamp.br

Abstract
We propose an external memory algorithm for the computation of the BWT and LCP array
for a collection of sequences. Our algorithm takes the amount of available memory as an input
parameter, and tries to make the best use of it by splitting the input collection into subcollections
sufficiently small that it can compute their BWT in RAM using an optimal linear time algorithm.
Next, it merges the partial BWTs in external memory and in the process it also computes the
LCP values. We show that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the
total length of the collection and maxlcp is the maximum LCP value. The experimental results
show that our algorithm outperforms the current best algorithm for collections of sequences with
different lengths and when the average LCP of the collection is relatively small compared to the
length of the sequences.

In the second part of the paper, we show that our algorithm can be modified to output two
additional arrays that, combined with the BWT and LCP arrays, provide simple, scan based,
external memory algorithms for three well known problems in bioinformatics: the computation
of the all pairs suffix-prefix overlaps, the computation of maximal repeats, and the construction
of succinct de Bruijn graphs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Burrows-Wheeler Transform, Longest Common Prefix Array, All pairs
suffix-prefix overlaps, Succinct de Bruijn graph, Maximal repeats

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.10

1 L.E. was partially supported by the University of Eastern Piedmont project Behavioural Types for
Dependability Analysis with Bayesian Networks

2 F.A.L. was supported by the grant #2017/09105-0 from the São Paulo Research Foundation (FAPESP)
3 G.M. was partially supported by PRIN grant 201534HNXC
4 G.P.T. acknowledges the support of CNPq

© Lavinia Egidi, Felipe A. Louza, Giovanni Manzini, and Guilherme P. Telles;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lavinia.egidi@uniupo.it
https://orcid.org/0000-0002-9745-0942
mailto:louza@usp.br
https://orcid.org/0000-0003-2931-1470
mailto:giovanni.manzini@uniupo.it
https://orcid.org/0000-0002-5047-0196
mailto:gpt@ic.unicamp.br
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 External memory LCP and BWT computation with applications

Supplement Material Source code: https://github.com/felipelouza/egap/

Acknowledgements We wish to thank the anonymous referees for useful observations; we appre-
ciated in particular an extensive comment on external memory models.

1 Introduction

A fundamental problem in bioinformatics is the ability to efficiently search into the billions
of DNA sequences produced by NGS studies. The Burrows Wheeler transform (BWT)
is a well known structure which is the starting point for the construction of compressed
indices for collection of sequences [24]. The BWT is often complemented with the Longest
Common Prefix (LCP) array since the latter makes it possible to efficiently emulate Suffix
Tree algorithms [14, 31]. The construction of such data structures is a challenging problem.
Although the final outcome is a compressed index, construction algorithms can be memory
hungry and the necessity of developing lightweight, i.e. space economical, algorithms was
recognized since the very beginning of the field [9, 26, 27]. When even lightweight algorithms
do not fit in RAM, one has to resort to external memory construction algorithms (see [13,
18, 19, 23] and references therein).

Although the space efficient computation of the BWT in RAM is well studied, and
remarkable advances have been recently obtained [2, 30], for external memory computation
the situation is less satisfactory. For collections of sequences, the first external memory
algorithm is the BCR algorithm described in [1] that computes the multi-string BWT for
a collection of total size n, performing a number of sequential I/Os proportional to nK,
where K is the length of the longest sequence in the collection. This approach is clearly
not competitive when the sequences have non homogeneous lengths, and it is far from the
theoretical optimal even for sequences of equal length. Nevertheless, the simplicity of the
algorithm makes it very effective for collections of relatively short sequences, and this has
become the reference tool for this problem. This approach was later extended [11] to compute
also the LCP values with the same asymptotic number of I/Os. When computing also the
LCP values, or when the input strings have different lengths, the algorithm uses O(m) words
of RAM, where m is the number of input sequences.

In this paper, we present a new external memory algorithm for the computation of the
BWT and LCP array for a collection of sequences. Our algorithm takes the amount of
available RAM as an input parameter, and tries to make the best use of it by splitting the
input into subcollections sufficiently small so that it can compute their BWT in internal
memory using an optimal linear time algorithm. Next, it merges the partial BWTs in
external memory and in the process it also computes the LCP values. Since the LCP values
are computed in a non-standard order, the algorithm is completed by an external memory
merge sort procedure that computes the final LCP array. We show that our algorithm
performs a number of sequential I/Os between O(n avelcp) and O(nmaxlcp), where avelcp
and maxlcp are respectively the average and the maximum Longest Common Prefix of the
input sequences. The experimental results show that our algorithm is indeed much faster
than BCR for collections of sequences when the average LCP is relatively small compared to
the length of the sequences.

To our knowledge, the only other known external memory algorithm for computing
the BWT and LCP arrays of a collection of sequences is the one recently proposed in [4]
that performs O(nmaxlcp) sequential I/Os and uses O(m+ k) words of RAM. We plan to
experimentally compare this algorithm to ours in the near future.

https://github.com/felipelouza/egap/

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:3

Another contribution of the paper, which follows from our main result, is the design of
simple external memory algorithms for three well known problems, namely: the computation
of maximal repeats [21, 34], the computation of the all pairs suffix-prefix overlaps [16, 33, 35],
and the construction of succinct de Bruijn graphs [3, 7, 8]. This is achieved using the BWT
and LCP arrays, together with two additional arrays that our algorithm can compute without
any asymptotic slowdown. The first one is the so called Document Array providing for each
suffix the ID of the sequence it belongs to; the second one is a bit array indicating whether
each suffix is a substring of the one immediately following it in lexicographic order. Our
external memory algorithms for these problems are derived from known internal memory
algorithms, but they process the input data in a single sequential scan. In addition, for
the problem of the all pairs suffix-prefix, we go beyond the recent solutions [5, 33, 35]
that compute all the overlaps, by computing only the overlaps above a certain length, still
spending constant time per reported overlap. Since the above problems often involve huge
datasets we believe it is important to provide external memory algorithms. To our knowledge,
only for the all pair suffix-prefix problem there exists an external memory algorithm that
computes all the overlaps given the BWT, LCP and Generalized Suffix Array of the input
collection [5, Algorithm 2].

2 Background

Let s[1, n] denote a string of length n over an alphabet Σ of size σ. As usual, we assume s[n]
is a special symbol (end-marker) not appearing elsewhere in s and lexicographically smaller
than any other symbol. We write s[i, j] to denote the substring s[i]s[i+ 1] · · · s[j]. If j ≥ n we
assume s[i, j] = s[i, n]. If i > j or i > n then s[i, j] is the empty string. Given two strings s1
and s2 we write s1 � s2 (s1 ≺ s2) to denote that s1 is lexicographically (strictly) smaller than
s2. We denote by LCP(s1, s2) the length of the longest common prefix between s1 and s2.

The suffix array sa[1, n] associated to s is the permutation of [1, n] giving the lexicographic
order of s’s suffixes, that is, for i = 1, . . . , n− 1, s[sa[i], n] ≺ s[sa[i+ 1], n].

The longest common prefix array lcp[1, n+ 1] is defined for i = 2, . . . , n by

lcp[i] = LCP(s[sa[i− 1], n], s[sa[i], n]); (1)

the lcp array stores the length of the longest common prefix (LCP) between lexicographically
consecutive suffixes. For convenience we define lcp[1] = lcp[n+ 1] = −1.

Let s1[1, n1], . . . , sk[1, nk] be such that s1[n1] = $1, . . . , sk[nk] = $k, where where $1 <

. . . < $k are k symbols not appearing elsewhere in s1, . . . , sk and smaller than any other
symbol. Let sa1···k[1, n] denote the suffix array of the concatenation s1 · · · sk of total length
n = Σkh=1nh. The multi-string BWT [11, 25] of s1, . . . , sk, denoted by bwt1···k[1, n], is defined
as

bwt1···k[i] =
{

sj [nj] if sa1···k[i] = Σj−1
h=1nh + 1

sj [sa1···k[i]− Σj−1
h=1nh − 1] if Σj−1

h=1nh + 1 < sa1···k[i] ≤ Σjh=1nh.
(2)

Essentially bwt1···k is a permutation of the symbols in s1, . . . , sk such that the position
in bwt1···k of si[j] is given by the lexicographic rank of its context si[j + 1, ni] (or si[1, ni]
if j = ni). Fig. 1 shows an example with k = 2. Notice that for k = 1, this is the usual
Burrows-Wheeler transform [10].

Given the suffix array sa1···k[1, n] of the concatenation s1 · · · sk, we consider the corres-
ponding LCP array lcp1···k[1, n] defined as in (1) (see again Fig. 1). Note that, for i = 2, . . . , n,
lcp1···k[i] gives the length of the longest common prefix between the contexts of bwt1···k[i]

WABI 2018

10:4 External memory LCP and BWT computation with applications

lcp bwt context
-1 b $1

0 c ab$1

2 $1 abcab$1

0 a b$1

1 a bcab$1

0 b cab$1

-1

lcp bwt context
-1 c $2

0 $2 aabcabc$2

1 c abc$2

3 a abcabc$2

0 a bc$2

2 a bcabc$2

0 b c$2

1 b cabc$2

-1

id lcp12 bwt12 context
1 -1 b $1

2 0 c $2

2 0 $2 aabcabc$2

1 1 c ab$1

2 2 c abc$2

1 3 $1 abcab$1

2 5 a abcabc$2

1 0 a b$1

2 1 a bc$2

1 2 a bcab$1

2 4 a bcabc$2

2 0 b c$2

1 1 b cab$1

2 3 b cabc$2

-1

Figure 1 LCP array and BWT for s1 = abcab$1 and s2 = aabcabc$2, and multi-string BWT
and corresponding LCP array for the same strings. Column id shows, for each entry of bwt12 =
bc$2cc$1aaaabbb whether it comes from s1 or s2.

and bwt1···k[i − 1]. We stress that all practical implementations use a single $ symbol as
end-marker for all strings to avoid alphabet explosion, but end-markers from different strings
are then sorted as described, i.e., on the basis of the index of the strings they belong to.

2.1 Computing multi-string BWTs
The gSACA-K algorithm [22], based on algorithm SACA-K [32], computes the suffix array
for a string collection. Given a collection of strings of total length n, gSACA-K computes
the suffix array for their concatenation in O(n) time using (σ + 1) logn additional bits (in
practice, only 2KB are used for ASCII alphabets). It is optimal for alphabets of constant size
σ = O(1). The multi-string bwt1···k of s1, . . . , sk can be easily obtained from the suffix array
as in (2). gSACA-K can compute also the lcp array lcp1···k still in linear time using only the
additional space for the lcp values.

2.2 Merging multi-string BWTs
The Gap algorithm [12], based on an earlier algorithm by Holt and McMillan [17], is a simple
procedure to merge multi-string BWTs. In its original formulation the Gap algorithm can
also merge LCP arrays, but in this paper we compute LCP values using a different approach
more suitable for external memory execution. We describe here only the main idea behind
Gap and refer the reader to [12] for further details.

Given k multi-string BWTs for disjoint subcollections, the Gap algorithm computes a
multi-string BWT for the whole collection. The computation does not explicitly need the
collection but only the multi-string BWTs to be merged. For simplicity in the following
we assume we are merging k single-string BWTs bwt1 = bwt(s1), . . . , bwtk = bwt(sk); the
algorithm does not change in the general case where the inputs are multi-string BWTs. Recall
that computing bwt1···k amounts to sorting the symbols of bwt1, . . . , bwtk according to the
lexicographic order of their contexts, where the context of symbol bwtj [i] is sj [saj [i], nj], for
j = 1, . . . , k.

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:5

The Gap algorithm works in successive iterations. After the h-th iteration the entries of
each bwtλ are sorted on the basis of the first h symbols of their context. More formally, the
output of the h-th iteration is a k-valued vector Z(h) containing nλ = |sλ| entries λ for each
λ = 1, . . . , k, such that the following property holds.

I Property 1. For λ1, λ2 ∈ {1, . . . , k}, λ1 < λ2, and i = 1, . . . , nλ1 and j = 1, . . . , nλ2 the i-
th λ1 precedes the j-th λ2 in Z(h) iff sλ1 [saλ1 [i], saλ1 [i]+h−1] � sλ2 [saλ2 [j], saλ2 [j]+h−1]. J

Following Property 1 we identify the i-th λ in Z(h) with bwtλ[i] so that Z(h) corresponds
to a permutation of bwt1···k. Property 1 is equivalent to state that we can logically partition
Z(h) into b(h) + 1 blocks

Z(h)[1, `1], Z(h)[`1 + 1, `2], . . . , Z(h)[`b(h) + 1, n] (3)

such that each block is either a singleton or corresponds to the set of bwt1···k symbols whose
contexts are prefixed by the same length-h string. Within each block, for λ1 < λ2, the symbols
of bwtλ1 precede those of bwtλ2 and the context of any symbol in block Z(h)[`j + 1, `j+1]
is lexicographically smaller than the context of any symbol in block Z(h)[`k + 1, `k+1] with
k > j. We keep explicit track of such blocks using a bit array B[1, n + 1] such that at
the end of iteration h it is B[i] 6= 0 if and only if a block of Z(h) starts at position i, i.e.
lcp1···k[i] ≤ h− 1. By Property 1, when all entries in B are nonzero, Z(h) describes how the
bwtj (j = 1, . . . , k) should be merged to get bwt1···k.

3 The eGap algorithm

At a glance, the eGap algorithm for computing the multi-string BWT and LCP array in
external memory works in three phases. First it builds multi-string BWTs for sub-collections
in internal memory, then it merges these BWTs in external memory and generates the LCP
values. Finally, it merges the LCP values in external memory.

3.1 Phase 1: BWT computation
Given a collection of sequences s1, s2, . . . , sk, we split it into sub-collections sufficiently small
that we can compute the multi-string SA for each one of them using the linear time internal
memory gSACA-K algorithm (Section 2). After computing each SA, Phase 1 writes each
multi-string BWT to disk in uncompressed form using one byte per character.

3.2 Phase 2: BWT merging and LCP computation
This part of the algorithm is based on the Gap algorithm described in Section 2 but it is
designed to work efficiently in external memory and it computes LCP values in addition to
merging the input (multi-string) BWTs. In the following we assume that the input consists
of k BWTs bwt1, . . . , bwtk of total length n over an alphabet of size σ. The input BWTs are
read from disk and never moved to internal memory. We denote by bwt1···k and lcp1···k the
output BWT and LCP arrays.

The algorithm initially sets Z(0) = 1n12n2 . . .knk and B = 10n−11. Since the context of
every symbol is prefixed by the same length-0 string (the empty string), initially there is a
single block containing all symbols. At iteration h the algorithm computes Z(h) from Z(h−1)

as follows. We define an array F [1, σ] such that F [c] contains the number of occurrences of
characters smaller than c in bwt1···k. F partitions Z(h) into σ buckets, one for each symbol.
Using Z(h−1) we scan the partially merged BWT, and whenever we encounter the BWT

WABI 2018

10:6 External memory LCP and BWT computation with applications

character c coming from bwti, with i ∈ {1, . . . , k}, we store it in the next free position of
bucket c in Z(h); note that c is not actually moved, instead we write i in its corresponding
position in Z(h). Instead of using distinct arrays Z(0), Z(1), . . . we only use two arrays Zold

and Znew, that are kept on disk. At the beginning of iteration h it is Zold = Z(h−1) and
Znew = Z(h−2); at the end Znew = Z(h) and the roles of the two files are swapped. While
Zold is accessed sequentially, Znew is updated sequentially within each bucket, that is within
each set of positions corresponding to a given character. Since the boundary of each bucket is
known in advance we logically split the Znew file in buckets and write to each one sequentially.

The key to the computation of the LCP array by eGap is to exploit the bitvector B used by
Gap to mark the beginning of blocks. We observe that entry B[i] is set to 1 during iteration
h = lcp1···k[i] + 1, when it is determined that the contexts of bwt1···k[i] and bwt1···k[i − 1]
have a common prefix of length exactly h− 1 (and a new block is created). We introduce
an additional bit array Bx such that, at the beginning of iteration h, Bx[i] = 1 iff B[i] has
been set to 1 at iteration h− 2 or earlier. During iteration h, if B[i] = 1 we look at Bx[i].
If Bx[i] = 0 then B[i] has been set at iteration h− 1: thus we output to a temporary file
Fh−2 the pair 〈i, h− 2〉 to record that lcp1···k[i] = h− 2, then we set Bx[i] = 1 so no pair for
position i will be produced in the following iterations. At the end of iteration h, file Fh−2
contains all pairs 〈i, lcp1···k[i]〉 with lcp[i] = h− 2; the pairs are written in increasing order of
their first component, since B and Bx are scanned sequentially. These temporary files will
be merged in Phase 3.

As proven in [12, Lemma 7], if at iteration h of the Gap algorithm we set B[i] = 1, then
at any iteration g ≥ h + 2 processing the entry Z(g)[i] will not change the arrays Z(g+1)

and B. Since the roles of the Zold and Znew files are swapped at each iteration, and at
iteration h we scan Zold = Z(h−1) to update Znew from Z(h−2) to Z(h), we can compute
only the entries Z(h)[j] that are different from Z(h−2)[j]. In particular, any range [`,m]
such that Bx[`] = Bx[`+ 1] = · · · = Bx[m] = 1 can be added to a set of irrelevant ranges
that the algorithm may skip in successive iterations (irrelevant ranges are defined in terms
of the array Bx as opposed to the array B, since before skipping an irrelevant range we
need to update both Zold and Znew). We read from one file the ranges to be skipped at the
current iteration and simultaneously write to another file the ranges to be skipped at the
next iteration (note that irrelevant ranges are created and consumed sequentially). Since
skipping a single irrelevant range takes O(k+ σ) time, an irrelevant range is stored only if its
size is larger than a given threshold t and we merge consecutive irrelevant ranges whenever
possible. In our experiments we used t = max(256, k + σ). In the worst case the space for
storing irrelevant ranges could be O(n) but in actual experiments it was always less than
0.1n bytes.

As in the Gap algorithm, when all entries in B are nonzero, Zold describes how the
BWTs bwtj (j = 1, . . . , k) should be merged to get bwt1···k, and a final sequential scan of
the input BWTs along with Zold allows to write bwt1···k to disk, in sequential order. Our
implementation can merge at most 27 = 128 BWTs at a time because we use 7 bits to store
each entry of Zold and Znew. These arrays are maintained on disk in two separate files; the
additional bit of each byte are used to keep the current and the next copy of B. The bit
array Bx is stored separately in a file of size n/8 bytes. To merge of a set of k > 128 BWTs
we split the input in subsets of cardinality 128 and merge them in successive rounds. We
have also implemented a semi-external version of the merge algorithm that uses n bytes of
RAM. The i-th byte is used to store Zold[i] and Znew[i] (3 bits each), B[i] and Bx[i].

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:7

3.3 Phase 3: LCP merging
At the end of Phase 2 all LCP-values have been written to the temporary files Fh on disk
as pairs 〈i, lcp[i]〉. Each file Fh contains all pairs with second component equal to h in
order of increasing first component. The computation of the LCP array is completed using
a standard external memory multiway merge [20, ch. 5.4.1] of maxlcp sorted files, where
maxlcp = maxi(lcp1···k[i]) is the largest LCP value.

3.4 Analysis
During Phase 1, gSACA-K computes the suffix array for a sub-collection of total length m
using 9m bytes. If the available RAM is M , the input is split into subcollections of size
≈M/9. Since gSACA-K runs in linear time, if the input collection has total size n, Phase 1
takes O(n) time overall.

A single iteration of Phase 2 consists of a complete scan of Z(h−1) except for the irrelevant
ranges. Since the algorithm requires maxlcp iterations, without skipping the irrelevant ranges
the algorithm would require maxlcp sequential scans of O(n) items. Reasoning as in [12,
Theorem 8] we get that by skipping irrelevant ranges the overall amount of data directly
read/written by the algorithm is O(n avelcp) items where avelcp is the arithmetic average
of the entries in the final LCP array. However, if we reason in terms of disk blocks, every
time we skip an irrelevant range we discard the current block and load a new one (unless
the beginning of the new relevant range is inside the same block, in that case skipping
the irrelevant range does not save any I/O). We can upper bound this extra cost, with
an overhead of O(1) blocks for each irrelevant range skipped. Summing up, assuming the
total number of skipped ranges is Ir and that each disk block consists of S words, the I/O
complexity of Phase 2 is O(Ir+n avelcp log k/(S logn)) block I/Os, where k is the number of
input BWTs. Although the preliminary experiments in Section 4 suggest that in practice Ir
is small, for simplicity and uniformity with the previous literature we upper bound the cost
of Phase 2 with O(nmaxlcp) sequential I/Os, (corresponding to O(nmaxlcp log k/(S logn))
block I/Os). As a future work, we plan to do a detailed theoretical and experimental analysis
of the impact of skipping irrelevant ranges.

Phase 3 takes O(dlogK maxlcpe) rounds; each round merges K LCP files by sequen-
tially reading and writing O(n) bytes of data. The overall cost of Phase 3 is therefore
O(n logK maxlcp) sequential I/Os. In our experiments we used K = 256; since in our tests
maxlcp < 216 two merging rounds were always sufficient.

The above analysis suggests that Phase 2 is the most expensive phase of the eGap
algorithm. Indeed, in our experiments we found that Phase 2 always took at least 95% of
the overall running time.

4 Experiments

In this section we report some preliminary experiments on the eGap algorithm. Testing
external memory algorithms is extremely time consuming since, to make a realistic external
memory setting, one has to use an amount of RAM smaller than the size of the data. If more
RAM is available, even if the algorithm is supposedly not using it, the operating system will
use it to temporary store disk data and the algorithm will be no longer really working in
external memory. This phenomenon will be apparent also from our experiments. For this
reasons we used datasets of size 8GB, reported in Table 1, and a machine with 32GB of RAM
but reduced at boot time to 1GB, to simulate input data much larger than the available

WABI 2018

10:8 External memory LCP and BWT computation with applications

Table 1 Datasets used in our experiments. shortreads are DNA reads from human genome5

trimmed to length 100. longreads are Illumina HiSeq 4000 paired-end RNA-seq reads from plant
Setaria viridis6 trimmed to length 300. pacbio are PacBio RS II reads from Triticum aestivum
(wheat) genome7 with different lengths. pacbio.1000 are the strings from pacbio trimmed to length
1,000. Columns 5 and 6 show the maximum and average lengths of the single strings. Columns 7
and 8 show the maximum and average LCPs of the collections.

Name Size GB σ N. of strings Max Len Ave Len Max LCP Ave LCP
shortreads 8.0 6 85,899,345 100 100 99 27.90
longreads 8.0 5 28,633,115 300 300 299 90.28
pacbio.1000 8.0 5 8,589,934 1,000 1,000 876 18.05
pacbio 8.0 5 942,248 71,561 9,116 3,084 18.32

RAM, and 8GB, to simulate input data of approximately the same size as the available RAM
and test also the semi external version of our algorithm. Note that for a 8GB input, the
output BWT+LCP data has size 24GB, so even 8GB RAM is still significantly less than the
input and the output combined.

We implemented eGap in ANSI C based on the source code of Gap [12] and gSACA-
K [22]. Our algorithm was compiled with GNU GCC ver. 4.6.3, with optimizing option
-O3. The source code is freely available at https://github.com/felipelouza/egap/. The
experiments were conducted on a machine with GNU/Linux Debian 7.0/64 bits operating
system using an Intel i7-3770 3.4 GHz processor with 8 MB cache, 32 GB of RAM and a 2.0
TB SATA hard disk with 7200 RPM and 64 MB cache.

We compared eGap with BCR+LCP8 from the BEETL Library [1] which is the currently
most used tool for the construction of BWT and LCP arrays in external memory. As a
reference we also tested the external memory tool eGSA [23] that computes the Suffix and
LCP arrays for a collection of sequences. However, we tested eGSA only using 32GB of RAM
since the authors in [23] showed its running time degrades about 25 times when the RAM is
restricted to the input size.

The results in Table 2 show that eGap’s running time per input byte is roughly proportional
to the average LCP. For example, if we look at the two pacbio datasets we see that they have
widely different maximum LCPs, yet their running times are very close similarly to their
average LCPs. According to the theoretical analysis in [1], BCR+LCP running time per input
byte is proportional to the sequence length. Using 1GB RAM the tool BCR+LCP could not
handle the shortreads dataset because of insufficient internal memory, and it stopped with an
internal error after four days of computation on the pacbio.1000 dataset (we have contacted
the authors about the error and plan to complete the comparison as soon as we obtain a
stable version of the software). The tool BCR+LCP cannot handle input sequences of different
lengths, so for the pacbio dataset we used the tool extLCP [11] by the same authors. However,
extLCP appears to be not competitive on pacbio and for each instance we stopped it when
it became clear that its running time was much higher than eGap’s. In the future we also
plan to include in the comparison two recent algorithms proposed in [4, 6]. In particular, the
algorithm in [4] is also based on a merge strategy. First, for each h, it computes the sequence

5 ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
6 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
7 https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
8 https://github.com/BEETL/BEETL/

https://github.com/felipelouza/egap/
ftp://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
https://github.com/BEETL/BEETL/

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:9

Table 2 Running times in µ seconds per input byte.

Name eGap BCR+LCP eGSA
1GB 8GB 32GB 1GB 8GB 32GB 32GB

shortreads 17.19 3.76 2.87 × 5.65 3.96 2.08
longreads 52.39 9.75 6.76 18.54 16.01 10.88 1.89
pacbio.1000 24.88 3.54 1.81 × 54.00 36.96 1.89
pacbio 23.43 3.42 1.82 > 70 > 50 > 50 1.74

of characters preceding all length-h suffixes, ordered according to the lexicographical order
of the length-h suffixes (a sort of partial BWT). Then, it uses a procedure inspired by the
Holt-Macmillan algorithm [17] to merge all the partial BWTs to the final output.

Although incomplete, the results show that BCR+LCP is competitive for short reads or
collections with a large average LCP, while eGap clearly dominates in datasets with long
reads and relatively small average LCP. In particular, when the available RAM is at least
equal to the size of the input, eGap can use the semi-external strategy described in Section 3
and becomes significantly faster. Note that using 32GB RAM both algorithms become much
faster: even though they allocate for their use a small fraction of that RAM, the operating
system uses the remaining RAM as a buffer and avoids many disk accesses. Using 32GB
RAM eGSA turns out to be the fastest algorithm and its running time appears to be less
influenced by the size of the average LCP. Another advantage is that it also computes the
Suffix Array, but it has the drawback of using a large amount of disk working space: 340GB
for a 8GB input vs 56GB used by eGap.

5 Applications

In this section we show that the eGap algorithm, in addition to the BWT and LCP arrays, can
output additional information that can be used to design efficient external memory algorithms
for three well known problems on sequence collections: the computation of maximal repeats,
the all pairs suffix-prefix overlaps, and the construction of succinct de Bruijn graphs. For
these problems we describe algorithms which are derived from known (internal memory)
algorithms but they process the input data in a single sequential scan. In addition, the
amount of RAM used by the algorithms is usually much smaller than the size of inputs since
it grows linearly with the number of sequences and the maximum LCP value.

Our starting point is the observation that the eGap algorithm can also output an array
which provides, for each bwt entry, the id of the sequence to which that entry belongs. In
information retrieval this is usually called the Document Array, so in the following we will
denote it by da. In Phase 1 the gSACA-K algorithm can compute the da together with the
lcp and bwt using only additional 4n bytes of space to store the da entries. These partial da’s
can be merged in Phase 2 using the Znew array in the same way as the BWT entries. In the
following we use bwt, lcp, and da to denote the multistring BWT, LCP and Document Array
of a collection of m sequences of total length n. We write s to denote the concatenation
s1 · · · sm and sa to denote the suffix array of s. We will use s and sa to prove the correctness
of our algorithms, but neither s nor sa are used in the computations.

5.1 Computation of Maximal Repeats
Different notions of maximal repeats have been used in the bioinformatic literature to model
different notions of repetitive structure. We use a notion of maximal repeat from [15, Ch. 7]:
we say that a string α is a Type 1 maximal repeat if α occurs in the collection at least twice

WABI 2018

10:10 External memory LCP and BWT computation with applications

and every extension, i.e. cα or αc with c ∈ Σ, occurs fewer times. We consider also a more
restrictive notion: we say that a string α is a Type 2 maximal repeat if α occurs in the
collection at least twice and every extension of α occurs at most once.

We first show how to compute Type 1 maximal repeats with a sequential scan of the
arrays bwt and lcp. The crucial observation is that we have a substring of length ` that
prefixes sa entries j, j+ 1, . . . , i iff lcp[h] ≥ ` for h = j+ 1, . . . , i, and both lcp[j] and lcp[i+ 1]
are smaller than `. To ensure that the repeat is maximal, we also require that there exists
h ∈ [j + 1, i] such that lcp[h] = ` and that bwt[j, i] contains at least two distinct characters.

During the scan, we maintain a stack containing pairs 〈j, lcp[h]〉 such that j ≤ h; in
addition if〈j′, lcp[h′]〉 is below 〈j, lcp[h]〉 on the stack, then h′ < j. If, when we reach position
i ≥ h, the pair 〈j, lcp[h]〉 is in the stack this means that all positions k between j and i we
have lcp[k] ≥ lcp[h]. To maintain this invariant, when we reach position i, if the current top
pair 〈j, lcp[h]〉 has lcp[h] < lcp[i], then 〈i, lcp[i]〉 is pushed on top of the stack. Otherwise, all
pairs 〈j, lcp[h]〉 with lcp[h] ≥ lcp[i] are popped from the stack; if ̂ is the index of the last pair
popped from the stack, pair 〈̂, lcp[i]〉 is pushed on the stack. The rationale for the latter
addition is that for all ̂ ≤ j ≤ i it is lcp[j] ≥ lcp[i] and therefore the prefix of length lcp[i] of
s[sa[j], n] is the same as the prefix of the same length of s[sa[i], n]. It is not difficult to prove
that for each stack entry 〈j, lcp[h]〉, it is lcp[j − 1] < lcp[h].

If entry 〈j + 1, lcp[h]〉 is removed from the stack at iteration i+ 1, by the above discussion
lcp[j] < lcp[h]; lcp[i + 1] < lcp[h] (because 〈j + 1, lcp[h]〉 is being removed), and for k =
j + 1, . . . , i lcp[k] ≥ lcp[h]. To ensure that we have found a Type 1 maximal repeat we only
need to check that bwt[j, i] contains at least two distinct characters. To efficiently check this
latter condition, for each stack entry 〈j, lcp[h]〉 we maintain a bitvector bj of size σ keeping
track of the distinct characters in the array bwt from position j − 1 to the next stack entry,
or to the last seen position for the entry at the top of the stack. When 〈j, lcp[h]〉 is popped
from the stack its bitvector is or-ed to the previous stack entry in constant time; if 〈j, lcp[h]〉
is popped from the stack and immediately replaced with 〈j, lcp[i]〉 its bitvector survives as
it is (essentially because it is associated with an index, not with a stack entry). Clearly,
maintaining the bitvector does not increase the asymptotic cost of the algorithm.

To find Type 2 maximal repeats, we are interested in consecutive LCP entries lcp[j], lcp[j+
1], . . . , lcp[i], lcp[i + 1], such that lcp[j] < lcp[j + 1] = lcp[j + 2] = · · · = lcp[i] > lcp[i + 1].
Indeed, this ensures that for h = j, . . . , i all suffixes s[sa[h], n] are prefixed by the same string
α of length lcp[j + 1] and every extension αc occurs at most once. If this is the case, then α
is a Type 2 maximal repeat if all characters in bwt[j, i] are distinct since this ensures that
also every extension cα occurs at most once. In order to detect this situation, as we scan
the lcp array we maintain a candidate pair 〈j + 1, lcp[j + 1]〉 such that j + 1 is the largest
index seen so far for which lcp[j] < lcp[j + 1]. When we establish a candidate at j + 1 as
above, we init a bitvector b marking entries bwt[j] and bwt[j + 1]. As long as the following
values lcp[j + 2], lcp[j + 3], . . . are equal to lcp[j + 1] we go on updating b and if the same
position is marked twice we discard 〈j + 1, lcp[j + 1]〉. If we reach an index i+ 1 such that
lcp[i+ 1] > lcp[j + 1], we update the candidate and reinitialize b. If we reach i+ 1 such that
lcp[i+ 1] < lcp[j + 1] and 〈j + 1, lcp[j + 1]〉 has not been discarded, then a repeat of Type 2
(with i− j + 1 repetitions) has been located.

Note that when our algorithms discover Type 1 or Type 2 maximal repeats, we know
the repeat length and the number of occurrences, so one can easily filter out non-interesting
repeats (too short or too frequent). In some applications, for example the MUMmer tool [28],
one is interested in repeats that occur in at least r distinct sequences, maybe exactly once
for each sequence. Since for these applications the number of distinct sequences is relatively

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:11

small, we can handle this requirements by simply scanning the da array simultaneously with
the lcp and bwt arrays and keeping track of the sequences associated to a maximal repeat
using a bitvector (or a union-find structure) as we do with characters in the bwt.

5.2 All pairs suffix-prefix overlaps
In this problem we want to compute, for each pair of sequences si sj , the longest overlap
between a suffix of si and a prefix of sj . Our solution follows closely the one in [33] which in
turn was inspired by an earlier Suffix-tree based algorithm [16]. The algorithm in [33] solves
the problem using a Generalized Enhanced Suffix array (consisting of the arrays sa, lcp, and
da) in O(n + m2) time, which is optimal since there are m2 overlaps. However, for large
collections it is natural to consider the problem of reporting only the overlaps larger than a
given threshold τ still spending constant time per reported overlap. Our algorithm solves
this more challenging problem.

In the following we say that the suffix starting at sa[i] is special iff s[sa[i] + lcp[i+ 1]] = $
or, in other words, if the suffix starting at sa[i] is a substring of the suffix starting at sa[i+ 1]
(not considering the end-marker $). For example, in Fig. 1 (right) the suffixes ab$0, abc$1,
abcab$0 are all special. We can modify Phase 2 of our algorithm so that it outputs also a bit
array xlcp such that xlcp[i] = 1 iff the suffix starting at sa[i] is special. In the full paper we
will formally prove that this modification does not increase the asymptotic cost and requires
only 2n bits of disk working space.

Our algorithm consists of a sequential scan of the arrays bwt, lcp, and da, and xlcp. We
maintain m distinct stacks, stack[1], . . . , stack[m], one for each input sequence; stack[k] stores
only special suffixes belonging to sequence k. When the scanning reaches position j, we store
the pair 〈j, lcp[j + 1]〉 in stack[da[j]] if and only if xlcp[j] = 1 and lcp[j + 1] > τ . During the
scanning we maintain the invariant that for all stack entries 〈j, lcp[j + 1]〉, lcp[j + 1] is the
length of longest common prefix between s[sa[j], n] and s[sa[i], n], where i is the next position
to be scanned. To this end, when we reach position i we remove all entries 〈j, lcp[j + 1]〉 such
that lcp[j + 1] > lcp[i + 1]. To do this spending constant time for removed entry requires
some additional machinery: We maintain an array of lists top such that top[`] contains the
indexes k for which the entry at the top of stack[k] has LCP component equal to ` (this
array is a stripped down version of [33]’s list). In addition, we maintain an additional stack
lcpStack containing, in increasing order, the values ` such that some stack[k] contains an
entry with LCP component equal to `.

At iteration i, we use lcpStack and the lists in top[·] to reach all stack[k] containing entries
with LCP component greater than lcp[i + 1] and we remove them. After the removal, we
update top[`] where ` is the LCP value now at the top of stack[k]. Finally, if xlcp[i] = 1
and lcp[i + 1] > τ , we add 〈i, lcp[i+ 1]〉 to stack[da[i]]; this requires that we also add da[i]
to top[lcp[i+ 1]], and that we remove da[i] from the list top[`] where ` is the previous top
LCP value in stack[da[i]] (to do this we need to maintain for each element at the top of the
stack a pointer to its corresponding da entry in top). Since we perform a constant number of
operations per entry, maintaining the above data structures takes O(n) time overall.

The computation of the overlaps is done as in [33]. When the scanning reaches position i,
we check whether bwt[i] = $. If this is the case, then s[sa[i], n] is prefixed by the whole
sequence sda[i], hence the longest overlap between a prefix of sda[i] and a suffix of sk is given by
the element currently at the top of stack[k], since by construction these stacks only contain
special suffixes whose overlap with s[sa[i], n] is larger than τ . To spend time proportional to
the number of reported overlaps, instead of accessing all stacks we access only those which
are non-empty. This requires that we maintain an additional list containing all values ` such

WABI 2018

10:12 External memory LCP and BWT computation with applications

that top[`] is non-empty. For each entry ` in this list, top[`] gives us the id of the sequences
with a suffix-prefix overlap with da[i] of length `. As in [33], we have to handle differently the
case in which the whole sda[i] is a suffix of another sequence, but this can be done without
increasing the overall complexity. Since we spend constant time for reported overlap, the
overall cost of the algorithm, in addition to the scanning of the bwt/lcp/xlcp/da arrays, is
O(n+ Eτ), where Eτ is the number of suffix-prefix overlaps greater than τ .

5.3 Construction of succinct de Bruijn graphs

A recent remarkable application of compressed data structures is the design of efficiently
navigable succinct representations of de Bruijn graphs [3, 7, 8]. Formally, a de Bruijn graph
for a collection of strings consists of a set of vertices representing the distinct k-mers appearing
in the collection, with a directed edge (u, v) iff there exists a (k + 1)-mer α in the collection
such that α[1, k] is the k-mer associated to u and α[2, k + 1] is the k-mer associated to v.

The starting point of all de Bruijn graphs succinct representation is the BOSS repres-
entation [8], so called from the authors’ initials. For simplicity we now describe the BOSS
representation of a k-order de Bruijn graph using the lexicographic order of k-mers, instead
of the co-lexicographic order as in [8], which means we are building the graph with the
direction of the arcs reversed. This is not a limitation since arcs can be traversed in both
directions (or we can apply our construction to the input sequences reversed).

Consider the N k-mers appearing in the collection sorted in lexicographic order. For
each k-mer αi consider the array Ci of distinct characters c ∈ Σ ∪ {$} such that cαi appears
in the collection. The concatenation W = C1C2 · · ·CN is the first component of the BOSS
representation. The second component is a binary array last, with |last| = |W |, such that
last[j] = 1 iff W [j] is the last entry of some array Ci. Clearly, there is a bijection between
entries in W and graph edges; in the array last each sequence 0i1 (i ≥ 0) corresponds to
the outgoing edges of a single vertex with outdegree i+ 1. Finally, the third component is
a binary array W−, with |W−| = |W |, such that W−[j] = 1 iff W [j] comes from the array
Ci, where αi is the lexicographically smallest k-mer prefixed by αi[1, k − 1] and preceded by
W [j] in the collection. Informally, this means that αi is the lexicographically smallest k-mer
with an outgoing edge reaching W [j]αi[1, k − 1]. Note that the number of 1’s in last and
W− is exactly N , i.e. the number of nodes in the de Bruijn graph.

We now show how to compute W , last and W− by a sequential scan of the bwt and lcp
array. The crucial observation is that the suffix array range prefixed by the same k-mer αi is
identified by a range [bi, ei] of LCP values satisfying lcp[bi] < k, lcp[`] ≥ k for ` = bi+1, . . . , ei
and lcp[ei + 1] < k. Since k-mers are scanned in lexicographic order, by keeping track of the
corresponding characters in the array bwt[bi, ei] we can build the array Ci and consequently
W and last. To compute W− we simply need to keep track also of suffix array ranges
corresponding to (k − 1)-mers. Every time we set an entry W [j] = c we set W−[j] = 1 iff
this is the first occurrence of c in the range corresponding to the current (k − 1)-mers.

If, in addition to the bwt and lcp arrays, we also scan the da array, then we can keep
track of which sequences contain any given graph edge and therefore obtain a succinct
representation of the colored de Bruijn graph [29]. Finally, we observe that if our only
objective is to build the k-order de Bruijn graph, then we can stop the phase 2 of our
algorithm after the k-th iteration. Indeed, we do not need to compute the exact values of
LCP entries greater than k, and also we do not need the exact BWT but only the BWT
characters sorted by their length k context.

L. Egidi, F. A. Louza, G. Manzini, and G. P. Telles 10:13

References
1 Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight algorithms for

constructing and inverting the BWT of string collections. Theor. Comput. Sci., 483:134–
148, 2013.

2 Djamal Belazzougui. Linear time construction of compressed text indices in compact space.
In STOC, pages 148–193. ACM, 2014.

3 Djamal Belazzougui, Travis Gagie, Veli Mäkinen, Marco Previtali, and Simon J. Puglisi.
Bidirectional variable-order de Bruijn graphs. In LATIN, volume 9644 of Lecture Notes in
Computer Science, pages 164–178. Springer, 2016.

4 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.
Computing the BWT and LCP array of a set of strings in external memory. CoRR,
abs/1705.07756, 2017.

5 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.
An external-memory algorithm for string graph construction. Algorithmica, 78(2):394–424,
2017. doi:10.1007/s00453-016-0165-4.

6 Paola Bonizzoni, Gianluca Della Vedova, Yuri Pirola, Marco Previtali, and Raffaella Rizzi.
Divide and conquer computation of the multi-string BWT and LCP array. In Proc. Com-
putability in Europe (CiE), 2018. To appear.

7 Christina Boucher, Alexander Bowe, Travis Gagie, Simon J. Puglisi, and Kunihiko
Sadakane. Variable-order de Bruijn graphs. In DCC, pages 383–392. IEEE, 2015.

8 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de
Bruijn graphs. In WABI, volume 7534 of Lecture Notes in Computer Science, pages 225–
235. Springer, 2012.

9 S. Burkhardt and J. Kärkkäinen. Fast lightweight suffix array construction and checking.
In Proc. 14th Symposium on Combinatorial Pattern Matching (CPM ’03), pages 55–69.
Springer-Verlag LNCS n. 2676, 2003.

10 Michael Burrows and David J. Wheeler. A block-sorting lossless data compression al-
gorithm. Technical report, Digital SRC Research Report, 1994.

11 Anthony J. Cox, Fabio Garofalo, Giovanna Rosone, and Marinella Sciortino. Lightweight
LCP construction for very large collections of strings. J. Discrete Algorithms, 37, 2016.

12 Lavinia Egidi and Giovanni Manzini. Lightweight BWT and LCP merging via the Gap
algorithm. In SPIRE, volume 10508 of Lecture Notes in Computer Science, pages 176–190.
Springer, 2017.

13 P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression in
external memory. Algorithmica, 2011.

14 Simon Gog and Enno Ohlebusch. Compressed suffix trees: Efficient computation and
storage of LCP-values. ACM Journal of Experimental Algorithmics, 18, 2013. doi:10.
1145/2444016.2461327.

15 D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, 1997.

16 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all
pairs suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992.

17 James Holt and Leonard McMillan. Merging of multi-string BWTs with applications. Bioin-
formatics, 30(24):3524–3531, 2014.

18 Juha Kärkkäinen and Dominik Kempa. LCP array construction in external memory. ACM
Journal of Experimental Algorithmics, 21(1):1.7:1–1.7:22, 2016.

19 Juha Kärkkäinen and Dominik Kempa. Engineering a lightweight external memory suffix
array construction algorithm. Mathematics in Computer Science, 11(2):137–149, 2017.

20 D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, second edition, 1998.

WABI 2018

http://dx.doi.org/10.1007/s00453-016-0165-4
http://dx.doi.org/10.1145/2444016.2461327
http://dx.doi.org/10.1145/2444016.2461327

10:14 External memory LCP and BWT computation with applications

21 M. Oguzhan Külekci, Jeffrey Scott Vitter, and Bojian Xu. Efficient maximal repeat finding
using the burrows-wheeler transform and wavelet tree. IEEE/ACM Trans. Comput. Biology
Bioinform., 9(2):421–429, 2012.

22 Felipe A. Louza, Simon Gog, and Guilherme P. Telles. Inducing enhanced suffix arrays for
string collections. Theor. Comput. Sci., 678:22–39, 2017.

23 Felipe A. Louza, Guilherme P. Telles, Steve Hoffmann, and Cristina D. A. Ciferri. Gen-
eralized enhanced suffix array construction in external memory. Algorithms for Molecular
Biology, 12(1):26:1–26:16, 2017.

24 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015.

25 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the Burrows-Wheeler transform. Theor. Comput. Sci., 387(3):298–312, 2007.

26 G. Manzini. Two space saving tricks for linear time LCP computation. In Proc. of 9th
Scandinavian Workshop on Algorithm Theory (SWAT ’04), pages 372–383. Springer-Verlag
LNCS n. 3111, 2004.

27 G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.
In Proc. 10th European Symposium on Algorithms (ESA), pages 698–710. Springer Verlag
LNCS n. 2461, 2002.

28 Guillaume Marçais, Arthur L. Delcher, Adam M. Phillippy, Rachel Coston, Steven L.
Salzberg, and Aleksey V. Zimin. Mummer4: A fast and versatile genome alignment system.
PLoS Computational Biology, 14(1), 2018.

29 Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul S. Morley, Keith E. Belk, Robert
Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher. Succinct colored de
Bruijn graphs. Bioinformatics, 33(20):3181–3187, 2017.

30 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of com-
pressed indexes in deterministic linear time. In SODA, pages 408–424. SIAM, 2017.

31 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1), 2007.

32 Ge Nong. Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM
Trans. Inf. Syst., 31(3):15, 2013.

33 Enno Ohlebusch and Simon Gog. Efficient algorithms for the all-pairs suffix-prefix problem
and the all-pairs substring-prefix problem. Inf. Process. Lett., 110(3):123–128, 2010.

34 Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching statistics and max-
imal exact matches on compressed full-text indexes. In SPIRE, volume 6393 of Lecture
Notes in Computer Science, pages 347–358. Springer, 2010.

35 William H. A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved
algorithm for the all-pairs suffix-prefix problem. J. Discrete Algorithms, 37:34–43, 2016.

Kermit: Guided Long Read Assembly using
Coloured Overlap Graphs
Riku Walve1

Department of Computer Science, Helsinki Institute for Information Technology HIIT,
University of Helsinki, Helsinki, Finland
riku.walve@helsinki.fi

https://orcid.org/0000-0003-0397-003X

Pasi Rastas2

Institute of Biotechnology, University of Helsinki, Helsinki, Finland
pasi.rastas@helsinki.fi

Leena Salmela1

Department of Computer Science, Helsinki Institute for Information Technology HIIT,
University of Helsinki, Helsinki, Finland
leena.salmela@helsinki.fi

https://orcid.org/0000-0002-0756-543X

Abstract
With long reads getting even longer and cheaper, large scale sequencing projects can be accom-
plished without short reads at an affordable cost. Due to the high error rates and less mature
tools, de novo assembly of long reads is still challenging and often results in a large collection
of contigs. Dense linkage maps are collections of markers whose location on the genome is ap-
proximately known. Therefore they provide long range information that has the potential to
greatly aid in de novo assembly. Previously linkage maps have been used to detect misassemblies
and to manually order contigs. However, no fully automated tools exist to incorporate linkage
maps in assembly but instead large amounts of manual labour is needed to order the contigs
into chromosomes. We formulate the genome assembly problem in the presence of linkage maps
and present the first method for guided genome assembly using linkage maps. Our method is
based on an additional cleaning step added to the assembly. We show that it can simplify the
underlying assembly graph, resulting in more contiguous assemblies and reducing the amount of
misassemblies when compared to de novo assembly.

2012 ACM Subject Classification Applied computing → Sequencing and genotyping technolo-
gies, Mathematics of computing → Graph theory

Keywords and phrases Genome assembly, Linkage maps, Coloured overlap graph

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.11

1 Introduction

High-throughput, second generation, sequencing technologies made large scale de novo
assemblies possible and commonplace. Their short read lengths however still pose a major
problem to this day. Third generation, long read sequencing technologies, such as single-
molecule real-time sequencing (SMRT) and Oxford Nanopore (ONT) are promising but their

1 Supported by Academy of Finland (grants 308030 and 314170).
2 Supported by Jane and Aatos Erkko Foundation.

© Riku Walve, Pasi Rastas, and Leena Salmela;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 11; pp. 11:1–11:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riku.walve@helsinki.fi
https://orcid.org/0000-0003-0397-003X
mailto:pasi.rastas@helsinki.fi
mailto:leena.salmela@helsinki.fi
https://orcid.org/0000-0002-0756-543X
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

error rates have made assemblies difficult in practice. Therefore most long read assemblers
include an error correction step to reduce the error rate.

Recently introduced Minimap-Miniasm workflow [12] has given new insight towards an
error correction-free pipeline for long read assemblies. Minimap finds useful overlaps in
long reads with high error rates and makes long read-only assembly projects practical and
highly efficient. However finding the overlaps between reads with high error rates becomes
impractical in very large data sets and splitting the reads into smaller sets is not possible
without additional information on the reads.

Compared to de novo assembly, where the only available information for the assembly
are the reads, guided genome assembly has additional data that gives information on the
positions of the reads. Normally this additional data is a reference genome of a closely related
species. The reads can be aligned to the reference genome, which results in a linear ordering
of the reads. This clearly makes it easier to then assemble the reads.

Directly guiding the assembly this way makes it hard to get an assembly that is higher
quality than the reference. This becomes an issue when no high quality reference genome
exists, or if the donor genome deviates too far from the reference genome. In this paper, we
guide the assembly using linkage maps.

Linkage maps (also called genetic linkage maps or genetic maps) [17] are a useful technique
to orient and place contigs within a chromosome and to detect misassembled contigs. The
linkage maps themselves consists of variable genetic markers, typically called relative to some
draft assembly. The markers are derived from a set of variations, such as single-nucleotide
variations (SNVs), found from a sequenced cross, a population of related individuals. SNVs
that are close to each other in the genome are more likely to be inherited together than
SNVs that are more distant from each other. Linkage maps can therefore be constructed
by genotyping the individuals in the cross and examining the probabilities of SNVs being
inherited together. With a large enough set of variations in population, the linkage map
becomes dense enough to potentially place long reads directly.

In this paper, we formulate the genome assembly problem in the presence of linkage
maps. We propose the first method to directly use linkage maps in genome assembly. Our
method disentangles the overlap graph by removing false edges based on the linkage map.
Our experimental results show that the method is able to simplify the overlap graph and we
further show that our method decreases the number of misassemblies and improves the N50
statistic as compared to de novo assembly without linkage maps.

This linkage map-guided genome assembly can be seen as a generalisation of reference-
guided genome assembly. With a hypothetical linkage map of evenly spaced markers, the
linkage map-guided assembly becomes essentially reference-guided assembly as each read can
be placed on the genome unambiguously.

We have implemented our method in a tool called Kermit which is freely available at
https://github.com/rikuu/kermit.

2 Related Work

Despite the emergence of long read sequencing technologies like PacBio and ONT and the
development of long read assemblers [11, 12, 7, 10], auxiliary long range data is still needed
to organise the resulting scaffolds or contigs to chromosomes for large eukaryotic genomes.
Depending on the characteristics of the species of interest such data may include optical
mapping data, Hi-C data, or linkage maps.

https://github.com/rikuu/kermit

R. Walve, P. Rastas, and L. Salmela 11:3

Linkage maps consist of a set of markers, typically SNVs, on a genome. The location of
the markers with respect to each other is at least approximately known. Typically a linkage
map successfully assigns the markers to chromosomes and a partial order of the markers
within each chromosome is known. Markers can be localised on contigs or scaffolds and the
linkage map can be used to correct the scaffolds and to order them into chromosomes [1, 18, 4].
However, currently the ordering of scaffolds based on a linkage map is a time-consuming,
error-prone and mostly manual process as no fully automated tools exist [8]. Furthermore,
all current tools use linkage maps as a post processing step after assembly, whereas our work
integrates the linkage maps already in the assembly phase.

Chromonomer [5] attempts to correct and orient scaffolds based on a linkage map. It
first finds a non-conflicting set of markers in the linkage map. It then assigns orientation to
scaffolds containing more than one recombination point and splits scaffolds if they conflict
with the linkage map. Finally, Chromonomer produces a visualisation of the linkage map
and the scaffolds. Another tool that facilitates the visualisation of linkage maps and
corresponding genome assemblies is ArkMAP [15]. However, ArkMAP focuses on visual
exploration including cross species comparisons and as such does not support automatic
ordering of scaffolds into chromosomes.

Similarly to linkage maps also optical mapping data can be used for improving genome
assemblies. Also for optical mapping data the main focus has been to use the optical map
in a post processing step after genome assembly. AGORA [14] is one of the few methods
integrating optical map data with genome assembly. It is a de Bruijn graph based assembler
that uses optical map data to eliminate alternative paths that are not consistent with the
optical map. The method by Alipanahi et al. [2] for disentangling the de Bruijn graph using
optical map data is more related to our work. They map the long reads to the genome wide
optical map and use this mapping to produce a positional de Bruijn graph which resolves
most ambiguities in the de Bruijn graph. In our work we similarly first get a preliminary
ordering of long reads based on a linkage map and then use this ordering to disentangle the
overlap graph.

3 Definitions

3.1 De Novo Assembly
De novo assembly, the problem of assembling a genome given only a set of reads, has
historically been given solutions in two different categories. The de Bruijn graph-based
(DBG) assembly algorithms, such as SPAdes [3], and Overlap-Layout-Consensus (OLC)
algorithms, such as Canu [11] and Miniasm [12].

OLC-assemblers attempt to first find pair-wise overlaps between reads which is the
bottleneck of this approach. From these overlaps, a directed graph of the set of reads, called
an overlap graph, is laid out by assigning edges between reads if an overlap is observed. The
graph is then simplified by removing all transitive edges. Ideally the graph would be simple
enough to unambiguously spell a genome assembly by following the edges from one side of
the graph to the other. This is actually never the case and some sophisticated method for
transforming the graph as close as possible to such a case is the goal of the layout step.

DBG-assemblers attempt to simplify the entire process by not looking for overlaps between
the reads. Instead they take all possible k− 1 length overlaps between substrings of length k

from the set of reads to construct a de Bruijn graph. The methods for finding the genome
from the overlap graph in the OLC setup mostly apply here too.

WABI 2018

11:4 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Though clearly simpler than the OLC assembly algorithms, the effectiveness of further
splitting the reads somewhat diminishes the usefulness of using long reads for genome
assembly. In this paper we are only looking at the OLC category of assembly algorithms,
more specifically, we are looking at Miniasm [12], a very simplistic and highly efficient
implementation of the ideas in OLC-assemblers.

Unlike traditional OLC-assemblers, Miniasm only implements the overlap and layout
steps. This reduces the base-level quality of the resulting assembly but does not greatly
affect the large scale structure. It also does not use any overly sophisticated method for
finding the genome in the overlap graph.

To choose an assembly path, Miniasm finds unitigs which are maximal non-branching
paths in the overlap graph. Such paths are simple to find and intuitively give the maximal
unambiguous and nonrepetitive sequences that the overlap graph can spell without changing
the graph. The problem of finding the unitigs from the overlap graph can be stated as
follows:

I Definition 1. Unitig assembly problem. Given a directed graph G = (V, E), find all
maximal paths P = v1v2 · · · vn such that

∀vi ∈ {v1, . . . , vn−1}, deg+ vi = deg− vi+1 = 1.

Unitigs can be efficiently found by first looking for a vertex with either zero or more than
one incoming edge and exactly one outgoing edge. Following the outgoing edges until we
find a vertex with more than one incoming edge or zero or more than one outgoing edge
constructs a path spelling a unitig.

3.2 Guided Assembly
Reference-guided genome assembly can be done by aligning the read set to a reference and
partitioning the reads based on the alignments into smaller, similar sets of reads [19]. The
small sets are then assembled into contigs and later the set of contigs are assembled into
super-contigs.

For linkage map-guided assembly, we partition the reads based on the linkage map. A
linkage map is a set of markers M which are assigned to a set of bins B. Each marker
m ∈ M belongs to a single bin b ∈ B. The bins are further assigned to chromosomes and
within each chromosome the order of the bins is given.

We assume now that each read has been assigned a set of bins based on the linkage
map. Now this coarse-grained ordering tells if a subset of reads clearly belong before or after
another subset of reads. We encode this ordering into the overlap graph by assigning each
vertex a set of colours representing the bins, resulting in a coloured overlap graph.

A coloured overlap graph is thus a directed graph G = (V, E) accompanied by a colouring
c : V → P(N), where P(N) is the power set of natural numbers. In the coloured overlap
graph we define the colour consistent indegree deg−c of a vertex vi to be the number of
in-neighbours of vi that have at least one colour that is the same as or adjacent to a colour
of vi, i.e.

deg−c vi = |{vj |(vj , vi) ∈ E and ∃cj ∈ c(vj), ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

Similarily we define the colour consistent outdegree deg+
c as

deg+
c vi = |{vj |(vi, vj) ∈ E and ∃cj ∈ c(vj), ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

R. Walve, P. Rastas, and L. Salmela 11:5

The problem of guided assembly can then be modelled as finding a rainbow path in the
coloured overlap graph. A rainbow path is a path such that no two vertices have the same
colour [6]. We use a modified variant of rainbow paths; we allow paths to reuse a colour in
consecutive vertices and we require the colours of a path to be consecutive and increasing.
I.e. colour i must be followed by colour i + 1 on the path. A more formal definition of this
assembly problem can be stated as:

I Definition 2. Guided unitig assembly problem. Given a directed graph G = (V, E), and a
colouring c : V → P(N), find all maximal paths P = v1v2 · · · vn such that

∀vi ∈ {v1, . . . , vn−1} deg+
c vi = deg−c vi+1 = 1

and

∀c ∈ c(vi), c ≥ max (c(vi−1)) .

We note that the above definition only recovers forward strand paths in the coloured
overlap graph. However due to the structure of the graph, for each reverse strand path there
also exists a corresponding forward strand path in the graph.

Rather than modifying the layout step of the OLC-assembly pipeline, we implement a
graph cleaning step, which attempts to remove edges that make unitigs not be rainbow paths.

4 Methods

4.1 Overview of Our Method
Constructing a linkage map [17] involves generating a draft assembly and localising the
markers, which are typically single nucleotide variations, on this draft assembly. The markers
are then further placed into bins based on the hereditary patterns seen in a cross-bred
population of individuals. The bins are assigned to chromosomes and the order of the bins
within each chromosome is known. Thus the markers give a partial order of the genome.

The input to our method is the draft assembly on which the linkage map was built, the
linkage map, and long reads. We first use Minimap2 [13] to map the long reads on the draft
assembly to assign colours (i.e. bin numbers) to the long reads. Miniasm [12] is then used to
build the overlap graph of the long reads and missing colours are propagated in the overlap
graph. The overlap graph is then cleaned based on the colour assignments of the reads.
Finally the unitigs are read from the cleaned overlap graph. Figure 1 shows an overview of
our method. The colouring, propagation, and cleaning steps are discussed in more details in
the following subsections.

4.2 Colouring
To colour the underlying overlap graph, we map all the reads against the draft genome using
Minimap2 [13] and store the longest mappings for each read. We extend each of the longest
mappings into naive linear “alignments” by stretching the start and end positions to cover
the entire read. As the insertion errors are the dominant error type [20], we limit the number
of characters by which we extend the mappings (by default we use a limit of 250 bp).

All the extended mappings are then stored in a simple query structure, where each
chromosome in the reference genome is split into equal length blocks. For each marker in the
linkage map, we query the index for reads that overlap with the marker and assign every
overlapping read the colour the marker in the linkage map belongs to.

WABI 2018

11:6 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Mapping and colouring

a
b

c

d
e

f
hg

i
j

Coloured overlap graph

a b c d e f g h i j

After colour propagation

a b c d e f g h i j

After cleaning

a b c d e f g h i j

Figure 1 Overview of our method. First the reads are mapped to the draft assembly and assigned
colours (top left). Each colour represents one bin in the linkage map. In this example we have three
bins (brown, green and red) and the ordering of the bins is brown < green < red. All bins belong to
the same chromosome. Miniasm is then used to construct the overlap graph which is augmented
with the colours. Next vertex f is coloured through the colour propagation process. Finally we
remove the edges (a, i) and (h, b) because they have inconsistent colourings.

As there can still be reads with no mapping to the reference, we attempt to colour
them using the overlap graph. For each uncoloured vertex u we find the set of coloured
vertices Vc(u) that are reachable from u by paths that traverse only uncoloured vertices.
The uncoloured vertex u is then given all the colours that the vertices in Vc(u) have, i.e.
c(u) =

⋃
v∈Vc(u) c(v). The set Vc(u) can be found by a breadth first search on the graph

starting at vertex u.
If a coloured vertex is too far from the uncoloured vertex, we get an over-approximation

of the colour for the vertex. To reduce this effect, we apply a limit to the depth of the search
(by default 10). We can also get conflicting colours from the propagation. If there are missing
colours between the propagated colours, we are skipping some part of the genome entirely.
As we cannot use the colouring to usefully clean the graph, we simply remove the read from
the graph entirely.

4.3 Graph Cleaning
To make sure any unitig path is a valid rainbow path, we remove any edges between vertices
with inconsistent colourings from the overlap graph. If the vertices share a colour, the
colourings are always consistent as they can be merged without affecting the connectivity of
the colours in the graph. Edges between vertices with different colours are inconsistent if
there are no adjacent colours between the vertices. Such an edge could never be part of a
rainbow path because the path would not have consecutive colours.

Therefore we define an edge (vi, vj) to be inconsistently coloured if there are no colours
ci ∈ c(vi) and cj ∈ c(vj) such that the colours ci and cj would be the same or consecutive,
i.e. |ci − cj | ≤ 1. Our graph cleaning step remove

5 Results

We implemented our method in a tool called Kermit. Kermit uses Miniasm [12] to find
the overlaps between the reads and to perform the layout step to find unitigs. In between
these two steps Kermit colours the vertices of the overlap graph and cleans the graph by
removing inconsistently coloured edges as explained in the previous section. We compared
Kermit to the Miniasm pipeline [12]. Both the overlap and the mapping steps were done
using Minimap2 v2.9 [13], an improved implementation of Minimap. All experiments were
run on 32 GB RAM machines equipped with 8 cores.

R. Walve, P. Rastas, and L. Salmela 11:7

Table 1 Summary of read data used in the experiments.

Data set Reads Total bases Coverage Accession

S. cerevisiae 36,639 486,048,334 39.98 simulated
(simulated)
C. elegans 296,230 3,930,689,562 39.99 simulated
(simulated)
S. cerevisiae 52,208 690,899,144 56.83 PacBio DevNet1)

C. elegans 740,776 8,118,404,281 82.59 PacBio DevNet2)

H. erato 10,818,653 27,094,241,328 60.89 SRR3476970 SRR4039325
B. pendula 1,898,360 19,032,363,776 49.71 ERR2003767 ERR2003768

1) https://github.com/PacificBiosciences/DevNet/wiki/
Saccharomyces-cerevisiae-W303-Assembly-Contigs

2) https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

Table 2 Summary of linkage maps used in the experiments.

Data set Markers Marker density Bins Bin density Reference

S. cerevisiae 100,009 0.008 19,283 0.002 simulated
(simulated)
C. elegans 750,004 0.008 162,601 0.002 simulated
(simulated)
H. erato 2,781,314 0.007 145,863 0.002 Van Belleghem et al. [4]

Generated by LepMap3 [17]
B. pendula 2,979,993 0.007 925,123 0.002 Salojärvi et al. [18]

5.1 Data
We performed experiments both on simulated and real data. All data used in the experiments
is summarized in Tables 1 and 2.

First we performed experiments using both simulated reads and a simulated linkage map
for S. cerevisiae and C. elegans. We simulated reads using SimLoRD [20] to a coverage of
40x, sampling read lengths from a real PacBio data set with shortest (< 10,000bp) reads
filtered out. To generate a simulated linkage map, markers were randomly placed on the
reference and binned such that the bins are separated by at least 200bp. The number of
markers was chosen to give a marker density similar to real linkage maps. The distance for
binning is arbitrary; as real linkage maps are based on fragmented and misassembled draft
genomes, the bins are rarely contiguous. The chosen values give similar densities of bins as
the real linkage maps as shown in Table 2. These experiments on simulated read and linkage
map data allow us to evaluate the colouring and cleaning steps because the origin of each
read is known.

To understand how our method performs on real data, we first ran experiments using real
PacBio reads for S. cerevisiae and C. elegans but still using the simulated linkage map as
no real linkage maps exist for these species. Good reference genomes are available for these
genomes so we could evaluate also the correctness of the resulting assemblies on these data
sets. Finally to show that our method works on real linkage maps, we ran experiments on
real PacBio reads and real linkage maps for H. erato and B. pendula. The genomes for these
species are in draft stage so we could not reliably measure the correctness of these assemblies.

WABI 2018

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

11:8 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Table 3 Number of reads fully inside and outside their acceptable colour ranges.

Reads inside Reads outside

S. cerevisiae 36,562 (99.79%) 31 (0.08%)
C. elegans 296,134 (99.97%) 3 (0.001%)

Table 4 Number of edges supported by the positions the reads were simulated from. Graphs
marked cleaned are also using the graph cleaning steps that are already implemented in Miniasm.

Graph True edges False edges

S. cerevisiae Miniasm 76,538 (99.39%) 466 (0.60%)
Kermit 76,518 (99.93%) 52 (0.07%)
Miniasm cleaned 7,146 (99.92%) 6 (0.08%)
Kermit cleaned 7,114 (100.0%) 0 (0.0%)

C. elegans Miniasm 668,012 (99.80%) 1,306 (0.19%)
Kermit 667,970 (99.99%) 58 (0.003%)
Miniasm cleaned 60,416 (99.95%) 28 (0.05%)
Kermit cleaned 60,356 (99.997%) 2 (0.003%)

5.2 Colouring

We first evaluated the results of the colouring and propagation steps on the simulated reads
and linkage maps. Because the reads are simulated, we know for each read the position
where it derives from. Therefore we can also deduce the correct colours for each read as
follows. For every read there are two markers in the linkage map that form the upper and
lower limit of acceptable colours the read can get. All the colours should be between the
colour of last marker before the read and the first marker after the read.

We are mostly interested in the set of reads that are fully within the correct range, i.e. no
colour given to the read is incorrect, and the set of reads that are fully outside the correct
range.

As can be expected, Table 3 shows that a vast majority of the reads are completely inside
their colour ranges. The small amount of reads outside the range are reads that have been
mapped to an entirely wrong position of the reference.

5.3 Cleaning

To evaluate the effectiveness of removing colour crossing edges, we find the simulated positions
of the two reads corresponding to each edge in the graph and check whether they overlap in
the reference genome. We consider those overlapping reads to be true in the sense that using
that single edge in a contig would spell the correct sequence.

Miniasm already implements a cleaning step which is solely based on the read data. We
counted the number of true and false edges both with and without this cleaning step to
understand how each cleaning step affects the overlap graph.

Table 4 shows how Kermit is able to improve the percentages of true edges by removing
false edges in the graph. Though the amounts of false edges removed is relatively small, any
single wrong edge used in the assembly can cause a misassembly or break a unitig.

R. Walve, P. Rastas, and L. Salmela 11:9

Table 5 Assembly statistics for simulated S. cerevisiae and C. elegans reads and simulated linkage
maps.

S. cerevisiae C. elegans

Assembly Miniasm Kermit Miniasm Kermit
of contigs 26 22 291 261
Total length 11,831,837 11,728,421 102,040,817 101,632,493

(97.32%) (96.47%) (103.81%) (103.40%)
N50 605,399 640,779 2,337,914 2,293,633
NGA50 565,122 585,849 2,070,983 2,337,914
Misassemblies 2 1 7 7

Table 6 Assembly statistics for real S. cerevisiae and C. elegans reads and simulated linkage
maps.

S. cerevisiae C. elegans

Assembly Miniasm Kermit Miniasm Kermit
of contigs 31 29 146 141
Total length 12,118,143 11,997,376 106,229,975 103,811,685

(99.68%) (98.69%) (108.08%) (105.62%)
N50 732,688 763,111 2,851,252 2,851,288
NGA50 345,801 376,187 252,615 254,858
Misassemblies 61 58 1,870 1,768

5.4 Assembly

Lastly, we compare the actual assemblies produced by our tool to those produced by Miniasm.
To get a better picture of the assemblies, we also applied a consensus tool, Racon v1.2.0 [16],
on the S. cerevisiae and C. elegans assemblies. On the H. erato and B. pendula assemblies
Racon was very slow so we did not run it on those assemblies. The assembly statistics were
generated with QUAST v4.6.1 [9].

Table 5 shows how the assembly statistics are improved using Kermit on the simulated
S. cerevisiae and C. elegans reads and simulated linkage maps. The number of contigs is
reduced and the NGA50 statistic is increased indicating a more contiguous assembly. Also
the number of misassemblies is either reduced or stays the same.

Next we evaluated Kermit on the real read data and simulated linkage map of S. cerevisiae
and C. elegans. Table 6 shows that also in this case the number of contigs and the number
of misassemblies is reduced, whereas the NGA50 statistic is increased.

Finally we ran experiments on real read data and real linkage maps (H. erato and B.
pendula). For these species only draft assemblies are available and thus we could not validate
the produced assemblies and compute the number of misassemblies or the NGA50 statistics.
Table 7 shows that for both data sets the number of contigs is reduced and N50 is increased
indicating a more contiguous assembly. We also note that both Miniasm and Kermit struggle
on the H. erato data. We believe this is largely due to the fact that we needed to pool
PacBio reads from two experiments using two different individuals to have enough reads for
assembly. This introduces heterogeneity to the data and makes assembly challenging.

WABI 2018

11:10 Kermit: Guided Long Read Assembly using Coloured Overlap Graphs

Table 7 Assembly statistics for real H. erato and B. pendula reads and real linkage maps.

H. erato B. pendula

Assembly Miniasm Kermit Miniasm Kermit
of contigs 7,444 6,091 2,201 1,587
Total length 327,725,353 280,881,758 473,300,369 425,356,395

(86.24%) (73.92%) (107.57%) (96.67%)
N50 58,892 60,356 435,830 539,400

Table 8 Wall clock times for all steps taken by the tools. The consensus phase was very slow on
the big genomes of H. erato and B. pendula so it was not run on those data sets.

Tool Overlap Map Colour Layout Consensus Total

S. cerevisiae Miniasm 52s - - 6s 4min 52s 5min 50s
(simulated) Kermit 52s 6s 0s 6s 3min 29s 4min 38s

C. elegans Miniasm 9min 55s - - 1min 58s 28min 19s 40min 17s
(simulated) Kermit 9min 55s 2min 17s 5s 55s 28min 57s 42min 9s

S. cerevisiae Miniasm 1min 9 - - 8s 2min 45s 4min 2s
Kermit 1min 09s 10s 1s 8s 2min 44s 4min 12s

C. elegans Miniasm 16min 54s - - 4min 53min 28s 1h 14min
Kermit 16min 54s 4min 8s 11s 2min 29s 50min 29s 1h 14min

H. erato Miniasm 8h 40min - - 1h 30min - 10h 10min
Kermit 8h 40min 9min 2min 2h 42min - 11h 32min

B. pendula Miniasm 3h 24min - - 1h 32min - 4h 57min
Kermit 3h 24min 9min 17s 1h 37min - 5h 11min

5.5 Performance
We recorded the wall clock time for all experiments. Table 8 shows that Kermit needs at
most 5% more time than Miniasm on all data sets except H. erato on which it needs 13%
more time. In some cases the total running time is even reduced. Additionally, we see that
the consensus step using Racon easily dominates the pipeline in terms of time to complete.

6 Conclusions

We defined guided assembly with linkage maps by extending the unitig assembly model. Our
method, Kermit, is implemented as a graph cleaning step and the contigs are generated with
a simple unitig algorithm. As such the graph cleaning step could be used as a preprocessing
step of a more complicated traversal algorithm for retrieving the contigs. Colouring the reads
also leads naturally into non-overlapping bins of reads, that can be assembled independently.
This allows massive parallelism in the assembly and could make more sophisticated assembly
algorithms practical.

When defined as an independent graph cleaning step, our method guiding the assembly
could be applied not only to other OLC-assemblers, but also to DBG-assemblers. In this
case, the colours would be assigned to reads and the k-mers would get all colours present in
reads where they derive from.

R. Walve, P. Rastas, and L. Salmela 11:11

Our experiments show that Kermit successfully removes false edges from the overlap
graph. Furthermore we showed that with only a modest increase in runtime Kermit improves
the contiguity and correctness of assembly as compared to the Miniasm pipeline.

References
1 V. Ahola, R. Lehtonen, P. Somervuo, et al. The Glanville fritillary genome retains an

ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Com-
munications, 5:4737, 2014.

2 B. Alipanahi, L. Salmela, S.J. Puglisi, M. Muggli, and C. Boucher. Disentangled long-read
de Bruijn graphs via optical maps. In R. Schwartz and K. Reinert, editors, WABI 2017,
volume 88 of LIPIcs, pages 1:1–1:14, Dagstuhl, Germany, 2017.

3 A. Bankevich, S. Nurk, D. Antipov, et al. SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. J Comput Biol., 19(5):455–477, 2012.

4 S.M. Van Belleghem, P. Rastas, A. Papanicolalaou, et al. Complex modular architecture
around a simple toolkit of wing pattern genes. Nature Ecology & Evolution, 1:0052, 2017.

5 J. Catchen. Chromonomer. http://catchenlab.life.illinois.edu/chromonomer/, 2015. Ac-
cessed: 2018-04-27.

6 G. Chartrand, GL. Johns, KA. McKeon, and P. Zhang. Rainbow connection in graphs.
Mathematica Bohemica, 133(1):85–98, 2008.

7 C.-S. Chin, P. Peluso, F.J. Sedlazeck, et al. Phased diploid genome assembly with single-
molecule real-time sequencing. Nature Methods, 13:1050–1054, 2016.

8 J.L. Fierst. Using linkage maps to correct and scaffold de novo genome assemblies: methods,
challenges, and computational tools. Frontiers in Genetics, 6:220, 2015.

9 A. Gurevich, V. Saveliev, N. Vyahhi N, and G. Tesler. QUAST: quality assessment tool for
genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

10 M. Kolmogorov, J. Yuan, Y. Lin, and P. Pevzner. Assembly of long error-prone reads using
repeat graphs. In Proc. RECOMB 2018, pages 261–263, 2018.

11 S. Koren, B.P. Walenz, K. Berlin, J.R. Miller, N.H. Bergman, and A.M. Phillippy. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separa-
tion. Genome Res., 27:722–736, 2017.

12 H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110, 2016.

13 H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. (To
appear).

14 H.C. Lin, S. Goldstein, L. Mendelowitz, S. Zhou, J. Wetzel, D.C. Schwartz, and M. Pop.
AGORA: assembly guided by optical restriction alignment. BMC Bioinformatics, 13:189,
2012.

15 T. Paterson and A. Law. ArkMAP: integrating genomic maps across species and data
sources. BMC Bioinformatics, 14:246, 2013.

16 R. Vaser R, I. Sovic, N. Nagarajan, and M. Sikic. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome research, 27:737–746, 2017.

17 P. Rastas. Lep-MAP3: robust linkage mapping even for low-coverage whole genome se-
quencing data. Bioinformatics, 33(23):3726–3732, 2017.

18 J. Salojärvi, O.P. Smolander, K. Nieminen, et al. Genome sequencing and population gen-
omic analyses provide insights into the adaptive landscape of silver birch. Nature Genetics,
49:904–912, 2017.

19 K. Schneeberger, S. Ossowski, F. Ott, et al. Reference-guided assembly of four diverse
Arabidopsis thaliana genomes. PNAS, 108(25):10249–10254, 2011.

20 B.K. Stöcker, J. Köster, and S. Rahmann. SimLoRD: Simulation of long read data. Bioin-
formatics, 32(17):2704–2706, 2016.

WABI 2018

A Succinct Solution to Rmap Alignment
Martin D. Muggli
Department of Computer Science, Colorado State University
martin.muggli@colostate.edu

https://orcid.org/0000-0002-9283-0049

Simon J. Puglisi1

Department of Computer Science, University of Helsinki, Finland
https://orcid.org/0000-0001-7668-7636

Christina Boucher
Department of Computer and Information Science and Engineering, University of Florida

https://orcid.org/0000-0001-9509-9725

Abstract
We present Kohdista, which is an index-based algorithm for finding pairwise alignments between
single molecule maps (Rmaps). The novelty of our approach is the formulation of the alignment
problem as automaton path matching, and the application of modern index-based data structures.
In particular, we combine the use of the Generalized Compressed Suffix Array (GCSA) index with
the wavelet tree in order to build Kohdista. We validate Kohdista on simulated E. coli data,
showing the approach successfully finds alignments between Rmaps simulated from overlapping
genomic regions. Lastly, we demonstrate Kohdista is the only method that is capable of finding
a significant number of high quality pairwise Rmap alignments for large eukaryote organisms in
reasonable time. Kohdista is available at https://github.com/mmuggli/KOHDISTA/.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases Optical mapping, index based data structures, FM-index, graph al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.12

Funding MDM, SJP, and CB were funded by the National Science Foundation (1618814).

Acknowledgements The authors would like to thank Jouni Sirén for many thoughtful conversa-
tions regarding the GCSA.

1 Introduction

There is a current resurgence in generating diverse types of data, to be used alone or in
concert with short read data, in order to overcome the limitations of short read data. Data
from an optical mapping system [3, 4] is one such example and has itself become more
practical with falling costs of high-throughput methods. For example, the current BioNano
Genomics Irys System requires one week and $1,000 USD to produce the Rmap data for
an average size eukaryote genome, whereas, it required $100,000 and six months in 20092.
These technological advances and the demonstrated utility of optical mapping in genome
assembly [16, 21, 22, 2, 5] have driven several recent tool development efforts [20, 10, 13].

1 SJP was also supported in part by the Academy of Finland via grant number 294143.
2 http://www.bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-

platform-for-complex-human-genome-analysis/

© Martin D. Muggli, Simon J. Puglisi, and Christina Boucher;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.muggli@colostate.edu
https://orcid.org/0000-0002-9283-0049
https://orcid.org/0000-0001-7668-7636
https://orcid.org/0000-0001-9509-9725
https://github.com/mmuggli/KOHDISTA/
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.12
http://www.bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-platform-for-complex-human-genome-analysis/
http://www.bionanogenomics.com/press-releases/bionano-genomics-launches-irys-a-novel-platform-for-complex-human-genome-analysis/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 A Succinct Solution to Rmap Alignment

Genome-wide optical maps are ordered high-resolution restriction maps that give the
position of occurrence of restriction cut sites corresponding to one or more restriction enzymes.
These genome-wide optical maps are assembled using an overlap-layout-consensus approach
using raw optical map data, which are referred to as Rmaps. Hence, Rmaps are akin to reads
in genome sequencing. To date, however, there is no efficient, non-proprietary method for
finding pairwise alignments between Rmaps, which is the first step in assembling genome-wide
maps.

Several existing methods are superficially applicable to Rmap pairwise alignments but all
programs either struggle to scale to even moderate size genomes or require significant further
adaptation to the problem. Several methods exhaustively evaluate all pairs of Rmaps using
dynamic programming. One of these is the method of Valouev et al. [19], which is capable of
solving the problem exactly but requires over 100,000 CPU hours to compute the alignments
for rice [18]. The others are SOMA [15] and MalignerDP [13] which are designed only for
semi-global alignments instead of overlap alignments, which are required for assembly.

Other methods reduce the number of map pairs to be individually considered by initially
finding seed matches and then extending them through more intensive work. These include
OMBlast [10], OPTIMA [20], and MalignerIX [13]. These, along with MalignerDP, were
designed for a related alignment problem of aligning consensus data but cannot consistently
find high quality Rmap pairwise alignments in reasonable time as we show later. This is
unsurprising since these methods were designed for either already assembled optical maps or
in silico digested sequence data for one of their inputs, both having a lower error rate than
Rmap data.

Our contributions. In this paper, we present a fast, error-tolerant method for performing
pairwise Rmap alignment that makes use of a novel FM-index based data structure. Although
the FM-index can naturally be applied to short read alignment [11, 9], it is nontrivial to
apply it to Rmap alignment. The difficulty arises from: (1) the abundance of missing or false
cut sites, (2) the fragment sizes require inexact fragment-fragment matches (e.g. 1,547 bp and
1,503 bp represent the same fragment), (3) the Rmap sequence alphabet consists of all unique
fragment sizes and is so extremely large (e.g., over 16,000 symbols for the goat genome). The
second two challenges render inefficient the standard FM-index backward search algorithm,
which excels at exact matching over small alphabets. The first (and most-notable) challenge
requires a more complex index-based data structure be used to create an aligner that is robust
for insertion and deletion of cut sites. To overcome the mismatch cut site challenge while
still accommodating the other two, we develop Kohdista, an index-based Rmap alignment
program that is capable of finding all pairwise alignments in large eukaryote organisms.

We first abstract the problem to that of approximate-path matching in a directed acyclic
graph (DAG). The Kohdista method then indexes a set of Rmaps represented as a DAG,
using a modified form of the generalized compressed suffix array (GCSA), which is a variant
of the FM-index developed by Siren et al. [17]. The principle insight of our work is that while
GCSA is able to efficiently match all similar paths concurrently, it was designed for indexing
variations observed in a collection of sequences. In contrast, our work indexes variations
that are instead speculative, based on the Rmap error profile. Lastly, we demonstrate that
challenges posed by the inexact fragment sizes and alphabet size can be overcome, specifically
in the context of the GCSA, via careful use of a wavelet tree [7, 14].

We verify our approach on simulated E. coli Rmap data by showing that Kohdista
achieves similar sensitivity and specificity to Valouev et al., and with more permissive
alignment acceptance criteria 90% of Rmap pairs simulated from overlapping genomic regions.

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:3

We also show the utility of our approach on larger eukaryote genomes by demonstrating that
existing published methods require more than 151 hours of CPU time to find all pairwise
alignments in the plum Rmap data; whereas, Kohdista requires 31 hours. Thus, we present
the first fully-indexed method capable of finding all match patterns in the pairwise Rmap
alignment problem.

2 Background

Throughout we consider a string (or sequence) S = S[1..n] = S[1]S[2] . . . S[n] of |S| = n

symbols drawn from the alphabet [1..σ]. For i = 1, . . . , n we write S[i..n] to denote the suffix
of S of length n− i+ 1, that is S[i..n] = S[i]S[i+ 1] . . . S[n], and S[1..i] to denote the prefix
of S of length i. S[i..j] is the substring S[i]S[i+ 1] . . . S[j] of S that starts at position i and
ends at j. Given a sequence S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and
integers i,j, rankc(S, i) is the number of times that c appears in S[1, i], and selectc(S, j) is
the position of the j-th occurrence of c in S.

Overview of Optical Mapping. From a computer science viewpoint, restriction mapping (by
optical or other means) can be seen as a process that takes in two sequences: a genome A[1, n]
and a restriction enzyme’s recognition sequence B[1, b], and produces an array (sequence) of
integers C, the genome restriction map, which we define as follows. First define the array of
integers C[1,m] where C[i] = j if and only if A[j..j + b] = B is the ith occurrence of B in A.
Then R[i] = (C[i]−C[i− 1]), with R[1] = C[1]− 1. In words, R contains the distance between
occurrences of B in A. For example, if we let B be act and A = atacttactggactactaaact
then we would have C = 3, 7, 12, 15, 20 and R = 2, 4, 5, 3, 5. In reality, R is a consensus
sequence formed from millions of erroneous Rmap sequences. The optical mapping system
produces millions of Rmaps for a single genome. It is performed on many cells of an organism
and for each cell there are thousands of Rmaps (each at least 250 Kbp in length in publicly
available data). The Rmaps are then assembled to produce a genome-wide optical map.
Like the final R sequence, each Rmap is an array of lengths — or fragment sizes — between
occurrences of B in A.

There are three types of errors that an Rmap (and hence with lower magnitude and
frequency, also the consensus map) can contain: (1) missing and false cuts, which are caused
by an enzyme not cleaving at a specific site, or by random breaks in the DNA molecule,
respectively; (2) missing fragments that are caused by desorption, where small (< 1 Kbp
) fragments are lost and so not detected by the imaging system; and (3) inaccuracy in the
fragment size due to varying fluorescent dye adhesion to the DNA and other limitations of
the imaging process. Continuing again with the example above where R = 2, 4, 5, 3, 5 is the
error-free Rmap: an example of an Rmap with the first type of error could be R′ = 6, 5, 3, 5
(the first cut site is missing so the fragment sizes 2, and 4 are summed to become 6 in R′); an
example of a Rmap with the second type of error would be R′′ = 2, 4, 3, 5 (the third fragment
is missing); and lastly, the third type of error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the
size of the third fragment is inaccurately given).

Frequency of Errors. In the optical mapping system, there is a 20% probability that a cut
site is missed and a 0.15% probability of a false break per Kbp, i.e., error type (1) occurs in
a fragment. Popular restiction enzymes in optical mapping experiments recognize a 6 bp
sequence giving an expected cutting density of 1 per 4096 bp. At this cutting density, false
breaks are less common than missing restriction sites (approx. 0.25∗ .2 = .05 for missing sites

WABI 2018

12:4 A Succinct Solution to Rmap Alignment

vs. 0.0015 for false sites per bp). The inaccuracy of the fragment sizes, i.e, error type (3),
follows a normal distribution with mean and variance assumed to be 0 bp and `σ2 (σ = .58
kbp), respectively [19].

Suffix Arrays, BWT and Backward Search. The suffix array [12] SAX (we drop subscripts
when they are clear from the context) of a sequence X is an array SA[1..n] which contains a
permutation of the integers [1..n] such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in lexicographic order. For a sequence
Y, the Y-interval in the suffix array SAX is the interval SA[s..e] that contains all suffixes
having Y as a prefix. The Y-interval is a representation of the occurrences of Y in X. For a
character c and a sequence Y, the computation of cY-interval from Y-interval is called a left
extension.

The Burrows-Wheeler Transform BWT[1..n] is a permutation of X such that BWT[i] =
X[SA[i]− 1] if SA[i] > 1 and $ otherwise [1]. We also define LF[i] = j iff SA[j] = SA[i]− 1,
except when SA[i] = 1, in which case LF[i] = I, where SA[I] = n. Ferragina and Manzini [6]
linked BWT and SA in the following way. Let C[c], for symbol c, be the number of symbols
in X lexicographically smaller than c. The function rank(X, c, i), for sequence X, symbol c,
and integer i, returns the number of occurrences of c in X[1..i]. It is well known that LF[i] =
C[BWT[i]] + rank(BWT,BWT[i], i). Furthermore, we can compute the left extension using C
and rank. If SA[s..e] is the Y-interval, then SA[C[c] + rank(BWT, c, s),C[c] + rank(BWT, c, e)]
is the cY-interval. This is called backward search [6], and a data structure supporting it is
called an FM-index.

To support rank queries in backward search, a data structure called a wavelet tree (see [7])
can be used. It occupies n log σ+o(n log σ) bits of space and supports rank queries in O(log σ)
time. Wavelet trees also support a variety of more complex queries on the underlying string
efficiently (see, e.g. [7]). One such query we will use in this paper is to return the set X of
distinct symbols occurring in S[i, j], which takes O(|X| log σ) time.

3 The Pairwise Rmap Alignment Problem

Given a genome A[1, n] and a restriction enzyme’s recognition sequence B[1, b], the optical
mapping system produces Rmaps, which are arrays of lengths—or fragment sizes—between
occurrences of B in A. The background section provides details on the optical mapping
process. Producing Rmap data is an error prone process. Thus, three types of errors can
occur: (1) missing and false cuts that delimit fragments; (2) missing fragments; and (3)
inaccuracy in the fragment sizes. For example, let R = 2, 4, 5, 3, 5 be an error-free Rmap,
then an example of an Rmap with the first type of error could be R′ = 6, 5, 3, 5 (the first cut
site is missing so the fragment sizes 2, and 4 are summed to become 6 in R′); an example of
a Rmap with the second type of error would be R′′ = 2, 4, 3, 5 (the third fragment is missing);
and lastly, the third type of error could be illustrated by R′′′ = 2, 4, 7, 3, 5 (the size of the
third fragment is inaccurately given)

The pairwise Rmap alignment problem aims to align one Rmap (the query) Rq against the
set of all other Rmaps in the dataset (the target). We denote the target database as R1 . . .Rn,
where each Ri is a sequence of mi fragment sizes, i.e, Ri = [fi1, .., fimi

]. An alignment
between two Rmaps is a relation between them comprising groups of zero or more consecutive
fragment sizes in one Rmap associated with groups of zero or more consecutive fragments in
the other. For example, given Ri = [4, 5, 10, 9, 3] and Rj = [10, 9, 11] one possible alignment
is {[4, 5], [10]}, {[10], [9]}, {[9], [11]}, {[3], []}. A group may contain more than one fragment

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:5

(e.g. [4, 5]) when the restriction site delimiting the fragments is absent in the corresponding
group of the other Rmap (e.g [10]). This can occur if there is a false restriction site in one
Rmap, or there is a missing restriction site in the other. Since we cannot tell from only two
Rmaps which of these scenarios occurred, for the purpose of our remaining discussion it will
be sufficient to consider only the scenario of missed (undigested) restriction sites.

4 Methods

We now describe the algorithm behind Kohdista. Three main insights enable our index-
based aligner for Rmap data: 1) abstraction of the alignment problem to a finite automaton;
2) use of the GCSA for storing and querying the automaton; and 3) modification of backward
search to use a wavelet tree in specific ways to account for the Rmap error profile.

4.1 Finite Automaton

Continuing with the example in the background section, we want to align R′ = 6, 5, 3, 5 to
R′′′ = 2, 4, 7, 3, 5 and vice versa. To accomplish this we cast the Rmap alignment problem to
that of matching paths in a finite automaton. A finite automaton is a directed, labeled graph
that defines a language, or a specific set of sequences composed of vertex labels. A sequence
is recognized by an automaton if it contains a matching path: a consecutive sequence of
vertex labels equal to the sequence. We represent the target Rmaps as an automaton and
the query as a path in this context.

The automaton for our target Rmaps can be constructed as follows. First concatenate
the R1 . . .Rn together into a single sequence with each Rmap separated by a special symbol
which will not match any query symbol. Let R∗ denote this concatenated sequence. Hence,
R∗ = [f11, .., f1m1 , . . . , fn1, .., fnmn]. Then, construct an initial finite automaton A = (V,E)
for R∗ by creating a set of vertices vi

1..v
i
m, one vertex labeled with each fragment length and

edges connecting them.Also, introduce to A a starting vertex v1 labeled with # and a final
vertex vf labeled with the character $. All other vertices in A are labeled with integral values.
This initial set of vertices and edges is called the backbone. The backbone by itself is only
sufficient for finding alignments with no missing cut sites in the query. The backbone of an
automaton constructed for a set containing R′ and R′′ would be #, 6, 5, 3, 5, 999, 2, 4, 3, 5$,
using 999 as an unmatchable value. Next, extra vertices (“skip vertices”) and extra edges are
added to A to allow for the automaton to accept all valid queries. Figure 1a(a) illustrates
the construction of A for a single Rmap with fragment sizes 2, 3, 4, 5, 6.

4.1.1 Skip Vertices and Skip Edges

We introduce extra vertices labeled with compound fragments to allow missing cut sites (first
type of error) to be taken into account in querying the target Rmaps. We refer to these as
skip vertices as they provide alternative path segments which skip past two or more backbone
vertices. Thus, we add a skip vertex to A for every o+ 1 length run of consecutive vertices in
the backbone where 1 < o < order and order is the maximum number of consecutive missed
cut sites to be accommodated. First order skip vertices are each labeled with the sum of two
consecutive backbone vertices. Second order skip vertices are each labeled with the sum of
three consecutive backbone vertices. The vertex labeled with 7 connecting 2 and 5 in 1a(a)
is an example of a skip vertex. Likewise, 5, 9, 11 are other skip vertices.

WABI 2018

12:6 A Succinct Solution to Rmap Alignment

5,6,$
5

4
4

3
3

2
2

#
#

6,$
6

$
$

7
7

11,$
11

5
5

9,6,#
9

5,6,$
5

4
4

3
3

2
2

#
#

6,$
6

$
$

7
7

11,$
11

5,4
5

9,6,#
9

5,9,6,$
5

(a)

(b)

(a) An example automaton for an Rmap with fragment size sequence
2, 3, 4, 5, 6. The top half of vertices contains the label, which models
a fragment size in Kbp. The common prefixes of all suffixes spellable
from a vertex is written in the bottom half. Note that there is no
ordering of vertices such that all their corresponding suffixes are
in lexicographic order; the leftmost vertex labelled with “5” spells
suffixes beginning “5,4,...” as well as the suffix “5,9,6,$” while the
rightmost 5 spells the suffix “5,6,$”. (b) shows the prefix sorted
automaton corresponding to the one in (a). The leftmost vertex 5
has been duplicated and the outgoing edges of the previous version
have been divided between the new replacement instances. This
also divides the suffixes spellable from the prior version. Now the
three 5 vertices can be ordered based on their common prefixes as
[“5,4,...”,“5,6,$”, “5,9,6, $”].

BWT M F
$ 6

11
1 1

0
2 # 1

0
1

3 2 1
0

1

4 3
5

1
0

1
0

5,4 # 1 1
5,6,$ 4

7
1 1

0
5,9,6,$ # 1 1
6,$ 5

9
1 1

0
7 2 1

0
1

9,6,$ 3
5

1 1
0

11,$ 4
7

1 1
0

$ 1
0
0

1

(b) Table listing the three arrays
storing the automaton in memory:
BWT, M, and F. Each row in the
table delimits elements associated
with a particular vertex.

Figure 1 Example automata and corresponding memory representation.

Finally, we add skip edges which provide paths around vertices with small labels in the
backbone. These allow a query with a missing fragment to still match.3 Hence, the addition
of skip edges allow for desorption (the second type of error) to be taken into account in
querying the target Rmaps.

4.2 Generalized Compressed Suffix Array
We index the automaton with the GCSA [17] for efficient storage and path querying. The
GCSA is a generalization of the FM-index for automata and we will explain the GCSA by
drawing on the definition of the (more widely known) FM-index. As stated in the background
section, the FM-index is based on the deep relationship between the SA and the BWT data
structures of the input string X. The BWT of an input string is formed by sorting all
characters of the string by the lexicographic order of the suffix immediately following each
character. The main properties the FM-index exploits in order to perform queries efficiently
are a) BWT[i] = X[SA[i]− 1]; and b) given that SA[i] = j, and C[c] gives the position of the
first suffix in SA prefixed with character c, then using small auxiliary data structures we can

3 Different smallness thresholds for query and target bias toward this scenario, avoiding backtracking in
the search.

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:7

quickly determine k = C[BWT[i]] + rank(BWT,BWT[i], i), such that SA[k] = j − 1. The first
of these properties is simply the definition of the BWT. The second is, because the symbols
of X occur in the same order in both the single character prefixes in the suffix array and
in the BWT, given a set of sorted suffixes, prepending the same character onto each suffix
does not change their order. Thus, if we consider all the suffixes in a range of SA which
are preceded by the same symbol c, that subset will appear in the same relative order in
(another part of) SA: as a contiguous subinterval of the interval that contains all the suffixes
beginning with c. Thus by knowing where a symbol’s run begins in the SA and the rank of
an instance of that symbol, we can identify the SA position beginning with that instance
from its position in BWT. A rank data structure over the BWT thus constitutes a sufficient
compressed index of the suffix array needed for traversal.

To generalize the FM-index to automata (from strings), we need to efficiently store the
vertices and edges in a manner such that the FM-index properties still hold, allowing the
GCSA to support queries efficiently. An FM-index’s compressed suffix array for a string S
encodes a relationship between each suffix S and its left extension. Hence, this suffix array
can be generalized to edges in a graph that represent a relationship between vertices. The
compressed suffix array for a string is a special case where the vertices are labeled with the
string’s symbols in a non-branching path.

4.2.1 Prefix-sorted Automata

Just as backward search for strings is linked to suffix sorting, backward searching in the
BWT of the automaton requires us to be able to sort the vertices (and a special set of the
paths) of the automaton in a particular way. In [17] this property is called prefix-sortedness.
Let A = (V,E) be a finite automaton, let v|V | denote its terminal vertex, and let v ∈ V be a
vertex. We say v is prefix-sorted by prefix p(v) if the labels of all paths from v to v|V | share
a common prefix p(v), and no path from any other vertex u 6= v to v|V | has p(v) as a prefix
of its label. Automaton A is prefix-sorted if all vertices are prefix-sorted. See Figure 1a for
an example of a non-prefix sorted automaton and a prefix sorted automaton. A non-prefix
sorted automaton can be made prefix sorted through a process of duplicating vertices and
their incoming edges but dividing their outgoing edges between the new instances (see [17]).

Clearly the prefixes p(v) allow us to sort the vertices of a prefix-sorted automaton into
lexicographical order. Moreover, if we consider the list of outgoing edges (u, v), sorted by
pairs (p(u), p(v)), they are also sorted by the sequences `(u)p(v), where `(u) denotes the
label of vertex u. This (dual sortedness) property allows backward searching to work over
the list of vertex labels (sorted by p(v)) in the same way that is does for the symbols of a
string ordered by their following suffixes in normal backward search for strings.

Each vertex has a set of one or more preceding vertices and therefore, a set of predecessor
labels in the automaton. These predecessor label sets are concatenated to form the BWT.
The sets are concatenated in the order defined by the above mentioned lexicographic ordering
of the vertices. Each element in BWT then denotes an edge in the automaton. Another array
of bits, F, marks a ‘1’ for the first element of BWT corresponding to a vertex and a ‘0’ for
all subsequent elements in that set. Thus, the predecessor labels, and hence the associated
edges, for a vertex with rank r are BWT[select(r)..select(r+ 1)]. Another array, M, stores the
out degree of each vertex and allows the set of vertex ranks associated with a BWT interval
to be found using rank() queries.

WABI 2018

12:8 A Succinct Solution to Rmap Alignment

4.3 Exact Matching: GCSA Backward Search
Exact matching with the GCSA is similar to the standard FM-index backward search
algorithm. As outlined in the background section, FM-index backward search proceeds
by finding a succession of lexicographic ranges that progressively match longer and longer
suffixes of the query string, starting from the rightmost symbol of the query. The search
maintains two items — a lexicographic range and an index into the query string — and the
property that the path prefix associated with the lexicographic range is equal to the suffix of
the query marked by the query index. Initially, the query index is at the rightmost symbol
and the range is [1..n] since every path prefix matches the empty suffix. The search continues
using GCSA’s backward search step function, which takes as parameters the next symbol (to
the left) in the query (i.e. fragment size in Rq) and the current range, and returns a new
range. The query index is advanced leftward after each backward search step. In theory,
since the current range corresponds to a consecutive range in the BWT, the backward search
could use select() queries on a bit vector F to determine all the edges adjacent to a given
vertex and then two FM-index LF() queries are applied to the limits of the current range
to obtain the new one. GCSA’s implementation uses one succinct bit vector per alphabet
symbol to encode which symbols precede a given vertex instead of F. Finally, this new range,
which corresponds to a set of edges, is mapped back to a set of vertices using rank() on the
M bit vector.

4.4 Inexact Matching: GCSA Backward Search Using a Wavelet Tree
We modified GCSA backward search in the following ways: (1) we used a wavelet tree to
allow efficient retrieval of substitution candidates; (2) we modified the search process to
combine consecutive query fragments into compound fragments so as to match fragments in
R∗ missing the interposing restriction site; and (3) we introduced backtracking, in order to
both try size substitution candidates as well as various combinations of compound fragments.
These modifications are further detailed below.

First, in order to accommodate possible errors in fragment size, we determine a set, D,
of candidate fragment sizes that are similar to the next fragment of Rq to be matched in
the query. These candidates are determined by enumerating the distinct symbols in the
currently active backward-search range of the BWT4 using the wavelet tree algorithm of
Gagie et al. [7]. This method was proposed by Muggli et al. [14] for use with an FM-index
but was not directly applicable to the originally proposed implementation of GCSA. This is
because some of GCSA’s theoretical constructs (i.e. F) were substituted in implementation
for efficiency reasons. In order to apply the aforementioned wavelet tree method, we thus
resurrect the previously theoretical only bit array F (which we encode succinctly) as well
as symbol array BWT (which we encoded with a wavelet tree) into Kohdista using the
SDSL-Lite library by Gog et al. [8].

To accommodate possible restriction sites that are present in the query Rmap but
absent in target Rmaps, we generate compound fragments (i.e. new symbols) by summing
pairs and triples of consecutive query fragment size and then querying the wavelet tree for
substitutions of these compound fragments. This summing of multiple consecutive fragments
is complementary to the skip vertices in the target automaton and accommodates missed
restriction sites in the target, just as the skip vertices accommodate missed sites in the query.

4 Recall that this active range, when applied to a lexicographic range, represents the suffixes whose
prefixes are the matched portion of the query, while the same range of the BWT contains possible
extension symbols.

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:9

Lastly, since there may be multiple match candidates in the BWT interval of R∗ for a
compound fragment generated from Rq and multiple compound fragments generated at a
given position in Rq, we employ the common practice of adding backtracking to backward
search (as is done, for example in the works of Li et al. and Langmead et al.). This is so that
each candidate size returned to the search algorithm from the wavelet tree is evaluated; i.e.,
for a given compound fragment size f generated from Rq, every possible candidate fragment
size, f ′, that can be found in R∗ in the range f − t . . . f + t and in the interval s . . . e (of the
BWT of R∗) for some tolerance t is used as a substitute in the backward search.

5 Results and Discussion

We evaluated Kohdista against the other available optical map alignment software. Our
experiments measured runtime, peak memory, and alignment quality on simulated E. coli
Rmaps and experimentally generated plum Rmaps. All experiments were performed on Intel
Xeon computers with ≥ 16 GB RAM running 64-bit Linux.

5.1 Performance on Simulated E.coli Rmap Data

To verify the correctness of our method, we simulated a read set from a 4.6 Mbp E. coli
reference genome as follows: we started with 1,400 copies of the genome, and then generated
40 random loci within each. These loci form the ends of molecules that would undergo
digestion. Molecules smaller than 250 Kbp were discarded leaving 272 molecules with a
combined length equating to 35x coverage depth. The cleavage sites for the XhoI enzyme were
then identified within each of these simulated molecules. We removed 20% of these at random
from each simulated molecule to model partial digestion. Finally, normally distributed noise
was added to each fragment with a standard deviation of .58 kb per 1 kb of the fragment.
Simulated molecule pairs having 16 common conserved digestion sites become the “ground
truth”5 data for testing our method with the others. Although a molecule would align
to itself, these are not included in the ground truth set. This method of simulation was
based on the E. coli statistics given by Valouev et al. [18] and resulting in a molecule length
distribution as observed in publicly available Rmap data from OpGen, Inc.

Most of the tools were designed for less noisy data but in theory could address all the
data error types required. For tools with tunable parameters, we tried aligning the E. coli
Rmaps with combinations of parameters for each method related to its alignment score
thresholds and error model parameters. We used parameterization giving results similar to
those for the default parameters of Valouev et al.’s method to the extent such parameters
did not significantly increasing each tool’s runtime. These same parameterization were used
in the next section on plum data.

Even with tuning, we were unable to obtain pairwise alignments on E. coli for two
methods. We found OPTIMA only produced self alignments with its recommended overlap
protocol and report its resource use in Table 1. For MalignerIX, even when we relaxed the
parameters to account for the greater sizing error and mismatch cut site frequency, it was
also only able to find self alignments. This is expected as by design it only allows missing
sites in one sequence in order to run faster. Thus no further testing was performed with

5 Due to repeats in the restriction map, and apparent repeats at the resolution attainable through optical
measurement, some alignments beyond these are expected.

WABI 2018

12:10 A Succinct Solution to Rmap Alignment

Table 1 Performance on simulated E. coli dataset. Kohdista (lax) demonstrates that our
indexing and search method is capable of finding the majority of ground truth alignments when the
search is pruned to the more relaxed thresholds of χ2 < .02, Binom. < .5.

Method Time Memory Align-
ments

Recall Precision

Kohdista 20 s. 19.0 MB 907 702 / 4,305 (16%) 702 / 907 (77%)
Kohdista (lax) 373 s. 18.3 MB 8,545 3,925 / 4,305 (91%) 3,925 / 8,545 (46%)
Valouev et al. 148 s. 4.0 MB 742 699 / 4,305 (16%) 699 / 742 (94%)
MalignerDP 47 s. 6.0 MB 1,959 1,296 / 4,305 (30%) 1,296 / 1959 (66%)
OMBlast 116 s. 2,078 MB 1,008 806 / 4,305 (19%) 806 / 1008 (80%)
RefAligner 31 s. 81.2 MB 992 958 / 4,305 (22%) 948 / 992 (97%)
MalignerIX 4 s. 6.0 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)
OPTIMA 455 s. 10,756.5 MB 0 0 / 4,305 (0%) 0 / 0 (N/A)

Table 2 Performance on Plum.

Method Time Memory Alignments

Kohdista 31 hours 7.4 GB 16,109,151
Valouev et al. 678 hours 60 MB 6,387
MalignerDP 214 hours 784 MB 568,744
OMBlast 151 hours 12.3 GB 424,730
RefAligner 90 hours 374 MB 10,039

MalignerIX or OPTIMA. We did not test SOMA [15] as earlier investigation indicate it
would not scale to larger genomes [14]. We omit TWIN [14] as it needs all cut sites to match.

Results on E. coli are presented in Table 1. Kohdista uses χ2 and binomial CDF
thresholds to prune the backtracking search when deciding whether to extend alignments to
progressively longer alignments. More permissive match criteria, using higher thresholds,
allows more Rmaps to be reached in the search and thus to be considered aligned, but it also
results in less aggressive pruning in the search, thus lengthening runtime. As an example,
note that when Kohdista was configured with a much relaxed CDF threshold of .5 and a
binomial CDF threshold of .7, it found 3,925 of the 4,305 (91%) ground truth alignments, but
slowed down considerably. This illustrates the index and algorithm’s capability in handling
all error types.

5.2 Performance on Plum Rmap Data
The Beijing Forestry University and other institutes assembled the first plum (Prunus mume)
genome using short reads and optical mapping data from OpGen Inc. We test the various
available alignment methods on the 139,281 plum Rmaps from June 2011 available in the
GigaScience repository. These Rmaps were created with the BamHI enzyme and have a
coverage depth of 135x of the 280 Mbp genome. For the plum dataset, we ran all the methods
which approach the statistical performance of the Valouev et al. method when measured
on E. coli. Thus, we omitted MalignerIX and OPTIMA because they had 0% recall and
precision on E. coli. Our results on this plum dataset are summarized in Table 2.

Kohdista was the fastest and obtained more alignments than the competing methods.
When configured with a χ2 CDF threshold of .02, it took 31 hours of CPU time to test all
Rmaps for pairwise alignments in the plum Rmap data. This represents a 21x speed-up over
the 678 hours taken by the exhaustive Valouev et al. method. The other non-proprietary

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:11

0 5 10 15 20 25 30
S-score

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Random pair S-score histogram

0 5 10 15 20 25 30
S-score

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Valouev S-score Histogram

0 5 10 15 20 25 30
S-score

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

Kohdista S-score histogram

0 5 10 15 20 25 30
S-score

0

20000

40000

60000

80000

100000

120000

140000

Fr
eq

ue
nc

y

MaligerDP S-score histogram

0 5 10 15 20 25 30
S-score

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y

OMBlast S-score Histogram

0 5 10 15 20 25 30
S-score

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

RefAligner S-score histogram

Figure 2 All alignments found on plum were realigned using Valouev et al.’s dynamic programming
method. Their method finds the optimal alignment using a function balancing size agreement and cut
site agreement known as an s-score. (a) The s-score distribution for random pairs. (b) The Valouev
et al. software considers any pair with an s-score > 25 to be aligned. (c) Kohdista alignments tend
to have significantly higher s-scores than random. (d) MalignerDP alignments tend to have slightly
higher s-scores than random. (e) OMBlast alignments tend to have higher s-scores than random. (f)
BioNano’s commercial RefAligner method alignments tends to have a significantly higher s-scores
than random.

methods, MalignerDP and OMBlast, took 214 hours and 151 hours, respectively. These
results represent a 6.9x and 4.8x speed-up over MalignerDP and OMBlast. All methods used
less than 13 GB of RAM and thus, were considered practical from a memory perspective.

To measure the quality of the alignments, we scored each pairwise alignment using the
scoring scheme of Valouev et al. and present histograms of these alignment scores in Figure 2.
For comparison, we also scored and present the histogram for random pairs of Rmaps.
The Valouev et al. method produces very few but high-scoring alignments and although it
could theoretically be altered to produce a larger number of alignments, the running time
makes this prospect impractical (678 hours). Although Kohdista and RefAligner produce
high-quality alignments, RefAligner produced very few alignments (10,039) and required
almost 5x more time to do so. OMBlast and Maligner required significantly more time and
produced significantly lower quality alignments.

WABI 2018

12:12 A Succinct Solution to Rmap Alignment

6 Conclusion

In this paper, we demonstrate how finding pairwise alignments in Rmap data can be modelled
as approximate-path matching in a directed acyclic graph, and combining the GCSA with
the wavelet tree results in an index-based data structure for solving this problem. We
implement this method and present results comparing Kohdista with competing methods.
By demonstrating results on both simulated E. coli Rmap data and real plum Rmaps, we
show that Kohdista is capable of detecting high scoring alignments in efficient time. In
particular, Kohdista detected the largest number of alignments in 31 hours. RefAligner, a
proprietary method, produced very few high scoring alignments (10,039) and requires almost
5x more time to do so. OMBlast and Maligner required significantly more time and produced
significantly lower quality alignments. The Valouev et al. method produced high scoring
alignments but required more than 21x time to do.

References
1 M. Burrows and D.J. Wheeler. A block sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.
2 S. Chamala et al. Assembly and validation of the genome of the nonmodel basal angiosperm

amborella. Science, 342(6165):1516–1517, 2013.
3 Aston Christopher and Schwartz David C. Optical mapping in genomic analysis, 2006.

doi:10.1002/9780470027318.a1421.
4 E.T. Dimalanta, A. Lim, R. Runnheim, C. Lamers, C. Churas, D.K. Forrest, J.J. de Pablo,

M.D. Graham, S.N. Coppersmith, S. Goldstein, and D.C. Schwartz. A microfluidic system
for large DNA molecule arrays. Analytical Chemistry, 76(18):5293–5301, 2004.

5 Y. Dong et al. Sequencing and automated whole-genome optical mapping of the genome
of a domestic goat (capra hircus). Nature Biotechnology, 31(2):136–141, 2013.

6 P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.
7 T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and applications

to information retrieval. Theoretical Computer Science, 426-427:25–41, 2012.
8 Simon Gog et al. From theory to practice: Plug and play with succinct data structures.

In 13th International Symposium on Experimental Algorithms, (SEA 2014), pages 326–337,
2014. doi:10.1007/978-3-319-07959-2_28.

9 B. Langmead et al. Ultrafast and memory-efficient alignment of short DNA sequences to
the human genome. Genome Biology, 10(3):R25, 2009.

10 Alden King-Yung Leung et al. Omblast: alignment tool for optical mapping using a seed-
and-extend approach. Bioinformatics, page btw620, 2016.

11 H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25(14):1754–60, 2009.

12 U. Manber and G. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Scientific Computing, 22(5):935–948, 1993.

13 L. M. Mendelowitz et al. Maligner: a fast ordered restriction map aligner. Bioinformatics,
32(7):1016–1022, 2016.

14 M.D. Muggli, S.J. Puglisi, and C. Boucher. Efficient indexed alignment of contigs to optical
maps. In Proc. of WABI, pages 68–81, 2014.

15 N. Nagarajan, T. D Read, and M. Pop. Scaffolding and validation of bacterial genome
assemblies using optical restriction maps. Bioinformatics, 24(10):1229–1235, 2008.

16 S. Reslewic et al. Whole-genome shotgun optical mapping of Rhodospirillum Rubrum.
Applied Environmental Microbiology, 71(9):5511–5522, 2005.

http://dx.doi.org/10.1002/9780470027318.a1421
http://dx.doi.org/10.1007/978-3-319-07959-2_28

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:13

0.0 0.2 0.4 0.6 0.8 1.0
Recall (TP/4,305)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (T
P/

(T
P+

FP
))

Precision-Recall Plot

Valouev
MalignerDP
RefAligner
OMBlast
Kohdista
Valouev default

Figure 3 Precision-Recall plot of successful methods on simulated E. coli.

17 J. Sirén et al. Indexing graphs for path queries with applications in genome research.
IEEE/ACM TCBB, 11(2):375–388, 2014.

18 A. Valouev et al. An algorithm for assembly of ordered restriction maps from single DNA
molecules. Proc Natl Acad Sci, 103(43):15770–15775, 2006.

19 A. Valouev et al. Alignment of optical maps. J. Comp Bio, 13(2):442–462, 2006.
20 Davide Verzotto et al. Optima: Sensitive and accurate whole-genome alignment of error-

prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.
GigaScience, 5(1):2, 2016.

21 S. Zhou et al. A whole-genome shotgun optical map of Yersinia pestis strain KIM. Applied
and Environmental Microbiology, 68(12):6321–6331, 2002.

22 S. Zhou et al. Shotgun optical mapping of the entire Leishmania major Friedlin genome.
Molecular and Biochemical Parasitology, 138(1):97–106, 2004.

A Practical Indexing Considerations

A.1 Pruning the Search
Alignments are found by incrementally extending candidate partial alignments (paths in the
automaton) to longer partial alignments by choosing one of several compatible extension
matches (adjacent vertices to the end of a path in the automaton). To perform this search
efficiently, we prune the search by computing the χ2 and binomial CDF statistics of the
partial matches and use thresholds to ensure reasonable size agreement of the matched
compound fragments, and the frequency of putative missing cut sites. These values alter the
precision and recall as well as runtime. The statistical performance tradeoff of Kohdista
and competing methods is shown in Figure 3.

A.1.1 Size Agreement
We use the Chi-square CDF statistic to assess size agreement. This assumes the fragment
size errors are independent, normally distributed events. For each pair of matched compound

WABI 2018

12:14 A Succinct Solution to Rmap Alignment

fragments in a partial alignment, we take the mean between of the two as the assumed
true length and compute the expected standard deviation using this mean. Each compound
fragment deviates from the assumed true value by half the distance between them. These two
deviation values contribute two degrees of freedom to the Chi-square calculation. Thus each
deviation is normalized by dividing by the expected standard deviation, these are squared,
and summed across all compound fragments to generate the χ2 statistic. We use the standard
χ2 CDF function to compute the area under the curve of the probability mass function up
to this χ2 statistic, which gives the probability two Rmap segments from common genomic
origin would have a χ2 statistic no more extreme than observed. This probability is compared
to Kohdista’s chi-squared-cdf-thresh and if smaller, the candidate compound fragment is
assumed to be a reasonable match and the search continues.

A.1.2 Cut Site Error Frequency

We use the Binomial CDF statistic to assess the probability of the number of cut site errors
in a partial alignment. This assumes missing cut site errors are independent, Bernoulli
processes events. We account for all the putatively conserved cut sites on the boundaries
and those delimiting compound fragments in both partially aligned Rmaps plus twice the
number of missed sites as the number of Bernoulli trials. We use the standard binomial
CDF function to compute the sum of the probability density function up to the number of
non-conserved cut sites in a candidate match. Like the size agreement calculation above,
this gives the probability two Rmaps of common genomic origin would have the number of
non-conserved sites seen or fewer in the candidate partial alignment under consideration.
This is compared to the binom-cdf-thresh to decide whether to consider extensions to the
given candidate partial alignment. Thus, given a set of Rmaps and input parameters ρL

and ρU , we produce the set of all Rmap alignments that have a chi-square CDF statistic
less than ρU and a binomial CDF statistic less than ρL. Both of these are subject to the
additional constraint of a maximum consecutive missed restriction site run between aligned
sites of δ and a minimum aligned site set cardinality of 16.

A.1.2.1 Pruning Queries

One side effect of summing consecutive fragments in both the search algorithm and the target
data structure is that several successive search steps with agreeing fragment sizes will also
have agreeing sums of those successive fragments. In this scenario, proceeding deeper in the
search space will result in wasted effort. To reduce this risk, we maintain a table of scores
obtained when reaching a particular lexicographic range and query cursor pair. We only
proceed with the search past this point when either the point has never been reached before,
or has only been reached before with inferior scores.

A.1.2.2 Wavelet Tree Cutoff

The wavelet tree allows efficiently finding the set of vertex labels that are predecessors of the
vertices in the current match interval intersected with the set of vertex labels that would
be compatible with the next compound fragment to be matched in the query. However,
when the match interval is sufficiently small (< 750) it is faster to scan the vertices in BWT
directly.

M.D. Muggli, S. J. Puglisi, and C. Boucher 12:15

A.1.2.3 Quantization

The alphabet of fragment sizes can be large considering all the measured fragments from
multiple copies of the genome. This can cause an extremely large branching factor for the
initial symbol and first few extensions in the search. To improve the efficiency of the search,
the fragment sizes are initially quantized, thus reducing the size of the effective alphabet
and the number of substitution candidates under consideration at each point in the search.
Quantization also increases the number of identical path segments across the indexed graph
which allows a greater amount of candidate matches to be evaluated in parallel because they
all fall into the same BWT interval during the search. This does, however, introduce some
quantization error into the fragment sizes, but the bin size is chosen to keep this small in
comparison to the sizing error.

A.1.2.4 Example Traversal

A partial search for a query Rmap [3 kb, 7 kb, 6 kb] in Figure 1a and Table 1b given an
error model with a constant 1 kb sizing error would proceed with steps: 1. Start with the
semi-open interval matching the empty string [0..12). 2. A wavelet tree query on BWT would
indicate the set of symbols {5, 6, 7} is the intersection of two sets: 1.) The set of symbols
that would all be valid left extensions of the (currently empty) match string and 2.) The set
of size appropriate symbols that match our next query symbol (i.e. 6 kb, working from the
right end of our query) in light of the expected sizing error (i.e. 6kb +/- 1 kb). 3. We would
then do a GCSA backward search step on the first value in the set (5) which would yield
the new interval [4..7). This new interval denotes only nodes where each node’s common
prefix is compatible with the spelling of our current backward traversal path through the
automaton (i.e. our short path of just [5] does not contradict any path spellable from any of
the three nodes denoted in the match interval). 4. A wavelet tree query on the BWT for this
interval for values 7 kb +/- 1 kb would return the set of symbols 7. 5. Another backward
search step would yield the new interval [8..9). At this point our traversal path would be [7,
5] (denoted as a left extension of a forward path that we are building by traversing the graph
backward). The common prefix of each node (only one node here) in our match interval (i.e.
[7 kb]) is compatible with the path [7, 5]. This process would continue until backward search
returns no match interval or our scoring model indicates our repeatedly left extended path
has grown too divergent from our query. At this point backtracking would occur to find
other matches (e.g. at some point we would backward search using the value 6 kb instead of
the 5 kb obtained in step 2.)

A.1.2.5 Parameters Used

We tried OPTIMA with both “p-value” and “score” scoring and the allMaps option and
report the higher sensitivity “score” setting. We followed the OPTIMA-Overlap protocol of
splitting Rmaps into k-mers, each containing 12 fragments as suggested in [20]. For OMBlast,
we adjusted parameters maxclusteritem, match, fpp, fnp, meas, minclusterscore, and minconf.
For MalignerDP, we adjusted parameters max-misses, miss-penalty, sd-rate, min-sd, and max-
miss-rate and additionally filtered the results by alignment score. Though unpublished, for
comparison we also include the proprietary RefAligner software from BioNano. For RefAligner
we adjusted parameters FP, FN, sd, sf, A, and S. For Kohdista, we adjusted parameters
chi-squared-cdf-thresh and binom-cdf-thresh. For Valouev, we adjusted score_thresh and
t_score_thresh variables in the source. In Table 1 we report statistical and computational
performance for each method.

WABI 2018

12:16 A Succinct Solution to Rmap Alignment

OMBlast was configured with parameters meas=3000, minconf=0.09, minmatch=15 and
the rest left at defaults. RefAligner was run with parameters FP=0.15, sd=0.6, sf=0.2, sr=0.0,
se=0.0, A=15, S=22 and the rest left at deafults. MalignerDP was configured with parameters
ref-max-misses=2, query-miss-penalty=3, query-max-miss-rate=0.5, min-sd=1500, and the
rest left at defaults.

The software of Valouev et al. was run with default parameters except we reduced the
maximum compound fragment length (their δ parameter) from 6 fragments to 3. We observed
the software of Valouev et al. rarely included alignments containing more than two missed
restriction sites in a compound fragment.

Spalter: A Meta Machine Learning Approach to
Distinguish True DNA Variants from Sequencing
Artefacts
Till Hartmann
Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University
Hospital Essen, 45122 Essen, Germany
Till.Hartmann@uni-due.de

https://orcid.org/0000-0002-6993-347X

Sven Rahmann
Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University
Hospital Essen, 45122 Essen, Germany
Bioinformatics, Computer Science XI, TU Dortmund, Dortmund, Germany
Sven.Rahmann@uni-due.de

https://orcid.org/0000-0002-8536-6065

Abstract
Being able to distinguish between true DNA variants and technical sequencing artefacts is a
fundamental task in whole genome, exome or targeted gene analysis. Variant calling tools provide
diagnostic parameters, such as strand bias or an aggregated overall quality for each called variant,
to help users make an informed choice about which variants to accept or discard. Having several
such quality indicators poses a problem for the users of variant callers because they need to set or
adjust thresholds for each such indicator. Alternatively, machine learning methods can be used
to train a classifier based on these indicators. This approach needs large sets of labeled training
data, which is not easily available.

The new approach presented here relies on the idea that a true DNA variant exists independ-
ently of technical features of the read in which it appears (e.g. base quality, strand, position in
the read). Therefore the nucleotide separability classification problem – predicting the nucleotide
state of each read in a given pileup based on technical features only – should be near impossible to
solve for true variants. Nucleotide separability, i.e. achievable classification accuracy, can either
be used to distinguish between true variants and technical artefacts directly, using a thresholding
approach, or it can be used as a meta-feature to train a separability-based classifier. This article
explores both possibilities with promising results, showing accuracies around 90%.

2012 ACM Subject Classification Applied computing → Sequencing and genotyping technolo-
gies, Computing methodologies → Unsupervised learning, Computing methodologies → Super-
vised learning by classification

Keywords and phrases variant calling, sequencing error, technical artefact, meta machine learn-
ing, classification

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.13

1 Introduction

Apparent differences between a reference genome and a sequenced sample may either be due
to biological variance or to technical artefacts (e.g. caused by flawed library preparation or
sequencing machine bias). For downstream analysis, e.g., finding disease-related genes, or
personal disease risk assessment, it is important to be able to distinguish between these two

© Till Hartmann and Sven Rahmann;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 13; pp. 13:1–13:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Till.Hartmann@uni-due.de
https://orcid.org/0000-0002-6993-347X
mailto:Sven.Rahmann@uni-due.de
https://orcid.org/0000-0002-8536-6065
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Spalter Distinguishes DNA Variants from Sequencing Artefacts

kinds of causes. Therefore, variant callers, such as the one in GATK [3], include measures,
such as strand bias or overall variant quality, to assess the likelihood of a technical sequencing
or processing artefact, and conversely, to provide a measure of confidence for each detected
variant. For this, variant callers typically rely on assumptions about error distributions
or require prior or expert knowledge [1]. Since these assumptions may not hold for every
sequencing and processing pipeline or no prior knowledge may be available, we develop a
different approach. For simplicity, our presentation focuses on single nucleotide variants
(SNVs). In principle, it can be applied to longer variants (e.g. short indels) at the expense of
a more complex technical implementation.

The idea is that a true DNA variant exists independently of technical features of the read
where it appears, e.g. base quality, position in the read, mapping quality or strand of the read.
Therefore the classification problem to predict the nucleotide state of each read in a given
pileup based on only technical features should be unlearnable for a true variant. In other
words, high classification accuracy on the nucleotide separability classification problem on a
pileup suggests that the called variant is a technical artefact. Separability alone can be used
to decide between a true DNA variant and a technical artefact. This yields a method that
does not need labeled training data with known true variants. If ground truth information
about which pileups exhibit true variants (and which exhibit technical artefacts) is available,
it is possible to train a machine learning model on the separability values, resulting in a
meta machine learning task. We here explore both possibilities.

Our work, called spalter, differs from related approaches that also use machine learning
techniques to classify pileups, like SNPSVM [4] or DeepVariant [5], in that it does not
necessarily need labeled training data. Spalter employs classification methods for computing
separability values, which can, but do not need to be used for training another classifier using
labeled target data (true variant vs. technical artefact). If such is not available, a thresholding
rule can be applied on separability at the cost of accuracy. In contrast, SNPSVM learns only
the latter classifier in conjunction with ‘hand-crafted’ features (such as ‘base quality mean’ or
‘read position mean’). DeepVariant encodes information in RGBA images (in newer versions,
data is encoded in multichannel tensors instead), which are then used to train a convolutional
neural network (CNN). Training the CNN is computationally expensive, especially without
dedicated graphic processing units (GPUs) or tensor processing units (TPUs). Spalter, in
contrast, is neither restricted to a single model architecture nor does it require extensive
CPU or memory resources.

2 Idea

For an arbitrary site in the reference sequence, let B be the multiset of bases in that site’s
pileup, and let s be the base in the reference sequence at that site. If some bases in B

disagree with s, i.e. there is a certain (minimum) fraction of bases which are not equal to s,
we ask whether this is due to technical artefacts or biological variation.

However, there is more information available for each base of a pileup than just the
nucleotide represented, and we gather and store the purely technical information that should
be independent of the presence or absence of a biological variant, such as the base quality of
a base (assigned by the sequencer), the strand of the read, or whether the read is the first or
second of a read pair.

If, for a given pileup, it is possible to separate bases that match the respective reference
base from those that do not by making use of the aforementioned technical features and
simple classifiers, we are inclined to believe that a technical artefact is present (depending

T. Hartmann and S. Rahmann 13:3

Figure 1 Computing separability profiles. For a given pileup, labels ⊕ (base matches reference
base) and 	 (base does not match reference base) are determined for every base (rectangle) in
the pileup (stack of rectangles). Also, for each base a technical feature vector (grey rectangle with
colored squares, one square for each feature) is derived from its read and accompanying auxiliary data
(such as base quality or read strand). Using these labels and feature vectors, a simple classification
model is trained and its training accuracy is evaluated and interpreted as separability.

on the degree to which separation was successful).
The reasoning behind this assumption is that the sequencing process is consistent regard-

less of whether samples contain SNVs or not. This implies that it should not be possible
to tell reference from alternative bases by looking at technical features only. Hence, if it is
indeed possible to tell them apart, a pattern was recognized which is most likely explained
by technical biases during some stage of the sequencing process.

For a given pileup’s bases B, we derive base labels ⊕ if the base matches the reference
base s and 	 if it does not. We then train a classifier to predict the base label only from
the technical features (which should work badly for true biological variants). The training
accuracy of this classifier is called separability of B (Figure 1).

A low separability suggests that there is a true variant in B. As a first step, the separability
of a pileup can thus be used directly for decision making (true variant or technical artefact),
or, in a further step, as a feature for training a classifier based on separability. The first step
does not need labeled training examples (in the sense of manually annotated ’true SNV’ and
’technical artefact’ labels; of course, a supervised classification problem is solved based on
known nucleotide status for each read). The second step does need labeled training examples
and uses (meta-)features (separability) from the classification problem of the first step. We
hence call spalter a pseudo-supervised meta machine learning approach.

3 Method

To disambiguate between the different kinds of features used throughout the paper, features
associated with bases and reads (such as base quality or read strand) are called technical
features, while features constructed as explained in subsection 3.1 are called meta features or
separability profile.

WABI 2018

13:4 Spalter Distinguishes DNA Variants from Sequencing Artefacts

Algorithm 1 Building a separability profile for a single pileup p, using a set of classifiers C and a
set of feature combinations F. A C ×F matrix S with separability values is returned.

1 function separability_profile (p, C, F):
2 S = empty real C ×F matrix
3 l = [base == reference_base for base in p.bases]
4 f = extract_features (p) # technical features
5 for (C, F) in C ×F: # for each combination (each F ∈ 2f)
6 M = C.train(F,l) # train model M
7 l′ = M. predict (F) # predict labels l′

8 s = rel_accuracy (l, l′) # evaluate training accuracy (see text)
9 S[C,F] = s # store s in meta feature matrix

10 return S

3.1 Computing the separability profile
Since the idea is to discern between SNVs and technical artefacts on the assumption that
they behave differently with respect to separability, the first step is to build a separability
profile1 for each pileup. Algorithm 1 outlines the routine for building a separability profile
for a single pileup p for a given set C is a set of classifiers and a set F of feature combinations
from a basic set f of technical features.

We assume that the given pileup p has a given minimum alternative allele fraction (default:
≥ 0.1) and a given minimum coverage (default: ≥ 10)2. A label vector l is built by comparing
every base in the pileup to the reference base at the pileup’s position (line 3). By default, the
following four technical features are extracted for each base in the pileup (line 4), resulting
in a technical feature matrix of dimension number of reads in p times number of features:
1. Read pair index (binary): Is the read containing the base the first or the second of its

read pair?
2. Read strand (binary): Is the read on the forward or the reverse strand?
3. Neighbour base quality (continuous): Average base quality of the respective base and its

direct neighbours (from the same read).
4. End proximity (continuous): Distance of the base to either end of its read, transformed

to be in [0, 1]. The closer the base to the center of its read, the lower the end proximity
and vice versa.

In order to build a separability profile, we train one model (lines 6–9) for each combination
of classifier and feature subset (line 5) in order to obtain information about the difficulty
of separation (a) with a limited set of features and (b) with different classifiers. Note that
increasing the number of technical features or increasing the number of classifiers, while
increasing the level of detail of separability profiles, will not change the general appearance
and behaviour of separability profiles; they will always exhibit a gradual increase of accuracy
with both increasing number of technical features used for training and classifier complexity,
as can be seen in Figure 2. Calculating separability is straightforward: After training a
model (line 6), its prediction (line 7) is used to calculate relative training accuracy s = a−p

1−p ,
where a is the model’s accuracy (fraction of correct predictions) and p is the accuracy of a

1 Initially, we assumed that a single separability value might suffice; however, the resulting accuracy was
not satisfactory.

2 Since we are training classifiers, these defaults ensure that there are at least 10 examples available for
training, albeit with heavily skewed class sizes (1 : 9).

T. Hartmann and S. Rahmann 13:5

Figure 2 Average separability profiles for 2327321 SNV and 5618509 erroneous sites, using 2
classifiers and 4 + 1 different feature combinations (numbers correspond to those of features listed in
subsection 3.1). Each cell corresponds to the training accuracy of one classifier (x-axis) trained with
a certain subset of features (y-axis). On average, separability is higher for erroneous sites than for
SNV sites.

‘largest class’ classifier (line 8), i.e. an accuracy of p is trivial to achieve. Finally, the resulting
relative accuracy value – called separability – is stored in the separability profile S (line 9).

3.2 Distinguishing between errors and SNVs
Having built a separability profile for each pileup, the task is to utilise these to distinguish
between sites with technical artefacts and sites with true SNVs.

One way to do this is to use a thresholding approach: Summarise separability profiles
(per pileup) for example by averaging the values to a single mean separability value and
apply a threshold to the averages. Any site whose mean separability is below the threshold is
deemed a likely true variant site, while values above the threshold imply a site with technical
sequencing artefacts (the easier it is to separate disagreeing bases in a pileup, the more likely
becomes a technical artefact).

Another approach lies in using separability profiles as features to train a classification
model; this necessitates labeled data, i.e. information about whether a pileup/site is deemed
a true SNV site or not.

Both approaches have been implemented in spalter. For the first approach (classification
on mean separability values with a single threshold), the threshold defaults to 0.8; for the
second approach (classification on separability profiles with an arbitrary supervised classifier),
the classifier defaults to a random forest consisting of 19 trees with a maximum depth of 4
(but can be set to an arbitrary supervised classifier). We provide pre-trained default models,
which have been evaluated as described in section 4.

4 Evaluation

In order to evaluate spalter, we used datasets from CHM-eval/syndip [2], a benchmark
specifically designed for small variant callers. Among other things, it consists of the de

WABI 2018

13:6 Spalter Distinguishes DNA Variants from Sequencing Artefacts

Table 1 Different separability thresholds for different bins of read depths lead to an overall
increase in accuracy compared to the accuracy achieved using a single global threshold.

read depth 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59
separability threshold 0.2 0.81 0.82 0.82 0.82 0.82 0.81 0.80
accuracy 92.9% 89.6% 91.8% 92.0% 94.7% 95.1% 96.0% 95.8%

novo assembly of PacBio sequences of two different complete hydatidiform mole (CHM) cell
lines (i.e. completely homozygous) as well as Illumina HiSeq-X10 reads of a 1:1 mixture
of the DNA of the two cell lines. We applied different methods to the CHM-eval dataset
with known SNV sites from full.37m.vcf.gz (indels excluded). We also used the NA12878
dataset from Genome In A Bottle to be able to compare spalter with SNPSVM. Note that we
could not successfully run SNPSVM on either dataset3, which is why we use the results given
in [4] instead, where a dataset was obtained based on the NA12878 exome (i.e. in-house
sequencing on an Illumina HiSeq 2000, variants for training determined using GATK’s best
practices guidelines and filtering these with data from the 1000 Genomes project).

Separability profiles were computed using different subsets of the technical features
(every single feature and all features) listed in subsection 3.1. The classifiers used for the
nucleotide separability problem were logistic regression (using the stochastic gradient descent
implementation in Rust, available from the rustlearn crate4), linear support vector machines,
radial basis function support vector machines with default parameters and decision trees
with a maximum depth of 4 (always using their rustlearn implementations).

In a first step, we use only decisions based on thresholded average separability values.
Average separability values are computed as the average over the different feature combinations
and the decision tree classifier as shown in Figure 2 (right column of panels). With a threshold
of 0.8 (which is not an optimised threshold), an accuracy of 89% is obtained for the CHM-eval
dataset, while the accuracy for the GIAB dataset is 87.2%. For CHM-eval, in detail, we
discover 85.2% of the true SNVs, and 91.7% of our SNV calls are correct; we discover 93.6%
of the true technical artefacts, and 88.4% of our artefact calls are correct with this threshold.
For GIAB, we discover 65.3% of the true SNVs, and 95.3% of our SNV calls are correct; we
discover 98.4% of the true technical artefacts, and 84.8% of our artefact calls are correct
with this threshold.

Since SNPSVM did not finish successfully on either dataset, the comparison between the
recall and precision values for SNPSVM reported in [4] and the values for spalter reported
above is not a strong one, especially considering that the number of variants examined is
roughly 4 · 104 for SNPSVM and 3 · 106 for spalter. Still, performance on the CHM-eval
dataset is comparable to SNPSVM’s performance, which achieved comparable recall with
higher precision. We note, however, that SNPSVM needs labeled training data to achieve
this performance, while our results are based on simple separability thresholding and an
educated guess for the threshold. Note that it may well be possible to estimate a better
threshold from the resulting average separability distribution automatically.

The accuracy can be improved if different (optimal) thresholds are chosen based on the
pileup’s read depth (coverage) and labeled training data, as shown in Table 1.

Similarly, higher accuracies can be obtained if separability is used as a feature in a
meta-classification task: The classifiers used for the decision problem (true variant / technical

3 This is probably due to a 0/1 indexing error in its source.
4 see https://maciejkula.github.io/rustlearn/

https://maciejkula.github.io/rustlearn/

T. Hartmann and S. Rahmann 13:7

Figure 3 Histograms of mean separability values for dataset CHM1_CHM13_2. Correctly called
SNVs (blue) and errors (orange) are clearly distinct, with the latter exhibiting higher mean
separability values. Incorrectly called SNV sites (red) have a mean separability distribution with
its mean close to that of the distribution of correct SNV calls, while incorrectly called errors (green)
occur most often around the intersection of correct SNV and error calls.

artefact) were random forests and decision trees (with maximum depth 4). Training sample
size was varied between 10i for i ∈ {4, 5, 6}, where 104 data points correspond to roughly
0.001% of available data. We found that both training and testing accuracy on CHM-eval
were extremely consistent (for all tested combinations between 87.4% (lowest minus one
standard deviation) and 92.9% (highest plus one standard deviation)), with the mean at
91.5%, which is higher than the overall accuracy using simple thresholding.

We conclude that (a) the introduced meta features are indeed useful for training classific-
ation models, and (b) a tiny fraction of the data is sufficient to train a suitable classification
model.

To explicitly show that the claim ‘error likelihood increases with separability’ holds,
we examined the empirical distributions of mean separability values as shown in Figure 3.
Indeed, sites that exhibit technical artefacts tend to have higher mean separability values
than true SNV sites.

5 Discussion

Using meta features (separability profiles) to train classifiers to distinguish technical artefacts
from true SNVs leads to accurate models, especially given the fact that only abstract
separability information is used for training. When using random labels for training instead,
accuracy is close to 50%, which indicates that separability profiles do not facilitate overfitting.
It remains to be determined if models derived from separability profiles are ‘portable’, i.e.

WABI 2018

13:8 Spalter Distinguishes DNA Variants from Sequencing Artefacts

can be applied to different datasets successfully (without adjustments to the models).
The advantage of this approach is that separability as a single abstract notion can be used

to distinguish between errors and SNVs, while the only assumption made is that errors grow
increasingly more likely with increasing separability. This also entails that it is possible to
increase classification accuracy by either making additional assumptions or manually adding
features (such as alternative allele fraction). Here we wanted to show that separability in
itself is a powerful feature and did not further explore this possibility.

Also, the extraction of meta features (computation of separability profiles) presented here
is an elaborate way to automatically derive constant size feature matrices for any kind of
data with varying item sizes (here: differing numbers of reads between pileups) and suspected
intrinsic labels (here: base matches / does not match reference base), i.e. the approach is not
restricted to this particular application in bioinformatics.

Another interesting avenue to explore is that, while there are (combinatorially) many
different ways to assign labels to bases in a pileup, the intrinsic one (base matches / does
not match the reference base) is the most ‘natural’. So it may be viable to try to find errors
not site-wise but read-wise by comparing separability regarding different label vectors (e.g.
ones where a single base has its label flipped).

The source code of spalter can be obtained from https://bitbucket.org/tillux/
spalter/.

References
1 Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read se-

quencing. arXiv preprint arXiv:1207.3907, 2012.
2 Heng Li, Jonathan M Bloom, Yossi Farjoun, Mark Fleharty, Laura D Gauthier, Benjamin

Neale, and Daniel MacArthur. New synthetic-diploid benchmark for accurate variant calling
evaluation. bioRxiv, 223297, 2017.

3 Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis,
Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, and
Mark A. DePristo. The genome analysis toolkit: A MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research, 20(9):1297–1303, 2010. doi:
10.1101/gr.107524.110.

4 Brendan D O’Fallon, Whitney Wooderchak-Donahue, and David K Crockett. A support
vector machine for identification of single-nucleotide polymorphisms from next-generation
sequencing data. Bioinformatics, 29(11):1361–1366, 2013.

5 Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Al-
exander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T. Afshar, Sam S. Gross,
Lizzie Dorfman, Cory Y. McLean, and Mark A. DePristo. Creating a universal SNP and
small indel variant caller with deep neural networks. bioRxiv, 2018. doi:10.1101/092890.

https://bitbucket.org/tillux/spalter/
https://bitbucket.org/tillux/spalter/
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/092890

Essential Simplices in Persistent Homology and
Subtle Admixture Detection
Saugata Basu1

Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA
sbasu@math.purdue.edu

https://orcid.org/0000-0002-2441-0915

Filippo Utro
Computational Biology Center, IBM T. J. Watson Research,
Yorktown Heights, NY 10598, USA
futro@us.ibm.com

https://orcid.org/0000-0003-3226-7642

Laxmi Parida
Computational Biology Center, IBM T. J. Watson Research,
Yorktown Heights, NY 10598, USA
parida@us.ibm.com

https://orcid.org/0000-0002-7872-5074

Abstract
We introduce a robust mathematical definition of the notion of essential elements in a basis of
the homology space and prove that these elements are unique. Next we give a novel visualization
of the essential elements of the basis of the homology space through a rainfall-like plot (RFL).
This plot is data-centric, i.e., is associated with the individual samples of the data, as opposed to
the structure-centric barcodes of persistent homology. The proof-of-concept was tested on data
generated by SimRA that simulates different admixture scenarios. We show that the barcode
analysis can be used not just to detect the presence of admixture but also estimate the number
of admixed populations. We also demonstrate that data-centric RFL plots have the potential to
further disentangle the common history into admixture events and relative timing of the events,
even in very complex scenarios.

2012 ACM Subject Classification Applied computing → Life and medical sciences

Keywords and phrases population admixture, topological data analysis, persistent homology,
population evolution

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.14

1 Introduction

A fascinating way to study the relationship between multiple individuals is to understand
their potential common history implicated by the genetic signatures of the individuals [6, 7].
If the individuals were bacteria, then their common history is bound to be captured by
a tree; while sexually reproducing organisms such as humans have the common history
represented as directed acyclic graphs (DAG). A layer of complexity is introduced to the
common history through populations. While the common history of individuals within a
population is captured by a DAG, populations can admix i.e., individuals of two populations
can interbreed, at a specific time or time-interval, leaving behind yet a different kind of

1 The work was partially supported by NSF grant DMS-1620271.

© Saugata Basu, Filippo Utro, and Laxmi Parida;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 14; pp. 14:1–14:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbasu@math.purdue.edu
https://orcid.org/0000-0002-2441-0915
mailto:futro@us.ibm.com
 https://orcid.org/0000-0003-3226-7642
mailto:parida@us.ibm.com
 https://orcid.org/0000-0002-7872-5074
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Essential Simplices in Persistent Homology and Subtle Admixture Detection

imprint on the genome of the individuals [4, 11]. See Fig 1 for an illustration: A, B, C, and
D are extant populations whose common (evolutionary) history is as shown by the structure
on the left where the scaffold is shown as the DAG with dashed lines. The implicit direction
is assumed to flow downwards: the past on the top and the present at the bottom leaf nodes.
Note that the scaffold is not a tree; hence there are two admixed populations: C and D. But
A and B are not admixed. The figure on the left shows the macro-level structure while two
pictures on the right show the micro-level structure, i.e., transmission of genetic material
over time (across generations) in the individuals. The interested reader is directed to [9] for
a detailed exposition.

It is easy to appreciate that the DAG due to sexual reproduction within the population
(micro-level) is intricately entangled with the DAG due to the admixing populations (macro-
level). However, the data available for study is the genome of the individuals of the extant
populations only and not necessarily other intermediate (possibly extinct) populations. In
fact, in [9] it was shown that given a mixture of populations (possibly without population
labels) persistent homology can be used to detect if any admixing event had occurred in
their common history. In this paper we extend the analysis to identifying multiple (not just
presence or absence of at least one) admixture events. In other words, the question then is
whether it is possible to tease apart some essentials of the macro structures (such as the 2
cycles in the structure on the left in the figure) from a collection of individuals which have
randomly been drawn from multiple extant populations.

In our experiments we use SimRA [1] to simulate the population data to define the
gold-truth. Then we employ persistent homology to address our questions. In literature,
barcode diagrams [2, 5, 8] have been widely used to succintly represent persistent homology
(see Definition 2 below): in each dimension, the start point of a bar marks the birth and
the end point marks the death of a non-zero homology class in that dimension. To detect
admixture, not only do we utilize the arrangement (pattern) of the bars in the different
dimension, but we also need to associate them to the individuals or the data points.

Each bar in the bar code diagram represents a non-zero homology class – and each such
class can be represented by a cycle i.e. by a linear combination of simplices with vanishing
boundary. However, this representation is not unique for several reasons – for example, a
homology class is defined only up to boundaries (cycles which bound one higher dimensional
linear combinations of simplices). We would like to associate to each bar, a unique set of
simplices (whose vertices represent individuals). The problem of associating a particular cycle
to a bar is an interesting problem in its own right and several approaches has been taken by
researchers leading to difficult optimizing problems (for example, computing the shortest
length cycle in a homology class). In this paper, we take a different approach. We give a
mathematical definition of a well defined (non-empty) set of essential simplices associated
to each bar of the persistence diagram that we compute (see Definition 9 below). In this
way we resolve the inherent ambiguity of choosing a representative cycle for each homology
class. We believe that this new notion of essential simplices can have implications for a host
of applications going beyond the one described in this paper.

In our experiments, we observe that the clustering of the irreducible cycles in the barcode
plot capture the admixing events in the population history. This is reinforced by using
essential simplices, that further segregates the individuals.

Roadmap. In the next section we give the mathematical underpinnings for the essential
simplices and in Section 3 we apply this to simulated population data. In Section 3.1 we
describe the visualization of the essential simplices and summarize the results.

S. Basu, F. Utro, and L. Parida 14:3

t

A C BD

Figure 1 Macro-level structure on the left while two micro-level structures are shown on the right
for four populations A, B, C, and D. See text for further details.

Example 1

d

b

a

c

d

b

a

c

d

b

a

c ...

d

b

a

c

d

b

a

c ...

d

b

a

c

t = 1 t = 2 t = 3 t = 6 t = 7 t = 9

t 6 9

H1

{[ab],[ac],[bc]}

{[bd],[cd]}

Example 2

d

b

a

c

d

b

a

c

d

b

a

c

d

b

a

c ...

d

b

a

c

d

b

a

c

t = 1 t = 2 t = 3 t = 4 t = 8 t = 9

t 8 9

H1

{[ab],[ac],[bd],[cd]}

{[bc]}

Figure 2 Bar codes for H1 and their associated essential simplices for the filtrations in Example 10.

WABI 2018

14:4 Essential Simplices in Persistent Homology and Subtle Admixture Detection

2 Filtrations of finite simplicial complexes, persistent homology, and
essential simplices

One important problem in persistent homology theory is to associate to a homology class an
actual cycle representing the homology class. Several methods have been developed to choose
such a class optimally (with respect to various cost functions). In this paper we choose a
different approach. Given a filtered simplicial complex, where the filtration satisfies a certain
property (see Definition 3 and Proposition 5 below), we associate to each bar of the bar
diagram of the p-th persistent homology of a filtration of a simplicial complex a non-empty
set of p-simplices of the simplicial complex in a canonical way – which we call the set of
essential simplices. Roughly speaking, a p-simplex σ is essential for a bar in the diagram
of the p-th persistent homology if and only if σ appears with a non-zero coefficient in any
linear combination of p-simplices representing the homology cycle corresponding to the bar.
The rest of this section will make this intuitive notion rigorous.

We consider homology with coefficients in Z2, and which we omit from the notation. We
also assume familiarity with basic simplicial homology theory, and denote by H∗(K) the
homology groups of a simplicial complex K with coefficients in Z2. Abusing notation a bit,
we will denote by the same letter K the set of simplices of a simplicial complex K, and for
p ≥ 0, we will denote by K(p) the set of simplices of dimension p in K, so that

K = ∪p≥0K
(p).

We now recall the basic definitions pertaining to persistent homology.
Let F denote a filtration of a finite simplicial complex K given by : ∅ = · · · = K−1 =

K0 ⊂ K1 ⊂ · · · ⊂ Xs ⊂ Ks+1 ⊂ · · · ⊂ KN = KN+1 = · · · = K. Here each Ki is a
subcomplex of K.

I Notation 1. For s ≤ t, we let is,tn : Hn(Ks) −→ Hn(Kt), denote the homomorphism
induced by the inclusion Ks ↪→ Kt.

With the same notation as in the previous section we define:

I Definition 2. [2] For each triple (n, s, t) with s ≤ t the corresponding persistent homology
group, Hs,t

n (F) is defined by

Hs,t
n (F) = Im(is,tn).

Note that Hs,t
n (F) ⊂ Hn(Kt), and Hs,s

n (F) = Hn(Ks).

We will consider only a special kind of filtration on simplicial complexes which are induced
by orderings on the simplices of the complex satisfying the following property.

I Definition 3 (Admissible ordering). Let K be a finite simplicial complex. We call a
total ordering < (of the simplices) of K to be admissible if it satisfies the condition that
σ ≺ τ ⇒ σ < τ for all simplices σ, τ ∈ K. We will denote by rk< : K → [0, card(K)− 1] the
rank function of the ordering <.

I Remark 4. Note that the rank function, rk<, corresponding to an admissible ordering <
of the simplices of a simplicial complex K, is a discrete Morse function on K in the sense
of Forman [3], for which every simplex is a critical simplex (in the sense of discrete Morse
theory).

I Proposition 5. Let K be a finite simplicial complex, and < an admissible ordering of K. For
s ∈ [0, card(K)−1] let Ks = {σ ∈ K | rk<(σ) ≤ s}. Then, K0 ⊂ K1 ⊂ · · · ⊂ Kcard(k)−1 = K

is a filtration of simplicial complexes. (We extend as usual the above filtration by setting
Ki = ∅ for i < 0, and Kj = K for all j ≥ card(K), will refer to this filtration as the one
induced by the ordering <.)

S. Basu, F. Utro, and L. Parida 14:5

Proof. The proof is easy and omitted. J

I Proposition 6. Let < be an admissible ordering of a finite simplicial complex K and let
F denote the induced filtration of K. Then, for each s, 0 ≤ s ≤ card(K) − 1 and p ≥ 0,
dimHp(Ks+1)/is,s+1

p (Hp(Ks)) ≤ 1.

Proof. Note that the rank function rk< is a discrete Morse function for which every simplex
is critical (cf. Remark 4). The proposition is a consequence of the basic results of discrete
Morse theory. J

I Remark 7. As a consequence of Proposition 6, we have that for each p ≥ 0, and s ≥ 0,
the bar diagram for the p-dimensional persistent homology corresponding to an admissible
filtration has at most one bar starting at time s.

Moreover, if σ ∈ K(p) with rk<(σ) = s, then if there exists a cycle of the form σ +∑
τ 6=σ,rk<(τ)<rk<(σ) nτ · τ,∈ Zp(Ks), then and Hp(Ks)/is−1,s

∗ (Hp(Ks)) 6= 0, and this cycle
represents the unique non-zero class in Hp(Ks)/is−1,s

∗ (Hp(Ks)) 6= 0.

I Notation 8. For any filtration F and p ≥ 0, we will denote by Barp(F) to be the set of
pairs (s, t) where each pair (s, t) corresponds to a bar starting at time s and ending at time t,
in the bar diagram of the p-dimensional persistent homology of F . For c = (s, t) ∈ Barp(F),
we denote s(c) = s.

We are now in a position to define the set of essential simplices associated to a bar of a
filtration induced by an admissible ordering.

I Definition 9 (Essential simplices). Let F be a filtration of a finite simplicial complex K
induced by an admissible ordering. Suppose that for some s ≥ 0, Hp(Ks)/is−1,s

∗ (Hp(Ks)) 6= 0,
and suppose that dimHp(Ks)/is−1,s

∗ (Hp(Ks−1)) = 1. Then, there is a unique bar c ∈
Barp(F), with s(c) = s, in the bar diagram of F . We call a p-simplex σ0 to be essential with
respect to c, if σ0 satisfies the following condition.

For all z =
∑
σ nσ · σ ∈ Zp(Ks) (where the sum if taken over all p-simplices σ in the

complex Ks), such that the image of z in Hp(Ks)/is−1,s
p (Hp(Ks−1)) under the canonical

homomorphism is not zero, the coefficient nσ0 of σ0 is not equal to 0.
We will denote the set of essential simplices corresponding to c by Σc.

Before proceeding further we consider some examples.

I Example 10 (Example of filtrations induced by admissible orderings and essential simplices).
Consider a graph on 4 vertices labelled a, b, c, d with 5 edges [ab], [ac], [bc], [bd], [cd] (see Figure
2). Let < be the admissible order

[a] < [b] < [c] < [ab] < [ac] < [bc] < [d] < [bd] < [cd].

Consder the bar diagram of the 1-dimensional homology for the induced filtration. It has
two bars, c = (6,∞), c′ = (9,∞). It is easy to check that

Σc = {[ab], [ac], [bc]},
Σc′ = {[bd], [cd]}.

Now consider the same graph but with a different admissible ordering. Let <′ be the
order defined by

[a] <′ [b] <′ [c] <′ [d] <′ [ab] <′ [ac] <′ [bd] <′ [cd] <′ [bc].

WABI 2018

14:6 Essential Simplices in Persistent Homology and Subtle Admixture Detection

The bar diagram of the 1-dimensional homology for the induced filtration again has two
bars, d = (8,∞), d′ = (9,∞), and in this case we have

Σd = {[ab], [ac], [bd], [cd]},
Σd′ = {[bc]}.

I Remark 11. As discussed earlier the set of essential simplices associated to a bar in the
bar diagram corresponding to the filtration induced by an admissible ordering intuitively
consists of simplices that must be present in any cycle representation of the homology cycle
being born at that moment (the start time of the bar). In applications, this set of simplices
can thus be considered as essential for the existence of the bar.

I Theorem 12. Let F be a filtration induced by a perfect function, p ≥ 0 and c ∈ Barp(F).
Suppose that z =

∑
σ∈Σ nσ · σ ∈ Zp(Ks) (where the sum if taken over all p-simplices σ in

the complex Ks), is such that its image in Hp(Ks)/is−1,s
∗ (Hp(Ks−1)) under the canonical

homomorphism is not zero, and nσ 6= 0 for each σ ∈ Σ.
Then,

Σc = Σ \
⋃

c′∈Barp(F),s(c′)<s(c)

Σc′ . (1)

Proof. Let σ ∈ Σc. We prove that σ ∈ Σ\
⋃
c′∈Barp(F),s(c′)<s(c) Σc′ . By the defining property

of Σc, it is clear that σ ∈ Σ. Now suppose that σ ∈ Σc′ for some c′ with s′ = s(c′) < s(c).
Then, there exists a cycle,∑

τ

mτ · τ, (2)

representing the class Hp(Ks′)/is
′−1,s′

∗ (Hp(Ks′−1)), with mσ 6= 0, and rk<(τ) < s(c) for each
τ with mτ 6= 0. Thus, there exists a relation

σ =
∑
τ 6=σ

mτ · τ mod is
′−1,s′

∗ (Hp(Ks′−1)) (3)

with ∂pσ = ∂p

(∑
τ 6=σmτ · τ

)
, and rk<(τ) < s(c) for each τ 6= σ withmτ 6= 0. Moreover, it is

clear from the definition of persistent homology and the fact that s > s′, that, σ =
∑
τ 6=σmτ ·τ

mod is−1,s
∗ (Hp(Ks−1)) as well.

Thus, we can substitute for σ in (2) by the right hand side of (2) and thus obtain an
equivalent expression for the cycle representing the non-zero class inHp(Ks)/is−1,s

∗ (Hp(Ks−1))
which does not contain σ, thus contradicting the fact that σ ∈ Σc. This proves that
σ 6∈

⋃
c′∈Barp(F),s(c′)<s(c) Σc′ , proving that

σ ∈ Σ \
⋃

c′∈Barp(F),s(c′)<s(c)

Σc′ .

This proves the inclusion Σc ⊂ Σ \
⋃
c′∈Barp(F),s(c′)<s(c) Σc′ .

We now prove the reverse inclusion.
Suppose that Σ \

⋃
c′∈Barp(F),s(c′)<s(c) Σc′ 6⊂ Σc. Let

σ ∈ Σ \
⋃

c′∈Barp(F),s(c′)<s(c)

Σc′ \ Σc

S. Basu, F. Utro, and L. Parida 14:7

having the maximal rank. Clearly, rk<(σ) ≤ s(c). Now clearly, if rk<(σ) = s(c), then σ ∈ Σc.
Otherwise, if σ 6∈ Σc, there exists an expression for a cycle∑

τ

m′τ · τ, (4)

congruent to the cycle in (4), with m′σ = 0, and m′τ = mτ for all τ satisfying mτ 6= 0, and
rk<(τ) > rk<(σ). Subtracting the expression (4) from that in (2) we get a cycle,

σ +
∑
τ

m′′τ · τ

with rk<(τ) < rk<(σ) for all τ with m′′τ 6= 0. This implies (using the second part of Remark
7) that σ ∈ Σc′′ , where c′′ ∈ Barp(F) with s(c′′) = rk<(σ). This contradicts the fact that
σ 6∈

⋃
c′∈Barp(F),s(c′)<s(c) Σc′ . This finishes the proof of the reverse inclusion. J

I Remark 13. Theorem 12 furnishes us with an algorithm for computing the set Σc of
essential simplices for each bar c ∈ Barp(F), p ≥ 0, once we have an algorithm for computing
a representative cycle for each such bar. Let c ∈ Barp(F) with s(c) = s0, and we have
computed (using an algorithm for computing persistent homology) the set Σ ⊂ K(p) of
p-simplices appearing in a cycle representing a homology class corresponding to c. Assuming
by induction that we have computed Σc′ for bars c′ ∈ Barp(F) with s(c′) < s0, we can
compute Σc using (1).

One filtered simplicial complex that plays an important role in applications of persistent
homology theory, including the one in this paper, is the so called Vietoris-Rips complex
associated to a weighted graph or equivalently a finite set V equipped with a distance function
w : V × V → R, satisfying w(v, v) = 0 for all v ∈ V .

I Definition 14 (Vietoris-Rips filtration). Let M = (V,w) be a pair, where V is a finite set
and w : V × V → R≥0 is a map (which need not be a metric on V) satisfying w(v, v) = 0 for
all v ∈ V .

Let K = 2V denote the simplicial complex corresponding to the simplex with vertices
elements of the set V . For any real number d ≥ 0, we denote by Kd the sub-complex of
K, defined by setting for each 0 ≤ p ≤ card(V)− 1, K(p) = {[v0, . . . , vp] | w(vi, vj) ≤ d, 0 ≤
i, j ≤ p}.

Clearly, if d ≤ d′, Kd ⊂ Kd′ , and there exists a a finite set of 0 = d0 < d1 < · · · < dN
such that, Kdi

6= Kdi+1 , and Kdi
= Kdi+t for 0 ≤ t < di+1 − di, for all i, 0 ≤ i < N .

We call the above filtration the Vietoris-Rips filtration associated to M .

I Remark 15. Note that for a generic weight function w on V × V , the corresponding
Vietoris-Rips filtration is identical to that induced by an admissible ordering (up to breaking
ties) in an obvious manner.

3 Experiments

Population simulation. We specify the scaffold to the simulator for a variety of configura-
tions that ranges form zero to three admixed populations. To avoid any unintended bias
each population was simulated with the same number of individuals and similar population
parameters: mutation rate 4× 10−8 mut/bp/gen, recombination rate 0.3× 10−8 cM/Mb/gen
and segment length 150Kb and effective population size of 104. Each simulated scenario is
repeated at least five times. SimRA generates the set of individual haplotypes for each of
the populations which is fed to detection algorithm for processing as follows.

WABI 2018

14:8 Essential Simplices in Persistent Homology and Subtle Admixture Detection

(a) Populations scaffold (b) RFL plot of essential
simplices of 1-D cycles

(c) Sorted RFL plot

Figure 3 (a) The scaffold of the evolution scenario of four populations. Only populations 2 is
admixed. (b) The corresponding RFL plot of the essential simplices of the one-dimensional cycles.
The blue dot marks the birth and the red dot marks the death of the corresponding irreducible cycle.
Notice the obvious kink in the plot. (c) Here the known population labels of the individuals are
used to put the data in the four buckets.

Persistent Homology. Note that all the individuals of all the populations are put in a
single group, i.e., we keep the population label aside and do not use them in any of the
computations. Next we create a distance matrix between all pairs of individuals using the
Hamming distance metric. The graph embedding of this distance matrix is the complete
graph with each vertex corresponding to an individual and edge weight is the distance
between the pair of vertices.

Next the Vietoris-Rips filtration (cf. Definition 14) is constructed on this embedding
graph. The zero and one-dimensional persistent homology bar diagrams of the Vietoris-Rips
filtration are computed using JavaPlex V 4.3.1 [10]. The set of essential simplices associated
to the bars in the bar diagram are then computed using Remark 13.

Recall that the dimension of the zero-dimensional homology group of a simplicial complex
counts the number of connected components of the simplicial complex, while the dimension
of the one-dimensional homology group counts the number of independent one-dimensional
cycles which do not bound. The barcode plots display individual cycles representing non-
zero one-dimensional homology classes are born and when they disappear. The top half of
each barcode plot for the simulation experiments shows the persistence of zero-dimensional
homology and the bottom half shows that of one-dimensional homology. While short cycles
can be due to noise, longer (persistent) cycles represent fundamental topological structures
within the genetic distance matrix.

3.1 Visualization of the essential simplices
Note that the bar plot helps in visualizing the cycles representing non-zero homology classes
each dimension. Similarly the RFL plot is meant to visualize the set of essential simplices
associated to the different bars in the bar diagram (cf. Definition 9). The individual data
plots are on the x-axis, in any order natural to the given problem. The y-axis represents
the filtration time and shows the birth and death time of each individual as two dots in two
different colors. See Fig 3 for an example with four populations. The RFL plot is shown in
Fig 3 (b). The individuals here cluster into two groups with the esssential simplices of the
late bars corresponding to the admixed population in this example.

Fig 4 shows four distinct scenarios of admixed populations. The persistent homology of
the Vietoris-Rips filtration are shown as bars. Notice that the 1-dimensional bars cluster into
different groups whose transitions roughly correspond to the number of admixed populations.
This is an empirical observation which we are currently continuing to probe. Further, the

S. Basu, F. Utro, and L. Parida 14:9

(a) No admixed populations.

(b) 1 population admixed.

(c) 2 populations admixed.

(d) 3 populations admixed.

Figure 4 Each row corresponds to a distinct scenario, whose scaffold is shown on the left. Each
scenario has 100 individuals distributed equally amongst the populations. The bar plot of the
persistent homology groups of the Vietoris-Rips filtration (cf. Definition 14) of the graph embedding
of the distance matrix of the data points (of each scaffold) is shown in the center. The top half shows
the persistence of the zero-dimensional while the bottom half shows that of the one-dimensional
homologies. The corresponding RFL plot of the essential simplices of the irreducible one-dimensional
cycles is shown on the right. For the latter only the birth points are shown. Also, in the RFL plot
the individuals of the populations (x-axis) are separated based on their input labels, for convenience.

WABI 2018

14:10 Essential Simplices in Persistent Homology and Subtle Admixture Detection

birth points on the RFL plot cluster at different filtration time points in the reverse order
(recall that the time on the scaffold goes from present to past since the reference is 0 at
present, for convenience). Thus the number of admixing events and their relative timing can
be deduced from the RFL plots in combination with bar diagram. See Fig 4 for the details
of the four scenarios.

4 Conclusion

We introduced the notion of essential simplices. This enables us to study the role of individuals
in the persistent homology space in an unambiguous manner. Through simulations we show
that the clustering of the bars in the bar diagram captures some of the admixing events in
the population history and the relative timing of the events. This is reinforced by using
essential simplices that further segregate the individuals. We believe that the notion of
essential simplices is general enough to be of use in other applications as well.

References
1 Anna P. Carrieri, Filippo Utro, and Laxmi Parida. Sampling arg of multiple populations

under complex configurations of subdivision and admixture. Bioinformatics, 32(7):1048–
1056, 2016.

2 Herbert Edelsbrunner and John L. Harer. Computational topology: An Introduction. Amer-
ican Mathematical Society, Providence, RI, 2010.

3 Robin Forman. A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art.
B48c, 35, 2002.

4 Matthew L. Freedman, Christopher A. Haiman, Nick Patterson, Gavin J. McDonald, Arti
Tandon, Alicja Waliszewska, Kathryn Penney, Robert G. Steen, Kristin Ardlie, Esther M.
John, Ingrid Oakley-Girvan, Alice S. Whittemore, Kathleen A. Cooney, Sue A. Ingles,
David Altshuler, Brian E. Henderson, and David Reich. Admixture mapping identifies
8q24 as a prostate cancer risk locus in african-american men. Proceedings of the National
Academy of Sciences, 103(38):14068–14073, 2006.

5 Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the American
Mathematical Society, 45:61–75, 2008.

6 Mark Jobling, Edward Hollox, Matthew Hurles, Toomas Kivisild, and Chris Tyler-Smith.
Human evolutionary genetics. Garland Science, UK, 2013.

7 M.J. Kearsey and H.S. Pooni. The Genetical Analysis of Quantitative Traits. Stanley
Thornes, UK, 2004.

8 P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Alagappan, J. Carlsson, G. Carlsson,
and Mikael Vilhelm Vejdemo Johansson. Extracting insights from the shape of complex
data using topology. Scientific Reports, 3, 2013.

9 Lammi Parida, Filippo Utro, Deniz Yorukoglu, Anna Paola Carrieri, David Kuhn, and
Saugata Basu. Topological signatures for population admixture. In Teresa M. Przytycka,
editor, Research in Computational Molecular Biology, pages 261–275. Springer International
Publishing, 2015.

10 Andrew Tausz, Mikael Vejdemo-Johansson, and Henry Adams. JavaPlex: A research soft-
ware package for persistent (co)homology. In Han Hong and Chee Yap, editors, Proceedings
of ICMS 2014, Lecture Notes in Computer Science 8592, pages 129–136, 2014. Software
available at http://appliedtopology.github.io/javaplex/.

11 J.D. Wall and M.F. Hammer. Archaic admixture in the human genome. Current opinion
in genetics & development, 16(6):606–610, 2006.

http://appliedtopology.github.io/javaplex/

Minimum Segmentation for Pan-genomic
Founder Reconstruction in Linear Time
Tuukka Norri
Department of Computer Science, University of Helsinki, Helsinki, Finland
tuukka.norri@helsinki.fi

https://orcid.org/0000-0002-8276-0585

Bastien Cazaux
Department of Computer Science, University of Helsinki, Helsinki, Finland
bastien.cazaux@helsinki.fi

https://orcid.org/0000-0002-1761-4354

Dmitry Kosolobov
Department of Computer Science, University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru

https://orcid.org/0000-0002-2909-2952

Veli Mäkinen
Department of Computer Science, University of Helsinki, Helsinki, Finland
veli.makinen@helsinki.fi

https://orcid.org/0000-0003-4454-1493

Abstract
Given a threshold L and a set R = {R1, . . . , Rm} of m strings (haplotype sequences), each
having length n, the minimum segmentation problem for founder reconstruction is to partition
[1, n] into set P of disjoint segments such that each segment [a, b] ∈ P has length at least L
and the number d(a, b) = |{Ri[a, b] : 1 ≤ i ≤ m}| of distinct substrings at segment [a, b] is
minimized over [a, b] ∈ P . The distinct substrings in the segments represent founder blocks that
can be concatenated to form max{d(a, b) : [a, b] ∈ P} founder sequences representing the original
R such that crossovers happen only at segment boundaries. We give an optimal O(mn) time
algorithm to solve the problem, improving over earlier O(mn2). This improvement enables to
exploit the algorithm on a pan-genomic setting of input strings being aligned haplotype sequences
of complete human chromosomes, with a goal of finding a representative set of references that
can be indexed for read alignment and variant calling. We implemented the new algorithm and
give some experimental evidence on the practicality of the approach on this pan-genomic setting.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Applied computing → Bioinformatics

Keywords and phrases Pan-genome indexing, founder reconstruction, dynamic programming,
positional Burrows–Wheeler transform, range minimum query

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.15

Funding This work is partially supported by the Academy of Finland (grant 309048).

1 Introduction

A key problem in pan-genomics is to develop a sufficiently small, efficiently queriable, but
still descriptive representation of the variation common to the subject under study [1]. For
example, when studying human population, one would like to take all publicly available

© Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tuukka.norri@helsinki.fi
https://orcid.org/0000-0002-8276-0585
mailto:bastien.cazaux@helsinki.fi
https://orcid.org/0000-0002-1761-4354
mailto:dkosolobov@mail.ru
https://orcid.org/0000-0002-2909-2952
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0003-4454-1493
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

variation datasets (e.g. [19, 4, 20]) into account. Many approaches encode the variation as
a graph [16, 9, 18, 2, 10, 8] and then one can encode the different haplotypes as paths in
this graph [13, 17]. An alternative was proposed in [22], based on a compressed indexing
scheme for a multiple alignment of all the haplotypes [11, 14, 23, 5, 7]. In either approach,
scalability is hampered by the encoding of all the haplotypes.

We suggest to look for a smaller set of representative haplotype sequences to make the
above pan-genomic representations scalable.

Finding such set of representative haplotype sequences that retain the original contiguities
as well as possible, is known as the founder sequence reconstruction problem [21]. In this
problem, one seeks a set of d founders such that the original m haplotypes can be mapped
with minimum amount of crossovers to the founders. Here a crossover means a position
where one needs to jump from one founder to another to continue matching the content of
the haplotype in question. Unfortunately, this problem in NP-hard even to approximate
within a constant factor [15].

For founder reconstruction to be scalable to the pan-genomic setting, one would need an
algorithm to be nearly linear to the input size. With this is mind, we study a relaxation of
founder reconstruction that is known to be polynomial time solvable: Namely, when limiting
all the crossovers to happen at the same locations, one obtains a minimum segmentation
problem specific to founder reconstruction [21]. A dynamic programming algorithm given
in [21] has complexity O(n2m), where m is the number of haplotypes and n is the length of
each of them.

In this paper, we improve the running time of solving the minimum segmentation problem
of founder reconstruction to the optimal O(mn) (linear in the input size).

We also implement the new algorithm, as well as a further heuristic that aims to minimize
crossovers over the segment boundaries (yielded by the optimal solution to the minimum
segmentation problem). In our experiments, we show that the approach is practical on
human genome scale setting. Namely, we apply the implementation on a multiple alignment
representing 5009 haplotypes of human chromosome 6, and the result is 130 founder sequences
with the average distance of two crossovers being 9358 bases. Preserving such long contiguities
in just 2.5% of the original input space is promising for the accuracy and scalability of the
short read alignment and variant calling motivating our study.

The main technique behind the improvement is the use of positional Burrows–Wheeler
transform (pBWT) [3], and more specifically its extension to larger alphabets [12]. While
the original dynamic programming solution uses O(nm) time to look for the best preceding
segment boundary for each column of the input, we observe that at most m values in
pBWT determine segment boundaries where the number of distinct founder substrings
change. Minimums on the already computed dynamic programming values between each
such interesting consecutive segment boundaries give the requested result. However, it turns
out that we can maintain the minimums directly in pBWT internal structures (with some
modifications) and have to store only the last L computed dynamic programming values,
thus spending only O(m+ L) additional space, where L is the input threshold on the length
of each segment. The segmentation is then reconstructed by standard backtracking approach
in O(n) time using an array of length n.

2 Notation and Problem Statement

For a string s = c1c2 · · · cn, denote by |s| its length n. We write s[i] for the letter ci of s
and s[i, j] for the substring cici+1 · · · cj . An analogous notation is used for arrays. For any
numbers i and j, the set of integers {x ∈ Z : i ≤ x ≤ j} (possibly empty) is denoted by [i, j].

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:3

The input for our problem is the set R = {R1, . . . , Rm} of strings of length n, called
recombinants. A set F = {F1, . . . , Fd} of strings of length n is called a founder set of R if for
each string Ri ∈ R, there exists a partition Pi of the segment [1, n] into disjoint subsegments
such that, for each [a, b] ∈ Pi, the string Ri[a, b] is equal to Fj [a, b] for some j ∈ [1, d]. The
partition Pi together with the mapping of the segments [a, b] ∈ Pi to substrings Fj [a, b] is
called a parse of Ri in terms of F , and a set of parses for all Ri ∈ R is called a parse of R
in terms of F . The integers a and b+ 1, for [a, b] ∈ Pi, are called crossover points; thus, in
particular, 1 and n+ 1 are always crossover points.

It follows from the definition that, in practice, it makes sense to consider founder sets
only for pre-aligned recombinants. Throughout the paper we implicitly assume that this
is the case, although all our algorithms, clearly, work in the unaligned setting too but the
produce results may hardly make any sense.

We consider the problem of finding a “good” founder set F and a “good” corresponding
parse of R according to a reasonable measure of goodness. Ukkonen [21] pointed out that
such measures may contradict each other: for instance, a minimum founder set obviously
has size d = maxj∈[1,n] |{R1[j], . . . , Rm[j]}|, but parses corresponding to such set may have
unnaturally many crossover points; conversely, R is a founder set of itself and the only
crossover points of its trivial parse are 1 and n + 1, but the size m of this founder set is
in most cases unacceptably large. Following Ukkonen’s approach, we consider compromise
parameterized solutions. The minimum founder set problem is, given a bound L and a set of
recombinants R, to find a smallest founder set F of R such that there exists a parse of R in
terms of F in which the distance between any two crossover points is at least L (the crossover
points may belong to parses of different recombinants, i.e., for [a, b] ∈ Pi and [a′, b′] ∈ Pj ,
where Pi and Pj are parses of Ri and Rj , we have either a = a′ or |a− a′| ≥ L).

It is convenient to reformulate the problem in terms of segmentations of R. A segment of
R = {R1, . . . , Rm} is a set R[j, k] = {Ri[j, k] : Ri ∈ R}. A segmentation of R is a collection
S of disjoint segments that covers the whole R, i.e., for any distinct R[j, k] and R[j′, k′]
from S, [j, k] and [j′, k′] do not intersect and, for each x ∈ [1, n], there is R[j, k] from S

such that x ∈ [j, k]. The minimum segmentation problem [21] is, given a bound L and a set
of recombinants R, to find a segmentation S of R such that max{|R[j, k]| : R[j, k] ∈ S} is
minimized and the length of each segment from S is at least L; in other words, the problem
is to compute

min
S∈SL

max{|R[j, k]| : R[j, k] ∈ S}, (1)

where SL is the set of all segmentations in which all segments have length at least L.
The minimum founder set problem and the minimum segmentation problem are, in a sense,

equivalent: any segmentation S with segments of length at least L induces in an obvious way
a founder set of size max{|R[j, k]| : R[j, k] ∈ S} and a parse in which all crossover points
are located at segment boundaries (and, hence, at distance at least L from each other);
conversely, if F is a founder set of R and {j1, . . . , jp} is the sorted set of all crossover points
in a parse of R such that jq− jq−1 ≥ L for q ∈ [2, p], then S = {R[jq−1, jq−1] : q ∈ [2, p]} is a
segmentation of R with segments of length at least L and max{|R[j, k]| : R[j, k] ∈ S} ≤ |F|.

Our main result is an algorithm that solves the minimum segmentation problem in the
optimal O(mn) time. The solution normally does not uniquely define a founder set ofR: for in-
stance, if the built segmentation ofR = {baaaa, baaab, babab} is S = {R[1, 1],R[2, 3],R[4, 5]},
then the possible founder sets induced by S are F1 = {baaab, babaa} and F2 = {baaaa, babab}.
In other words, to construct a founder set, one concatenates fragments of recombinants
corresponding to the found segments in a certain order. We return to this ordering problem
in Sect. 4 and now focus on the details of the segmentation problem.

WABI 2018

15:4 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

Hereafter, we assume that the input alphabet Σ is the set [0, |Σ|−1] of size O(m), which
is a natural assumption considering that the typical alphabet size is 4 in our problem. It
is sometimes convenient to view the set R = {R1, . . . , Rm} as a matrix with m rows and n
columns. We say that an algorithm processing the recombinants R is streaming if it reads
the input from left to right “columnwise”, for each k from 1 to n, and outputs an answer
for each set of recombinants {R1[1, k], . . . , Rm[1, k]} immediately after reading the “column”
{R1[k], . . . , Rm[k]}. The main result of the paper is the following theorem.

I Theorem 1. Given a bound L and recombinants R = {R1, . . . , Rm}, each having length
n, there is an algorithm that computes (1) in a streaming fashion in the optimal O(mn) time
and O(m+ L) space. Using an additional array of length n, one can also find in O(n) time
a segmentation on which (1) is attained, thus solving the minimum segmentation problem.

3 Minimum Segmentation Problem

Given a bound L and a set of recombinants R = {R1, . . . , Rm} each of which has length n,
Ukkonen [21] proposed a dynamic programming algorithm that solves the minimum segment-
ation problem in O(mn2) time based on the following recurrence relation:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤j≤k−L
max{M(j), |R[j + 1, k]|} if k ≥ 2L.

(2)

It is obvious that M(n) is equal to the solution (1); the segmentation itself can be recon-
structed by “backtracking” in a standard way (see [21]). We build on the same approach.

For a given k ∈ [1, n], denote by jk,1, . . . , jk,rk
the sequence of all positions j ∈ [1, k − L]

in which the value of |R[j, k]| changes, i.e., 1 ≤ jk,1 < · · · < jk,rk
≤ k − L and |R[jk,h, k]| 6=

|R[jk,h+1, k]| for h ∈ [1, rk]. We complement this sequence with jk,0 = 0 and jk,rk+1 = k−L+
1, so that jk,0, . . . , jk,rk+1 can be interpreted as a splitting of the range [0, k−L] into segments
in which the value |R[j + 1, k]| stays the same: namely, for h ∈ [0, rk], one has |R[j + 1, k]| =
|R[jk,h+1, k]| provided jk,h ≤ j < jk,h+1. Hence, min

jk,h≤j<jk,h+1
max{M(j), |R[j + 1, k]|} =

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} and, therefore, (2) can be rewritten as follows:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤h≤rk

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} if k ≥ 2L.
(3)

Our crucial observation is that, for k ∈ [1, n] and j ∈ [1, k], one has |R[j + 1, k]| ≤
|R[j, k]| ≤ m. Therefore, m ≥ |R[jk,1, k]| > · · · > |R[jk,rk+1, k]| ≥ 1 and rk < m. Hence,
M(k) can be computed in O(m) time using (3), provided one has the following components:
(i) the numbers |R[jk,h+1, k]|, for h ∈ [0, rk];
(ii) the values min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk].

In the remaining part of the section, we describe a streaming algorithm that reads the strings
{R1, . . . , Rm} “columnwise” from left to right and computes the components (i) and (ii)
immediately after reading each “column” {R1[k], . . . , Rm[k]}, for k ∈ [1, n], and all in O(mn)
total time and O(m+ L) space.

To reconstruct a segmentation corresponding to the found solution M(n), we build along
with the values M(k) an array of size n whose kth element, for each k ∈ [1, n], stores 0 if
M(k) = |R[1, k]|, and stores a number j ∈ [1, k−L] such thatM(k) = max{M(j), |R[j+1, k]|}

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:5

R1 = tttccat

R2 = accatta

R3 = actacct

R4 = actccat

R5 = cttacct

R6 = atcacat

i 1 2 3 4 5 6

ak[i] 2 6 4 1 3 5
dk[i] 8 8 5 3 7 3

i 1 2 3 4 5 6 7

|R[i, k]| 6 6 4 4 3 3 2 ak[6] = 5
ak[5] = 3
ak[4] = 1
ak[3] = 4
ak[2] = 6
ak[1] = 2

c t

a c t a c c

t t t c c a t

a c

a t c a

a c c a t t a

Figure 1 The pBWT for a set of recombinantsR = {R1, . . . , R6} with k = 7 and the corresponding
trie containing the reversed strings R1[1, k], . . . , R6[1, k] in lexicographic order.

otherwise; then, the segmentation can be reconstructed from the array in an obvious way in
O(n) time. In order to maintain the array, our algorithm computes, for each k ∈ [1, n], along
with the values min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk], positions j on which these
minima are attained (see below). Further details are straightforward and, thence, omitted.

3.1 Positional Burrows–Wheeler Transform
Let us fix k ∈ [1, n]. Throughout this subsection, the string Ri[k]Ri[k − 1] · · ·Ri[1], which
is the reversal of Ri[1, k], is denoted by R′i,k, for i ∈ [1,m]. Given a set of recombinants
R = {R1, . . . , Rm} each of which has length n, a positional Burrows–Wheeler transform
(pBWT), as defined by Durbin [3], is a pair of integer arrays ak[1,m] and dk[1,m] such that:
1. ak[1,m] is a permutation of [1,m] such that R′ak[1],k ≤ · · · ≤ R

′
ak[m],k lexicographically;

2. dk[i], for i ∈ [1,m], is an integer such that Rak[i][dk[i], k] is the longest common suffix of
Rak[i][1, k] and Rak[i−1][1, k], and dk[i] = k + 1 if either this suffix is empty or i = 1.

I Example 2. Consider the following example, where m = 6, k = 7, and Σ = {a, c, t}. It is
easy to see that the pBWT implicitly encodes the trie depicted in the right part of Figure 1,
and such interpretation drives the intuition behind this structure: The trie represents the
reversed sequences R1[1, k], . . . , R6[1, k] (i.e., read from right to left) in lexicographic order.
Leaves (values ak) store the corresponding input indices. The branches correspond to values
dk (the distance from the root subtracted from k + 1). Our main algorithm in this paper
makes implicitly a sweep-line over the trie stopping at the branching positions.

Durbin [3] showed that ak and dk can be computed from ak−1 and dk−1 in O(m) time
on the binary alphabet. Mäkinen and Norri [12] further generalized the construction for
integer alphabets of size O(m), as in our case. For the sake of completeness, we describe in
this subsection the solution from [12] (see Figure 2a), which serves then as a basis for our
main algorithm. We also present a modification of this solution (see Figure 2b), which, albeit
seems to be slightly inferior in theory (we could prove only O(m log |Σ|) time upper bound),
showed better performance in practice and thus, as we believe, is interesting by itself.

I Lemma 3. The arrays ak[1,m] and dk[1,m] can be computed from ak−1[1,m] and
dk−1[1,m] in O(m) time, assuming the input alphabet is [0, |Σ|−1] with |Σ| = O(m).

Proof. Given ak−1 and dk−1, we are to show that the algorithm from Figure 2a correctly
computes ak and dk. Since, for any i, j ∈ [1,m], we have R′i,k ≤ R′j,k iff either Ri[k] < Rj [k],
or Ri[k] = Rj [k] and R′i,k−1 ≤ R′j,k−1 lexicographically, it is easy to see that the array ak can
be deduced from ak−1 by radix sorting the sequence of pairs {(Rak−1[i][k], R′ak−1[i],k−1)}m

i=1.
Further, since, by definition of ak−1, the second components of the pairs are already in a
sorted order, it remains to sort the first components by the counting sort. Accordingly, in

WABI 2018

15:6 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

zero initialize C[0, |Σ|] and P [0, |Σ| − 1]
for i← 1 to m do

C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
for i← 1 to |Σ|−1 do C[i]← C[i] + C[i−1];
for i← 1 to m do

b← Rak−1[i][k];
C[b]← C[b] + 1;
ak[C[b]]← ak−1[i];
if P [b] = 0 then dk[C[b]]← k + 1;
else dk[C[b]]← max{dk−1[`] : P [b]<`≤i};
P [b]← i;

(a) The basic pBWT algorithm computing
ak and dk from ak−1 and dk−1.

zero initialize C[0, |Σ|] and P [0, |Σ| − 1]
for i← 1 to m do

C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
for i← 1 to |Σ| − 1 do C[i]← C[i] + C[i− 1];
for i← 1 to m do

b← Rak−1[i][k];
C[b]← C[b] + 1;
ak[C[b]]← ak−1[i];
ak−1[i]← i + 1; . erase ak−1[i]
if P [b] = 0 then dk[C[b]]← k + 1;
else dk[C[b]]← maxd(P [b] + 1, i);
P [b]← i;

function maxd(j, i)
if j 6= i then

dk−1[j]←max{dk−1[j], maxd(ak−1[j], i)};
ak−1[j]← i + 1;

return dk−1[j];

(b) The algorithm with simple RMQ; ak−1 and dk−1
are used as auxiliary arrays (and corrupted).

Figure 2 The computation of ak and dk from ak−1 and dk−1 in the pBWT.

Figure 2a, the first loop counts occurrences of letters in the sequence {Ri[k]}m
i=1 using an

auxiliary array C[0, |Σ|]; as is standard in the counting sort, the second loop modifies the
array C so that, for each letter b ∈ [0, |Σ|−1], C[b] + 1 is the first index of the “bucket”
that will contain all ak−1[i] such that Rak−1[i][k] = b; finally, the third loop fills the buckets
incrementing the indices C[b]← C[b] + 1, for b = Rak−1[i][k], and performing the assignments
ak[C[b]]← ak−1[i], for i = 1, . . . ,m. Thus, the array ak is computed correctly. All is done in
O(m+ |Σ|) time, which is O(m) since the input alphabet is [0, |Σ|−1] and |Σ| = O(m).

The last three lines of the algorithm are responsible for computing dk. Denote the length of
the longest common prefix of any strings s1 and s2 by LCP(s1, s2). The computation of dk relies
on the following well-known fact: given a sequence of strings s1, . . . , sr such that s1 ≤ · · · ≤ sr

lexicographically, one has LCP(s1, sr) = min{LCP(si−1, si) : 1 < i ≤ r}. Suppose that the last
loop of the algorithm, which iterates through all i from 1 to m, assigns ak[i′]← ak−1[i], for
a given i ∈ [1,m] and some i′ = C[b]. Let j be the maximum integer such that j < i and
Rak−1[j][k] = Rak−1[i][k] (if any). The definition of ak implies that ak[i′−1] = ak−1[j] if such j
exists. Hence, LCP(R′ak[i′−1],k, R

′
ak[i′],k) = 1 + min{LCP(R′ak−1[`−1],k−1, R

′
ak−1[`],k−1) : j<`≤i}

if such number j does exist, and LCP(R′ak[i′−1],k, R
′
ak[i′],k) = 0 otherwise. Therefore, since

dk[i′] equals k+1−LCP(R′ak[i′],k, R
′
ak[i′−1],k), we have either dk[i′] = max{dk−1[`] : j < ` ≤ i}

or dk[i′] = k+ 1 according to whether the required j exists. To find j, we simply maintain an
auxiliary array P [0, |Σ|−1] such that on the ith loop iteration, for any letter b ∈ [0, |Σ|−1], P [b]
stores the position of the last seen b in the sequence Rak−1[1][k], Rak−1[2][k], . . . , Rak−1[i−1][k],
or P [b] = 0 if b occurs for the first time. Thus, dk is computed correctly.

In order to calculate the maximums max{dk−1[`] : P [b] ≤ ` ≤ i} in O(1) time, we build a
range maximum query (RMQ) data structure on the array dk−1[1,m] in O(m) time (e.g.,
see [6]). Therefore, the running time of the algorithm from Figure 2a is O(m). J

In practice the bottleneck of the algorithm is the RMQ data structure, which, although
answers queries in O(1) time, has a sensible constant under the big-O in the construction
time. We could naively compute the maximums by scanning the ranges dk−1[P [b]+1, i] from

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:7

left to right but such algorithm works in quadratic time since same ranges of dk−1 might be
processed many times in the worst case. Our key idea is to store the work done by a simple
scanning algorithm to reuse it in future queries. We store this information right in the arrays
ak−1 and dk−1 rewriting them; in particular, since ak−1 is accessed sequentially from left to
right in the last loop, the range ak−1[1, i] is free to use after the ith iteration.

More precisely, after the ith iteration of the last loop, the subarrays ak−1[1, i] and dk−1[1, i]
are modified so that the following invariant holds: for any j ∈ [1, i], j < ak−1[j] ≤ i + 1
and dk−1[j] = max{d′k−1[`] : j ≤ ` < ak−1[j]}, where d′k−1 denotes the original array dk−1
before modifications; note that the invariant holds if one simply puts ak−1[j] = j + 1 without
altering dk−1[j]. Then, to compute max{d′k−1[`] : j ≤ ` ≤ i}, we do not have to scan all
elements but can “jump” through the chain j, ak−1[j], ak−1[ak−1[j]], . . . , i and use maximums
precomputed in dk−1[j], dk−1[ak−1[j]], dk−1[ak−1[ak−1[j]]], . . . , dk−1[i]; after this, we redirect
the “jump pointers” in ak−1 to i+ 1 and update the maximums in dk−1 accordingly. This
idea is implemented in Figure 2b. Notice the new line ak−1[i]← i+ 1 in the main loop (it is
commented), which erases ak−1[i] and makes it a part of the “jump table”. The correctness of
the algorithm is clear. But it is not immediate even that the algorithm works in O(m logm)
time. The next lemma states that the bound is actually even better, O(m log |Σ|). The proof
of the lemma is given in Appendix.

I Lemma 4. The algorithm from Figure 2b computes the arrays ak[1,m] and dk[1,m] from
ak−1[1,m] and dk−1[1,m] in O(m log |Σ|) time, assuming the input alphabet is [0, |Σ|−1] with
|Σ| = O(m).

3.2 Modification of the pBWT
We are to modify the basic pBWT construction algorithm in order to compute the sequence
jk,1, . . . , jk,rk

of all positions j ∈ [1, k − L] in which |R[j, k]| 6= |R[j + 1, k]|, and to calculate
the numbers |R[jk,h+1, k]| and min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk] (assuming
jk,0 = 0 and jk,rk+1 = k − L+ 1); see the beginning of the section. As it follows from (3),
these numbers are sufficient to calculate M(k), as defined in (2) and (3), in O(m) time. The
following lemma reveals relations between the sequence jk,1, . . . , jk,rk

and the array dk.

I Lemma 5. Consider recombinants R = {R1, . . . , Rm}, each having length n. For k ∈ [1, n]
and j ∈ [1, k − 1], one has |R[j, k]| 6= |R[j + 1, k]| iff j = dk[i]− 1 for some i ∈ [1,m].

Proof. Suppose that |R[j, k]| 6= |R[j + 1, k]|. It is easy to see that |R[j, k]| > |R[j + 1, k]|,
which implies that there are two indices h and h′ such that Rh[j + 1, k] = Rh′ [j + 1, k]
and Rh[j] 6= Rh′ [j]. Denote by a−1

k [h] the number x such that ak[x] = h. Without loss of
generality, assume that a−1

k [h] < a−1
k [h′]. Then, there exists i ∈ [a−1

k [h] + 1, a−1
k [h′]] such

that Rak[i−1][j + 1, k] = Rak[i][j + 1, k] and Rak[i−1][j] 6= Rak[i][j]. Hence, dk[i] = j + 1.
Suppose now that j ∈ [1, k − 1] and j = dk[i]− 1, for some i ∈ [1,m]. Since j < k and

dk[1] = k+ 1, we have i > 1. Then, by definition of dk, Rak[i−1][j+ 1, k] = Rak[i][j+ 1, k] and
Rak[i−1][j] 6= Rak[i][j], i.e., Rak[i][j + 1, k] can be “extended” to the left in two different ways,
thus producing two distinct strings in the set R[j, k]. Therefore, |R[j, k]| > |R[j + 1, k]|. J

Denote by r the number of distinct integers in the array dk. Clearly, r may vary from 1
to m. For integer `, define M ′(`) = M(`) if 1 ≤ ` ≤ k − L, and M ′(`) = +∞ otherwise (M ′
is introduced for purely technical reasons). Our modified algorithm does not store dk but
stores the following four arrays (but we still often refer to dk for the sake of analysis):

sk[1, r] contains all distinct elements from dk[1,m] in the increasing sorted order;
ek[1,m]: for j ∈ [1, r], ek[j] is equal to the unique index such that sk[ek[j]] = dk[j];

WABI 2018

15:8 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

tk[1, r]: for j ∈ [1, r], tk[j] is equal to the number of times sk[j] occurs in dk[1,m];
uk[1, r]: for j ∈ [1, r], uk[j] = min{M ′(`) : sk[j−1]−1 ≤ ` < sk[j]−1}, assuming sk[0] = 1.

I Example 6. In Example 2, where m = 6, k = 7, and Σ = {a, c, t}, we have r = 4,
sk = [3, 5, 7, 8], tk = [2, 1, 1, 2], ek = [4, 4, 2, 1, 3, 1]. It is easy to see that the array sk marks
positions of the branching nodes in the trie from Figure 1 in the increasing order (in the
special case sk[1] = 1, sk[1] does not mark any such node). The arrays sk and ek together
emulate dk. The array tk will be used below to calculate some numbers |R[j, k]| required
to compute M(k). Further, suppose that L = 3, so that k − L = 4. Then, uk[1] = M(1),
uk[2] = min{M(2),M(3)}, uk[3] = min{M(4),M ′(5)} = M(4) since M ′(5) = +∞, and
uk[4] = M ′(6) = +∞. The use of uk is discussed in the sequel.

For convenience, let us recall Equation (3) defined in the beginning of this section:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤h≤rk

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} if k ≥ 2L,
(3 revisited)

where jk,0 = 0, jk,rk+1 = k−L+1, and jk,1, . . . , jk,rk
is the increasing sequence of all positions

j ∈ [1, k−L] in which |R[j, k]| 6= |R[j+ 1, k]|. In order to compute M(k), one has to find the
minima min

jk,h≤j<jk,h+1
M(j) and calculate |R[jk,h+1, k]|. As it follows from Lemma 5 and the

definition of sk, all positions j ∈ [1, k− 1] in which |R[j, k]| 6= |R[j + 1, k]| are represented by
the numbers sk[i]− 1 such that 1 < sk[i] ≤ k (in the increasing order); hence, the sequence
jk,1, . . . , jk,rk

corresponds to either sk[1]− 1, . . . , sk[rk]− 1 or sk[2]− 1, . . . , sk[rk + 1]− 1,
depending on whether sk[1] 6= 1. Then, the minima min

jk,h≤j<jk,h+1
M(j) are stored in the

corresponding elements of uk (assuming sk[0] = 1): uk[i] = min{M ′(`) : sk[i−1]−1 ≤ ` <

sk[i]−1} = min{M(`) : sk[i−1]−1 ≤ ` < min{sk[i]−1, k − L + 1}} = min
jk,h≤j<jk,h+1

M(j),

provided sk[i − 1] − 1 = jk,h. It is clear that uk[i] 6= +∞ only if the segment [sk[i − 1] −
1, sk[i]−2] intersects the range [1, k−L] and, thus, corresponds to a segment [jk,h, jk,h+1−1],
for h ∈ [0, rk]. Therefore, since M ′(`) = +∞ for ` < 1 and ` > k − L and, thus, such values
M ′(`) do not affect, in a sense, the minima stored in uk, one can rewrite (3) as follows:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

1≤j≤|uk|
max{|R[sk[j]− 1, k]|, uk[j]} if k ≥ 2L.

(4)

It remains to compute the numbers |R[sk[j]− 1, k]|, for j ∈ [1, |sk|].

I Lemma 7. Consider a set of recombinants R = {R1, . . . , Rm}, each of which has length n.
For k ∈ [1, n] and j ∈ [1, |sk|], one has |R[sk[j]− 1, k]| = tk[j] + tk[j + 1] + · · ·+ tk[|tk|].

Proof. Denote ` = k−sk[j]+1, so that R[sk[j]−1, k] = R[k−`, k]. Suppose that ` = 0. Note
that Rak[1][k] ≤ · · · ≤ Rak[m][k]. Since dk[i] = k + 1 iff either i = 1 or Rak[i−1][k] 6= Rak[i][k],
it is easy to see that |R[k, k]|, the number of distinct letters Ri[k], is equal to the number of
time k + 1 = sk[|sk|] occurs in dk, i.e., tk[|tk|].

Suppose that ` > 0. It suffices to show that |R[k − `, k]| − |R[k − `+ 1, k]| = tk[j]. For
i ∈ [1,m], denote by R′i the string Ri[k]Ri[k− 1] · · ·Ri[k− `]. Fix w ∈ R[k− `+ 1, k]. Since
R′ak[1] ≤ · · · ≤ R

′
ak[m] lexicographically, there are numbers h and h′ such that Rak[i][k − `+

1, k] = w iff i ∈ [h, h′]. Further, we have Rak[h][k− `] ≤ Rak[h+1][k− `] ≤ · · · ≤ Rak[h′][k− `].

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:9

Algorithm 1 Computing ek, sk, tk, uk, ak from ek−1, sk−1, tk−1, uk−1, ak−1.
1: copy sk−1 into sk and add the element k + 1 to the end of sk, thus incrementing |sk|;
2: copy uk−1 into uk and add the element M ′(k − 1) to the end of uk, thus incrementing |uk|;
3: zero initialize C[0, |Σ|], P [0, |Σ| − 1], and tk[1, |sk|];
4: for i← 1 to m do C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
5: for i← 1 to |Σ| − 1 do C[i]← C[i] + C[i− 1];
6: for i← 1 to m do
7: b← Rak−1[i][k];
8: C[b]← C[b] + 1;
9: ak[C[b]]← ak−1[i];

10: if P [b] = 0 then ek[C[b]]← |sk|;
11: else ek[C[b]]← max{ek−1[`] : P [b] < ` ≤ i}
12: P [b]← i;
13: for i← 1 to m do tk[ek[i]]← tk[ek[i]] + 1;
14: j ← 1;
15: add a new “dummy” element +∞ to the end of uk and uk−1;
16: for i← 1 to |sk| do
17: uk[j]← min{uk[j], uk−1[i]};
18: if tk[i] 6= 0 then
19: tmp[i]← j;
20: sk[j]← sk[i], tk[j]← tk[i], uk[j + 1]← uk−1[i + 1];
21: if sk[j]−1 > k−L and (j = 1 or sk[j−1]−1 ≤ k−L) then uk[j]← min{uk[j], M(k−L)};
22: j ← j + 1;
23: shrink sk, tk, and uk to j − 1 elements, so that |sk| = |tk| = |uk| = j − 1;
24: for i← 1 to m do ek[i]← tmp[ek[i]];

Thus, by definition of dk, for i ∈ [h + 1, h′], we have Rak[i−1][k − `] 6= Rak[i][k − `] iff
dk[i] = k − ` + 1 = sk[j]. Note that dk[h] > sk[j]. Therefore, the number of strings
Ri[k − `, k] from R[k − `, k] having suffix w is equal to one plus the number of integers sk[j]
in the range dk[h, h′], which implies |R[k − `, k]| − |R[k − `+ 1, k]| = tk[j]. J

By (4) and Lemma 7, one can calculate M(k) in O(m) time using the arrays tk and uk.
It remains to describe how we maintain ak, ek, sk, tk, uk.

I Lemma 8. The arrays ak, ek, sk, tk, uk can be computed from ak−1, ek−1, sk−1, tk−1, uk−1
and from the numbers M(k − L) and M(k − 1) in O(m) time, assuming the input alphabet
is [0, |Σ|−1] with |Σ| = O(m).

Proof. Let us analyze Algorithm 1 that computes ak, ek, sk, tk, uk. By definition, dk−1[i] =
sk−1[ek−1[i]] for i ∈ [1,m]. The first line of the algorithm initializes sk so that dk−1[i] =
sk[ek−1[i]], for i ∈ [1,m], and sk[|sk|] = k+1. Since after this initialization sk, obviously, is in
the sorted order, one has, for i, j ∈ [1,m], ek−1[i] ≤ ek−1[j] iff dk−1[i] ≤ dk−1[j] and, therefore,
for ` ∈ [i, j], one has dk−1[`] = max{dk−1[`′] : i ≤ `′ ≤ j} iff ek−1[`] = max{ek−1[`′] : i ≤ `′ ≤
j}. Based on this observation, we fill ek in lines 3–12 so that dk[i] = sk[ek[i]], for i ∈ [1,m],
using exactly the same algorithm as in Figure 2a, where dk is computed, but instead of the
assignment dk[C[b]] ← k + 1, we have ek[C[b]] ← |sk| since sk[|sk|] = k + 1. Here we also
compute ak in the same way as in Figure 2a.

The loop in line 13 fills tk so that, for i ∈ [1, |sk|], tk[i] is the number of occurrences of the
integer i in ek (tk was zero initialized in line 3). Since, for i ∈ [1,m], we have dk[i] = sk[ek[i]]
at this point, tk[i] is also the number of occurrences of the integer sk[i] in dk[1,m].

WABI 2018

15:10 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

By definition, sk must contain only elements from dk, but this is not necessarily the
case in line 14. In order to fix sk and tk, we simply have to remove all elements sk[i] for
which tk[i] = 0, moving all remaining elements of sk and non-zero elements of tk to the left
accordingly. Suppose that, for some h and i, we have ek[h] = i and the number sk[i] is moved
to sk[j], for some j < i, as we fix sk. Then, ek[h] must become j. We utilize an additional
temporary array tmp[1, |sk|] to fix ek. The loop in lines 16–22 fixes sk and tk in an obvious
way; once sk[i] is moved to sk[j] during this process, we assign tmp[i] = j. Then, sk, tk, uk

(uk is discussed below) are resized in line 23, and the loop in line 24 fixes ek using tmp.
Recall that [sk[j − 1] − 1, sk[j] − 2], for j ∈ [1, |sk|], is a system of disjoint segments

covering [0, k−1] (assuming sk[0] = 1). It is now easy to see that this system is obtained from
the system [sk−1[j−1]−1, sk−1[j]−2], with j ∈ [1, |sk−1|] (assuming sk−1[0] = 1), by adding
the new segment [k − 1, k − 1] and joining some segments together. The second line of the
algorithm copies uk−1 into uk and adds M ′(k−1) to the end of uk, so that, for j ∈ [1, |uk−1|],
uk[j] is equal to the minimum of M ′(`) for all ` from the segment [sk−1[j−1]−1, sk−1[j]−2]
and uk[|uk−1|+1] = M ′(k − 1) is the minimum in the segment [k − 1, k − 1]. (This is not
completely correct since M ′ has changed as k was increased; namely, M ′(k−L) was equal to
+∞ but now is equal to M(k−L).) As we join segments removing some elements from sk in
the loop 16–22, the array uk must be fixed accordingly: if [sk[j−1]−1, sk[j]−2] is obtained by
joining [sk−1[h−1]−1, sk−1[h]−2], for j′ ≤ h ≤ j′′, then uk[j] = min{uk−1[h] : j′ ≤ h ≤ j′′}.
We perform such fixes in line 17, accumulating the latter minimum. We start accumulating
a new minimum in line 20, assigning uk[j + 1] ← uk−1[i + 1]. If at this point the ready
minimum accumulated in uk[j] corresponds to a segment containing the position k − L,
we have to fix uk taking into account the new value M ′(k − L) = M(k − L); we do this
in line 21. To avoid accessing out of range elements in uk and uk−1 in line 20, we add a
“dummy” element in, respectively, uk and uk−1 in line 15. J

Besides all the arrays of length m, the algorithm from Lemma 8 also requires access to
M(k − L) and, possibly, to M(k − 1). During the computation of M(k) for k ∈ [1, n], we
maintain the last L calculated numbers M(k− 1),M(k− 2), . . . ,M(k−L) in a circular array,
so that the overall required space is O(m+ L); when k is incremented, the array is modified
in O(1) time in an obvious way. Thus, Lemma 8 implies Theorem 1

If, as in our case, one does not need sk, tk, uk for all k, the arrays sk, tk, uk can be
modified in-place, i.e., sk, tk, uk can be considered as aliases for sk−1, tk−1, uk−1, and yet
the algorithm remains correct. Thus, we really need only 7 arrays in total: ak, ak−1, ek,
ek−1, s, t, u, where s, t, u serve as sk, tk, uk and the array tmp can be organized in place of
ak−1 or ek−1. It is easy to maintain along with each value uk[j] a corresponding position `
such that uk[j] = M ′(`); these positions can be used then to restore the found segmentation
of R using backtracking (see the beginning of the section). To compute ek, instead of using
an RMQ data structure, one can adapt in an obvious way the algorithm from Figure 2b
rewriting the arrays ak−1 and ek−1 during the computation, which is faster in practice but
theoretically takes O(m log σ) time by Lemma 4. We do not discuss further details as they
are straightforward.

4 Implementation

We implemented the segmentation algorithm using Lemma 4 to build the data structures,
and thus the overall time complexity of the implemented approach is O(mn log σ). The
implementation outputs for each segment the distinct founder sequence fragments, and
associates to each fragment the set of haplotypes containing that fragment as a substring

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:11

at that location (these are easily deduced given the segmentation and the positional BWT
structures). As discussed earlier, to obtain full founder sequences, one needs to concatenate
these fragments in some order. If each segment has exactly the same amount of fragments,
there is a way of finding an optimal concatenation minimizing the number of crossovers
[21]: For any two consecutive segments, form a bipartite graph with fragments as nodes
and edges corresponding to plausible concatenations. The cost of an edge is the symmetric
difference of the sets associated with the fragments. Minimum cost perfect matching then
gives an optimal concatenation order. Each consecutive pair can be solved independently, and
founder sequences can be extracted through the paths formed by matches edges. However,
not all segments may contain the maximum amount of distinct fragments; we conjecture
the ordering problem becomes hard in this case (due to the local matchings being no longer
independent). There are many possible heuristic ways to alleviate this issue, among which we
opted to preprocess the segments to have the same amount of fragments; we duplicated the
fragments greedily according to the sizes of the associated sets. Then we used the matching
approach described above. In the upcoming extended version of this paper, we plan to study
an alternative approach that provides an approximation guarantee.

To test the implementation of our algorithm, we generated a multiple alignment of
haplotype sequences from chromosome 6 variants from the phase 3 data of the 1000 Genomes
Project [19]. This resulted in 5009 haplotype sequences of equal length (including the
reference sequence) of approximately 171 million characters. We then discarded columns of
identical characters, which reduced each sequence to approximately 5.38 million characters.
We used an increasing number of these sequences as an input to our tool to verify its usability.
The tests were run on a Ubuntu Linux 16.04 server. The server had 96 Intel Xeon E7-4830 v3
CPUs running at 2.10GHz and 1.4 TB of memory. Results on varying input sizes are shown
in Fig. 3a. From this experiment it is conceivable that processing of thousands of complete
human genomes takes only few CPU days. Figure 3b plots the number of founders against
the number of segments. These look very promising, as using 130 founders instead of 5009
haplotypes as the input to pan-genome indexing of [22] will result into significant saving of
resources; this solves the space bottleneck, and the preprocessing of founder reconstruction
also saves time in the heavy indexing steps. The average segment length of some 1926 bases
(171 million divided by 88778 segments) is also likely to be high enough not to break too
badly the contiguity required for successful read alignment. To better see the contiguity
of the resulting founder set, we mapped the haplotypes to the founders minimizing the
number of jumps (simple greedy algorithm is optimal [15]). The result is shown in Fig. 3c.
Since identical columns do not cause any jumps, we can now divide 171 million with 18274
jumps. This gives average distance between two jumps being 9358 bases. The heuristic part
of optimizing the concatenation of founder blocks yields almost 5-fold improvement in the
contiguity, compared to the worst case of each segment boundary yielding a discontinuity for
each input sequence (which should be close to what a random concatenation order would
produce).

Our intention was to compare our tool to an implementation of Ukkonen’s algorithm [15].
However, initial testing with four input sequences showed that the latter implementation is
not practical with a data set of this size.

Our implementation is open source and available at the URL https://github.com/
tsnorri/founder-sequences.

WABI 2018

https://github.com/tsnorri/founder-sequences
https://github.com/tsnorri/founder-sequences

15:12 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

●

●

●

●

●

●

●

●

(a) The running time of our implementation
plotted against the number of input sequences
with L = 10. The data points have been fitted
with a least-squares linear model, and the grey
band shows the 95% confidence interval.

●

●

●

●

●

●

●

●

●

(b) The founder and segment counts as pro-
duced by our implementation plotted against
the number of input sequences with L = 10.

●

●

●

●

●

●

●

●

●

(c) The average and median numbers of jumps,
i.e. counts of positions where one needs to
change from one founder sequence to another to
read an original sequence, plotted against the
number of input sequences with L = 10.

Figure 3 Evaluation of founder reconstruction on a pan-genomic setting.

5 Discussion

With 5009 haplotypes reducing down to 130 founders with the average distance of two
crossovers being 9358 bases, one can expect short read alignment and variant calling to
become practical on such pan-genomic setting. We are investigating this on our tool PanVC
[22], where one can simply replace its input multiple alignment with the one made of the
founder sequences. With graph-based approaches, slightly more effort is required: Input
variations are encoded with respect to the reference, so one first needs to convert variants
into a multiple alignment, apply the founder reconstruction algorithm, and finally convert

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:13

the multiple alignment of founder sequences into a directed acyclic graph. PanVC toolbox
provides the required conversions. Alternatively, one can construct the pan-genome graph
using other methods, and map the founder sequences afterwards to the paths of the graph:
If original haplotype sequences are already spelled as paths, each founder sequence is a
concatenation of existing subpaths, and can hence be mapped to a continuous path without
alignment (possibly requiring adding a few missing edges).

Finally, it will be interesting to see how much the contiguity of the founder sequences
can still be improved with different strategies for the concatenation order and with different
formulations of the segmentation problem. For the former, we are investigating an approach
with approximation guarantee. For the latter, we consider a variant with the number of
founder sequenced fixed.

References
1 Computational Pan-Genomics Consortium et al. Computational pan-genomics: status,

promises and challenges. Briefings in Bioinformatics, page bbw089, 2016.
2 Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean. Im-

proved genome inference in the MHC using a population reference graph. Nature Genetics,
47:682–688, 2015.

3 Richard Durbin. Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

4 Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706
humans. Nature, 536(7616):285–291, 2016.

5 Héctor Ferrada, Travis Gagie, Tommi Hirvola, and Simon J. Puglisi. Hybrid indexes for
repetitive datasets. Philosophical Transactions of the Royal Society A, 372, 2014.

6 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In CPM 2006, volume 4009 of LNCS, pages
36–48. Springer, 2006. doi:10.1007/11780441_5.

7 Travis Gagie and Simon J. Puglisi. Searching and indexing genomic databases via kernel-
ization. Frontiers in Bioengineering and Biotechnology, 3(12), 2015.

8 Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T
Dawson, William Jones, Michael F Lin, Benedict Paten, and Richard Durbin. Sequence vari-
ation aware genome references and read mapping with the variation graph toolkit. bioRxiv,
2017. doi:10.1101/234856.

9 Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with populations
of genomes. Bioinformatics, 29(13):361–370, 2013.

10 Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A natural encoding of
genetic variation in a Burrows-Wheeler transform to enable mapping and genome inference.
In Algorithms in Bioinformatics - 16th International Workshop, WABI 2016, Aarhus, Den-
mark, August 22-24, 2016. Proceedings, volume 9838 of Lecture Notes in Computer Science,
pages 222–233. Springer, 2016.

11 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308,
2010.

12 Veli Mäkinen and Tuukka Norri. Applying the positional Burrows–Wheeler transform to
all-pairs hamming distance. Submitted manuscript, 2018.

13 Tom O Mokveld, Jasper Linthorst, Zaid Al-Ars, and Marcel Reinders. Chop: Haplotype-
aware path indexing in population graphs. bioRxiv, 2018. doi:10.1101/305268.

14 Gonzalo Navarro. Indexing highly repetitive collections. In Proc. 23rd International Work-
shop on Combinatorial Algorithms (IWOCA), LNCS 7643, pages 274–279, 2012.

WABI 2018

http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1101/234856
http://dx.doi.org/10.1101/305268

15:14 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

15 Pasi Rastas and Esko Ukkonen. Haplotype inference via hierarchical genotype parsing. In
Algorithms in Bioinformatics, 7th International Workshop, WABI 2007, Philadelphia, PA,
USA, September 8-9, 2007, Proceedings, pages 85–97, 2007.

16 Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warthmann, Sandra
Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous alignment of short reads
against multiple genomes. Genome Biology, 10:R98, 2009.

17 Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict Paten, and Richard Durbin.
Haplotype-aware graph indexes. arXiv preprint arXiv:1805.03834, 2018.

18 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014.

19 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68–74, sep 2015.

20 The UK10K Consortium. The UK10K project identifies rare variants in health and disease.
Nature, 526(7571):82–90, 2015.

21 Esko Ukkonen. Finding founder sequences from a set of recombinants. In Algorithms
in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy, September
17-21, 2002, Proceedings, pages 277–286, 2002.

22 Daniel Valenzuela, Tuukka Norri, Välimäki Niko, Esa Pitkänen, and Veli Mäkinen. Towards
pan-genome read alignment to improve variation calling. BMC Genomics, 19(Suppl 2):87,
2018. doi:10.1186/s12864-018-4465-8.

23 Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. Rcsi: Scalable similarity
search in thousand(s) of genomes. PVLDB, 6(13):1534–1545, 2013.

http://dx.doi.org/10.1186/s12864-018-4465-8

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:15

A Proof of Lemma 4

Proof. Fix i ∈ [1,m]. The ith iteration of the last loop in the algorithm computes the
maximum in a range d′k−1[i′, i], where d′k−1 is the original array dk−1 before modifications
and i′ = P [b] + 1 for some b and P . Let `i = i − i′. Denote ˜̀ = 1

m

∑m
i=1 `i, the “average

query length”. We are to prove that the running time of the algorithm is O(m log ˜̀), which
implies the result since m˜̀=

∑m
i=1 `i and, obviously,

∑m
i=1 `i ≤ σm.

We say that a position j is touched if the function maxd is called with its first argument
equal to j. Clearly, it suffices to prove that the total number of touches is O(m log ˜̀).
While processing the query maxd(i−`i, i), we may have touched many positions. Denote the
sequence of all such position, for the given i, by i1, . . . , ir; in other words, at the time of the
query maxd(i−`i, i), we have i1 = i− `i, ij = ak−1[ij−1] for j ∈ [2, r], and ir = i. Obviously,
i1 < · · · < ir. We say that, for j ∈ [1, r−1], the touch of ij in the query maxd(i−`i, i) is
scaling if there exists an integer r such that i− ij > 2r and i− ij+1 ≤ 2r (see Figure 4). We
count separately the total number of scaling and non-scaling touches in all i.

`i

i−2r i−2r−1 i−2r−2. . .

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

Figure 4 RMQ query on a range [i− `i, i]; scaling touches are red.

For position j, denote by p(j) the number of non-scaling touches of j. We are to prove that
P =

∑m
j=1 p(j) ≤ 2m log ˜̀. Let qh(j) denote the value of ak−1[j]− j in the hth non-scaling

touch of j, for h ∈ [1, p(j)]. Suppose that this hth touch happens during the processing of a
query maxd(i−`i, i). By the definition, j+qh(j) follows j in the sequence of touched positions.
Since the touch of j is non-scaling, we have i−j > j+qh(j) > 2r, where r is the largest integer
such that i− j > 2r, and hence, qh(j) < 2r. Since maxd(i− `i, i) assigns ak−1[j]← i+ 1, we
have ak−1[j]− j > i− j > 2r after the query. In other words, we had ak−1[j]− j = qh(j) < 2r

before the query and have ak−1[j]−j > 2r after. This immediately implies that qh(j) ≥ 2h−1,
for h ∈ [1, p(j)], and, therefore, every position can be touched in the non-scaling way at most
O(logm) times, implying P = O(m logm). But we can deduce a stronger bound. Since the
sum of all values j − ak−1[j] for all positions j touched in a query maxd(i − `i, i) is equal
to `i, it is obvious that

∑m
j=1

∑p(j)
h=1 qh(j) ≤

∑m
i=1 `i = m˜̀. On the other hand, we have∑m

j=1
∑p(j)

h=1 qh(j) ≥
∑m

j=1
∑p(j)

h=1 2h−1 =
∑m

j=1 2p(j) −m. The well-known property of the
convexity of the exponent is that the sum

∑m
j=1 2p(j) is minimized whenever all p(j) are

equal and maximal, i.e.,
∑m

j=1 2p(j) ≥
∑m

j=1 2P/m. Hence, once P > 2m log ˜̀, we obtain∑m
j=1

∑p(j)
h=1 qh(j) ≥

∑m
j=1 2P/m −m > m˜̀2 −m, which is larger than m˜̀ for ˜̀≥ 2 (the case

˜̀< 2 is trivial), contradicting
∑m

j=1
∑p(j)

h=1 qh(j) ≤ m˜̀. Thus, P =
∑m

j=1 p(j) ≤ 2m log ˜̀.
It remains to consider scaling touches. The definition implies that each query maxd(i−`i, i)

performs at most log `i scaling touches. Thus, it suffices to upperbound
∑m

i=1 log `i. Since
the function log is concave, the sum

∑m
i=1 log `i is maximized whenever all `i are equal and

maximal, i.e.,
∑m

i=1 log `i ≤
∑m

i=1 log(1
m

∑m
j=1 `j) = m log ˜̀, hence the result follows. J

WABI 2018

Multiple-Choice Knapsack for Assigning Partial
Atomic Charges in Drug-Like Molecules
Martin S. Engler
Life Sciences and Health Group, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands
martin.engler@cwi.nl

Bertrand Caron
School of Chemistry & Molecular Biosciences,
The University of Queensland, St Lucia, Australia

https://orcid.org/0000-0003-2305-1452

Lourens Veen
Netherlands eScience Center,
Amsterdam, The Netherlands

Daan P. Geerke
AIMMS Division of Molecular and Computational Toxicology,
Vrije Universiteit Amsterdam, The Netherlands

https://orcid.org/0000-0002-5262-6166

Alan E. Mark
School of Chemistry & Molecular Biosciences,
The University of Queensland, St Lucia, Australia

https://orcid.org/0000-0001-5880-4798

Gunnar W. Klau
Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Germany
gunnar.klau@hhu.de

https://orcid.org/0000-0002-6340-0090

Abstract
A key factor in computational drug design is the consistency and reliability with which inter-
molecular interactions between a wide variety of molecules can be described. Here we present a
procedure to efficiently, reliably and automatically assign partial atomic charges to atoms based
on known distributions. We formally introduce the molecular charge assignment problem, where
the task is to select a charge from a set of candidate charges for every atom of a given query
molecule. Charges are accompanied by a score that depends on their observed frequency in simi-
lar neighbourhoods (chemical environments) in a database of previously parameterised molecules.
The aim is to assign the charges such that the total charge equals a known target charge within
a margin of error while maximizing the sum of the charge scores. We show that the problem is a
variant of the well-studied multiple-choice knapsack problem and thus weakly NP-complete. We
propose solutions based on Integer Linear Programming and a pseudo-polynomial time Dynamic
Programming algorithm. We show that the results obtained for novel molecules not included in
the database are comparable to the ones obtained performing explicit charge calculations while
decreasing the time to determine partial charges for a molecule by several orders of magnitude,
that is, from hours or even days to below a second.

Our software is openly available at https://github.com/enitram/charge_assign.

2012 ACM Subject Classification Applied computing → Chemistry

© Martin S. Engler, Bertrand Caron, Lourens Veen, Daan P. Geerke, Alan E. Mark, and Gunnar W.
Klau;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.engler@cwi.nl
https://orcid.org/0000-0003-2305-1452
https://orcid.org/0000-0002-5262-6166
https://orcid.org/0000-0001-5880-4798
mailto:gunnar.klau@hhu.de
https://orcid.org/0000-0002-6340-0090
https://github.com/enitram/charge_assign
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

Keywords and phrases Multiple-choice knapsack, integer linear programming, pseudo-polynomial
dynamic programming, partial charge assignment, molecular dynamics simulations

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.16

Funding This research was partially supported by the Netherlands eScience Center (NLeSC),
grant number 027.015.G06.

Acknowledgements We thank all members of the NLeSC-ASDI project Enhancing Protein-Drug
Binding Prediction for valuable discussions. We thank Ulrich Pferschy from the University of
Graz for providing insight and expertise on the multiple-choice knapsack problem.

1 Introduction

Molecule-based computational modelling and simulation studies play a central role in modern
drug design and development. In particular, molecular dynamics (MD) simulations and
free energy calculations are increasingly being used to screen potential ligand molecules in
terms of their interactions with proposed target molecules (e.g. cell surface receptors or
enzymes involved in metabolism) [11, 18]. They are also used to model structural changes in
the target molecule associated with the binding of a given drug in order to understand the
mechanism of action. The accuracy and utility of such modelling studies depends directly
on the fidelity with which intermolecular interactions can be represented [1, 15]. While
ideally one might wish to represent such interactions on the level of quantum mechanics, the
size and complexity of protein/ligand complexes necessitates the use of classical dynamics
in conjunction with empirical potentials. These so-called force fields are parameterised to
reproduce the interactions between atoms in a system of interest (e.g. protein, membrane,
drug) and involve bonds, angles, dihedrals, van der Waals and coulombic interactions.

Of particular importance is the assignment of partial atomic charges to describe the latter
interactions. Partial atomic or point charges are used to represent the electrostatic potential
around a molecule and the coulombic interactions between these point charges dominate the
calculation of inter-molecular interactions. The difficulty is that the effective partial charge
on an atom needed to represent the electrostatic potential surrounding a molecule is heavily
dependent on the local environment in which an atom is found. For small molecules (< 40
atoms) partial atomic charges can be generally inferred de novo from quantum-mechanical
computations [19]. However, when using e.g. commonly applied Density Functional Theory
(DFT) such calculations scale cubic in the number of valence electrons [3], increasing the
computational costs significantly. In addition, as molecules become larger the accuracy with
which charges can be assigned decreases.

The standard approach to address this problem is to manually assign charges to atoms
based on their similarity to atoms (or groups) in a set of reference molecules containing
equivalent chemical moieties. The challenge in making such assignments is twofold: 1) the
charges assigned to equivalent chemical groups in alternative reference molecules may vary
making the choice of a reference molecule difficult and 2) the charges assigned to neighbouring
atoms must be consistent. In particular, the total charge on the molecule must be integer.
In the recent years, a number of machine learning approaches emerged that infer charges
based on a set of reference molecules [4, 13, 16]. However, these approaches often struggle to
deal with the ambiguity of similar groups that have different charges in different molecules
and the requirement that the overall charge must be integer.

http://dx.doi.org/10.4230/LIPIcs.WABI.2018.16

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:3

In this paper, we consider the problem of – given a large set of reference molecules with
known charge distributions – how to efficiently, automatically and optimally assign partial
atomic charges which are consistent with both the neighbouring atoms and the total charge.
As a reference we have used molecules parameterised using the Automated Topology Builder
(ATB) and repository [15]. The ATB contains a large number of molecules (< 50 atoms) for
which partial charges have been assigned de novo. In previous work, we have contributed
to improving the reliability of this repository by ensuring the consistency and utility of the
partial charges assigned to atoms by identifying atoms that could be used to form charge
groups, which can be collectively assigned integer formal charges (. . . ,−1, 0, 1, . . .) [5]. We
have also developed methods to match molecular substructures, taking into account that the
partial charge of an atom is heavily dependent on its neighbours and the nature of its local
chemical environment [7]. This made it possible to study the distribution of charges within
local molecular environments for all molecules in the ATB (≈ 200,000 molecules; 7,800,000
atoms and 5,600,000 bonds) and to find, given a query molecule, all possible matching
fragments (sub-graphs).

Here we build on this previous work and our ability to match sub-fragments of a query
molecule against the available database, to consider how the information contained in already
parameterised molecules can be used best to infer the charges within a novel molecule. The
most direct approach would be to simply use the mean partial charge on individual atoms
identified as equivalent using a given similarity criterion. However, quantum mechanics
dictates that the total charge on a molecule must be integer. Simply attributing to each
atom the value of the mean partial charge from the known distribution fails as it results in
the accumulation of errors and a total charge deviating from the required value.

Instead, we have considered solutions to the molecular charge assignment problem, which
allow charges that deviate from the mean to be selected while their sum is constrained to
lie close to a target total charge. Among the possible set of solutions we prefer those that
maximize a score that depends on the observed frequencies of the chosen charges. We show
that the problem is similar to a multiple-choice knapsack problem (MCKP) [6, 14]. We
introduce ε-MCKP, a variant of the standard MCKP with an error margin ε. We provide an
Integer Linear Programming (ILP) formulation of ε-MCKP and adapt the MCKP pseudo-
polynomial Dynamic Programming (DP) algorithm to ε-MCKP. Finally, we demonstrate the
utility of the ε-MCKP approach for solving the charge assignment problem by comparing the
charges proposed based on this approach to those obtained directly using the ATB. We find
that the charges computed with our novel approach are comparable to the ones obtained
using explicit charge calculations while decreasing the time to determine partial charges for a
molecule by several orders of magnitude, that is, from hours or even days to below a second.

Our code is publicly available at https://github.com/enitram/charge_assign under
the Apache 2.0 open source license.

2 Assigning charges

We consider molecules as graphs. Let G = (V,E, t) be a molecular graph, where vertices
V correspond to atoms, edges E correspond to bonds and t : V → Σ colors vertices with
atom types. A straightforward alphabet of atom types Σ would be the chemical elements.
In this work, we used ATB-assigned GROMOS atom types which provide a more detailed
classification of some chemical elements (N, C, O, S) depending on their hybridization
(number of bonded nodes), and therefore provides a more detailed description of the local
environment.

WABI 2018

https://github.com/enitram/charge_assign

16:4 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

H9

H10

H11

H12

C1

N1C2

C4

C3

C6

C5

F1

C7

C9

C8

H2

H1

H4

H3

H6

H5

H8

H7

N1C2

H6

H5

H5

H6

C4

C3

N3

C2

N2

N1
-0.849

C1

H3

H2
H4

H1

H7

H8

H9

H10

C3

N1

C2

C8

C1

C7

N5

C6

N4

N3
-0.942

C5

C4
N2

H2
H1

H4

H3

H6

H5

...

ATB database

k-Neighborhood graphsQuery molecule

assign charge

collect charges

Figure 1 Given a query molecule, our method assigns atomic partial charges based on matching
isomorphic subgraphs (red) with a known partial charge distribution collected from the ATB database
of parameterised molecules.

The partial charge of an atom is heavily dependent on its bonded neighbours and the
nature of its local environment. Formally, we define the k-neighbourhood as:

I Definition 1 (k-neighbourhood). Let N(v) = {u | (u, v) ∈ E} be the neighbourhood of an
atom v. We define the k-neighbourhood recursively as Nk(v) = Nk−1(v) ∪

⋃
u∈Nk−1(v) N(u),

with N0(v) = v.

Informally, the k-neighbourhood of an atom v is the set of all atoms for which a path of
length ≤ k to v exists. Let G[Nk(v)] be the subgraph induced by the k-neighbourhood of v.

To collect all possible partial charge values, we consider all k-neighbourhoods in the set
of previously parameterised molecules. For this we iterate over all atoms v of all molecular
graphs in the ATB and construct a list of subgraphs G[Nk(v)] with associated partial charges
of the corresponding atom v. We construct a database with an entry for each isomorphism
class in the subgraph list. For each isomorphism class we collect the partial charges of its
subgraphs and condense the values to a histogram. Since the point charges assigned by the
ATB are rounded to three digits after the decimal point, we round the partial charge values
accordingly.

Given a query molecule with a known target total charge, the challenge is to assign
the most representative partial charge to each atom while staying close to the target total
charge (Fig. 1). For that purpose, we iterate over all atoms of the query molecular graph
and generate the subgraphs G[Nk(v)]. We match each subgraph to its isomorphism class in
our database of k-neighbourhood subgraphs. If there is no match, we iteratively retry with
G[Nk−1(v)] until k = 0. Now each atom in our query molecule has a histogram of possible
partial charges. The task is now to assign the charges such that we maximize the frequencies
of the assigned charges while the sum of assigned partial charges equals the target charge
with some error margin.

3 Problem Formulation and Complexity

We map each atom i to a set of items j with weights wi,j corresponding to partial charges and
profits pi,j corresponding to their frequency-based scores. The target total charge corresponds
to capacity c. Note that the charge assignment problem is now similar to a multiple-choice
knapsack problem (MCKP). The decision version of MCKP is defined as:

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:5

I Problem 1 (MCKP). Given a decision variable K ≥ 0, capacity c ≥ 0, m sets N1, . . . , Nm

of items j ∈ Ni with profit pi,j ≥ 0 and weight wi,j ≥ 0, select exactly one item from each set,
such that the sum of weights of the selected items does not exceed c and the sum of profits of
the selected items is equal or larger than K.

MCKP is known to be weakly NP-complete [6, 9, 14]. However, although the problem of
assigning charges is similar to MCKP, there are two differences. First, weights and capacity
can be negative numbers. Second, the sum of weights of selected items must hit the capacity
with some error margin, resulting in an upper and lower capacity limit. We define a variant
of MCKP, which is equivalent to the charge assignment problem as:

I Problem 2 (ε-MCKP). Given a decision variable K ≥ 0, capacity −∞ ≤ c ≤ ∞, error
ε ≥ 0, m sets N1, . . . , Nm of items j ∈ Ni with profit pi,j ≥ 0 and weight −∞ ≤ wi,j ≤ ∞,
select exactly one item from each set, such that the sum of weights of the selected items is in
the range [c− ε, c+ ε] and the sum of profits of the selected items is equal or larger than K.

I Theorem 2. ε-MCKP is weakly NP-complete.

Proof. Showing that ε-MCKP is in NP is straightforward. Given an instance of ε-MCKP
and a candidate solution Ŝ, we can easily check in polynomial time whether c − ε ≤∑

wi,j∈Ŝ wi,j ≤ c+ ε and
∑

pi,j∈Ŝ pi,j ≥ K as well as if Ŝ contains exactly one item from each
set N1, . . . , Nm. We show that ε-MCKP is weakly NP-hard as follows: We reduce MCKP
≤p ε-MCKP. Given an instance of the standard MCKP with capacity c, we transform it to
an ε-MCKP instance with capacity c′ = 1

2c and ε = 1
2c. Then, c′ − ε = 0 and c′ + ε = c,

making both instances equivalent. J

Both problems obviously can be transformed into optimization problems by omitting the
decision variable K and maximizing the sum of profits. The definition of ε-MCKP allows us
to solve the charge assignment problem.

4 Solving ε-MCKP

In this section we present two algorithmic strategies to solve ε-MCKP: the first is based on
an integer linear programming (ILP) formulation, which can be solved by general ILP solvers,
while the second is a purely combinatorial dynamic programming (DP) algorithm.

Formulating ε-MCKP as an ILP is straightforward. Let xi,j be a binary variable with
value 1 if and only if item j in set Ni is selected. We formulate the problem as:

max
m∑

i=1

∑
j∈Ni

xi,jpi,j (1a)

subject to
m∑

i=1

∑
j∈Ni

xi,jwi,j ≥ c− ε (1b)

m∑
i=1

∑
j∈Ni

xi,jwi,j ≤ c+ ε (1c)

∑
j∈Ni

xi,j = 1 for 1 ≤ i ≤ m (1d)

xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni (1e)

The second algorithm is an adaption of the pseudo-polynomial DP of the standard MCKP
to ε-MCKP. The standard MCKP assumes numbers to be non-negative integers. If a given

WABI 2018

16:6 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

ε-MCKP instance does not comply with the non-negativity and integrality constraints, we
transform the instance as follows:

First, we convert floating point weights wi,j , capacity c and error ε to integers by
multiplying with an appropriate factor. Since point charges in this work are rounded to
three digits after the decimal point, a factor of 103 is sufficient. Second, we transform the
weights wi,j and capacity c to non-negative numbers. For every set Nj with j = 1, . . . ,m,
we determine the minimum weight w∗i = minj∈Ni

wi,j . We define the new weights as
w̃i,j = wi,j − w∗i . Then, the weights are guaranteed to be non-negative. As we have to select
one item per set, we can define the new capacity as c̃ = c−

∑m
i=1 w

∗
i .

Therefore, we assume in the following (without loss of generality) that weights wi,j ,
capacity c and error ε are non-negative integers. Let P be a two-dimensional DP-table of
size m× (c+ ε). P [k, d] holds the maximum profit that we can achieve with sets 0 to k and
a sum of weights of exactly d:

P [k, d] = max

k∑

i=0

∑
j∈Ni

xi,jpi,j :
k∑

i=0

∑
j∈Ni

xi,jwi,j = d,
∑

j∈Nk

xi,j = 1 for all 0 ≤ i ≤ k

 (2)

We compute P recursively. Let P [k, d] be defined as:

P [k, d] = max
{
P [k − 1, d− wk,j] + pk,j for j ∈ Ni and d− wk,j ≥ 0
−∞

(3)

P [k, d] is calculated by considering all items of the current set Nk and computing the
maximum profit that can be achieved when adding those profits to possible previous solutions
with k− 1 sets and sum of weights d−wk,j . The profit is −∞ if there is no possible solution
for P [k, d]. Contrary to the standard MCKP DP we initialize P as:

P [0, d] =
{

0 if d = 0
−∞ otherwise

(4)

This ensures that only solutions in which the sum of selected weights equals exactly d
are possible. We find the maximum profit p∗ by:

p∗ = max {P [m, d] : max{c− ε, 0} ≤ d ≤ c+ ε} (5)

The DP can be easily implemented using one dimension, as the recursion only looks
back one step in the dimension k (the number of sets we currently consider). The space
requirement of the DP algorithm is O(c+ ε). The running time complexity is O(n(c+ ε)),
with n being the total number of items.

5 Score

We modeled the charge assignment problem as ε-MCKP, where atoms i are sets of items j
with weight wi,j corresponding to partial charges and profits pi,j corresponding to their scores.
In this section we propose a frequency-based score for the ε-MCKP profit maximization.

Figure 2 shows the distribution of charges over all 3-neighbourhood graphs in a snapshot of
the ATB of roughly 160,000 molecules centered at the sample mean of each 3-neighbourhood
graph. At a first glance, it may seem to be normally distributed, but the Q-Q-plot on the
right hand side of Figure 2 reveals that the distribution is heavy-tailed. Therefore, using
measures that assume normally distributed data such as the z-score is not advisable. We also

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:7

Figure 2 Distribution of charges over all 3-neighbourhood graphs centered at the sample mean
of each 3-neighbourhood graph (left) and Q-Q-plot with the quantiles of the charge distribution over
all 3-neighbourhood graphs on the y-axis and the quantiles of a fitted normal distribution on the
x-axis.

refrain from simply using the logarithm of the frequencies as our score, since the deviation of
the sample mean of the observed charges should also be taken into account. Additionally,
the logarithm will result in negative profits.

We propose a simple score using squared distances. Let fi,j be the observed frequency of
partial charge wi,j and µ̂i the sample mean of all observed charges of atom i. We define the
score pi,j as

pi,j = fi,j

1 + (wi,j − µ̂i)2 . (6)

The score reflects both the observed frequency of a partial charge and its distance to the
observed mean of all partial charges of an atom. If the charge equals the mean wi,j = µ̂i,
then the score equals its observed frequency pi,j = fi,j . The larger the distance of a charge
to the mean is, the smaller the score will be. This serves as a tie-breaker, such that if two
charges have the same observed frequency and are within the capacity limits, ε-MCKP will
prefer the charge closer to the observed mean.

6 Results and Discussion

To evaluate our method, we conducted a leave-one-out-analysis using a snapshot of the ATB
database containing roughly 160,000 molecules. We focus on this set of previously computed
molecules, since the computational effort of large-scale quantum-mechanical calculations is
significant. We created a database of k-neighbourhood subgraphs associated with partial
charge histograms with variable bin widths and a fixed k = 3. Bin widths were determined
according to the Friedman-Diaconis rule [8]. Then, we temporarily removed all charge values
associated with its 3-neighbourhood subgraphs for each molecule and computed the atomic
partial charges using the new, smaller histogram database. We compared the assigned values
to the original atomic partial charges in the ATB database.

All computations were performed on a compute cluster with 16 3.2 GHz Xeon CPUs and
512GB RAM. The ILP was solved using COIN-OR [17]. We recorded the running times
of the ILP and DP algorithm, see Fig. 3. As expected, the running time of the DP scales

WABI 2018

16:8 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

Figure 3 Running times of the ILP solved with COIN-OR and the DP dependent on the number
of items n, showing that the DP is significantly faster than the ILP (left). The running time of the
DP actually depends on the number of items times the scaled capacity 103 · n · (c̃+ ε) (right).

linearly with 103 · n · (c̃+ ε), where n is the number of items, 103 is the blowup factor and c̃
is the capacity c transformed to non-negativity with c̃ = c−

∑m
i=1 w

∗
i and w∗i = minj∈Ni

wi,j .
The running times of the ILP show more variation and a marginal positive correlation to the
number of items n, which equals the number of variables in the ILP. The DP was always
significantly faster than the ILP in the leave-one-out-evaluation.

In the leave-one-out evaluation, we compared the naive approach of estimating the atomic
partial charges by simply taking the mean and our method of solving an ε-MCKP instance,
see Fig. 4. As expected, while the naive method on average is able to find charges with a
slightly lower distance to the original partial charges, it often results in a total charge far
away from the target total charge (with errors more than 1e in many cases). Our method on
the other hand is able to assign charge values which are only slightly worse than the ones
computed by the naive method while achieving a total charge close to the target total charge.
As can be seen in Fig. 4 the deviation of the total charge from the target charge using the
ε-MCKP approach is so small it is barely visible on the scale used.

As an example of the charges assigned by our method, Fig. 5 shows the two molecules
with the atomic partial charges that are on average closest to and farthest from the original
ATB charges. The computed charges for the molecule with the closest distance fit well to
the original ATB charges. ε-MCKP assigns identical charges to atoms H1, H2 and H3. The
3-neighbourhood graphs of all three atoms have the same isomorphism class. This is an
advantage of our ε-MCKP approach, since quantum-mechanical de novo charge assignment
does not guarantee that similar charges are assigned to equivalent atoms (although in this
case the ATB charges are also identical). For the molecule with the farthest distance there
are some large distances of more than 1e. However, we observe that the large distances are
caused by the original ATB charges being on the outer edges of the charge distributions,
while ε-MCKP on the other hand picks charges close to the largest mode of the distribution,
see bottom side of Fig. 5. Note that Fig. 5 shows the distributions used in the leave-one-out
evaluation without the original ATB charges of the depicted molecule. Additionally, the
charge distributions of atoms with large charge distances have been computed with a low
number of observed charges, resulting in multimodal distributions with several large peaks.
We expect this effect to disappear when more data is available in the constantly growing
ATB repository.

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:9

C H N O P S OTHER TOTAL
CHARGE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

an
ce

 o
f A

TB
 to

 c
om

pu
te

d
ch

ar
ge

s [
e]

Mean
-MCKP

C H N O P S OTHER TOTAL
CHARGE

0.0

0.5

1.0

1.5

2.0

2.5

Figure 4 Results of the leave-one-out experiment with k = 3 showing mean distances in elementary
charge units (left) and violin plots of all distances (right) of original charges found in the ATB to
charges calculated by selecting the mean and solving ε-MCKP. The distances are categorized by
chemical elements. For ε-MCKP, the computed total charges are virtually the same as the target
total charges from the ATB, resulting in mean distances of almost zero.

Fig. 6 shows the chemical structure of a more complex example (ATB ID 25338). For
this molecule, the de novo electrostatic-potential based charge assignment using quantum-
mechanical computations required ∼ 140 days using on one core while solving our ε-MCKP
approach was finished in ∼ 0.12 (ILP) and ∼ 0.06 (DP) seconds.

Most of the outer atoms – especially the hydrogens – showed a narrow unimodal dis-
tribution of ATB charges and ε-MCKP picked charges close to the original ATB charge.
The more buried atoms showed a higher variability. For some atoms, we observed a similar
behavior as in Fig. 5, that ε-MCKP selects a charge closer to the distribution mean than
the original ATB charge was. However, for several atoms we observed the limit of our
data-driven approach. If only a few charge values are available for a certain k-neighbourhood,
then the distributions are multimodal with very similar or equal peak heights, reflecting
the variability of the quantum-mechanically derived charges. Then, ε-MCKP may freely
choose between co-optimal solutions. On the other hand, if only exactly one charge value
is available, ε-MCKP has to choose this value. While the probability of this occurring will
decrease with the addition of more data, in this case (with the current dataset) it would be
advisable to use a smaller k. With choosing an appropriate k, the user may balance the
specificity of large k-neighbourhoods against the robustness of small k-neighbourhoods.

In general, charges on the outer atoms of a molecule can be assigned quite well while
charges of the inner atoms deviate more from the ATB charges. This may be explained
by the higher variability of the inner atoms in the ATB dataset, an artifact of the de novo
electrostatic-potential based charge assignment [2].

7 Conclusions

The ability to accurately calculate the electrostatic interactions between a ligand and its
receptor is a key component of computer-aided drug development. In this paper, we have
investigated the problem of automatically assigning partial charges. The charge assignment
problem is similar to the multiple-choice knapsack problem. We introduced a variant tailored

WABI 2018

16:10 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

N-(5-Methyl-1,2-oxazol-3-yl)-2-thiophenesulfonamide
Charge distribution
ATB charge
-MCKP charge

C
H
N
O
S

-MCKP: -0.537
 ATB: -0.54

C1

-MCKP: 0.52
 ATB: 0.521

C2

-MCKP: -0.132
 ATB: -0.13

O1
-MCKP: -0.511

 ATB: -0.514

N1

-MCKP: 0.807
 ATB: 0.799

C3
-MCKP: -0.724

 ATB: -0.707

N2

-MCKP: 0.887
 ATB: 0.877

S1

-MCKP: -0.473
 ATB: -0.47

O2

-MCKP: -0.473
 ATB: -0.47

O3

-MCKP: -0.2
 ATB: -0.222

C4 -MCKP: 0.04
 ATB: 0.046

C5

-MCKP: -0.224
 ATB: -0.217

C6

-MCKP: -0.159
 ATB: -0.158

C7

-MCKP: 0.076
 ATB: 0.092

S2

-MCKP: -0.661
 ATB: -0.674

C8

-MCKP: 0.181
 ATB: 0.18

H1

-MCKP: 0.181
 ATB: 0.18

H2

-MCKP: 0.181
 ATB: 0.18

H3

-MCKP: 0.4
 ATB: 0.422

H4

-MCKP: 0.139
 ATB: 0.134

H5

-MCKP: 0.189
 ATB: 0.167

H6

-MCKP: 0.219
 ATB: 0.221

H7

-MCKP: 0.273
 ATB: 0.283

H8

5-Fluoro-2-(1H-1,2,4-triazol-1-ylmethyl)benzonitrile
Charge distribution
ATB charge
-MCKP charge

C
H
N
OTHER

-MCKP: -0.539
 ATB: -0.554

N4

-MCKP: 0.441
 ATB: 0.587

C10

-MCKP: -0.083
 ATB: -0.481

C8

-MCKP: 0.366
 ATB: 1.074

C4

-MCKP: -0.66
 ATB: -2.0

C5

-MCKP: -0.154
 ATB: -0.787

C3

-MCKP: -0.289
 ATB: 0.039

C2

-MCKP: 0.343
 ATB: 0.199

C1

-MCKP: -0.192
 ATB: -0.179

F1

-MCKP: -0.237
 ATB: -0.098

C9

-MCKP: 0.617
 ATB: 1.243

N1

-MCKP: 0.145
 ATB: -0.022

C6-MCKP: -0.486
 ATB: -0.478

N2

-MCKP: -0.697
 ATB: -0.636

C7
-MCKP: -0.543

 ATB: -0.569

N3

-MCKP: 0.172
 ATB: 0.462

H1

-MCKP: 0.172
 ATB: 0.462

H2

-MCKP: 0.129
 ATB: 0.396

H3

-MCKP: 0.188
 ATB: 0.128

H4

-MCKP: 0.194
 ATB: 0.165

H5
-MCKP: 0.112

 ATB: 0.049

H6

Figure 5 Best (top) and worst (bottom) molecules in the leave-one-out evaluation ranked by
average distance of the original ATB charges to the charges computed by ε-MCKP. Atoms (nodes)
are color-coded by their chemical element (red for oxygen, blue for nitrogen, black for carbon, yellow
for sulfur and grey for hydrogen). Atoms are overlayed with the kernel-density estimate of the
histograms of the leave-one-out charges of their respective 3-neighbourhoods. The original ATB
charge and the computed charges are shown by blue and red vertical lines in the histograms.

to the charge assignment problem, the ε-multiple-choice knapsack problem (ε-MCKP). Like
most knapsack problems, ε-MCKP is weakly NP-complete. We presented two algorithmic
solutions to ε-MCKP, an integer linear programming (ILP) formulation and a dynamic
programming (DP) algorithm.

We conducted a leave-one-out evaluation on a snapshot of the ATB database. The
computed atomic partial charges were close to the original ATB charges and the total
charge virtually the same as the target total charge, suggesting that our method provides
consistent parameters for MD simulations, docking studies and other related applications.

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:11

Figure 6 The chemical structure of ATB ID 25338 containing 120 atoms. Note that aliphatic
hydrogens are not shown.

One additional advantage of our approach is that equivalent nodes in the graph will be
assigned similar charges and the charge distribution will therefore mirror the symmetry of
the molecular graph.

The DP algorithm performed faster than the ILP on a set of 160,000 molecules contained
within the ATB. On average, both implementations required only a fraction of a second to
assign charges to molecules containing 50-100 atoms, while quantum-mechanical computations
required many days. This is important when screening large molecular databases. For instance,
ChEMBL [10], a manually curated chemical database of bioactive molecules with drug-like
properties, contains in excess of 1.6 million compounds. The majority of these have more than
50 atoms making quantum-mechanical computations difficult. Other computational drug
design databases are larger again [20]. For example, ZINC, a free database of commercially-
available compounds, contains more than 35 million compounds [12].

Our method builds on a repository of previously computed molecular parameters and
assigns consistent partial atomic charges in a swift manner to facilitate MD simulations and
related applications in drug design.

References
1 Robert Abel, Lingle Wang, David L. Mobley, and Richard A. Friesner. A critical review

of validation, blind testing, and real-world use of alchemical protein-ligand binding free
energy calculations. Current Topics in Medicinal Chemistry, 17(23):2577–2585, 2017. doi:
10.2174/1568026617666170414142131.

2 Christopher I. Bayly, Piotr Cieplak, Wendy Cornell, and Peter A. Kollman. A well-behaved
electrostatic potential based method using charge restraints for deriving atomic charges:

WABI 2018

http://dx.doi.org/10.2174/1568026617666170414142131
http://dx.doi.org/10.2174/1568026617666170414142131

16:12 Multiple-Choice Knapsack for Assigning Partial Atomic Charges

the RESP model. The Journal of Physical Chemistry, 97(40):10269–10280, 1993. doi:
10.1021/j100142a004.

3 F. Matthias Bickelhaupt and Evert Jan Baerends. Kohn-Sham Density Functional Theory:
Predicting and Understanding Chemistry. In Kenny B. Lipkowitz and Donald B. Boyd, edi-
tors, Reviews in Computational Chemistry, pages 1–86. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2007. doi:10.1002/9780470125922.ch1.

4 Patrick Bleiziffer, Kay Schaller, and Sereina Riniker. Machine Learning of Partial Charges
Derived from High-Quality Quantum-Mechanical Calculations. Journal of Chemical Infor-
mation and Modeling, 58(3):579–590, 2018. doi:10.1021/acs.jcim.7b00663.

5 Stefan Canzar, Mohammed El-Kebir, René Pool, Khaled Elbassioni, Alpeshkumar K.
Malde, Alan E. Mark, Daan P. Geerke, Leen Stougie, and Gunnar W. Klau. Charge Group
Partitioning in Biomolecular Simulation. Journal of Computational Biology, 20(3):188–198,
2013. doi:10.1089/cmb.2012.0239.

6 Krzysztof Dudziński and Stanisław Walukiewicz. Exact methods for the knapsack problem
and its generalizations. European Journal of Operational Research, 28(1):3–21, 1987. doi:
10.1016/0377-2217(87)90165-2.

7 Martin S. Engler, Mohammed El-Kebir, Jelmer Mulder, Alan E. Mark, Daan P. Geerke,
and Gunnar W. Klau. Enumerating common molecular substructures. PeerJ Preprints,
5:e3250v1, 2017. doi:10.7287/peerj.preprints.3250v1.

8 David Freedman and Persi Diaconis. On the histogram as a density estimator: L2 the-
ory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4):453–476, 1981.
doi:10.1007/BF01025868.

9 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

10 Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne
Hersey, Yvonne Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and
John P. Overington. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic
Acids Research, 40(D1):D1100–D1107, 2012. doi:10.1093/nar/gkr777.

11 Alexander Hillisch, Nikolaus Heinrich, and Hanno Wild. Computational chemistry in the
pharmaceutical industry: From childhood to adolescence. ChemMedChem, 10(12):1958–
1962, 2015. doi:10.1002/cmdc.201500346.

12 John J. Irwin and Brian K. Shoichet. ZINC - a free database of commercially available
compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1):177–
182, 2005. doi:10.1021/ci049714+.

13 Maxim V. Ivanov, Marat R. Talipov, and Qadir K. Timerghazin. Genetic Algorithm Opti-
mization of Point Charges in Force Field Development: Challenges and Insights. The Jour-
nal of Physical Chemistry A, 119(8):1422–1434, 2015. doi:10.1021/acs.jpca.5b00218.

14 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer Berlin,
Berlin, 1. edition, 2004.

15 Alpeshkumar K. Malde, Le Zuo, Matthew Breeze, Martin Stroet, David Poger, Pramod C.
Nair, Chris Oostenbrink, and Alan E. Mark. An Automated Force Field Topology Builder
(ATB) and Repository: Version 1.0. Journal of Chemical Theory and Computation,
7(12):4026–4037, 2011. doi:10.1021/ct200196m.

16 Brajesh K. Rai and Gregory A. Bakken. Fast and accurate generation of ab initio qual-
ity atomic charges using nonparametric statistical regression. Journal of Computational
Chemistry, 34(19):1661–1671, 2013. doi:10.1002/jcc.23308.

17 Matthew J. Saltzman. COIN-OR: An open-source library for optimization. In Søren S.
Nielsen, editor, Programming Languages and Systems in Computational Economics and
Finance, pages 3–32. Springer, Boston, MA, 2002. doi:10.1007/978-1-4615-1049-9_1.

http://dx.doi.org/10.1021/j100142a004
http://dx.doi.org/10.1021/j100142a004
http://dx.doi.org/10.1002/9780470125922.ch1
http://dx.doi.org/10.1021/acs.jcim.7b00663
http://dx.doi.org/10.1089/cmb.2012.0239
http://dx.doi.org/10.1016/0377-2217(87)90165-2
http://dx.doi.org/10.1016/0377-2217(87)90165-2
http://dx.doi.org/10.7287/peerj.preprints.3250v1
http://dx.doi.org/10.1007/BF01025868
http://dx.doi.org/10.1093/nar/gkr777
http://dx.doi.org/10.1002/cmdc.201500346
http://dx.doi.org/10.1021/ci049714+
http://dx.doi.org/10.1021/acs.jpca.5b00218
http://dx.doi.org/10.1021/ct200196m
http://dx.doi.org/10.1002/jcc.23308
http://dx.doi.org/10.1007/978-1-4615-1049-9_1

M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:13

18 Bradley Sherborne, Veerabahu Shanmugasundaram, Alan C. Cheng, Clara D. Christ,
Renee L. DesJarlais, Jose S. Duca, Richard A. Lewis, Deborah A. Loughney, Eric S.
Manas, Georgia B. McGaughey, Catherine E. Peishoff, and Herman van Vlijmen. Col-
laborating to improve the use of free-energy and other quantitative methods in drug
discovery. Journal of Computer-Aided Molecular Design, 30(12):1139–1141, 2016. doi:
10.1007/s10822-016-9996-y.

19 U. Chandra Singh and Peter A. Kollman. An approach to computing electrostatic charges
for molecules. Journal of Computational Chemistry, 5(2):129–145, 1984. doi:10.1002/
jcc.540050204.

20 Johannes H. Voigt, Bruno Bienfait, Shaomeng Wang, and Marc C. Nicklaus. Com-
parison of the NCI Open Database with Seven Large Chemical Structural Databases.
Journal of Chemical Information and Computer Sciences, 41(3):702–712, 2001. doi:
10.1021/ci000150t.

WABI 2018

http://dx.doi.org/10.1007/s10822-016-9996-y
http://dx.doi.org/10.1007/s10822-016-9996-y
http://dx.doi.org/10.1002/jcc.540050204
http://dx.doi.org/10.1002/jcc.540050204
http://dx.doi.org/10.1021/ci000150t
http://dx.doi.org/10.1021/ci000150t

`1-Penalised Ordinal Polytomous Regression
Estimators with Application to Gene Expression
Studies
Stéphane Chrétien
National Physical Laboratory, Hampton Road, Teddington, United Kingdom
stephane.chretien@npl.co.uk

Christophe Guyeux
Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de
Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
christophe.guyeux@univ-fcomte.fr

Serge Moulin
Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Université de
Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
serge.moulin@univ-fcomte.fr

Abstract
Qualitative but ordered random variables, such as severity of a pathology, are of paramount
importance in biostatistics and medicine. Understanding the conditional distribution of such
qualitative variables as a function of other explanatory variables can be performed using a spe-
cific regression model known as ordinal polytomous regression. Variable selection in the ordinal
polytomous regression model is a computationally difficult combinatorial optimisation problem
which is however crucial when practitioners need to understand which covariates are physically re-
lated to the output and which covariates are not. One easy way to circumvent the computational
hardness of variable selection is to introduce a penalised maximum likelihood estimator based on
some well chosen non-smooth penalisation function such as, e.g., the `1-norm. In the case of the
Gaussian linear model, the `1-penalised least-squares estimator, also known as LASSO estimator,
has attracted a lot of attention in the last decade, both from the theoretical and algorithmic
viewpoints. However, even in the Gaussian linear model, accurate calibration of the relaxation
parameter, i.e., the relative weight of the penalisation term in the estimation cost function is
still considered a difficult problem that has to be addressed with caution. In the present pa-
per, we apply `1-penalisation to the ordinal polytomous regression model and compare several
hyper-parameter calibration strategies. Our main contributions are: (a) a useful and simple `1
penalised estimator for ordinal polytomous regression and a thorough description of how to apply
Nesterov’s accelerated gradient and the online Frank-Wolfe methods to the problem of computing
this estimator, (b) a new hyper-parameter calibration method for the proposed model, based on
the QUT idea of Giacobino et al. and (c) a code which can be freely used that implements the
proposed estimation procedure.

2012 ACM Subject Classification Mathematics of computing → Regression analysis

Keywords and phrases LASSO, ordinal polytomous regression, Quantile Universal Threshold,
Frank-Wolfe algorithm, Nesterov algorithm

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.17

Funding Computations have been performed on the supercomputer facilities of the Mésocentre
de calcul de Franche-Comté.

© Stéphane Chrétien, Christophe Guyeux, and Serge Moulin;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 17; pp. 17:1–17:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephane.chretien@npl.co.uk
mailto:christophe.guyeux@univ-fcomte.fr
mailto:serge.moulin@univ-fcomte.fr
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 `1-Penalised Ordinal Polytomous Regression

1 Introduction

Ordinal polytomous variables are of paramount importance in bioinformatics where prac-
titioners may have to tackle qualitative but ordered data such as, e.g., the severity of a
certain type of cancer [23], [24], [12], [13], [14], etc. Understanding how such variables can be
explained by other variables such as, e.g., gene expressions, can help the research community
investigate the influence of certain genes in the pathology under study. Oftentimes, only a
small number of genes are relevant to the statistical modelling and variable selection needs to
be performed in order to detect which of them should be ignored and which of them should
not. The ordinal polytomous regression model is an adaptation of the classical regression
model which is extremely well suited for this type of problem, and the goal of the present
paper is to propose efficient approaches to the estimation and variable selection problems for
this specific model.

1.1 When the number of covariates exceeds the number of
observations: the blessing of sparsity

One important additional problem in standard gene expression studies is that the number
of observations (e.g. patients) is often much smaller than the number of covariates (e.g.
genes). In such cases, the problem cannot be expected to be solvable without some additional
structure because the number of unknowns is larger than the number of observations. The
main structural assumption which is usually made in such cases is that some sparsity property
holds. In the example of gene expression analysis, it is usually considered natural to assume
that only a small number of genes have significant influence on the output under study.
Therefore, only a small number of regression coefficients should be nonzero in the estimator,
although we cannot know before hand which are the ones which should be selected. Selecting
the right variables in regression is often called “support recovery”. Various approaches to
variable selection have been proposed in the statistical literature. In practical applications,
the most extensively used selection methods are the forward selection and the AIC/BIC
information criteria based approaches [2], [22] [19]. Such methods however, can hardly be
applied in situations where the number of covariates, e.g. genes, is large and one usually
resorts to convex optimisation based strategies such as the LASSO [23] and its generalisations
to nonlinear models [24], [25].

1.2 Previous work on variable selection via `1-norm penalisation

Convex optimisation based variable selection approaches are often based on penalised log-
likelihood estimation, where the penalisation term is the `1-norm. In the linear model, it
was discovered in [7] that under certain specific properties of the design matrix, known as
the Restricted Isometry Property, the `1-norm penalised least `∞ estimator, aka the Dantzig
estimator, would recover the location of the non-zero components exactly. This type of
result, was then proven for the `1-penalised least `2 estimator, aka the LASSO estimator
under weaker assumptions, including incoherence of the design matrix in [8]. The work [6]
provided interesting alternative views on the statistical properties of the LASSO and Dantzig
estimators which are still extensively used in the current literature on this topic.

Even when neither the Restricted Isometry Property nor the incoherence assumptions
are satisfied, the mere computational tractability of `1-penalisation based estimators makes
them the method of choice when the problem size is large.

S. Chrétien, C. Guyeux, and S. Moulin 17:3

1.3 The problem of hyper-parameter calibration

The main advantage of `1-based penalisation is to reduce the estimation problem to a
convex optimisation one if the hyper-parameter, i.e. the relative weight associated with the
`1-penalisation term, is calibrated to an appropriate value. In practice however, finding the
right value for this hyper-parameter is often a complicated issue.

Most theoretical works come up with a formula for the hyper-parameter, see e.g. [8].
Such types of results are very important because they prove existence of a value of the
hyper-parameter that will allow exact support recovery of the sparse regression vector under
appropriate, e.g. incoherence assumptions of the design matrix. The theoretical value often
gives the right order of dependencies with respect to the dimension of the problem, the
standard deviation of the noise, and other important structural parameters, and is therefore
a good indicator of how well conditioned the problem is, at least in theory.

In practice, however, the noise level is not known beforehand and therefore, hyper-
parameter calibration cannot be performed without joint variance estimation. Reference [10]
presents efficient methods for solving this joint estimation/calibration problem and present
preliminary computational experiments showing practical relevance of the overall approach.
The square-root LASSO [5] is another interesting alternative but is sometimes reported to
have slightly worse performance in practice.

The usually preferred practical approach to hyper-parameter calibration is Cross Valida-
tion [3]. The Cross-Validation approach is very intuitive and had nice theoretical properties
when the number of covariates is smaller than the number of observations. A drawback of
Cross-Validation is the computational burden of re-sampling and computing the LASSO
estimator a large number of times. Moreover, Cross-Validation is oriented towards prediction
performance rather than accurate support selection. An alternative approach devised in [11],
based on the Hedge algorithm of [16] and the stochastic Frank-Wolfe algorithm, was shown
to outperform Cross Validation in terms of computational time for the linear model as well.

Recently, [17] devised a very efficient method called Quantile Universal Thresholding
for hyper-parameter calibration in the linear model with a view towards efficient variable
selection. Extensive numerical experiments provided in [17] show that Quantile Universal
Thresholding outperforms Cross-Validation, although Cross-Validation has to be performed
when the noise variance is unknown. Fortunately enough, recent work on fast variance
estimation, as described e.g. in [18] or based on [11], should however allow to overcome the
burden of using Cross-Validation as a subroutine in the Quantile Universal Thresholding
procedure of [17].

1.4 Contributions of the paper

The main contributions of the present paper are threefold. The first is to present a `1-
penalised maximum likelihood estimator for the ordered polytomous model and present
efficient methods for computing this estimator. The second contribution is an efficient
hyper-parameter calibration procedure based on recent work [17]. The last contribution is a
freely available software implementation which can be downloaded online [1].

WABI 2018

17:4 `1-Penalised Ordinal Polytomous Regression

2 Methods

2.1 The model and the penalised estimator
2.1.1 The standard polytomous regression model
In the ordinal polytomous regression model, the independent qualitative output variables Yi,
i = 1, . . . , n with Q modalities m1, . . . ,mQ, are assumed to result from the quantification
of a latent continuous variable Y ∗i = Xt

iβ
0 + εi, i = 1, . . . , n, where Xi is a p-dimensional

vector of covariates and where the residual εi has logistic cumulative distribution function
Φ(y) = exp(y)

1+exp(y) . More precisely, setting −∞ = γ0
0 < · · · < γ0

Q−1 < γ0
Q = +∞, we have

Yi = mq if and only if Y ∗i ∈]γq−1, γq]. For q = 1, . . . , Q, let us denote Iq the subset of {1...n}
such that i ∈ Iq if and only if Yi = mq. Let us denote by γ the vector γ = (γ1, . . . , γq−1).
The conditional likelihood given X1, . . . , Xn for this model is:

LY |X(β, γ) =
Q∏
q=1

∏
i∈Iq

(
Φ
(
Xt
iβ − γq−1

)
− Φ

(
Xt
iβ − γq

))
. (1)

where X is the n× p matrix such that Xi is its ith row for all i in 1, ..., n.
The conditional log-likelihood is given by

lY |X(β, γ) =
n∑
i=1

Q∑
q=1

1{Yi=mq} log
(
Φ
(
Xt
iβ − γq−1

)
− Φ

(
Xt
iβ − γq

))
,

The parameters of this model are usually estimated using the maximum likelihood
principle, i.e., by finding the vector (β̂, γ̂) that maximizes lY |X . Maximization of the log-
likelihood is made easy by the well known fact that the conditional log-likelihood function is
concave.

The problem with this approach is that it cannot work when p is larger than n because,
in this case, the Hessian matrix is easily shown to be singular. The situation where p is
larger than n is however frequent in gene expression analysis as in many other problems,
and one needs an estimator which can perform variable selection in such settings with
low computational complexity. The next section introduces such an estimator based on `1
penalisation.

2.1.2 The penalised maximum likelihood estimator
One estimator of choice for the type of problem we just described (i.e. ordinal polytomous
regression) is the `1-penalised maximum likelihood estimator given by

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c)− λ ‖b‖1, (2)

where λ is a relaxation parameter. This estimator corresponds exactly to the LASSO in
the case where the log-likelihood is the one of the linear model. The main motivation for
introducing this estimator is Theorem 1.2 in [8] about the LASSO. This theorem states that
for a sufficiently sparse β in the linear model Y = Xβ + ε, ε ∼ N (0, σ2I), the risk of the
LASSO estimator is near optimal, i.e. is comparable to the risk obtained with an oracle
estimator which would know the support of β ahead of time. Moreover, support recovery is
proved to hold with large probability for a vast majority of possible supports.

The assumptions in this theorem are the following:
1. X has low coherence, i.e. the maximum scalar product of two columns of X is less than

A0/ log(p);

S. Chrétien, C. Guyeux, and S. Moulin 17:5

2. the support and sign pattern of β have uniform distribution;
3. the nonzero components of β have magnitude above the noise level times a log factor.
It is therefore natural to expect that an appropriate translation of this result to the case
of (ordinal or not) polytomous regression model will hold as well. In the sequel, we will
present simulation based results on the penalised conditional likelihood estimator from the
view point of variable selection.

2.2 Algorithms

2.2.1 Nesterov’s algorithm

In [21, 20, 4], Nesterov introduced a new approach to convex minimization with possibly
non-differentiable functions. Nesterov’s method consists of smoothing the non-differentiable
function and then applying a refined first order scheme to the problem. The main interest of
this approach is that at iteration k, a bound of O(1/k2) on the error is guaranteed, whereas
standard gradient methods only guarantee O(1/k). Let us now describe a simple version of
this method.

The first step is to smooth the `1-norm function. Notice that, for the vector β, ‖β‖1 can
be written

‖β‖1 = max
‖u‖∞≤1

utβ, (3)

and the maximizer in this expression is simply sign(β), where sign(β) is the vector with the
component-wise signs of β. A possible simple smoothing of the `1-norm is given by

`1,µ(β) = max
‖u‖∞≤1

utβ − µ

2 ‖u‖
2
2. (4)

Notice that the maximizer u∗β in (4) exists due to continuity and coercivity, and is unique
due to the strict convexity of ‖ · ‖2

2. The main interesting feature of this smoothing is the
following proposition.

I Proposition 2.1. The function `1,µ is differentiable with Lipschitz gradient. Moreover, the
gradient is given by

∇`1,µ = u∗β (5)

where u∗β is the unique maximizer in (4) and the Lipschitz constant of the gradient is
L1 = 1/µ.

Proof. See [20, Theorem 1]. J

With this result in hand, we can present Nesterov’s accelerated gradient algorithm for
smooth optimisation in Algorithm 1 below. In order to implement the algorithm, one needs
to know the Lipschitz constant of the gradient of minus the log-likelihood, which is unknown,
and the Lipschitz constant of the smoothed `1-norm penalty, which is 1/µ. In practice, the
Lipschitz constant of the gradient of minus the log-likelihood can be estimated by random
sampling and computing ratio between the norm of the difference between gradients at
sampled points and the norm of the difference of these sample points.

WABI 2018

17:6 `1-Penalised Ordinal Polytomous Regression

Algorithm 1 Nesterov’s algorithm for penalised log-likelihood estimation.
Input An initial point θ(0) = (β(0), γ(0)), e.g. θ(0) = 0, the relaxation coefficient λ, the
Lipschitz constants L0 (resp. L1) of the gradient of - the log-likelihood (resp. of `1,µ) and
the maximum number of iterations N ∈ N∗
for k = 0...N − 1 do
Compute g(k) = ∇

(
−l(θ(k)) + λ`1,µ(β(k))

)
Compute θ(k,1):

θ(k,1) = argminτ∈Rp+Q−1〈g(k), τ − θ(k)〉+ L0 + L1

2 ‖τ − θ(k)‖2
2.

Compute θ(k,2):
θ(k,2) = argminτ∈Rp+Q−1(

∑
0≤k′≤k

1
2(k′ + 1)g

(k′), τ − θ(k′)〉) + L0 + L1

2 ‖τ − θ(0)‖2
2.

Update θ(k+1):
θ(k+1) = k + 1

k + 3 θ(k,1) + 2
k + 3 θ(k,2).

end for

Output θ̂(N).

2.2.2 The Frank-Wolfe algorithm
The Frank–Wolfe (FW) algorithm, proposed by Marguerite Frank and Philip Wolfe in
1956 [15], is another convex optimisation algorithm. The difference between the FW algorithm
and the Nesterov one is that FW applies to constrained optimisation.

The main trick that is needed to implement the Frank-Wolfe algorithm is to reformulate
the penalised problem

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c)− λ ‖b‖1. (6)

as a constrained optimisation problem

(β̂, γ̂) ∈ argmax(b,c)∈Rp×RQ−1 lY |X(b, c) with ‖b‖1 ≤ r (7)

for an appropriate value of r. In this new formulation, the problem of choosing λ is translated
into the problem of choosing r.

Generally speaking, each iteration of the FW algorithm consists of finding

sk = argmins∈DsT∇f(xk),

then upgrade xk+1 = xk + 2
k+2 (sk−xk), where f is the function to minimize, k is the current

iteration, and D is the set on which we want to optimize f . In the case where D is the
hypercube defined by ‖β‖1 ≤ r (as in our case), determining sk is simple, since it is the
point:

of coordinate r for the component such that ∇β lỸ |X(β, γ) is minimal,
and zero for all the other components.

However, the logistic regression is a special case in which constraints have to be put
on β, but not on γ. Practically speaking, the choice has been to alternate iterations of
the Frank-Wolfe algorithm (to optimize β with γ fixed) with a simple gradient descent (to
optimize γ with β fixed).

S. Chrétien, C. Guyeux, and S. Moulin 17:7

Algorithm 2 Find a λ that cancels all β components following a dichotomy approach.
V: number of non-zero coefficients of β, as a function of λ.
δ: desired accuracy, set by the user (default value: δ = 0.01).
λmax = 1
while V(λmax) 6= 0 do
λmax = λmax × 2

end while
λmin = λmax

2
if λmax = 1 then
λmin=0

end if
while λmax − λmin ≥ δ do
λmean = λmax−λmin

2
if V (λmean) = 0 then
λmax = λmean

else
λmin = λmean

end if
end while
Output λ# = λmean.

2.3 Hyperparameter calibration
2.3.1 Selection of the parameter by AIC
The first implemented method to select the λ parameter is to use the Akaike information
criterion (AIC) [2]. This AIC is a compromise between the likelihood of the model and the
number of non-zero parameters. More precisely, AIC = −2lY |X(β, γ) + 2‖β‖0, and the goal
is to find a set of parameters that minimizes this value. The method of choosing lambda
processes in three steps. In the first one, the objective to is determine a penalty λ# that is
large enough to cancel all β components. This objective is realized by using Algorithm 2.

One can then apply, e.g. Nesterov’s or the stochastic Frank-Wolfe algorithm with different
values of the hyperparameter. One possible set of values is λ0 = 0, λ1 = λ#

50 , λ2 = 2×λ#
50 , ...,

λ49 = 49×λ#
50 . The AIC value is then computed for each obtained model and, at the end of

the day, the model with smallest AIC is finally selected.

2.3.2 BIC Selection
λ is chosen in the same manner than for the AIC method, except for the fact that the value
to optimize is, this time, BIC = −2 lY |X(β, γ) + log(n)‖β‖0.

2.3.3 Adapting the Quantile Universal Threshold selection to ordinal
polytomous regression

Quantile Universal Threshold (QUT) [17] is a simulation-based method. Its objective is to be
sure that, if the vector Y to be predicted has no link with the matrix of predictive variables
X, then the vector β of the regression coefficients will be the null vector with probability
1− α, where α is set by the user (α is set to 5% in Section 3).

The working principle of QUT is as follows.

WABI 2018

17:8 `1-Penalised Ordinal Polytomous Regression

Algorithm 3 QUT : successive evaluations of gamma knowing lambda, and of lambda
knowing gamma.

λ =
√

2× log(2×max(p, 1))×max(0.01, std(Y)) (initialization of λ)
for i = 1 ... 3 do
Choose γ based on the current λ with Nesterov.
Choose λ based on the current γ with QUT.

end for
Output λ.

Randomly pick a large number of vectors of the same size than Y . For instance, in the
case study of Section 3, 100 vectors Ỹ1...Ỹ100 are picked as permutations of the original Y
vector. That is to say, Ỹi has the same number of subjects in each category as the initial
vector Y .
For each random vector Ỹi, find a λi large enough such that, when the `1-penalised
maximum likelihood estimator described in Section 2.1.2 is optimized, β is the null vector.
The obtained λi are sorted, and then we select the value such that a proportion 1− α of
the λi is below this threshold.

To speed up the second step of this process, the following property is used: if λ# =
‖∇β lỸ |X(β = ~0, γ)‖∞, then the optimisation of the `1-penalised maximum likelihood
estimator with a penalty of λ# returns β = ~0. Please note that λ# is not necessarily the
smallest possible penalisation such as β = ~0.
γ is required in order to compute λ#. However γ is not known, and λ is needed to calculate
it. So, a loop has been implemented as in Algorithm 3.

Thanks to the shortcut λ# = ‖∇β lỸ |X(β = ~0, γ)‖∞, the computation time to obtain λ
is greatly reduced, leading to the fastest determination of λ (see Section 3), as it requires
only a few the optimisation of the `1-penalised maximum likelihood estimator. Note that a
version of the QUT whose second step is performed by dichotomy, as in Algorithm 2, has
been implemented too, but it underperforms the other methods in terms of computation
time.

2.3.4 Selection of the r parameter by Online Frank-Wolfe algorithm

The method follows the procedure described in [11] with small necessary adjustments in
order to accommodate for the specific constraints associated with our estimator. We refer
the reader to the associated longer report [9] for complete details.

3 Simulation results

3.1 Description of the experiments

We now assess the practical performance of the proposed methods. For this purpose, we
performed various numerical experiments on simulated data. The simulation and testing
procedure works as follows.
1. The number of subjects n, the number of variables p, the number of influential variables s,

and the underlying threshold vector γ0 are set (Section 3.2 contains the authors’ choices).

S. Chrétien, C. Guyeux, and S. Moulin 17:9

2. The vector of underlying parameters β0 is randomly picked. This vector is of size p such
that p− s of its components are null, while the other s components follow a Gaussian
law N (0, 1)

3. The matrix X of explanatory variables is then drawn. This is a matrix of size n× p, in
which each component follows a law N (0, 1).

4. The noise vector ε of Y ∗ is drawn. It is of size n, where each component follows a
logistic(1,1) law.

5. Y ∗ = Xβ0 + ε is computed, and then Y based on Y ∗ and γ0.
6. Steps 2, 3, 4, and 5 above allows the construction of a database. They are repeated 50

times, leading to 50 different databases.
7. Each of these 50 databases is divided into a learning sample (2

3 of the subjects) and a
testing one (the other third).

8. Each of the regression methods listed in Section 3.2 is finally applied to the 50 learning
samples. The performances of the models are measured on the 50 corresponding test
samples based on the criteria defined in Section 3.2.

3.2 Results

The methods we decided to compare are the following.
λ parameter selection by AIC as in Section 2.3.1.
λ parameter selection by BIC as in Section 2.3.2.
λ parameter selection according to Quantile Universal Threshold, as presented in Sec-
tion 2.3.3.
The use of the Frank-Wolfe algorithm, to solve the constrained optimization with selection
of the r parameter using Online Frank-Wolfe, as defined in Sections 2.2.2 and 2.3.4. This
model is named “OFW” in Tables 1 and 2.
The absence of variable selection. That is to say, the model obtained when the likelihood
is maximized without penalty. This model is simply named “λ = 0” in Tables 1 and 2.
The model that predicts, for each subject in the test sample, the largest category of the
learning sample. It is named “null model” in Tables 1 and 2, as this is the best possibility
if no explanatory variable is taken into account.

λ = 0 and the null model are only performed to check if the first four methods work well.
Indeed, when dealing with the logistic regression, it is important to check if the predictive
model is better than simply placing all patients in the majority category. Moreover, when
working on variables selection, it can be useful to check if the obtained model is better than
the one with no selection.

Two experiments have been performed. In the first one, n > p, there are 50 variables, the
learning sample has been constituted by 200 subjects, while the test sample has 100 subjects
(see Table 1). In the other experiment, p > n, the learning sample has 100 subjects, the test
one has 50 subjects, and there are 200 variables (Table 2). In both cases, the number of
significant variables was set to s = 5.

We considered Q = 3 categories for Y , and we set γ0 ∈ [0, 3], as unbalanced categories
were wanted to complicate the regression problem. With this choice of γ0, Yi is in the first
category for all Y ∗i ≤ 0, i.e., for half of the simulated subjects. The Nesterov algorithm runs
for 200 iterations, while the Franck-Wolfe one iterates 200 times.

For each method, four performance criteria are studied.

WABI 2018

17:10 `1-Penalised Ordinal Polytomous Regression

Table 1 Monte Carlo simulations with nlearning = 200, p = 50, ntest = 100.

choice of λ correctly average prediction CRW Time λ Nb of
(or r) ranked likelihood error (or r) variables
BIC 66.7 0.48 0.35 59.4 2464.9 14.8 3.9
QUT ‖‖∞ 65.4 0.48 0.36 57.9 53.0 22.0 2.6
AIC 65.3 0.47 0.36 58.6 2458.9 10.2 7.1
OFW 63.3 0.46 0.39 55.2 199.0 7.2 39.6
λ = 0 60.0 0.44 0.43 55.3 20.1 0.0 50.0
null model 49.0 - - 33.3 0 - 0

The percentage of subjects in the test sample which are correctly ranked by the model
fitted on the learning sample. This percentage is named “correctly ranked” in Tables 1
and 2.

The average likelihood. That is, the geometric mean of the probabilities that the model
fitted to the learning sample assigns the actual categories of subjects in the test sample.
This is what we called “average likelihood” in Tables 1 and 2.

The average prediction error. That is to say, the average gap between the predicted
category and the actual category, named “prediction error” in Tables 1 and 2.

The percentage of correctly ranked subjects, weighted by the size of the categories. More

precisely, we calculate 100 ×
n∑
i=1

1prediction is right
Q× p
#IYi

, where #IYi
is the number of

subjects in the same category than Yi. This criterion attaches greater importance to the
proper classification of subjects that are in a poorly represented category. It is referenced
as “CRW” in Tables 1 and 2.

The “average likelihood” and “correctly-ranked weighted” criteria are relevant when
classes are very unbalanced (like 98 %, 1 %, and 1 %), which can really occur in practice. In
the case study, the “correctly ranked” criterion has been considered first, as this is probably
the most natural criterion for not too unbalanced categories like the ones used during our
simulations. Tables 1 and 2 are sorted according to this criterion.

Table 1 summarizes the results in the case where the number of subjects in the training
sample is 200, the number of subjects in the testing one is 100, and the number of explanatory
variables is 50. Table 2, summarizes the results in the case where the number of subjects in
the training sample is 100, the number of subjects in the testing one is 50, and the number
of explanatory variables is 200.

To finish describing Tables 1 and 2, let us note that “nb of variables” represents the
number of variables that the model considers as influential.

Wilcoxon tests have also been performed in order to determine if the differences between
the methods are statistically significant. Tables 3 and 4 show the results of these Wilcoxon
tests. In the nlearning = 200, p = 50 case, the difference between correctly ranked subjects
for BIC (66,7%) and QUT (65,4%) is significant with a p-value of 8, 03 × 10−3, even if
this difference is only equal to 1,3%. Conversely, in the nlearning = 100, p = 200 case, the
difference between QUT, BIC, OFW is not significant. This case may require more simulated
data if we want to separate these methods correctly. Finally, in any cases, QUT, BIC, OFW,
and AIC are significantly better than λ =0 and the null model.

S. Chrétien, C. Guyeux, and S. Moulin 17:11

Table 2 Monte Carlo simulations with nlearning = 100, p = 200, ntest = 50.

choice of λ correctly average prediction CRW Time λ Nb of
(or r) ranked likelihood error (or r) variables
QUT ‖‖∞ 61.0 0.43 0.42 52.4 33.5 16.9 1.3
BIC 60.7 0.44 0.42 54.0 982.9 11.9 3.5
OFW 59.8 0.43 0.42 50.2 72.4 6.4 54.1
AIC 55.4 0.42 0.48 50.1 995.8 8.9 9.2
null model 48.1 - - 33.3 0 - 0
λ = 0 36.7 0.22 0.77 40.0 12.8 0.0 200.0

Table 3 Paired Wilcoxon tests associated to Monte Carlo simulations with nlearning = 200, p =
50, ntest = 100.

QUT‖‖∞ AIC OFW λ = 0 null model
BIC 8.03× 10−3 3.69× 10−3 7.83× 10−7 1.71× 10−9 7.38× 10−10

QUT‖‖∞ - 7.03× 10−1 3.36× 10−3 9.54× 10−8 7.83× 10−10

AIC - - 8.99× 10−4 2.02× 10−8 7.32× 10−10

OFW - - - 1.58× 10−6 7.44× 10−10

λ = 0 - - - - 1.95× 10−9

Table 4 Paired Wilcoxon tests associated to Monte Carlo simulations with nlearning = 100, p =
200, ntest = 50.

BIC OFW AIC null model λ = 0
QUT 6.74× 10−1 3.77× 10−1 2.93× 10−4 8, 66× 10−9 9.13× 10−10

BIC - 4.86× 10−1 5.47× 10−4 1, 62× 10−8 1.32× 10−9

OFW - - 2.66× 10−5 1, 17× 10−8 1.31× 10−9

AIC - - - 1, 87× 10−5 3.33× 10−9

null model - - - - 6, 95× 10−7

4 Discussion

First of all, the four variable selection methods work better than λ = 0 and the null model.
This shows that the algorithms work correctly, and that variable selection is useful. The
absence of variable selection is particularly harmful in the case where p > n, see Table 2. It
makes sense because, in this case, the optimisation of the unpenalised likelihood allows an
infinite number of solutions. This p > n case is very common in practice.

In the experiment shown in Table 1, the BIC works a bit better than the other methods,
while in the experiment summarized in Table 2, QUT, BIC, and OFW are very close. In
terms of computation time, QUT is the most interesting approach. Indeed, as explained in
Section 2.3.3, this method allows to choose λ by executing the regression only a few times.

5 Conclusion

The present paper proposed a new estimator for sparse ordinal polytomous regression in a
high dimensional setting together with a strategy for hyper-parameter calibration based on
previous results from [17]. Performance of the method was assessed via extensive numerical
experiments. The forthcoming report [9] will include further implementation details, and
improvements, and additional numerical results on large real datasets.

WABI 2018

17:12 `1-Penalised Ordinal Polytomous Regression

References
1 Our python module. Accessed: 2018-05-11. URL: https://github.com/SergeMOULIN/

l1-penalised-ordinal-polytomous-regression-estimators.
2 Hirotogu Akaike. Information theory and an extension of the maximum likelihood principle.

In Selected Papers of Hirotugu Akaike, pages 199–213. Springer, 1998.
3 Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model

selection. Statistics surveys, 4:40–79, 2010.
4 Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. Nesta: A fast and accurate first-

order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.
5 Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root lasso: pivotal recovery

of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.
6 Peter J Bickel, Ya’acov Ritov, Alexandre B Tsybakov, et al. Simultaneous analysis of lasso

and dantzig selector. The Annals of Statistics, 37(4):1705–1732, 2009.
7 Emmanuel Candes, Terence Tao, et al. The dantzig selector: Statistical estimation when

p is much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.
8 Emmanuel J Candès, Yaniv Plan, et al. Near-ideal model selection by `1 minimization.

The Annals of Statistics, 37(5A):2145–2177, 2009.
9 Stephane Chretien, Guyeux Christophe, and Serge Moulin. l1-penalised ordinal polytomous

regression estimators. arXiv preprint to be submitted, 2018.
10 Stéphane Chrétien and Sébastien Darses. Sparse recovery with unknown variance: a lasso-

type approach. IEEE Transactions on Information Theory, 60(7):3970–3988, 2014.
11 Stephane Chretien, Alex Gibberd, and Sandipan Roy. Hedging hyperparameter selection

for basis pursuit. arXiv preprint arXiv:1805.01870, 2018.
12 Stephane Chretien, Christophe Guyeux, Michael Boyer-Guittaut, Regis Delage-Mouroux,

and Francoise Descotes. Investigating gene expression array with outliers and missing data
in bladder cancer. In Bioinformatics and Biomedicine (BIBM), 2015 IEEE International
Conference on, pages 994–998. IEEE, 2015.

13 Stéphane Chrétien, Christophe Guyeux, Michael Boyer-Guittaut, Régis Delage-Mouroux,
and Françoise Descôtes. Using the lasso for gene selection in bladder cancer data. arXiv
preprint arXiv:1504.05004, 2015.

14 Stéphane Chrétien, Christophe Guyeux, Bastien Conesa, Régis Delage-Mouroux, Michèle
Jouvenot, Philippe Huetz, and Françoise Descôtes. A bregman-proximal point algorithm
for robust non-negative matrix factorization with possible missing values and outliers-
application to gene expression analysis. BMC bioinformatics, 17(8):284, 2016.

15 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics (NRL), 3(1-2):95–110, 1956.

16 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

17 Caroline Giacobino, Sylvain Sardy, Jairo Diaz-Rodriguez, and Nick Hengartner. Quantile
universal threshold for model selection. arXiv preprint arXiv:1511.05433, 2015.

18 Christopher Kennedy and Rachel Ward. Greedy variance estimation for the lasso. arXiv
preprint arXiv:1803.10878, 2018.

19 Alan Miller. Subset selection in regression. CRC Press, 2002.
20 Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,

103(1):127–152, 2005.
21 Yurii Nesterov. A method of solving a convex programming problem with convergence rate

o (1/k2). Soviet Mathematics Doklady, pages 372–376, 1983.
22 Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,

6(2):461–464, 1978.

https://github.com/SergeMOULIN/l1-penalised-ordinal-polytomous-regression-estimators
https://github.com/SergeMOULIN/l1-penalised-ordinal-polytomous-regression-estimators

S. Chrétien, C. Guyeux, and S. Moulin 17:13

23 Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

24 Robert Tibshirani. The lasso method for variable selection in the cox model. Statistics in
medicine, 16(4):385–395, 1997.

25 Sara A Van de Geer et al. High-dimensional generalized linear models and the lasso. The
Annals of Statistics, 36(2):614–645, 2008.

WABI 2018

Differentially Mutated Subnetworks Discovery
Morteza Chalabi Hajkarim
Biotech Research and Innovation Centre, University of Copenhagen, Denmark
morteza.hajkarim@bric.ku.dk

Eli Upfal
Department of Computer Science, Brown University, Providence, RI, USA
eli@cs.brown.edu

Fabio Vandin1

Department of Information Engineering, University of Padova, Italy
fabio.vandin@unipd.it

Abstract
We study the problem of identifying differentially mutated subnetworks of a large gene-gene inter-
action network, that is, subnetworks that display a significant difference in mutation frequency in
two sets of cancer samples. We formally define the associated computational problem and show
that the problem is NP-hard. We propose a novel and efficient algorithm, called DAMOKLE
to identify differentially mutated subnetworks given genome-wide mutation data for two sets of
cancer samples. We prove that DAMOKLE identifies subnetworks with a statistically signifi-
cant difference in mutation frequency when the data comes from a reasonable generative model,
provided enough samples are available. We test DAMOKLE on simulated and real data, showing
that DAMOKLE does indeed find subnetworks with significant differences in mutation frequency
and that it provides novel insights not obtained by standard methods.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Applied
computing → Biological networks, Applied computing → Computational genomics

Keywords and phrases Cancer genomics, network analysis, combinatorial algorithm

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.18

Related Version A full version of the paper is available at
http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf.

Funding This work is supported, in part, by University of Padova project SID2017 and STARS:
Algorithms for Inferential Data Mining, and by NSF grant IIS-1247581.

Acknowledgements The results presented in this manuscript are in whole or part based upon
data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

1 Introduction

The analysis of molecular measurements from large collections of cancer samples has revolu-
tionized our understanding of the processes leading to a tumour through somatic mutations,
changes of the DNA appearing during the lifetime of an individual [10]. One of the most
important aspects of cancer revealed by recent large cancer studies is inter-tumour genetic

1 corresponding author

© Morteza Chalabi Hajkarim, Eli Upfal, and Fabio Vandin;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:morteza.hajkarim@bric.ku.dk
mailto:eli@cs.brown.edu
mailto:fabio.vandin@unipd.it
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.18
http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf
http://cancergenome.nih.gov/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Differentially Mutated Subnetworks Discovery

gene4%

gene5%%

gene6%%

gene1%

gene2%

gene3%

cancer%type%

SAMPLES%
type%C% type%D%

83%% 92%%

25%% 77%%

mutated% not%mutated%

frequency%
altera>on%

Figure 1 Identification of subnetworks with significant difference in mutation frequency in two
set of samples C, D. The blue subnetwork is significantly more mutated in D than in C, but it is not
be detected by methods that look for the most significantly mutated subnetworks in C or in D or in
C ∪ D, since the orange subnetwork is in each case mutated at much higher frequency.

heterogeneity: each tumour presents hundreds-thousands mutations and no two tumours
harbour the same set of DNA mutations [23].

One of the fundamental problems in the analysis of somatic mutations is the identification
of the handful of driver mutations (i.e., mutations related to the disease) of each tumour,
detecting them among the thousands or tens of thousands that are present in each tumour
genome [32]. Inter-tumour heterogeneity renders the identification of driver mutations, or of
driver genes (genes containing driver mutations), extremely difficult, since only few genes
are mutated in a relatively large fraction of samples while most genes are mutated in a low
fraction of samples in a cancer cohort [28].

Recently, several analyses (e.g, [18, 12]) have shown that interaction networks provide
useful information to discover driver genes by identifying groups of interacting genes, called
pathways, in which each gene is mutated at relatively low frequency while the entire group has
one or more mutations in a significantly large fraction of all samples. Several network-based
methods have been developed to identify groups of interacting genes mutated in a significant
fraction of tumours of a given type and have been shown to improve the detection of driver
genes compared to methods that analyze genes in isolation [18, 26, 13, 7].

The availability of molecular measurements in a large number of samples for different
cancer types have also allowed comparative analyses of mutations in cancer [11, 14, 18]. Such
analyses usually analyze large cohorts of different cancer types as a whole employing methods
to find genes or subnetworks mutated in a significant fraction of tumours in one cohort, and
also analyze each cancer type individually, with the goal to identify:
i) pathways that are common to various cancer types;
ii) pathways that are specific to a given cancer type.

For example, [18] analyzed 12 cancer types and identified subnetworks (e.g., a TP53 sub-
network) mutated in most cancer types as well as subnetworks (e.g., a MHC subnetwork)
enriched for mutations in one cancer type. In addition, comparative analyses may also be
used for the identification of mutations of clinical relevance [35]. For example: comparing
mutations in a patients that responded to a given therapy with mutations in patients (of

M.C. Hajkarim, E. Upfal, and F. Vandin 18:3

the same cancer type) that did not respond to the same therapy may identify genes and
subnetworks associated with response to therapy; comparing mutations in patients whose
tumours metastasized with mutations in patients whose tumours did not metastasize may
identify mutations associated with the insurgence of metastases.

Pathways that are significantly mutated only in a specific cancer type may not be
identified by analyzing one cancer type at the time or all samples together (Figure 1), but,
interestingly, to the best of our knowledge no method has been designed to directly identify
sets of interacting genes that are significantly more mutated in a set of samples compared to
another. The task of finding such sets is more complex than the identification of subnetworks
significantly mutated in a set of samples, since subnetworks that have a significant difference
in mutations in two sets may display relatively modest frequency of mutation in both set of
samples, whose difference can be assessed as significant only by the joint analysis of both
sets of samples.

Related Work. Several methods have been designed to analyze different aspects of somatic
mutations in a large cohort of cancer samples in the context of networks. Some methods
analyze mutations in the context of known pathways to identify the ones significantly enriched
in mutations (e.g., [30]). Other methods combine mutations and large interaction networks to
identify cancer subnetworks [29, 18, 5]. Networks and somatic mutations have also been used
to prioritarize mutated genes in cancer [26, 13, 16, 24, 4] and for patients stratification [12, 17].
Some of these methods have been used for the identification of common mutation patterns or
subnetworks in several cancer types [18, 11], but to the best of our knowledge no method has
been designed to identify mutated subnetworks with a significant difference in two cohorts of
cancer samples.

Few methods studied the problem of identifying subnetworks with significant differences
in two sets of cancer samples using data other than mutations. [8] studied the problem of
identifying optimally discriminative subnetworks of a large interaction network using gene
expression data. [20] developed a procedure to identify statistically significant changes in the
topology of biological networks. Such methods cannot be readily applied to find subnetworks
with significant difference in mutation frequency in two sets of samples. Other related work
use gene expression to characterize different cancer types: [33] defined a pathway-based score
that clusters samples by cancer type, while [15] defined pathway-based features used for
classification in various settings.

Our Contribution. In this work we study the problem of finding subnetworks with frequency
of mutation that is significantly different in two sets of samples. In particular, our contribu-
tions are fourfold. First, we propose a combinatorial formulation for the problem of finding
subnetworks significantly more mutated in one set of samples than in another and prove
that such problem is NP-hard. Second, we propose DifferentiAlly Mutated subnetwOrKs
anaLysis in cancEr (DAMOKLE), a simple and efficient algorithm for the identification of
subnetworks with a significant difference of mutation in two sets of samples, and analyze
DAMOKLE proving that it identifies subnetworks significantly more mutated in one of two
sets of samples under reasonable assumptions for the data. Third, we test DAMOKLE on
simulated data, verifying experimental that DAMOKLE correctly identifies subnetworks
significantly more mutated in a set of samples when enough samples are provided in input.
Fourth, we test DAMOKLE on large cancer datasets comprising two cancer types, and show
that DAMOKLE identifies subnetworks significantly associated with one of the two types
which cannot be identified by state-of-the-art methods designed for the analysis of one set of
samples.

WABI 2018

18:4 Differentially Mutated Subnetworks Discovery

2 Methods and Algorithms

This section presents the problem we study, the algorithm we propose for its solution, and the
analysis of our algorithm. In particular, Section 2.1 formalizes the computational problem
we consider; Section 2.2 presents DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr
(DAMOKLE), our algorithm for the solution of the computational problem; Section 2.3
describes the analysis of DAMOKLE under a reasonable generative model for mutations;
Section 2.4 presents a formal analysis of the statistical significance of subnetworks obtained
by DAMOKLE; and Section 2.5 describes two permutation test to assess the significance of
the results of DAMOKLE for limited sample sizes.

2.1 Computational Problem
We are given measurements on mutations in m genes G = {1, . . . ,m} on two sets C =
{c1, . . . , cnC

},D = {d1, . . . , dnD
} of samples. Such measurements are represented by two

matrices C and D, of dimension m× nC and m× nD, respectively, where nC (resp., nD) is
the number of samples in C (resp., D). C(i, j) = 1 (resp., D(i, j) = 1) if gene i is mutated
in the j-th sample of C (resp., D) and C(i, j) = 0 (resp., D(i, j) = 0) otherwise. We are
also given an (undirected) graph G = (V,E), where vertices V = {1, . . . ,m} are genes and
(i, j) ∈ E if gene i interacts with gene j (e.g., the corresponding proteins interact).

Given a set of genes S ⊂ G, we define the indicator function cS(ci) with cS(ci) = 1 if at
least one of the genes of S is mutated in sample ci, and cS(ci) = 0 otherwise. We define
cS(di) analogously. We define the coverage cS(C) of S in C as the fraction of samples in C
for which at least one of the genes in S is mutated in the sample, that is cS(C) =

∑nC

i=1
cS(ci)

nC

and, analogously, define the coverage cS(D) of S in D as cS(D) =
∑nD

i=1
cS(di)

nD
.

We are interested in identifying sets of genes S, with |S| ≤ k, corresponding to connected
subgraphs in G and displaying a significant difference in coverage between C and D, i.e.,
with a high value of |cS(C) − cS(D)|. We define the differential coverage dcS(C,D) as
dcS(C,D) = cS(C)− cS(D).

In particular, we study the following computational problem.

The Differentially Mutated Subnetworks Discovery problem: Given a value θ with θ ∈ [0, 1],
find all connected subgraphs S of G of size ≤ k such that dcS(C,D) ≥ θ.

Note that by finding sets that maximize dcS(C,D) we identify sets with significantly
more mutations in C than in D, while to identify sets with significantly more mutations in D
than in C we need to find sets maximizing dcS(D, C). In addition, note that a subgraph S in
the solution may contain genes that are not mutated in C ∪ D but that are needed for the
connectivity of S.

We have the following. (Omitted proofs can be found in the long version of the paper
available at: http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf.)

I Theorem 1. The Differentially Mutated Subnetworks Discovery problem is NP-hard.

Proof. The proof is by reduction from the connected maximum coverage problem [29].
In the connected maximum coverage problem we are given a graph G defined on a set
V = {v1, . . . , vn} of n vertices, a family P = {P1, . . . , Pn} of subsets of a universe I (i.e.,
Pi ∈ 2I), with Pi being the subset of I covered by vi ∈ V and value k, and we want to find
the subgraph C∗ = {vi1 , . . . , vik} with k nodes of G that maximizes | ∪kj=1 Pij |.

Given an instance of the connected maximum coverage problem, we define an instance of
the Differentially Mutated Subnetworks Discovery problem as follows: the set G of genes

http://www.dei.unipd.it/~vandinfa/DAMOKLE_long.pdf

M.C. Hajkarim, E. Upfal, and F. Vandin 18:5

Algorithm 1: DAMOKLE.
Input: mutation matrices C,D; gene-gene interaction graph G = (V,E); integer

k > 0; θ ∈ [0, 1]
Output: maximal connected subgraphs with dcS(C,D) ≥ θ

1 solutions ← ∅;
2 foreach {u, v} ∈ E do
3 if dc{u,v}(C,D) ≥ θ/(k − 1) then
4 solutions ← solutions ∪ GetSolutions(E,{u, v});
5 end
6 end
7 return solutions;

corresponds to the set V of vertices of G in the connected maximum coverage problem, and
the graph G is the same as in the instance of the maximum coverage instance; the set C is
given by the set I and the matrix C is defined as Ci,j = 1 if i ∈ Pj , while D = ∅.

Note that for any subgraph S of G, the differential coverage dcD(C,D) = cS(C)− cS(D) =
cS(C) and cS(C) = | ∪g∈S Pg|/|I|. Since |I| is the same for all solutions, the optimal solution
of the Differentially Mutated Subnetworks Discovery instance corresponds to the optimal
solution to the connected maximum coverage instance, and viceversa. J

2.2 Algorithm
We now describe DifferentiAlly Mutated subnetwOrKs anaLysis in cancEr (DAMOKLE), an
algorithm to solve the Differentially Mutated Subnetworks Discovery problem. DAMOKLE
takes in input mutation matrices C and D for two sets C, D of samples, a (gene-gene)
interaction graph G, and integer k, and a real value θ ∈ [0, 1], and returns subnetworks S
of G with ≤ k vertices and differential coverage dcS(C,D) ≥ θ. Subnetworks reported by
DAMOKLE are also maximal (no edge can be added to S while maintaining |S| ≤ k and
dcS(C,D) ≥ θ). DAMOKLE is described in Algorithm 1. DAMOKLE starts by considering
each edge e = {u, v} ∈ E of G with differential coverage dc{u,v}(C,D) ≥ θ/(k − 1), and for
each such e identifies subnetworks including e to be reported in output using Algorithm 2.

GetSolutions, described in Algorithm 2, is a recursive algorithm that, give a current
subgraph S, identifies all maximal connected subgraphs S′, |S′| ≤ k, containing S and with
dcS′(C,D) ≥ θ. This is obtained by expanding S one edge at the time and stopping when
the number of vertices in the current solution is k or when the addition of no vertex leads
to an increase in differential coverage dcS(C,D) for the current solution S. In Algorithm 2,
N(S) refers to the set of edges with exactly one vertex in the set S.

The motivation for design choices of DAMOKLE are provided in the next section.

2.3 Analysis of DAMOKLE
The design and analysis of DAMOKLE are based on the following generative model for the
underlying biological process.

Model

For each gene i ∈ G = {1, 2, ...,m} there is an a-priori probability pi of observing a mutation
in gene i. Let H ⊂ G be the connected subnetwork of up to k genes that is differentially
mutated in samples of C w.r.t. samples of D. Mutations in our samples are taken from

WABI 2018

18:6 Differentially Mutated Subnetworks Discovery

Algorithm 2: GetSolutions.
Input: set E of edges of the graph; current subgraph (solution) S
Output: maximal connected subgraphs containing S with dcS(C,D) ≥ θ

1 nextEdges ← ∅;
2 foreach e ∈ N(S) do
3 if dcS∪{e}(C,D) ≥ dcS(C,D) then nextEdges ← nextEdges ∪{e};
4 end
5 if |nextEdges| = 0 OR |S| = k then
6 if dcS(C,D) ≥ θ then return S;
7 end
8 newSols ← ∅;
9 foreach e ∈ nextEdges do newSols ← newSols ∪ GetSolutions(E,S ∪ {e}) ;

10 return newSols;

two related distributions. In the “control" distribution F a mutation in gene i is observed
with probability pi independent of other genes’ mutations. The second distribution FH is
analogous to the distribution F but we condition on the event E(H) =“at least one gene in
H is mutated in the sample”.

For genes not in H, all mutations come from distribution F . For genes in H, in a perfect
experiment with no noise we would assume that samples in C are taken from FH and samples
from D are taken from F . However, to model realistic, noisy data we assume that with some
probability q the “true” signal for a sample is lost, that is the sample from C is taken from F .
In particular, samples in C are taken with probability 1− q from FH and with probability q
from F .

Let p be the probability that H has at least one mutation in samples from the control
model F , p = 1−

∏
j∈H(1− pj) ≈

∑
j∈H pj . Clearly, we are only interested in sets H ⊂ G

with p� 1.
If we focus on individual genes, the probability gene i is mutated in a sample from D

is pi, while the probability that it is mutated in a sample from C is (1−q)pi

1−
∏

j∈H
(1−pj)

+ qpi.

Such a gap may be hard to detect with a small number of samples. On the other hand,
the probability of E(H) (i.e., of at least one mutation in the set H) in a sample from C is
(1− q) + q(1−

∏
j∈H(1− pj)) = 1− q + qp, while the probability of E(H) in a sample from

D is 1−
∏
j∈H(1− pj) = p which is a more significant gap, when p� 1.

The efficiency of DAMOKLE is based on two fundamental results. First we show that it
is sufficient to start the search only in edges with relatively high discrepancy.

I Proposition 1. If dcS(C,D) ≥ θ, then, in the above generating model, with high probability
(asymptotic in nC and nD) there exist an edge e ∈ S such that dc{e}(C,D) ≥ (θ− ε)/(k − 1),
for any ε > 0.

The second result motivates the choice, in Algorithm 2, of adding only edges that increase
the score of the current solution (and to stop if there is no such edge).

I Proposition 2. If subgraph S can be partitioned as S = S′∪{j}∪S′′, and dcS′∪{j}(C,D) <
dcS′(C,D)− ppj, then with high probability (asymptotic in nD) dcS\{j}(C,D) > dcS(C,D).

M.C. Hajkarim, E. Upfal, and F. Vandin 18:7

2.4 Statistical Significance of the Results
To compute a threshold that guarantees statistical confidence of our finding, we first compute
a bound on the gap in a non significant set.

I Theorem 2. Assume that S is not a significant set, i.e., C and D have the same distribution
on S, then

Prob(dcS(C,D) > ε) ≤ 2e−2ε2nCnD/(nC+nD).

Let Nk be the set of subnetworks under consideration, or the set of all connected
components of size ≤ k. We use Theorem 2 to obtain guarantees on the statistical significance
of the results of DAMOKLE in terms of the Family-Wise Error Rate (FWER) or of the
False Discovery Rate (FDR) as follows:

FWER: if we want to find just the subnetwork with significant maximum differential
coverage, to bound the FWER of our method by α we use the maximum ε such that
Nk2e−2ε2nCnD/(nC+nD) ≤ α.
FDR: if we want to find several significant subnetworks with high differential coverage, to
bound the FDR by α we use the maximum ε such that Nk2e−2ε2nCnD/(nC+nD)/n(α) ≤ α,
where n(α) is the number of sets with differential coverage ≥ ε.

2.5 Permutation Testing
While Theorem 2 shows how to obtain guarantees on the statistical significance of the results
of DAMOKLE by appropriately setting θ, in practice, due to relatively small sample sizes
and to inevitable looseness in the theoretical guarantees, a permutation testing approach
may be more effective in estimating the statistical significance of the results of DAMOKLE
and provide more power for the identification of differentially mutated subnetworks.

We consider two permutation tests to assess the association of mutations in the subnetwork
with the highest differential coverage found by DAMOKLE. The first test assesses whether
the observed differential coverage can be obtained under the independence of mutations in
genes by considering the null distribution in which each gene is mutated in a random subset
(of the same cardinality as observed in the data) of all samples, independently of all other
events. The second test assesses whether, under the observed marginal distributions for
mutations in sets of genes, the observed differential coverage of a subnetwork can be obtained
under the independence between mutations and samples’ memberships (i.e., being a sample
of C or a sample of D), by randomly permuting the samples memberships.

Let dcS(C,D) be the differential coverage observed on real data for the solution S with
highest differential coverage found by DAMOKLE (for some input parameters). For both
tests we estimate the p-value as follow:
1. generate N (permuted) datasets from the null distribution;
2. run DAMOKLE (with the same input parameters used on real data) on each of the N

permuted datasets;
3. let x be the number of permuted datasets in which DAMOKLE reports a solution with

differential coverage ≥ dcS(C,D): then the p-value of S is (x+ 1)/(N + 1).

3 Results

We implemented DAMOKLE in Python and tested it on simulated and on cancer data.
Our experiments have been conducted on a Linux machine with 16 cores and 256 GB of
RAM. All experiments required less than 10 MB of RAM and at most one day (for the

WABI 2018

18:8 Differentially Mutated Subnetworks Discovery

(a)$ (b)$ (c)$

Figure 2 (a) Performance of DAMOKLE as a function of the differential coverage dcS(C, D)
of subnetwork S. The figure shows (red) the fraction of times, out of 10 experiments, that the
best solution corresponds to S and (blue) the fraction of genes in S that are reported in the best
solution by DAMOKLE. For the latter, error bars show the standard deviation on the 10 experiments.
n = 100 and k = 5 for all experiments. (b) Performance of DAMOKLE as a function of the number
k of genes in subnetwork S. n = 100 and dcS(C, D) = 0.46 for all experiments. (c) Performance of
DAMOKLE as a function of the number n of samples in C, D. k = 10 and dcS(C, D) = 0.46 for all
experiments.

largest simulated datasets). For all our experiments we used as interaction graph G the
HINT+HI2012 network2 [18], a combination of the HINT network [9] and the HI-2012 [34]
set of interactions. In all cases we considered only the subnetwork with the highest differential
coverage among the ones returned by DAMOKLE. We first present the results on simulated
data (Section 3.1) and then present the results on cancer data (Section 3.2).

3.1 Simulated data
We tested DAMOKLE on simulated data generated as follows. We simulate data assuming
there is a subnetwork S of k genes with differential coverage dcS(C,D) = c. In our simulations
we set |C| = |D| = n. For each sample in D, each gene g in G (including S) is mutated with
probability pg, independently of all other events. For samples in C, we first mutated each
gene g with probability pg independently of all other events. We then considered the samples
of C without mutations in S, and for each such sample we mutated, with probability c, one
gene of S, chosen uniformly at random. In this way c is the expectation of the differential
coverage dcS(C,D). For genes in G \ S we used mutation probabilities pg estimated from
oesophageal cancer data [22]. We considered only value of n ≥ 100, consistent with sample
sizes in most recent cancer sequencing studies3.

The goal of our investigation using simulated data is to evaluate the impact of various
parameters on ability of DAMOKLE to recover S or part of it. To evaluate the impact of
such parameters, for each combination of parameters in our experiments we generated 10
simulated datasets and run DAMOKLE on each dataset with θ = 0.01, recording
1. the fraction of times that DAMOKLE reported S as the solution with the highest

differential coverage, and
2. the fraction of genes of S that are in the solution with highest differential coverage found

by DAMOKLE.

We first investigated the impact of the differential coverage c = dcS(C,D). We analyzed
simulated datasets with n = 100 samples in each class, where k = 5 genes are part of the
subnetwork S, for values of c = 0.1, 0.22, 0.33, 0.46, 0.6, 0.8,. We run DAMOKLE on each

2 http://compbio-research.cs.brown.edu/pancancer/hotnet2/
3 https://dcc.icgc.org/

https://dcc.icgc.org/

M.C. Hajkarim, E. Upfal, and F. Vandin 18:9

dataset with k = 5. The results are shown in Figure 2(a). For low values of the differential
coverage c, with n = 100 samples DAMOKLE never reports S as the best solution found
and only a small fraction of the genes in S are part of the solution reported by DAMOKLE.
However, as soon as the differential coverage is ≥ 0.45, even with n = 100 samples in each
class DAMOKLE identifies the entire planted solution S most of the times, and even when
the best solution does not entirely corresponds to S, more than 80% of the genes of S are
reported in the best solution. For values of c ≥ 0.6, DAMOKLE always reports the whole
subnetwork S as the best solution. Given that many recent large cancer sequencing studies
consider at least 200 samples, DAMOKLE will be useful to identify differentially mutated
subnetworks in such studies.

We then tested the performance of DAMOKLE as a function of the number of genes k in
S. We tested the ability of DAMOKLE to identify a subnetwork S with differential coverage
dcS(C,D) = 0.46 in a dataset with n = 100 samples in both C and D, when the number k of
genes in S varies as k = 5, 7, 9. The results are shown in Figure 2(b). As expected, when the
number of genes in S increases, the fraction of times S is the best solution as well as the
fraction of genes reported in the best solution by S decreases, and for k = 9 the best solution
found by DAMOKLE corresponds to S only 10% of the times. However, even for k = 9, on
average most of the genes of S are reported in the best solution by DAMOKLE. Therefore
DAMOKLE can be used to identify relatively large subnetworks mutated in a significantly
different number of samples even when the number of samples is relatively low.

Finally, we tested the performance of DAMOKLE as the number of samples n in each
set C,D increases. In particular, we tested the ability of DAMOKLE to identify a relatively
large subnetwork S of k = 10 genes with differential coverage dcS(C,D) = 0.46 as the number
of samples n increases. We analyzed simulated datasets for n = 100, 250, 500. The results
are shown in Figure 2. For n = 100, when k = 10, DAMOKLE never reports S as the best
solution and only a small fraction of all genes in S are reported in the solution. However, for
n = 250, while DAMOKLE still reports S as the best solution only 10% of the times, on
average 70% of the genes of S are reported in the best solution. More interestingly, already
for n = 500, DAMOKLE always reports S as the best solution. These results show that
DAMOKLE can reliably identify relatively large differentially mutated subnetworks from
currently available datasets of large cancer sequencing studies.

3.2 Cancer data

We use DAMOKLE to analyze somatic mutations from The Cancer Genome Atlas. We
first compared two similar cancer types and two very different cancer types to test whether
DAMOKLE behaves as expected on these types. We then analyzed two pairs of cancer types
where differences in alterations are unclear. In all cases we run DAMOKLE with θ = 0.1
and obtained p-values with the permutation tests described in Section 2.5.

Lung Cancer. We used DAMOKLE to analyze 188 samples of lung squamous cell carcinoma
(LUSC) and 183 samples of lung adenocarcinoma (LUAD). We only considered single
nucleotide variants (SNVs)4 and use k = 5. DAMOKLE did not report any significant
subnetwork, in agreement with previous work showing that these two cancer types have
known differences in gene expression [27] but are much more similar with respect to SNVs [3].

4 http://cbio.mskcc.org/cancergenomics/pancan_tcga/

WABI 2018

http://cbio.mskcc.org/cancergenomics/pancan_tcga/

18:10 Differentially Mutated Subnetworks Discovery

(d)(c)

CDKN2A$

CDK4$

MDM2$

LGG$ GBM$

100%ofsamples$100%$of$samples$

LGG$ GBM$

MDM4$

RB1$

CDKN2A$

CDK4$

MDM2$

MDM4$

RB1$

ACTL6A$

ARID1A$

BRD8$

SMARCB1$

esophageal$ stomach$

(a)$

100%ofsamples$ 100%ofsamples$

ACTL6A$

ARID1A$

BRD8$

SMARCB1$

mutated$ not$mutated$

(b)$
mutated$ not$mutated$

(171$samples)$ (347$samples)$
(509$samples)$ (303$samples)$

Figure 3 Results of DAMOKLE analysis of esophagus tumours and stomach tumours and of
diffuse gliomas. (a) Subnetwork S with significant (p < 0.02) differential coverage in esophagus
tumours vs stomach tumours (interactions from HINT+HI2012 network). (b) Fractions of samples
with mutations in genes of S in esophagus tumours and in stomach tumours. c) Subnetwork S

with significant (p<0.01) differential coverage in LGG samples vs GBM samples (interactions from
HINT+HI2012 network). (d) Fractions of samples with mutations in genes of S in LGG samples
and GBM samples.

Colorectal vs Ovarian Cancer. We used DAMOKLE to analyze 456 samples of colorectal
adenocarcinoma (COADREAD) and 496 samples of ovarian serous cystadenocarcinoma (OV)
using only SNVs5. For k = 5, DAMOKLE identifies the significant (p < 0.01 according
to both tests in Section 2.5) subnetwork APC, CTNNB1, FBXO30, SMAD4, SYNE1 with
differential coverage 0.81 in COADREAD w.r.t. OV. APC, CTNNB1, and SMAD4 are
members of the WNT signaling and TFG-β signaling pathways, known to be involved in
COADREAD [21]. The high differential coverage of the subnetwork is in accordance with
COADREAD being altered mostly by SNVs and OV being altered mostly by copy number
aberrations (CNAs) [6].

Esophagus-Stomach Cancer. We analyzed SNVs and CNAs in 171 samples of esophagus
cancer and in 347 samples of stomach cancer [22].6 The number of mutations in the two sets
is not significantly different (t-test p = 0.16). We first considered single genes, identifying
TP53 with high (> 0.5) differential coverage between the two cancer types. Alterations in
TP53 have then be removed for the subsequent DAMOKLE analysis. We run DAMOKLE
with k = 4 with C being the set of stomach tumours and D being the set of esophagus
tumours. DAMOKLE identifies the significant (p < 0.01 for both tests in Section 2.5)
subnetwork S = {ACTL6A,ARID1A, BRD8, SMARCB1} with differential coverage 0.26
(Figure 3a-b). Such subnetwork is not reported as differentially mutated in the TCGA
publication comparing the two cancer types [22]. BRD8 is only the top-16 gene by differential
coverage, while ACTL6 and SMARCB1 are not among the top-2000 genes by differential
coverage. ACTL6A, ARID1A, and SMARCB1 are all members of the chromatin organization
machinery, recently associated with cancer [25, 19]. We compared the results obtained by
DAMOKLE with the results obtained by HotNet2 [18], a method to identify significantly
mutated subnetworks, using the same mutation data and the same interaction network as
input: none of the genes in S appeared in significant subnetworks reported by HotNet2.

5 http://cbio.mskcc.org/cancergenomics/pancan_tcga/
6 http://www.cbioportal.org/study?id=stes_tcga_pub#summary

http://cbio.mskcc.org/cancergenomics/pancan_tcga/
http://www.cbioportal.org/study?id=stes_tcga_pub#summary

M.C. Hajkarim, E. Upfal, and F. Vandin 18:11

Diffuse Gliomas. We analyzed single nucleotide variants (SNVs) and copy number aberra-
tions (CNAs) in 509 samples of lower grade glioma (LGG) and in 303 samples of glioblastoma
multiforme (GBM).7 We considered nonsilent SNVs, short indels, and CNAs. We removed
from the analysis genes with < 6 mutations in both classes. By single gene analysis we
identified IDH1 with high (> 0.5) differential coverage, and removed alterations in such gene
for the DAMOKLE analysis. We run DAMOKLE with k = 5 with C being the set of GBM
samples and D being the set of LGG samples. The number of mutations in C and in D is
not significantly different (t-test p = 0.1). DAMOKLE identifies the significant (p < 0.01
for both tests in Section 2.5) subnetwork S = {CDKN2A, CDK4, MDM2, MDM4, RB1}
(Figure 3c-d). All genes in S are members of the p53 pathway or of the RB pathway, well
known glioma cancer pathways [31].

Interestingly, [2] did not report any subnetwork with significant difference in mutations
among LGG and GBM samples. CDK4, MDM2, MDM4, and RB1 do not appear among the
top-45 genes by differential coverage. We compared the results obtained by DAMOKLE with
the results obtained by HotNet2. Of the genes in our subnetwork, only CDK4 and CDKN2A
are reported in a significantly mutated subnetwork (p < 0.05) obtained by HotNet2 analyzing
D but not analyzing C, while MDM2, MDM4, and RB1 are not reported in any significant
subnetwork obtained by HotNet2.

4 Conclusion

In this work we study the problem of finding subnetworks of a large interaction network with
significant difference in mutation frequency in two sets of cancer samples. This problem is
extremely important to identify mutated mechanisms that are specific to a cancer (sub)type
as well as for the identification of mechanisms related to clinical features (e.g., response
to therapy). We provide a formal definition of the problem and show that the associated
computational problem is NP-hard. We design, analyze, implement, and test a simple and
efficient algorithm, DAMOKLE, which we prove identifies significant subnetworks when
enough data from a reasonable generative model for cancer mutations is provided. Our
results also show that the subnetworks identified by DAMOKLE cannot be identified by
methods not designed for the comparative analysis of mutations in two sets of samples. We
tested DAMOKLE on simulated and real data. The results on simulated data show that
DAMOKLE identifies significant subnetworks with currently available sample size. The
results on two large cancer datasets, each comprising genome-wide measurements of DNA
mutations in two cancer subtypes, shows that DAMOKLE identifies subnetworks that are
not found by methods not designed for the comparative analysis of mutations in two sets of
samples.

While we provide a first method for the differential analysis of cohorts of cancer samples,
several research directions remain. First, differences in the frequency of mutation of a
subnetwork in two sets of cancer cohorts may be due to external (or hidden) variables, as for
example the mutation rate of each cohort. While at the moment we ensure before running
the analysis that no significant difference in mutation rate is present between the two sets,
performing the analysis while correcting for possible differences in such confounding variable
or in others would greatly expand the applicability of our method. Second, different types
of mutation patterns (e.g., mutual exclusivity) among two set of samples could be explored

7 https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_
pub.tar.gz

WABI 2018

https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz
https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz

18:12 Differentially Mutated Subnetworks Discovery

(e.g., extending the method proposed in [1]). Third, the inclusion of additional types of
measurements, as for example gene expression, may improve the power of our method. Fourth,
the inclusion of noncoding variants in the analysis may provide additional information to be
leveraged to assess the significance of subnetworks.

References
1 Rebecca Sarto Basso, Dorit S Hochbaum, and Fabio Vandin. Efficient algorithms to dis-

cover alterations with complementary functional association in cancer. arXiv preprint
arXiv:1803.09721, 2018.

2 Michele Ceccarelli, Floris P Barthel, Tathiane M Malta, Thais S Sabedot, Sofie R
Salama, Bradley A Murray, Olena Morozova, Yulia Newton, Amie Radenbaugh, Stefano M
Pagnotta, et al. Molecular profiling reveals biologically discrete subsets and pathways of
progression in diffuse glioma. Cell, 164(3):550–563, 2016.

3 Fengju Chen, Yiqun Zhang, Edwin Parra, Jaime Rodriguez, Carmen Behrens, Rehan Ak-
bani, Yiling Lu, JM Kurie, Don L Gibbons, Gordon B Mills, et al. Multiplatform-based
molecular subtypes of non-small-cell lung cancer. Oncogene, 36(10):1384, 2017.

4 Ara Cho, Jung Eun Shim, Eiru Kim, Fran Supek, Ben Lehner, and Insuk Lee. Muffinn:
cancer gene discovery via network analysis of somatic mutation data. Genome biology,
17(1):129, 2016.

5 Giovanni Ciriello, Ethan Cerami, Chris Sander, and Nikolaus Schultz. Mutual exclusivity
analysis identifies oncogenic network modules. Genome research, 22(2):398–406, 2012.

6 Giovanni Ciriello, Martin L Miller, Bülent Arman Aksoy, Yasin Senbabaoglu, Nikolaus
Schultz, and Chris Sander. Emerging landscape of oncogenic signatures across human
cancers. Nature genetics, 45(10):1127, 2013.

7 Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation:
a universal amplifier of genetic associations. Nature Reviews Genetics, 2017.

8 Phuong Dao, Kendric Wang, Colin Collins, Martin Ester, Anna Lapuk, and S Cenk Sah-
inalp. Optimally discriminative subnetwork markers predict response to chemotherapy.
Bioinformatics, 27(13):i205–i213, 2011.

9 Jishnu Das and Haiyuan Yu. Hint: High-quality protein interactomes and their ap-
plications in understanding human disease. BMC Syst Biol, 6:92, 2012. doi:10.1186/
1752-0509-6-92.

10 Levi A Garraway and Eric S Lander. Lessons from the cancer genome. Cell, 153(1):17–37,
Mar 2013. doi:10.1016/j.cell.2013.03.002.

11 Katherine A Hoadley, Christina Yau, Denise M Wolf, Andrew D Cherniack, David Tam-
borero, Sam Ng, Max DM Leiserson, Beifang Niu, Michael D McLellan, Vladislav Uzun-
angelov, et al. Multiplatform analysis of 12 cancer types reveals molecular classification
within and across tissues of origin. Cell, 158(4):929–944, 2014.

12 Matan Hofree, John P Shen, Hannah Carter, Andrew Gross, and Trey Ideker. Network-
based stratification of tumor mutations. Nat Methods, 10(11):1108–15, Nov 2013. doi:
10.1038/nmeth.2651.

13 Borislav H Hristov and Mona Singh. Network-based coverage of mutational profiles reveals
cancer genes. arXiv preprint arXiv:1704.08544, 2017.

14 Cyriac Kandoth, Michael D McLellan, Fabio Vandin, Kai Ye, Beifang Niu, Charles Lu,
Mingchao Xie, Qunyuan Zhang, Joshua F McMichael, Matthew A Wyczalkowski, Mark
D M Leiserson, Christopher A Miller, John S Welch, Matthew J Walter, Michael C Wendl,
Timothy J Ley, Richard KWilson, Benjamin J Raphael, and Li Ding. Mutational landscape
and significance across 12 major cancer types. Nature, 502(7471):333–9, Oct 2013. doi:
10.1038/nature12634.

http://dx.doi.org/10.1186/1752-0509-6-92
http://dx.doi.org/10.1186/1752-0509-6-92
http://dx.doi.org/10.1016/j.cell.2013.03.002
http://dx.doi.org/10.1038/nmeth.2651
http://dx.doi.org/10.1038/nmeth.2651
http://dx.doi.org/10.1038/nature12634
http://dx.doi.org/10.1038/nature12634

M.C. Hajkarim, E. Upfal, and F. Vandin 18:13

15 Shinuk Kim, Mark Kon, and Charles DeLisi. Pathway-based classification of cancer sub-
types. Biology direct, 7(1):21, 2012.

16 Yoo-Ah Kim, Dong-Yeon Cho, Phuong Dao, and Teresa M Przytycka. Memcover: integ-
rated analysis of mutual exclusivity and functional network reveals dysregulated pathways
across multiple cancer types. Bioinformatics, 31(12):i284–i292, 2015.

17 Marine Le Morvan, Andrei Zinovyev, and Jean-Philippe Vert. Netnorm: capturing cancer-
relevant information in somatic exome mutation data with gene networks for cancer strat-
ification and prognosis. PLoS computational biology, 13(6):e1005573, 2017.

18 Mark D M Leiserson, Fabio Vandin, Hsin-Ta Wu, Jason R Dobson, Jonathan V Eldridge,
Jacob L Thomas, Alexandra Papoutsaki, Younhun Kim, Beifang Niu, Michael McLellan,
Michael S Lawrence, Abel Gonzalez-Perez, David Tamborero, Yuwei Cheng, Gregory A
Ryslik, Nuria Lopez-Bigas, Gad Getz, Li Ding, and Benjamin J Raphael. Pan-cancer
network analysis identifies combinations of rare somatic mutations across pathways and
protein complexes. Nat Genet, 47(2):106–14, Feb 2015. doi:10.1038/ng.3168.

19 Chao Lu and C David Allis. Swi/snf complex in cancer. Nature genetics, 49(2):178–179,
2017.

20 Raghvendra Mall, Luigi Cerulo, Halima Bensmail, Antonio Iavarone, and Michele Ceccarelli.
Detection of statistically significant network changes in complex biological networks. BMC
systems biology, 11(1):32, 2017.

21 Cancer Genome Atlas Network et al. Comprehensive molecular characterization of human
colon and rectal cancer. Nature, 487(7407):330, 2012.

22 Cancer Genome Atlas Research Network et al. Integrated genomic characterization of
oesophageal carcinoma. Nature, 541(7636):169–175, 2017.

23 Cancer Genome Atlas Research Network et al. Integrated genomic characterization of
pancreatic ductal adenocarcinoma. Cancer cell, 32(2):185, 2017.

24 Sergio Pulido-Tamayo, Bram Weytjens, Dries De Maeyer, and Kathleen Marchal. Ssa-me
detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
Scientific reports, 6, 2016.

25 Srinivas Vinod Saladi, Kenneth Ross, Mihriban Karaayvaz, Purushothama R Tata, Hong-
mei Mou, Jayaraj Rajagopal, Sridhar Ramaswamy, and Leif W Ellisen. Actl6a is co-
amplified with p63 in squamous cell carcinoma to drive yap activation, regenerative prolif-
eration, and poor prognosis. Cancer cell, 31(1):35–49, 2017.

26 Raunak Shrestha, Ermin Hodzic, Thomas Sauerwald, Phuong Dao, Kendric Wang, Jake
Yeung, Shawn Anderson, Fabio Vandin, Gholamreza Haffari, Colin C Collins, et al.
Hit’ndrive: patient-specific multidriver gene prioritization for precision oncology. Genome
research, 27(9):1573–1588, 2017.

27 Fenghao Sun, Xiaodong Yang, Yulin Jin, Li Chen, Lin Wang, Mengkun Shi, Cheng Zhan,
Yu Shi, and Qun Wang. Bioinformatics analyses of the differences between lung adeno-
carcinoma and squamous cell carcinoma using the cancer genome atlas expression data.
Molecular medicine reports, 16(1):609–616, 2017.

28 Fabio Vandin. Computational methods for characterizing cancer mutational heterogeneity.
Frontiers in genetics, 8:83, 2017.

29 Fabio Vandin, Eli Upfal, and Benjamin J Raphael. Algorithms for detecting significantly
mutated pathways in cancer. Journal of Computational Biology, 18(3):507–522, 2011.

30 Charles J Vaske, Stephen C Benz, J Zachary Sanborn, Dent Earl, Christopher Szeto,
Jingchun Zhu, David Haussler, and Joshua M Stuart. Inference of patient-specific pathway
activities from multi-dimensional cancer genomics data using paradigm. Bioinformatics,
26(12):i237–i245, 2010.

31 Bert Vogelstein and Kenneth W Kinzler. Cancer genes and the pathways they control.
Nature medicine, 10(8):789–799, 2004.

WABI 2018

http://dx.doi.org/10.1038/ng.3168

18:14 Differentially Mutated Subnetworks Discovery

32 Bert Vogelstein, Nickolas Papadopoulos, Victor E Velculescu, Shibin Zhou, Luis A Diaz,
Jr, and Kenneth W Kinzler. Cancer genome landscapes. Science, 339(6127):1546–58, Mar
2013. doi:10.1126/science.1235122.

33 Michael R Young and David L Craft. Pathway-informed classification system (pics) for
cancer analysis using gene expression data. Cancer informatics, 15:CIN–S40088, 2016.

34 Haiyuan Yu, Leah Tardivo, Stanley Tam, Evan Weiner, Fana Gebreab, Changyu Fan,
Nenad Svrzikapa, Tomoko Hirozane-Kishikawa, Edward Rietman, Xinping Yang, Julie
Sahalie, Kourosh Salehi-Ashtiani, Tong Hao, Michael E Cusick, David E Hill, Frederick P
Roth, Pascal Braun, and Marc Vidal. Next-generation sequencing to generate interactome
datasets. Nat Methods, 8(6):478–80, Jun 2011. doi:10.1038/nmeth.1597.

35 Ahmet Zehir, Ryma Benayed, Ronak H Shah, Aijazuddin Syed, Sumit Middha, Hyunjae R
Kim, Preethi Srinivasan, Jianjiong Gao, Debyani Chakravarty, Sean M Devlin, et al. Muta-
tional landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000
patients. Nature Medicine, 2017.

http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1038/nmeth.1597

DGEN: A Test Statistic for Detection of General
Introgression Scenarios

Ryan A. Leo Elworth
Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA
r.a.leo.elworth@rice.edu

Chabrielle Allen
Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA

Travis Benedict
Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA

Peter Dulworth
Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA

Luay Nakhleh
Department of Computer Science and Department of BioSciences, Rice University, 6100 Main
Street, Houston, TX, USA
nakhleh@rice.edu

Abstract
When two species hybridize, one outcome is the integration of genetic material from one spe-
cies into the genome of the other, a process known as introgression. Detecting introgression in
genomic data is a very important question in evolutionary biology. However, given that hybrid-
ization occurs between closely related species, a complicating factor for introgression detection
is the presence of incomplete lineage sorting, or ILS. The D-statistic, famously referred to as
the “ABBA-BABA” test, was proposed for introgression detection in the presence of ILS in data
sets that consist of four genomes. More recently, DFOIL – a set of statistics – was introduced to
extend the D-statistic to data sets of five genomes.

The major contribution of this paper is demonstrating that the invariants underlying both the
D-statistic and DFOIL can be derived automatically from the probability mass functions of gene
tree topologies under the null species tree model and alternative phylogenetic network model.
Computational requirements aside, this automatic derivation provides a way to generalize these
statistics to data sets of any size and with any scenarios of introgression. We demonstrate the
accuracy of the general statistic, which we call DGEN, on simulated data sets with varying rates
of introgression, and apply it to an empirical data set of mosquito genomes.

We have implemented DGEN and made it available, both as a graphical user interface tool
and as a command-line tool, as part of the freely available, open-source software package ALPHA
(https://github.com/chilleo/ALPHA).

2012 ACM Subject Classification Applied computing→ Genomics, Applied computing→ Com-
putational biology

Keywords and phrases Introgression, genealogies, phylogenetic networks

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.19

Funding This work was partially supported by NSF grants DBI-1355998, CCF-1302179, CCF-
1514177, and DMS-1547433.

© Ryan A. L. Elworth, Chabrielle Allen, Travis Benedict, Peter Dulworth, and Luay Nakhleh;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.a.leo.elworth@rice.edu
mailto:nakhleh@rice.edu
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 A Test Statistic for General Introgression Detection

A B C
Figure 1 Hybridization and introgression. (Left) A phylogenetic network modeling the

evolutionary history of three species (or, populations) A, B, and C. Species C split from the most
recent common ancestor of A and B, and hybridization between (an ancestor of) C and (an ancestor
of) B occurred. (Right) Due to hybridization and backcrossing, the genome of an individual in
species B is a mosaic with different genomic segments having different genealogies. In particular,
the genealogy of the middle segment involves incomplete lineage sorting.

1 Introduction

Hybridization – the interbreeding of individuals from two “different” species, or populations –
has been recognized as an important evolutionary process underlying genomic diversification
and species adaptation [1, 2, 22, 14, 15, 21, 8, 19, 16, 26]. Immediately upon interbreeding,
each chromosome in the hybrid individual has a single source – the genome of one of the
two parents. However, after multiple generations of backcrossing and recombination, the
genomes of descendants of the hybrid individual turn into mosaics of genomic segments, each
having a genealogy that could potentially differ from that of other segments (Fig. 1). The
integration of genetic material from two different species into the genome of an individual is
called introgression.

The discordance among the genealogies of different genomic segments could be used as
a signal to detect introgression. For example, in the case of Fig. 1, the presence of some
genealogies that place B closer to A than to C and others that place B closer to C than to A
could indicate a potential hybridization event between B and C. However, a complicating
factor in introgression detection is that incomplete lineage sorting, or ILS, could also be
at play in cases where hybridization has occurred. ILS occurs when lineages from related
populations fail to coalesce within the ancestral population, giving rise to the possibility that
some lineages coalesce with others from farther populations. Mathematically, this process is
often modeled by the multispecies coalescent [10, 24, 17, 5].

One class of methods for detecting hybridization and introgression, including in the
presence of ILS, is to infer phylogenetic networks from the data of multiple unlinked loci
sampled across the genomes. Indeed, several methods were introduced recently for this
task [31, 29, 27, 23, 25, 32, 34, 33]. While providing accurate results, these methods are
computationally very demanding.

A different approach is to use the so-called D-statistic [9, 6], which infers the presence of
introgression based on significant deviation from equality between the frequencies of two site
patterns in a 3-taxon (plus an outgroup) data set (details below). More recently, Pease and
Hahn [18] introduced DFOIL, which extends the D-statistic to detect introgression in a 5-taxon
scenario (4 taxa plus an outgroup). The extension from three to four taxa involved a detailed
analysis of site patterns and resulted in a set of statistics that, when combined, would aid in
the detection of introgression. However, as stated, that work of Pease and Hahn extended
the D-statistic from three to four taxa. Both the D-statistic and DFOIL are examples of

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:3

P1 P2 P3 O

A AA AA A

A→B

A→B

A→B

B B A B A B A B B A A A

t

t1 t2
!

P1 P2 P3 O

Figure 2 Illustration of the D-statistic. (Left) The demographic structure of three popu-
lations, P1, P2, and P3, along with an outgroup O, is shown. Patterns of the three parsimony-
informative mutations (A→B) are shown for bi-allelic sites with states A and B, each mapped onto
a different genealogy. The three genealogies give rise to patterns BBAA, BABA, and ABBA for the
four taxa, respectively, when the taxa are listed in the order P1-P2-P3-O. The dark green arrow
indicated gene flow from P3 to P2, which would result in excess of pattern ABBA. (Right) The
phylogenetic network modeling the evolutionary history of the populations in the presence of gene
flow from P3 to P2, where the gene flow is modeled as an instantaneous unidirectional event.

the use of phylogenetic invariants to detect deviation from the expected frequencies of site
patterns under a neutral coalescent model with no gene flow. Similarly, the HyDe software
package [3] implements an invariants-based method for identifying hybridization [13].

A major question is: Can one devise a statistic that is general enough to apply (the
computational complexity issue aside) to data sets with any number of genomes and any set
of postulated hybridization events?

In this paper, we address this question by showing that the phylogenetic invariants
underlying both the D-statistic and DFOIL could be generated automatically by contrasting
gene tree distributions under the null multispecies coalescent [5] and the alternative multis-
pecies network coalescent [30, 31]. Based on this observation, we devise an algorithm that
automatically generates a statistic for detecting introgression in any evolutionary scenario.
It is important to note, though, that as the number of genomes and number of postu-
lated hybridization events increase, computing the statistic becomes computationally very
demanding.

Our method, which we call DGEN, is implemented in the publicly available, open-source
software package ALPHA [7]. We demonstrate the accuracy of the method on simulated
data sets, as well as its applicability to an empirical data set of mosquito genomes.

2 Methods

2.1 The D-statistic
Consider the species tree (((P1,P2),P3),O) in Fig. 2, which shows the evolutionary history
of three species, or populations, P1, P2, and P3, along with an outgroup O. The significance
of an outgroup in this scenario is that for any genomic site, the state that the outgroup has
for that site is assumed to be the ancestral state of all three species P1, P2, and P3. We
denote by A the ancestral state and by B the derived state.

Assuming all lineages from P1, P2, and P3 coalesce before any of them could coalesce with
a lineage from O, there are three possible gene trees topologies, which are shown inside the
branches of the species tree in Fig. 2, and are given by (((P1,P2),P3),O), (((P1,P3),P2),O),
and (((P2,P3),P1),O). The probabilities of these three gene tree topologies when gene flow is

WABI 2018

19:4 A Test Statistic for General Introgression Detection

excluded (but incomplete lineage sorting is accounted for) are, respectively, 1 − (2/3)e−t,
(1/3)e−t, and (1/3)e−t, where t is the length, in coalescent units, of the branch that separates
the splitting of P3 from the ancestor of P1 and P2 [4]. Clearly, the latter two gene tree
topologies (those that are discordant with the species tree) have equal probabilities. Taking
the two patterns BABA and ABBA to correspond to gene trees (((P1,P3),P2),O) and
(((P2,P3),P1),O), then their expected frequencies in the absence of gene flow are equal.

However, when gene flow from P3 to P2 occurs and is modeled as an instantaneous
event with probability γ (γ here is taken to represent the fraction of genomes in P2 that
originated from P3 through gene flow), then the probabilities of the three gene tree topologies
(((P1,P2),P3),O), (((P1,P3),P2),O), and (((P2,P3),P1),O) become, as derived in [28], (1−
γ)(1− (2/3)e−t1) + (1/3)γe−t2 , (1/3)(1− γ)e−t1 + γ(1− (2/3)e−t2), and (1/3)(1− γ)e−t1 +
(1/3)γe−t2 , respectively, where t1 and t2 are the branch lengths, in coalescent units, in the
phylogenetic network of Fig. 2. Now, with gene flow accounted for, when γ 6= 0 (and t2 > 0),
the expected frequencies of the two patterns BABA and ABBA are no longer equal. Thus,
denoting by NX the number of times site pattern X appears in a genomic data set, the
D-statistic was defined as [6]

D = NABBA −NBABA

NABBA +NBABA
, (1)

and the significance of the deviation of D from 0 is assessed. Under no gene flow, we expect
D ≈ 0 (we do not write D = 0 since the counts in Eq. (1) are estimated from actual data and
might not match the theoretical expectations exactly), and in the presence of gene flow, we
expect D to deviate significantly from 0. Furthermore, when D > 0, it indicates introgression
between P2 and P3 (in either or both directions), and when D < 0, it indicates introgression
between P1 and P3.

To extend the D-statistic from the scenario depicted in Fig. 2 to the case of five taxa
(four populations and an outgroup), Pease and Hahn [18] identified sets of site patterns that
are expected to have equal frequencies under a no gene flow scenario but different frequencies
when gene flow occurs. Next we show how to derive a general D-statistic that applies to
a species phylogeny and any set of gene flow events, thus overcoming the need to derive a
specialized D-statistic for individual evolutionary histories.

2.2 Towards the General Case
Let X be a set of taxa X1, X2, . . . , Xn, where Xn is assumed to be an outgroup whose state
A for a given bi-allelic marker is assumed to be the ancestral state. Then, for a given marker,
a site pattern s is a sequence of length n where si (1 ≤ i < n), the state of the site in the
genome of Xi, is either A or B.

Let G be the set of all rooted, binary gene trees on the n taxa X1, . . . , Xn. For a site
pattern s, there might be multiple trees in G that are compatible with s; that is, trees on
which the pattern s could have arisen in the presence of a single mutation (the infinite-sites
assumption). We denote by G(s) the set of all trees in G that are compatible with pattern
s. While the size of G only depends on the number of taxa n, the size of G(s) for a given s
also depends on the number of ancestral versus derived alleles represented in s. For a given
s with n total taxa and β taxa having the derived state (a ’B’ instead of a ’A’ in the site
pattern), the size of G(s) will be the number of rooted, binary trees on β taxa times the
number of rooted, binary trees on n− β + 1 taxa. Given a species phylogeny Ψ, we have

P (s|Ψ) =
∑

g∈G(s)

P (g|Ψ) (2)

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:5

where P (g|Ψ) is the probability mass function (pmf) of [4] when Ψ is a species tree and the
pmf of [28] when Ψ is a phylogenetic network.

Assuming independence among sites, the expected number of occurrences of site pattern
s in a genomic data set given species phylogeny Ψ, denoted by E(n(s)), is given by n ·P (s|Ψ).
Using this notation, a general statistic for detecting introgression proceeds as follows. Let Ψ
be the species tree that corresponds to the evolutionary scenario of no gene flow. Let Ψ′ be
the phylogenetic network that is obtained by adding to Ψ the gene flow events (instantaneous
events represented by horizontal edges) to be tested on Ψ. For example, the phylogenetic
network in Fig. 2 is obtained by adding the gene flow event from P3 to P2. A general
D-statistic, DGEN, is then computed as follows:
1. Let S be the set of all distinct parsimony-informative site patterns.
2. Parameterize Ψ and Ψ′ so that they define probability distributions on gene tree topologies.
3. For every site pattern s ∈ S, compute P (s|Ψ) and P (s|Ψ′).
4. Let Ptree(S) be the partition of set S induced by the equivalence relations {(s1, s2) :

P (s1|Ψ) = P (s2|Ψ)}.
5. Let Pnetwork(S) be the partition of set S induced by the equivalence relations {(s1, s2) :

P (s1|Ψ′) = P (s2|Ψ′)}.
6. Let S′ ⊆ Ptree(S) where Y ∈ S′ if and only if Y 6⊆ Z for any Z ∈ Pnetwork(S). In other

words, Y is an element of S′ if it consists of a set of site patterns that all have equal
probabilities under Ψ but not equal probabilities under Ψ′.

7. Let U = {(TY , BY ,MY) : Y ∈ S′, TY = argmax{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′) and
BY = argmin{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′)} where s is an arbitrary element of Y ∩Z,
and MY = Y − (TY ∪ BY). Put simply, site pattern probabilities that were previously
equal in the tree case become totally ordered in the network case and can be divided into
sets based on their new relation to one another. In other words, as an equivalence class
Y ∈ S′ is refined by the elements of Pnetwork(S), TY and BY are the two subsets of site
patterns in Y with the highest and lowest probabilities, respectively, and MY is the set of
remaining site patterns.

8. DGEN =
(∑

(T,B,M)∈U NT −NB

)
/
(∑

(T,B,M)∈U NT +NB + 2NM

)
where, as above,

NT is the number of times site patterns in T appear in the genomic data set (and similarly
for NB and NM).

9. Similar to [18], calculate the χ2 goodness of fit (df=1) using

χ2 =

 ∑
(T,B,M)∈U

NT −NB

2/ ∑
(T,B,M)∈U

NT +NB + 2NM

 .

Applying this algorithm to the case illustrated in Fig. 2, we have
Ptree(S) = {{BBAA}, {BABA,ABBA}}.
Pnetwork(S) = {{BBAA}, {BABA}, {ABBA}}.
Step (6) returns S′ = {{BABA,ABBA}}.
Step (7) returns U = {({BABA}, {ABBA})} which, indeed, is the D-statistic in the case
of three taxa.

In Step (2) of the algorithm, we parameterize Ψ (and Ψ′) by trying branch lengths
(in coalescent units) in the set of values {0.5, 1.0, 2.0, 4.0} and the set S′ (in Step (6)) is
determined based on the sets of site patterns whose equality does not break across the
different settings of branch lengths. For the inheritance probability, we set it to 0.9.

In Step (7), if for an element (T,B,M) of U , we have |T | 6= |B|, we remove (arbitrarily)
elements from the larger of the two sets to make them of equal size. Here, |T | is distinguished

WABI 2018

19:6 A Test Statistic for General Introgression Detection

from NT as |T | represents how many site patterns are contained in set T (the cardinality of
set T), whereas NT represents the occurrence of the site patterns in T in an actual multiple
sequence alignment.

For the χ2 test, we used a threshold of 0.01 on the p-value to determine significance. That
is, if the p-value is smaller than 0.01 we considered support for introgression to be statistically
significant; otherwise, it is not. Given that our formulation bases its determination of whether
introgression is present or not off of significant deviations of DGEN away from zero, sign
changes are treated equivalently and thus one could equivalently choose to take the absolute
value of DGEN. In our implementation of DGEN we have chosen to leave the sign. More
information on this is given in the discussion section.

Why not contrast the site pattern distribution to the known distribution of gene trees?
One question that might arise is: Why do we not use a χ2 test to compare the two distributions
– the empirical one and the theoretical one; that is,

χ2 =
∑

s

(Ns − ns)2

ns
,

where the sum is taken over all distinct site patterns s, Ns is the observed count of site pattern
s, and ns = n · P (G(s)|Ψ). The problem with this approach is that to compute ns, we need
knowledge of the parameters (branch lengths) of the species phylogeny, which are unknown
in this case. One potential remedy to this limitation is to first estimate the species tree
parameters from the data, say under maximum likelihood, and then use this parameterized
model to compute the ns frequencies. However, it is unknown how the estimated parameters
compare to the (unknown) true values when gene flow had occurred but the assumed topology
in the estimation is a tree. In our solution above, this problem is remedied by not focusing
on the parameter values in an absolute sense, but rather use arbitrary settings to find the
site patterns whose relative frequencies change between a model of no gene flow and another
with gene flow.

3 Results

3.1 Simulations
We first studied the performance of our method on the five-taxon scenario studied in [18] and
given by species tree Ψ1 in Fig. 3. All simulations share the same values for several parameters.
As in [18], we have a constant fixed population size of Ne = 106 and recombination rate of
r = 10−8. We also use a fixed mutation rate of µ = 7× 10−9. In our simulation pipeline, we
first generate gene trees for a 50kbp multiple sequence alignment using ms [11], followed by
simulating the sequences under the Jukes-Cantor model of evolution [12] using seq-gen [20].
In other words, the sequences are evolved under a finite-sites model. The parameter values
were chosen primarily to accomplish the two goals of being similar to relevant past work as
well as being biologically relevant. An example of the full commands for this pipeline, before
adding any reticulations is as follows:

ms 5 1 -t 14000 -T -r 2000 50000 -I 5 1 1 1 1 1 -ej 1.0 2 1 -ej 1.0 4 3
-ej 1.2 3 1 -ej 1.5 5 1 | tail +4 | grep -v // > treefile
seq-gen -mHKY -l 50000 -s .028 -p 50000 < treefile > seqfile

We then added a migration event between P1 and P3 at time 0.5, with varying migration
rates, and calculated our DGEN statistic on the resulting genomic data sets; results are shown

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:7

P1 P2 P3 P4 O

!1

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ●

● ●

0.0

0.2

0.4

0.6

0 0.01 0.05 0.1 0.25 0.5
Migration.Rate

D
.V

al
ue

Figure 3 5-taxon simulation results. (Left) A 5-taxon species tree. The two most recent
divergence events are set at 1.0 coalescent units, the divergence time of the ancestor of all in-group
taxa (P1–P4) is set to 1.2 coalescent units, and the time of the root node is set to 1.5 coalescent
units. A migration event between P1 and P3 at time 0.5 was added to species tree. (Right) Values
of DGEN on data sets with varying migration rates. Each point corresponds to a DGEN value whose
p-value was lower than 0.01 obtained from a different data set simulated under the same settings.
The dark dots correspond to the mean and the lines correspond to 1 standard deviation around the
mean.

in Fig. 3. As the results show, DGEN performs very well at determining the presence of
introgression in data sets. In particular, when the data evolved with no migration (migration
rate 0), the DGEN values hardly deviate from 0, and when the migration rate is non-zero, the
method detects the presence of introgression with a strong deviation from 0. These results
are consistent with the performance of DFOIL [18].

Next, we considered cases beyond that of five taxa (i.e., cases not possible with either the
D-statistic or DFOIL). We conducted simulations that show the effect of migration rate and
time of the migration event on the performance of DGEN, as shown in Fig. 4.

As the results show, the DGEN statistic performs very well at detecting introgression in
this case as well. In particular, as the migration rate increases, so does the accuracy of the
method. For a migration rate of 10−6 or higher, the method detects, with high significance,
the presence of introgression. In the cases of extremely low migration rates (10−7 and 10−8),
the method tends to indicate slight deviation from a no-introgression scenario.

As for varying the time of the migration event, the accuracy of the method is what one
would expect. As the time between the migration event and the divergence event increases
(the time of the migration event decreases), the power to detect introgression is much higher.
That power starts decreasing as the migration event becomes more ancient and, as a result,
less signal is present for its detection.

3.1.1 Multiple Reticulations
The question we set out to investigate next is: Given that the D-statistic is designed to work
under the assumption of a single gene flow event, how does it perform when there is more
than one event? Fig. 5 shows a typical scenario for the D-Statistic, Scenario S1, in which
the standard 4-taxon backbone tree has a single reticulation from P3 to P2.

The following four scenarios add an extra reticulation with a high migration rate. The
effect of adding these reticulations on the value of the D-Statistic are shown in Fig. 6.

As expected, the S1 case yields the best results, followed by the S2 case with a weaker
D value. All other statistic values demonstrate that even in the presence of a significant
migration with introgression from P3 to P2, multiple introgressions can cause that information
to be lost from inference. These results show that it is important to account for multiple

WABI 2018

19:8 A Test Statistic for General Introgression Detection

P1 P2 OP5P4P3

1.5

1.2
1.0
0.9

0.5

(a)

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

0.00

0.25

0.50

1e−08 1e−07 1e−06 1e−05 1e−04 0.001 0.01
Migration.Rate

D.
Va

lu
e

(b)

1e−08 1e−07 1e−06 1e−05 1e−04 0.001 0.01

Migration Rate

N
um

be
r O

f S
ig

ni
fic

an
t D

 V
al

ue
s

0
5

10
15

20

(c)

P1 P2 OP5P4P3

1.5

1.2
1.0
0.9

0.5
0.3
0.1

0.7
0.9

(d)

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0.2

0.3

0.4

0.1 0.3 0.5 0.7 0.9
Migration.Time

D.
Va

lu
e

(e)

0.1 0.3 0.5 0.7 0.9
Migration Time

N
um

be
r O

f S
ig

ni
fic

an
t D

 V
al

ue
s

0
5

10
15

20

(f)

Figure 4 Simulation results on 6-taxon scenarios. (a) The network used for analyzing the
effects of varying migration rate of a reticulation. The results of the corresponding DG values and
the number of data sets where the DGEN values were significant (p-value smaller than 0.01) are
shown in (b) and (c), respectively. (d) The network used for analyzing the effects of varying the
time of the migration event. The results of the corresponding DG values and the number of data
sets where the DGEN values were significant (p-value smaller than 0.01) are shown in (e) and (f),
respectively.

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:9

P1 OP3P2

S1

P1 OP3P2

S2

P1 OP3P2

S3

P1 OP3P2

S4

P1 OP3P2

S5

Figure 5 The standard D-Statistic scenario followed by four scenarios where an additional
reticulation is added. S1 adds the first reticulation which is held constant throughout all scenarios
and has M=0.1. The added reticulations in S2 through S5 have M=0.5.

● ●● ●
●● ● ●●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●●
●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

 S1 S2 S3 S4 S5
Scenario

D
.V

al
ue

Figure 6 D-Statistic values for scenarios with a “hidden" reticulation. The scenarios
S1–S5 are shown in Fig. 5.

reticulations simultaneously, which our DGEN statistic allows for given that by its design it
is not restricted to any specific number of reticulations.

3.1.2 D-Statistic Subsetting
When data sets with more than four taxa are to be analyzed by the D-statistic, a workaround
is to subset the set of taxa into groups of four genomes (one outgroup and three in-group
taxa) and conduct D-statistic analyses on each subset independently. Our method, being
general, allows for analyzing the data set without any subsetting. The question we set out
to investigate here is: Does subsetting and running the D-statistic on individual 4-taxon
subsets equate to running DGEN on the full data set? To answer this question, we considered
the evolutionary scenario of Fig. 7.

In the case of the D-statistic, only two out of the ten simulations recovered a significant
non-zero D value, whereas DGEN inferred significant D values for all runs. This further
demonstrates the need for and significance of a method that works directly on a full data set
and accounting for multiple migration events.

3.2 Analysis Of a Mosquito Genomic Data Set
Finally, we present results from a real biological data set with six taxa. In both [8] and [26],
the evolutionary history of the Anopheles gambiae species complex was found to be reticulate.
Both studies found particularly strong signals of introgression in the 3L chromosome in an
area known as the 3La inversion. This reticulation between Anopheles quadriannulatus (Q)
and Anopheles merus (R) is shown in the network of Fig. 8(a) with the other species of An.
coluzzii (C), An. arabiensis (A), An. melas (L), and An. christyi (O).

WABI 2018

19:10 A Test Statistic for General Introgression Detection

P2 P1 A1 A2P3O

●
●

●

●
●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

 D−Stat Dgen
Statistic

D.
Va

lu
e

Figure 7 The effect of subsetting on the detectability of introgression. (Left) A 6-taxon
evolutionary history with two migration events. (Right) The values of the D-statistic on subsets of
four taxa, and DGEN on the full data set.

OC A Q L R

(a) (b)

Figure 8 DGEN values for the 3L mosquito chromosome. (a) Evolutionary history of six
mosquito genomes. (b) DGEN analysis of the 3L chromosome with window length set to 500kbp and
with a 100kbp offset between windows.

The results from Fig. 8 (b) show that DGEN does recover the introgressed region around
the 3La inversion in comparison to the rest of the 3L chromosome, consistent with previous
studies. Fig. 8(b) is an example of a figure that can be generated directly through the
graphical user interface of the ALPHA toolkit [7] and is presented as generated directly from
ALPHA. The figures output by ALPHA can be run on the full genome or on variable sized
windows with variable sized offsets between windows. Here the window size used was 500kbp
with a 100kbp offset between windows. The software can also vary the significance cutoff
with which to display values as significant (green) or not significant (red). Here a significance
cutoff value of 0.01 was used, as is used throughout the paper.

4 Discussion and Conclusions

In this paper, we extended the popular D-statistic to general cases of evolutionary histories
of any number of taxa and any number and placement of migration events. What enabled
this extension is the observation that the “ABBA-BABA” phylogenetic invariant underlying
the D-statistic can be derived automatically by making use of the probability mass function
of gene tree topologies under the multispecies coalescent and multispecies network coalescent
models.

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:11

Our simulation results show that the new statistic DGEN and method for deriving and
computing it are very powerful for detecting introgression in various settings. In particular,
we demonstrated that hidden migration events could negatively affect the performance of the
D-statistic, which operates under the assumption of a single migration event. Furthermore,
subsetting a data set of more than four taxa into data sets with four taxa is problematic.
Our DGEN statistic addresses these two issues by enabling the analysis of data sets with
more than four taxa and more than a single migration event. While analyses in the style of
the D-statistic make major assumptions, such as assuming the infinite sites model as well as
ignoring dependence between sites, they are resilient to violations in these assumptions. Our
results further support this given that our simulations violate both of these assumptions,
having been performed under the full coalescent with recombination model with a mutation
model allowing for recurrent mutation.

It is important to note that the D-statistic provides values that could be positive or
negative. The sign of these values give an indication on the directionality of the migration in
the case of four taxa. However, in the case of larger data sets, the sign of the DGEN values is
not easily interpretable in terms of directionality. It is also important to note that the actual
D value is not the quantity of interest; rather, it is the statistical significance of its deviation
from 0. There is of course, however, a strong correlation between the two.

As stated above, the method has been implemented in the ALPHA toolkit, which allows
for conducting DGEN analyses on the command-line as well as through a graphical user
interface.

Finally, while we present the DGEN statistic and its computation as a way of analyzing
introgression under general evolutionary scenarios, computational complexity will become
prohibitive for increasingly large, complex data sets. In particular, Step (3) in the algorithm
above for computing DGEN entails computing the probabilities of all gene tree topologies
under a species tree and a phylogenetic network model. This calculation is very demanding,
especially in the case of the phylogenetic network. For example, while generating DGEN
for four or five taxa takes approximately ten and forty seconds, respectively, generating
it for six taxa takes thirteen minutes and for seven taxa thirty-eight hours. Fortunately,
our implementation allows a DGEN statistic to only ever need to be generated once for a
particular evolutionary scenario, as the statistic itself is saved to a file that can be used on all
current and future data sets for that scenario. This process of running a previously generated
statistic on a new data set is, of course, computationally trivial. It will be important future
work, however, to address the computational limits of DGEN when going to arbitrarily large
numbers of taxa.

References

1 M.L. Arnold. Natural Hybridization and Evolution. Oxford U. Press, 1997.
2 N.H. Barton. The role of hybridization in evolution. Molecular Ecology, 10(3):551–568,

2001.
3 P.D. Blischak, J. Chifman, A.D. Wolfe, and L.S. Kubatko. HyDe: a Python package for

genome-scale hybridization detection. Systematic Biology, 2018.
4 J. H. Degnan and L. A. Salter. Gene tree distributions under the coalescent process. Evol-

ution, 59:24–37, 2005.
5 J.H. Degnan and N.A. Rosenberg. Gene tree discordance, phylogenetic inference and the

multispecies coalescent. Trends in Ecology and Evolution, 24(6):332–340, 2009.

WABI 2018

19:12 A Test Statistic for General Introgression Detection

6 Eric Y. Durand, Nick Patterson, David Reich, and Montgomery Slatkin. Testing for an-
cient admixture between closely related populations. Molecular Biology and Evolution,
28(8):2239–2252, 2011.

7 RA Leo Elworth, Chabrielle Allen, Travis Benedict, Peter Dulworth, and Luay Nakhleh.
ALPHA: A toolkit for automated local phylogenomic analyses. Bioinformatics, 1:3, 2018.

8 Michael C Fontaine, James B Pease, Aaron Steele, Robert MWaterhouse, Daniel E Neafsey,
Igor V Sharakhov, Xiaofang Jiang, Andrew B Hall, Flaminia Catteruccia, Evdoxia Kakani,
Sara N. Mitchell, Yi-Chieh Wu, Hilary A. Smith, R. Rebecca Love, Mara K. Lawniczak,
Michel A. Slotman, Scott J. Emrich, Matthew W. Hahn, and Nora J. Besansky. Extensive
introgression in a malaria vector species complex revealed by phylogenomics. Science,
347(6217):1258524, 2015.

9 Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo Stenzel,
Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang Fritz, Nancy F.
Hansen, Eric Y. Durand, Anna-Sapfo Malaspinas, Jeffrey D. Jensen, Tomas Marques-Bonet,
Can Alkan, Kay Prafer, Matthias Meyer, Hern A. Burbano, Jeffrey M. Good, Rigo Schultz,
Ayinuer Aximu-Petri, Anne Butthof, Barbara Hober, Barbara Hoffner, Madlen Siegemund,
Antje Weihmann, Chad Nusbaum, Eric S. Lander, Carsten Russ, Nathaniel Novod, Jason
Affourtit, Michael Egholm, Christine Verna, Pavao Rudan, Dejana Brajkovic, Oeljko Kucan,
Ivan Guic, Vladimir B. Doronichev, Liubov V. Golovanova, Carles Lalueza-Fox, Marco de la
Rasilla, Javier Fortea, Antonio Rosas, Ralf W. Schmitz, Philip L. F. Johnson, Evan E.
Eichler, Daniel Falush, Ewan Birney, James C. Mullikin, Montgomery Slatkin, Rasmus
Nielsen, Janet Kelso, Michael Lachmann, David Reich, and Svante Paabo. A draft sequence
of the Neandertal genome. Science, 328(5979):710–722, 2010.

10 R. R. Hudson. Testing the constant-rate neutral allele model with protein sequence data.
Evolution, 37:203–217, 1983.

11 Richard R Hudson. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337–338, 2002.

12 T. Jukes and C. Cantor. Evolution of protein molecules. In H.N. Munro, editor, Mammalian
Protein Metabolism, pages 21–132. Academic Press, NY, 1969.

13 Laura Kubatko and Julia Chifman. An invariants-based method for efficient identification
of hybrid species from large-scale genomic data. bioRxiv, page 034348, 2015.

14 J. Mallet. Hybridization as an invasion of the genome. TREE, 20(5):229–237, 2005.
15 J. Mallet. Hybrid speciation. Nature, 446:279–283, 2007.
16 J. Mallet, N. Besansky, and M.W. Hahn. How reticulated are species? BioEssays,

38(2):140–149, 2016.
17 P. Pamilo and M. Nei. Relationship between gene trees and species trees. Mol. Bio. Evol.,

5:568–583, 1998.
18 James B Pease and Matthew W Hahn. Detection and polarization of introgression in a

five-taxon phylogeny. Systematic biology, 64(4):651–662, 2015.
19 Fernando Racimo, Sriram Sankararaman, Rasmus Nielsen, and Emilia Huerta-Sánchez.

Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics, 16(6):359–
371, 2015.

20 Andrew Rambaut and Nicholas C Grass. Seq-gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in
the Biosciences, 13(3):235–238, 1997.

21 L. H. Rieseberg. Hybrid origins of plant species. Annual Review of Ecology and Systematics,
28:359–389, 1997.

22 Loren H Rieseberg, Olivier Raymond, David M Rosenthal, Zhao Lai, Kevin Livingstone,
Takuya Nakazato, Jennifer L Durphy, Andrea E Schwarzbach, Lisa A Donovan, and Chris-

R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:13

tian Lexer. Major ecological transitions in wild sunflowers facilitated by hybridization.
Science, 301(5637):1211–1216, 2003.

23 Claudia Solís-Lemus and Cécile Ané. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genet, 12(3):e1005896, 2016.

24 N. Takahata. Gene genealogy in three related populations: Consistency probability between
gene and population trees. Genetics, 122:957–966, 1989.

25 Dingqiao Wen and Luay Nakhleh. Co-estimating reticulate phylogenies and gene trees from
multi-locus sequence data. Systematic Biology, 67(3):439–457, 2018.

26 Dingqiao Wen, Yun Yu, Matthew W Hahn, and Luay Nakhleh. Reticulate evolutionary
history and extensive introgression in mosquito species revealed by phylogenetic network
analysis. Molecular Ecology, 25(11):2361–2372, 2016.

27 Dingqiao Wen, Yun Yu, and Luay Nakhleh. Bayesian inference of reticulate phylogenies
under the multispecies network coalescent. PLoS Genetics, 12(5):e1006006, 2016.

28 Y. Yu, J.H. Degnan, and L. Nakhleh. The probability of a gene tree topology within a phylo-
genetic network with applications to hybridization detection. PLoS Genetics, 8:e1002660,
2012.

29 Y. Yu and L. Nakhleh. A maximum pseudo-likelihood approach for phylogenetic networks.
BMC Genomics, 16:S10, 2015.

30 Yun Yu, James H Degnan, and Luay Nakhleh. The probability of a gene tree topology
within a phylogenetic network with applications to hybridization detection. PLoS Genet,
8(4):e1002660, 2012.

31 Yun Yu, Jianrong Dong, Kevin J Liu, and Luay Nakhleh. Maximum likelihood infer-
ence of reticulate evolutionary histories. Proceedings of the National Academy of Sciences,
111(46):16448–16453, 2014.

32 Chi Zhang, Huw A Ogilvie, Alexei J Drummond, and Tanja Stadler. Bayesian inference of
species networks from multilocus sequence data. Molecular biology and evolution, 35(2):504–
517, 2018.

33 Jiafan Zhu and Luay Nakhleh. Inference of species phylogenies from bi-allelic markers using
pseudo-likelihood. Bioinformatics, 2018. (to appear).

34 Jiafan Zhu, Dingqiao Wen, Yun Yu, Heidi M Meudt, and Luay Nakhleh. Bayesian inference
of phylogenetic networks from bi-allelic genetic markers. PLoS Computational Biology,
14(1):e1005932, 2018.

WABI 2018

PRINCE: Accurate Approximation of the Copy
Number of Tandem Repeats
Mehrdad Mansouri∗

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
mansouri@sfu.ca

Julian Booth∗

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
julius_booth@sfu.ca

Margaryta Vityaz∗

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
rvityaz@sfu.ca

Cedric Chauve
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
cedric_chauve@sfu.ca

Leonid Chindelevitch
School of Computing Science, Simon Fraser University , Burnaby, BC, Canada
leonid_chindelevitch@sfu.ca

Abstract
Variable-Number Tandem Repeats (VNTR) are genomic regions where a short sequence of DNA
is repeated with no space in between repeats. While a fixed set of VNTRs is typically identified
for a given species, the copy number at each VNTR varies between individuals within a species.
Although VNTRs are found in both prokaryotic and eukaryotic genomes, the methodology called
multi-locus VNTR analysis (MLVA) is widely used to distinguish different strains of bacteria, as
well as cluster strains that might be epidemiologically related and investigate evolutionary rates.

We propose PRINCE (Processing Reads to Infer the Number of Copies via Estimation), an
algorithm that is able to accurately estimate the copy number of a VNTR given the sequence of
a single repeat unit and a set of short reads from a whole-genome sequence (WGS) experiment.
This is a challenging problem, especially in the cases when the repeat region is longer than the
expected read length. Our proposed method computes a statistical approximation of the local
coverage inside the repeat region. This approximation is then mapped to the copy number using
a linear function whose parameters are fitted to simulated data. We test PRINCE on the genomes
of three datasets of Mycobacterium tuberculosis strains and show that it is more than twice as
accurate as a previous method.

An implementation of PRINCE in the Python language is freely available at https://github.
com/WGS-TB/PythonPRINCE.

2012 ACM Subject Classification Applied computing → Molecular sequence analysis

Keywords and phrases Variable-Number Tandem Repeats, Copy number, Bacterial genomics

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.20

∗ indicates equal contribution

© Mehrdad Mansouri, Julian Booth, Margaryta Vityaz, Cedric Chauve, and Leonid Chindelevitch;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mansouri@sfu.ca
mailto:julius_booth@sfu.ca
mailto:rvityaz@sfu.ca
mailto:cedric_chauve@sfu.ca
mailto:leonid_chindelevitch@sfu.ca
https://github.com/WGS-TB/PythonPRINCE
https://github.com/WGS-TB/PythonPRINCE
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 PRINCE for Tandem Repeat Copy Numbers

Funding CC and LC are funded by NSERC Discovery grants and a CIHR/Genome Canada
Bioinformatics/Computational Biology grant. LC is funded by a Sloan Foundation Fellowship.

Acknowledgements The authors would like to thank Ted Cohen and Vineet Bafna for helpful
discussion and Jennifer Gardy and Jennifer Guthrie for providing assistance with the data used
in our analysis.

1 Introduction

Variable number tandem repeats (VNTRs) are genomic locations where identical or highly
similar sequences of DNA are repeated in tandem (i.e. with no spaces in between repeats).
One reason for the importance of VNTRs in bacterial genomics is their use in the identification
of related bacterial strains [2, 29]. For instance, 24 VNTR loci are used for Mycobacterium
tuberculosis typing because of their reproducible nature and highly discriminatory typing
results [30]. Related bacterial strains will typically have similar or identical copy numbers
(CNs) at these loci, a feature used to identify clusters of potentially related strains in the
molecular epidemiology of infectious diseases [20, 19]. In addition, the study of VNTR data
has been used to glean information about bacterial lineage and pathogenicity [23].

The prediction of CNs for targeted VNTR regions from whole-genome sequencing (WGS)
is a well-recognized problem, that needs to be solved in order to relate bacterial strains
sequenced using WGS to those genotyped in the past with PCR-based methods [17]. Unlike
the previously solved problem of reconstructing spoligotypes [5], this problem presents specific
challenges. The difficulty arises from the fact that in many instances, the reads produced
by WGS are too short to cover the entire repeat region [13]. Instead, they only cover small
sections of the repeats and cannot be assembled to reconstruct the entire, multi-copy, VNTR
region [27], preventing the direct resolution of CNs. However, reads generated from the
VNTR region are likely to result in an apparent higher depth of coverage of the repeated
pattern compared to the average depth of coverage for the rest of the genome, a signal that
can be leveraged to predict the CN.

In theory, the “coverage depth ratio” (CDR) between the repeated pattern and the rest of
the genome should be roughly equal to the CN of the VNTR region. However, several factors
complicate matters. Repeat sequences can be similar to other regions within the genome,
so a subsequence of a repeat sequence can appear in unrelated parts of the genome. What
makes things even more challenging is that the repeated sequences may share subsequences
with one another. As a result, the CDR between repeat and non-repeat regions can be highly
influenced by similar, but unrelated, regions, biasing it toward higher values. Additionally,
read errors and single-nucleotide polymorphisms (SNPs) between the sample and the reference
repeated sequence can cause reads to not be identified as belonging to the VNTR region,
biasing this ratio toward lower values.

There are three types of tandem repeats, which differ according to the length of the
sequence being repeated [31], which we refer to as the template for the tandem repeat. The
first one is short tandem repeats (STRs) or microsatellites, whose templates range between
1 and 6 base pairs. The second one, the focus of this paper, is VNTRs or minisatellites,
whose templates are typically between 10 and 100 base pairs. The third type of repeat, copy
number variations (CNVs), involves large templates of size 1000 base pairs and above.

There are a number of methods that work with microsatellites. These methods typically
rely on the tandem repeat to be fully contained within the read or paired-end reads, and
are therefore limited by their length. Examples of such methods include lobSTR [15] and

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:3

HipSTR [33]. In addition, a number of tools, such as STRViper [4] and STRait Razor [34],
focus on identifying repeat templates, rather than predicting the CN for a given template.

A wide range of algorithms has also been developed for CNVs. They generally fall into
five categories: paired-end mapping, split read, read depth, de novo assembly of a genome,
and combination of the above approaches. Read depth based methods are typically used
for CNV detection, and the rest are typically used for CNV identification [36]. Read depth
methods typically rely on dividing the genome into windows of at least 100 base pairs [35].
However, this cannot provide enough resolution for VNTRs, whose templates typically have
a length smaller than 100 base pairs. Another issue is that these methods tend to pre-train
their model on the human genome, and are not directly applicable to bacterial genomes
[35, 1].

Relatively few methods have been developed to address the problem of predicting CNs of
minisatellites (VNTRs) from WGS data. To the best of our knowledge, there are only two
such methods that are broadly applicable: CNVeM [32] and ExpansionHunter [7]. CNVem
uses a probabilistic model that utilizes the inherent uncertainty of read mapping and uses
maximum likelihood to estimate locations and copy numbers. ExpansionHunter is designed
to work with PCR-free WGS short-read data. It distinguishes three categories of reads:
spanning, flanking and in-repeat reads in a BAM file and used basic statistical techniques
to estimate the copy number from them. Unfortunately, we were not able to successfully
apply CNVeM to our data, and thus report on the results of comparing our method to
ExpansionHunter in this paper.

Three other existing methods work in a similar context to ours and are worth mention-
ing. The first one of these methods, TGS-TB [28], was specifically developed to work for
Mycobacterium tuberculosis, the organism which we use as the pilot application in our work.
However, it requires a minimum read length of at least 300 base pairs, which exceeds the
most commonly used short read technologies, and is not applicable to our data. The second
one, adVNTR [3], is based on a Hidden Markov model (HMM) trained on the human genome.
This method is not directly comparable to ours as it uses not only the template sequence,
but also information about the region flanking each VNTR. The final one, VNTRseek [12],
is designed for detecting VNTRs, not predicting the CNs of VNTRs with known templates.

In this paper we propose a method called PRINCE (Processing Reads to Infer the Number
of Copies Exactly), which successfully addresses the challenges of determining CNs for VNTR
in bacterial genomes. PRINCE accomplishes the goal of VNTR CN estimation by training
a model using reads simulated from a reference genome with computationally “spiked-in”
VNTRs that have known copy numbers. For each template, the prediction takes place in
two stages, the first of which is independent of the considered reference genome and depends
only on the template while the second one is reference-dependent. In the first stage, reads
are recruited in a computationally efficient manner by finding exact k-mer matches to the
template within the reads. The recruited reads are then compared to the template to compute
an overall matching score based on coverage and sequence features. In the second stage,
PRINCE fits the dependency of the known CNs on the matching score using linear regression.
For an input consisting of previously unseen WGS data, the reads are recruited in the same
way and the CNs are calculated from the resulting match score using the fitted parameters.

We have tested PRINCE on two datasets consisting of M. tuberculosis genome reads
(135 samples in total) as well as a simulated dataset. We show that the CNs estimated by
PRINCE are consistently closer to the true CNs than the ones predicted by ExpansionHunter,
and that the estimation remains robust for a range of coverages, read qualities and copy
numbers. PRINCE is freely available at https://github.com/WGS-TB/PythonPRINCE.

WABI 2018

https://github.com/WGS-TB/PythonPRINCE

20:4 PRINCE for Tandem Repeat Copy Numbers

2 Methods

2.1 Problem Description

The objective of PRINCE is to find the CNs within VNTRs in a genome exclusively from
a set of short reads, a set of templates (one per VNTR), and a reference genome. In this
section we define the relevant terminology.
Definition 1: A template is the repeat unit of a VNTR, sometimes also referred to as the

pattern of a VNTR. We define T as the set of templates, i.e. T := {ti}m
i=1, where ti is

the i-th template and m is the number of templates.
Definition 2: The copy number ci is the number of times a template ti is repeated in tandem

in a genome G, possibly with errors. We define c as the vector of the ci’s corresponding
to each ti in T , and write c := [c1, . . . , cm].

Definition 3: The match score si is a proxy for the copy number of a template computed by
PRINCE. We define s as the vector of match scores corresponding to each ti in T , and
write s := [s1, . . . , sm].

Definition 4: A read rj is a subsequence of length L of a genome G, possibly corrupted by
sequencing errors. We define R as the set of reads, i.e. R := {rj}n

j=1, where n is the
number of reads.

Given an assembled reference genome Gr for training and the template set T , PRINCE infers
the parameters of a linear model for predicting copy numbers of the templates in the set
T . Using this model, given an input of a set of reads R from a genome G 6= Gr, PRINCE
estimates the copy number vector c, i.e. the number of times ci that the i-th template ti ∈ T

is repeated in tandem in the genome G, for each of the VNTRs.

2.2 Overview

PRINCE can be thought of as the function composition g(f(R)). Let R represent the domain
of read sets, S represent the domain of match score vectors and C represent the domain of
copy number vectors. Then

f : R → S

g : S → C

A different gi is fitted to each ti and is dependent of the reference genome G, whereas f is a
recruitment and scoring algorithm that works in the same way for all the templates and is
independent of the reference genome G. The process PRINCE uses is shown in Figure 1.

2.3 Parameter Fitting and Copy Number Prediction

PRINCE’s g function is fitted using simulated reads, generated from the given reference
genome G. This is done to account for all possible copy numbers. Using a range of copy
numbers at each VNTR allows PRINCE to uncover the true relationship between match
score and copy number. The relationship is assumed to be linear, which follows from the
assumption that the depth of coverage is approximately uniform throughout the genome.

We generated artificial genomes by removing the VNTR regions in assembled genomes
and inserting varying but known numbers of copies of each template back into the genome.
Simulated reads were generated from these artificial genomes using the ART software [16].

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:5

Figure 1 Flowchart of PRINCE. a. Reads are divided into mini-reads and low-quality mini-reads
are discarded. b. Reads are compared against templates in two stages and match scores are computed.
c. PRINCE uses the match scores to estimate copy numbers via a linear regression model.

From these artificial genome reads, PRINCE computes a vector of match scores s = f(r),
as is described in the next section. PRINCE fits the linear function

gi(si) = ai · si − bi = ci

for each template using a linear regression [10], and uses this function to estimate copy
numbers. By fitting the coverage depth ratio ai, PRINCE becomes more robust to template-
specific coverage biases such as PCR bias or substitution errors, which can be influenced by
template length [8, 26]. PRINCE also accounts for the presence of homologous short sequences
that may be erroneously added to si during read recruitment by fitting the constant bi to
be subtracted. This assumes that the erroneously recruited reads are from stable genomic
regions, an assumption that appears to hold given our results.

The parameters used in PRINCE by default come from two sets of simulated reads
generated from 40 artificial Mycobacterium tuberculosis genomes each, made from 8 real
assembled genomes [25, 22] that had 1 to 5 copies of each template ti inserted, for a total of
80 sample points. The template set T we use is the standard 24-locus MIRU-VNTR [29, 30].

2.4 Read Recruitment and Match Score Computation
In order to determine whether a read comes from a given template, we compare one to
the other. This can be a computationally expensive task. To overcome this, PRINCE
divides each read into its k-splits (non-overlapping k-mers), which are defined as consecutive

WABI 2018

20:6 PRINCE for Tandem Repeat Copy Numbers

non-overlapping substrings of length k. Here we use k = 25 as most commonly used read
lengths are divisible by 25. We call each of the k-splits a “mini-read”. In the first step,
PRINCE discards low quality mini-reads, as measured by the average Phred score [9]. We
use a previously suggested minimum quality threshold of 20 [18].

PRINCE then performs a k-mer matching step. In this step all the k-mers of a mini-read,
as well as its reverse complement (to allow for paired-end data), are compared to the unique
k-mers of the template concatenated with itself (to allow for mini-reads that fall on the
boundary between two copies) using a hash table. For this step, we use the smaller value
k = 9, chosen via calibration. To ensure that the mini-read almost certainly comes from the
VNTR region, only those reads with all k-mers matching a template k-mer (as determined
via the hash table) are recruited.

The fraction of mini-reads that are recruited for template ti out of all the ones that
survive the quality filtering step gives the match score si. The normalization by the number
of surviving mini-reads ensures that all the read sets from the same genome have the same
expected match score for the same VNTR, no matter what the read length or depth of
coverage is.

2.5 Simulated Data Generation

We generated a simulated dataset for testing PRINCE. 18 sets of reads were generated from 3
fully assembled genomes (Beijing-391, Beijing-like-1104, Beijing-like-35049) [25] of 6 different
kinds using ART: HiSeq 2500 profile with read length of 50bp, 100bp and 150bp, HiSeqX
PCR free with read length of 150 bp, and MiSeq v3 with read lengths of 200bp and 250bp.

3 Results

We have evaluated our method on three different datasets: the BC dataset (accession numbers
are in Table 1 of the Supplementary Materials), the Beijing dataset, and a simulated dataset.
Each one enabled us to explore the performance of our method under various conditions.

The BC dataset is a subset of the dataset collected in British Columbia from 2005 to
2014 [14], and contains 5 sets of high quality, high coverage WGS reads, each one containing
5 Mycobacterium tuberculosis samples sharing the same MIRU-VNTR pattern. This dataset
allowed us to test PRINCE under optimal conditions. The Beijing dataset [21] contains 110
genomes belonging to the Beijing lineage of Mycobacterium tuberculosis, with variable quality
and coverage, allowing us to explore their effects on performance. The copy numbers for these
datasets were established using standard experimental protocols for VNTR copy number
prediction [11] which are known to occasionally have errors. According to one study, when
done with a commercial kit, they have 88% reproducibility, and have lower reproducibility
when done using other methods [6]. According to another study, some loci (templates) are
more reproducible than others: reproducibility agreement rates are 98.9% and 91.3% for
standard and hypervariable loci, respectively [24].

The reason for introducing the simulated dataset is to be able to verify the method on a
dataset with known copy numbers (ground truth). We have attempted to compare PRINCE
to ExpansionHunter and CNVeM. Unfortunately, we were unable to use CNVeM as we could
not successfully compile its source code. ExpansionHunter was designed to work for diploid
organisms, and outputs two estimates and their confidence intervals. In order to correctly
interpret the results, we used the median of the widest confidence interval, as suggested by
the authors of ExpansionHunter.

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:7

3.1 Performance
We expected PRINCE to perform better on simulated reads than on real reads as it was
trained on reads produced by ART. Indeed, PRINCE had a mean absolute error (MAE) of
0.57 over all 24 VNTR regions and 18 simulated genomes, but the MAE increased to 0.80
for both the BC and Beijing datasets, which is somewhat worse than the simulated data.
The drop in performance is likely due to dissimilarities between the simulated training data
and the real datasets, due to factors that may include a higher presence of read errors and
varying coverage in the real data. Fortunately, PRINCE accounts for differences in input
in its match score. We tested how well it adapts to variability in the input on the Beijing
dataset, which had the most variation in coverage and read quality.

There was no change in PRINCE’s performance across different coverages (R2 = 0.002)
(Fig. 3). We expect that performance might sharply decline at excessively low coverages as
the variance of depth along the genome becomes more significant. However, for all reasonable
coverages PRINCE’s performance remains consistent.

PRINCE performed well on lower quality datasets (Fig. 4). However there was a slight
increase in MAE as read quality diminished (R2 = 0.128). We measured dataset quality by
measuring the average Phred score per nucleotide.

PRINCE was trained on copy numbers between 1 and 5. Some real datasets have VNTR
regions with copy numbers above 10. We wanted to know how well PRINCE can extrapolate
to higher copy numbers. We simulated 27 datasets using ART from genomes with copy
number insertions ranging from 1 to 90 (Fig. 5). PRINCE exhibits a linear increase in MAE
as copy number increases. However, PRINCE still has an MAE under 1 for copy numbers
below 15. No VNTR in any genome from the two real datasets we used had a VNTR region
with a copy number above 12. PRINCE may perform worse on higher copy numbers because
gi is trained on small copy numbers. Errors in the fitted parameter ai are magnified as si

increases, like when the number of copies increases. Although we only chose to train PRINCE
with copy numbers from 1 to 5, PRINCE still performed well on the copy numbers seen in
our testing datasets. PRINCE can be trained with arbitrarily high copy numbers, as long as
the length of the repeat region does not become significant relative to the genome length
and affect the depth of coverage calculation. Training PRINCE with high copy number data
may be necessary when estimating high copy number VNTR regions.

3.2 Comparison with ExpansionHunter
PRINCE outperforms ExpansionHunter on all three datasets. ExpansionHunter had an
MAE of 1.80 for the simulated dataset and 1.62 and 2.07 for the BC and Beijing datasets
respectively, an error over twice that of PRINCE in each case. ExpansionHunter performs
particularly poorly on the Beijing dataset, most likely due to the variable read quality.

We performed a per-template comparison with ExpansionHunter on our three datasets.
PRINCE greatly outperforms ExpansionHunter on most templates, with a few exceptions.

More specifically, PRINCE performs worse than ExpansionHunter on locus 2163b on the
BC dataset (Fig. 2a). However, PRINCE performs relatively well on 2163b in the Beijing
dataset (PRINCE : 1.15, ExpansionHunter : 3.70) (Fig. 2b). The true values for these
datasets were determined using traditional typing methods. Each locus is PCR-amplified
using primers that align to the flanking regions of the VNTR, the resulting PCR products
are then measured by standard gel electrophoresis and a copy number is inferred based on its
size [11]. The insertion of DNA between VNTR flanking regions that does not resemble the
template may cause some true values to be mislabelled. The average true value for 2163b in

WABI 2018

20:8 PRINCE for Tandem Repeat Copy Numbers

(a) BC

(b) Beijing

(c) Simulated

Figure 2 MAE for PRINCE and ExpansionHunter for BC, Beijing and simulated datasets.

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:9

Figure 3 MAE as a function of coverage over the Beijing dataset.

Figure 4 MAE as a function of Phred score over the Beijing dataset.

the Beijing dataset was 5.51 compared to 3.00 in the BC dataset. The poor performance of
PRINCE on 2163b might be due to incorrectly labeled true values. The poor performance
seen on loci 2163b, 2531 and 2996 in the simulated dataset (Fig. 2c), is more curious, as
the reads come from assembled genomes. This may be due to using only three samples.
Additionally, the three loci have the highest average copy number of all templates in the
simulated genomes, at 8.66, 5 and 7 copies respectively. Again, training PRINCE with higher
copy numbers may improve performance on these loci.

WABI 2018

20:10 PRINCE for Tandem Repeat Copy Numbers

Figure 5 MAE as a function of copy number over the simulated dataset. Note that the relative
error remains relatively constant over the full range of copy numbers explored.

3.3 Running Time
With Illumina paired-end WGS data at 50x coverage, PRINCE takes an average of 156
seconds per genome to query. Training takes the same amount of time per genome; however,
training may use hundreds of genomes. PRINCE allows for each genome to be processed in
parallel, and we were able to train PRINCE using 80 genomes in under 5 minutes.

4 Conclusion

PRINCE provides an accurate estimation of the CN within a VNTR region. PRINCE fits
a linear regression to the relationship between CN and the estimated depth of coverage at
each loci using simulated data. We provide an example of how it could be used to estimate
the copy numbers for Mycobacterium tuberculosis genomes, where these values could be used
to compare bacteria sequenced with WGS technology to those interrogated only at their
VNTR loci. In the past, this could only be done with an experimental technique specialized
for tandem repeat amplification, rather than computationally from WGS data.

As input, in addition to a reference genome PRINCE only requires a set of reads and a
set of templates. Unlike the method described in TGS-TB [28] that computes copy numbers
exclusively for Mycobacterium tuberculosis, and requires reads of a minimum length of 300
base pairs and computes the copy number exclusively for predefined templates. PRINCE
can be trained on any bacterial genome, can work with very short reads, and can use any set
of templates.

Our work presents the first software tool that is designed to accurately infer copy numbers
of VNTR templates directly from WGS data for any bacterial species. We believe that this
will open the door to a comparison between historical isolates and modern-day ones, and
facilitate the extraction of novel insights on the epidemiology and transmission patterns of
important bacterial pathogens such as Mycobacterium tuberculosis, which we use here as an
illustrative example.

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:11

References

1 A Abyzov, A E Urban, M Snyder, and M Gerstein. CNVnator: an approach to discover,
genotype, and characterize typical and atypical CNVs from family and population genome
sequencing. Genome Research, 21(6):974–984, 2011.

2 Lindstedt B. Multiple-locus variable number tandem repeats analysis for genetic finger-
printing of pathogenic bacteria. Electrophoresis, 26(13):2567–2582, 2005.

3 M Bakhtiari, S Shleizer-Burko, M Gymrek, V Bansal, and V Bafna. Targeted genotyping
of variable number tandem repeats with adVNTR. bioRxiv, 2017.

4 MD Cao, E Tasker, K Willadsen, M Imelfort, S Vishwanathan, et al. Inferring short tandem
repeat variation from paired-end short reads. Nucleic Acids Research, 42(3):e16–e16, 2013.

5 F Coll, K Mallard, MD Preston, S Bentley, J Parkhill, et al. SpolPred: rapid and accur-
ate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences.
Bioinformatics, 28(22):2991–2993, 2012.

6 JL De Beer, K Kremer, C Ködmön, P Supply, D Van Soolingen, Global Network for
the Molecular Surveillance of Tuberculosis 2009, et al. First worldwide proficiency study
on variable-number tandem-repeat typing of Mycobacterium tuberculosis complex strains.
Journal of Clinical Microbiology, 50(3):662–669, 2012.

7 E Dolzhenko, JJFA van Vugt, RJ Shaw, MA Bekritsky, M van Blitterswijk, et al. Detection
of long repeat expansions from PCR-free whole-genome sequence data. Genome Research,
27(11):1895–1903, 2017.

8 M Escalona, S Rocha, and D Posada. A comparison of tools for the simulation of genomic
next-generation sequencing data. Nature Reviews Genetics, 17(8):459, 2016.

9 B Ewing, L Hillier, MC Wendl, and P Green. Base-calling of automated sequencer traces
using Phred. I. Accuracy assessment. Genome Research, 8(3):175–185, 1998.

10 J Friedman, T Hastie, and R Tibshirani. The Elements of Statistical Learning, volume 1.
Springer Series in Statistics New York, 2001.

11 R Frothingham and WA Meeker-O’Connell. Genetic diversity in the Mycobacterium
tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology,
144(5):1189–1196, 1998.

12 Y Gelfand, Y Hernandez, J Loving, and G Benson. VNTRseek - a computational tool to
detect tandem repeat variants in high-throughput sequencing data. Nucleic Acids Research,
42(14):8884–8894, 2014.

13 S Goodwin, JD McPherson, and WR McCombie. Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351, 2016.

14 JL Guthrie, C Kong, D Roth, D Jorgensen, M Rodrigues, et al. Molecular epidemiology of
tuberculosis in British Columbia, Canada–a 10-year retrospective study. Clinical Infectious
Diseases, 2017.

15 M Gymrek, D Golan, S Rosset, and Y Erlich. lobSTR: a short tandem repeat profiler for
personal genomes. Genome Research, 22(6):1154–1162, 2012.

16 W Huang, L Li, JR Myers, and GT Marth. ART: a next-generation sequencing read
simulator. Bioinformatics, 28(4):593–594, 2012.

17 T Jagielski, J van Ingen, N Rastogi, J Dziadek, PK Mazur, and J Bielecki. Current methods
in the molecular typing of Mycobacterium tuberculosis and other mycobacteria. BioMed
Research International, 2014(645802), 2014.

18 P Liao, GA Satten, and Y Hu. PhredEM: a Phred-score-informed genotype-calling approach
for next-generation sequencing studies. Genetic Epidemiology, 41(5):375–387, 2017.

19 B Mathema, NE Kurepina, PJ Bifani, and BN Kreiswirth. Molecular epidemiology of
Tuberculosis: Current Insights. Clinical Microbiology Reviews, 19(4):658–685, 2006.

WABI 2018

20:12 PRINCE for Tandem Repeat Copy Numbers

20 CJ Meehan, P Moris, TA Kohl, J Pečerska, S Akter, et al. The relationship between trans-
mission time and clustering methods in Mycobacterium tuberculosis epidemiology. bioRxiv,
2018.

21 M Merker, C Blin, S Mona, N Duforet-Frebourg, S Lecher, et al. Evolutionary history
and global spread of the Mycobacterium tuberculosis Beijing lineage. Nature Genetics,
47(3):242–249, 2015.

22 T Miyoshi-Akiyama, K Satou, M Kato, A Shiroma, K Matsumura, et al. Complete an-
notated genome sequence of Mycobacterium tuberculosis (Zopf) Lehmann and Neumann
(ATCC35812)(Kurono). Tuberculosis, 95(1):37–39, 2015.

23 CA Nadon, E Trees, LK Ng, E Møller Nielsen, A Reimer, et al. Development and application
of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveillance, 18(35),
2013.

24 V Nikolayevskyy, A Trovato, A Broda, E Borroni, D Cirillo, and F Drobniewski. MIRU-
VNTR genotyping of Mycobacterium tuberculosis strains using QIAxcel technology: A mul-
ticentre evaluation study. PLoS One, 11(3):e0149435, 2016.

25 JG Rodríguez, C Pino, A Tauch, and MI Murcia. Complete genome sequence of the clinical
Beijing-like strain Mycobacterium tuberculosis 323 using the PacBio real-time sequencing
platform. Genome Announcements, 3(2):e00371–15, 2015.

26 MG Ross, C Russ, M Costello, A Hollinger, NJ Lennon, et al. Characterizing and measuring
bias in sequence data. Genome Biology, 14(5):R51, 2013.

27 SL Salzberg and JA Yorke. Beware of mis-assembled genomes. Bioinformatics, 21(24):4320–
4321, 2005.

28 T Sekizuka, A Yamashita, Y Murase, T Iwamoto, S Mitarai, S Kato, and M Kuroda. TGS-
TB: Total genotyping solution for Mycobacterium tuberculosis Using Short-Read Whole-
Genome Sequencing. PLoS One, 10(11):e0142951, 2015.

29 P Supply. Multilocus Variable Number Tandem Repeat genotyping of Mycobacterium
tuberculosis. Technical report, Institut de Biologie/Institut Pasteur de Lille, 2005.

30 P Supply, C Allix, S Lesjean, M Cardoso-Oelemann, S Rüsch-Gerdes, et al. Proposal for
standardization of optimized mycobacterial interspersed repetitive unit-variable-number
tandem repeat typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology,
44(12):4498–4510, 2006.

31 DWUssery, TMWassenaar, and S Borini. Computing for Comparative Microbial Genomics:
Bioinformatics for Microbiologists, volume 8 of Computational Biology. Springer, 2009.

32 ZWang, F Hormozdiari, W Yang, E Halperin, and E Eskin. CNVeM: copy number variation
detection using uncertainty of read mapping. Journal of Computational Biology, 20(3):224–
236, 2013.

33 T Willems, D Zielinski, J Yuan, A Gordon, M Gymrek, and Y Erlich. Genome-wide
profiling of heritable and de novo STR variations. Nature Methods, 14(6):590, 2017.

34 AE Woerner, JL King, and B Budowle. Fast STR allele identification with STRait Razor
3.0. Forensic Science International: Genetics, 30:18–23, 2017.

35 S Yoon, Z Xuan, V Makarov, K Ye, and J Sebat. Sensitive and accurate detection of copy
number variants using read depth of coverage. Genome Research, 19(9):1586–1592, 2009.

36 M Zhao, Q Wang, Q Wang, P Jia, and Z Zhao. Computational tools for copy number vari-
ation (CNV) detection using next-generation sequencing data: features and perspectives.
BMC Bioinformatics, 14(11):S1, 2013.

M. Mansouri, J. Booth, M. Vityaz, C. Chauve, and L. Chindelevitch 20:13

Supplementary Materials

Table 1 SRA accession numbers for the BC data and the corresponding 24 MIRU-VNTR patterns.

SRS2774518 ERS1062942 SRS2774801 SRS2774445 SRS2774521 224325153323444234423373
SRS2774727 SRS2774503 SRS2774647 SRS2774692 SRS2774726 234315153323441444223352
SRS2774500 SRS2774680 SRS2774388 SRS2774715 SRS2774747 223325163533245544423382
SRS2774536 SRS2577355 SRS2774746 SRS2774387 SRS2774426 228225113221343244423383
SRS2577413 SRS2577389 SRS2577020 SRS2577272 SRS2577201 225425173533524244223384

WABI 2018

Degenerate String Comparison and Applications
Mai Alzamel
Department of Informatics, King’s College London, UK and Department of Computer Science,
King Saud University, KSA
mai.alzamel@kcl.ac.uk

Lorraine A. K. Ayad
Department of Informatics, King’s College London, UK
lorraine.ayad@kcl.ac.uk

Giulia Bernardini1

Department of Informatics, Systems and Communication (DISCo), University of Milan-Bicocca,
Italy
giulia.bernardini@unimib.it

Roberto Grossi2

Department of Computer Science, University of Pisa, Italy and ERABLE Team, INRIA, France
grossi@di.unipi.it

Costas S. Iliopoulos
Department of Informatics, King’s College London, UK
costas.iliopoulos@kcl.ac.uk

Nadia Pisanti3

Department of Computer Science, University of Pisa, Italy and ERABLE Team, INRIA, France
pisanti@di.unipi.it

Solon P. Pissis4

Department of Informatics, King’s College London, UK
solon.pissis@kcl.ac.uk

Giovanna Rosone5

Department of Computer Science, University of Pisa, Italy
giovanna.rosone@unipi.it

Abstract
A generalised degenerate string (GD string) Ŝ is a sequence of n sets of strings of total size N ,
where the ith set contains strings of the same length ki but this length can vary between different
sets. We denote the sum of these lengths k0, k1, . . . , kn−1 by W . This type of uncertain sequence
can represent, for example, a gapless multiple sequence alignment of width W in a compact form.
Our first result in this paper is an O(N+M)-time algorithm for deciding whether the intersection

1 Partially supported by the project UNIPI PRA_2017_44 “Advanced computational methodologies for
the analysis of biomedical data”.

2 Partially supported by the project UNIPI PRA_2017_44 “Advanced computational methodologies for
the analysis of biomedical data”.

3 Partially supported by the project MIUR-SIR CMACBioSeq “Combinatorial methods for analysis and
compression of biological sequences” grant n. RBSI146R5L and the project UNIPI PRA_2017_44
“Advanced computational methodologies for the analysis of biomedical data”.

4 Partially supported by the Royal Society project IE 161274 “Processing uncertain sequences: combinat-
orics and applications”.

5 Partially supported by the project MIUR-SIR CMACBioSeq “Combinatorial methods for analysis
and compression of biological sequences” grant n. RBSI146R5L, the Royal Society project IE 161274
“Processing uncertain sequences: combinatorics and applications”, and the project UNIPI PRA_2017_44
“Advanced computational methodologies for the analysis of biomedical data”.

© Mai Alzamel, Lorraine A.K Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos,
Nadia Pisanti, Solon P. Pissis and Giovanna Rosone;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mai.alzamel@kcl.ac.uk
mailto:lorraine.ayad@kcl.ac.uk
mailto:giulia.bernardini@unimib.it
mailto:grossi@di.unipi.it
mailto:costas.iliopoulos@kcl.ac.uk
mailto:pisanti@di.unipi.it
mailto:solon.pissis@kcl.ac.uk
mailto:giovanna.rosone@unipi.it
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Degenerate String Comparison and Applications

of two GD strings of total sizes N and M , respectively, over an integer alphabet, is non-empty.
This result is based on a combinatorial result of independent interest: although the intersection
of two GD strings can be exponential in the total size of the two strings, it can be represented in
only linear space. A similar result can be obtained by employing an automata-based approach
but its cost is alphabet-dependent. We then apply our string comparison algorithm to compute
palindromes in GD strings. We present an O(min{W,n2}N)-time algorithm for computing all
palindromes in Ŝ. Furthermore, we show a similar conditional lower bound for computing max-
imal palindromes in Ŝ. Finally, proof-of-concept experimental results are presented using real
protein datasets.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases degenerate strings, generalised degenerate strings, elastic-degenerate
strings, string comparison, palindromes

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.21

1 Introduction

A degenerate string (or indeterminate string) over an alphabet Σ is a sequence of subsets of
Σ. A great deal of research has been conducted on degenerate strings (see [1, 11, 20, 29, 32]
and references therein). These types of uncertain sequences have been used extensively for
flexible modelling of DNA sequences known as IUPAC-encoded DNA sequences [23].

In [19], the authors introduced a more general definition of degenerate strings: an elastic-
degenerate string (ED string) S̃ over Σ is a sequence of subsets of Σ∗ (see also network
expressions [28]) with the aim of representing multiple genomic sequences [10]. That is, any
set of S̃ does not contain, in general, only letters; a set may also contain strings, including the
empty string. In a few recent papers on this notion, the authors provided several algorithms
for pattern matching; specifically, for finding all exact [17] and approximate [8] occurrences
of a standard string pattern in an ED text.

We introduce here another special type of uncertain sequence called generalised degenerate
string; this can be viewed as an extension of degenerate strings or as a restricted variant of
ED strings. Formally, a generalised degenerate string (GD string) Ŝ over Σ is a sequence
of n sets of strings over Σ of total size N , where the ith set contains strings of the same
length ki > 0 but this length can vary between different sets. We denote the sum of these
lengths k0, k1, . . . , kn−1 by W . Thus a GD string can be used to represent a gapless multiple
sequence alignment (MSA) of fixed width, that is, for example, a high-scoring local alignment
of multiple sequences, in a compact form; see Figure 1. This type of alignment is used for
finding functional sequence elements [14]. For instance, searching for palindromic motifs in
these type of alignments is an important problem since many transcription factors bind as
homodimers to palindromes [26]. Specifically, a set of virus species can be clustered using
high-scoring MSA to obtain subsets of viruses that have a common hairpin structure [27].

Our motivation for this paper comes from finding palindromes in these types of uncertain
sequences. Let us start off with standard strings. A palindrome is a sequence that reads the
same from left to right and from right to left. Detection of palindromic factors in texts is a
classical and well-studied problem in algorithms on strings and combinatorics on words with
a lot of variants arising out of different practical scenarios. In molecular biology, for instance,
palindromic sequences are extensively studied: they are often distributed around promoters,
introns, and untranslated regions, playing important roles in gene regulation and other cell

http://dx.doi.org/10.4230/LIPIcs.WABI.2018.21

M. Alzamel et al. 21:3

CA--AGCTCTATCTCGTA--TT
C---AGCCGAAGCTCGTATATT
CATCAAGTCAACGCAG----TT

(a) Multiple sequence alignment.

AGCTCTATCTCG
AGCCGAAGCTCG
AAGTCAACGCAG

(b) Local gapless alignment.

Ŝ = {A} ·
{

GC

AG

}
·

TCT

CGA

TCA

 · {A
}
·

TCTC

GCTC

CGCA

 · {G
}

(c) GD string obtained from the local gapless alignment.

Figure 1 A GD string representing a gapless multiple sequence alignment.

processes (e.g. see [4]). In particular these are strings of the form XX̄R, also known as
complemented palindromes, occurring in single-stranded DNA or, more commonly, in RNA,
where X is a string and X̄R is the reverse complement of X. In DNA, C-G are complements
and A-T are complements; in RNA, C-G are complements and A-U are complements.

A string X = X[0]X[1] . . . X[n− 1] is said to have an initial palindrome of length k if its
prefix of length k is a palindrome. Manacher first discovered an on-line algorithm that finds all
initial palindromes in a string [25]. Later Apostolico et al observed that the algorithm given
by Manacher is able to find all maximal palindromic factors in the string in O(n) time [6].
Gusfield gave an off-line linear-time algorithm to find all maximal palindromes in a string
and also discussed the relation between biological sequences and gapped palindromes [18].

For uncertain sequences, we first need to have an algorithm for efficient string comparison,
where automata provide the following baseline. Let X̂ and Ŷ be two GD (or two ED)
strings of total sizes N and M , respectively. We first build the non-deterministic finite
automaton (NFA) A of X̂ and the NFA B of Ŷ in time O(N +M). We then construct the
product NFA C such that L(C) = L(A)∩L(B) in time O(NM). The non-emptiness decision
problem, namely, checking if L(C) 6= ∅, is decidable in time linear in the size of C, using
breadth-first search (BFS). Hence the comparison of X̂ and Ŷ can be done in time O(NM).
It is known that if there existed faster methods for obtaining the automata intersection, then
significant improvements would be implied to many long standing open problems [24]. Hence
an immediate reduction to the problem of NFA intersection does not particularly help. For
GD strings we show at the beginning of Section 3 that we can build an ad-hoc deterministic
finite automaton (DFA) for X̂ and Ŷ , so that the intersection can be performed efficiently,
but this simple solution cannot achieve O(N +M) time as its cost is alphabet-dependent.

Our Contribution. Our first result in this paper is an O(N+M)-time algorithm for deciding
whether the intersection of two GD strings of sizes N and M , respectively, over an integer
alphabet is non-empty. This result is based on a combinatorial result of independent interest:
although the intersection of two GD strings can be exponential in the total size of the two
strings, it can be represented in only linear space. An automata model of computation can
also be employed to obtain these results but we present here an efficient implementation
in the standard word RAM model with word size w = Ω(log(N +M)) that works also for
integer alphabets. We then apply our string comparison tool to compute palindromes in GD
strings. We present an O(min{W,n2}N)-time algorithm for computing all palindromes in Ŝ.
Furthermore, we show a non-trivial Ω(n2|Σ|) lower bound under the Strong Exponential Time
Hypothesis [21, 22] for computing all maximal palindromes. Note that there exists an infinite

WABI 2018

21:4 Degenerate String Comparison and Applications

family of GD strings over an integer alphabet of size |Σ| = Θ(N) on which our algorithm
requires time O(n2N) thus matching the conditional lower bound. Finally, proof-of-concept
experimental results are presented using real protein datasets; specifically, on applying our
tools to find the location of palindromes in immunoglobulins genes of the human V regions.

2 Preliminaries

An alphabet Σ is a non-empty finite set of letters of size σ = |Σ|. A string X on an alphabet
Σ is a sequence of elements of Σ. The set of all strings on an alphabet Σ, including the empty
string ε of length 0, is denoted by Σ∗. For any string X, we denote by X[i . . . j] the substring
or factor of X that starts at position i and ends at position j. In particular, X[0 . . . j] is
the prefix of X that ends at position j, and X[i . . . |X| − 1] is the suffix of X that starts at
position i, where |X| denotes the length of X. The suffix tree of X (generalised suffix tree
for a set of strings) is a compact trie representing all suffixes of X. We denote the reversal
of X by string XR, i.e. XR = X[|X| − 1]X[|X| − 2] . . . X[0].

A string P is said to be a palindrome if and only if P = PR. If factor X[i . . . j],
0 ≤ i ≤ j ≤ n− 1, of string X of length n is a palindrome, then i+j

2 is the center of X[i . . . j]
in X and j−i+1

2 is the radius of X[i . . . j]. In other words, a palindrome is a string that reads
the same forward and backward, i.e. a string P is a palindrome if P = Y aY R where Y is a
string, Y R is the reversal of Y and a is either a single letter or the empty string. Moreover,
X[i . . . j] is called a palindromic factor of X. It is said to be a maximal palindrome if there
is no other palindrome in X with center i+j

2 and larger radius. Hence X has exactly 2n− 1
maximal palindromes. A maximal palindrome P of X can be encoded as a pair (c, r), where
c is the center of P in X and r is the radius of P .

I Definition 1. A generalised degenerate string (GD string) Ŝ = Ŝ[0]Ŝ[1] . . . Ŝ[n − 1] of
length n over an alphabet Σ is a finite sequence of n degenerate letters. Every degenerate
letter Ŝ[i] of width ki > 0, denoted also by w(Ŝ[i]), is a finite non-empty set of strings
Ŝ[i][j] ∈ Σki , with 0 ≤ j < |Ŝ[i]|. For any GD string Ŝ, we denote by Ŝ[i] . . . Ŝ[j] the GD
substring of Ŝ that starts at position i and ends at position j.

I Definition 2. The total size N and total width W , denoted also by w(Ŝ), of a GD string
Ŝ are respectively defined as N =

∑n−1
i=0 |Ŝ[i]| × ki and W =

∑n−1
i=0 ki.

In this work, we generally consider GD strings over an integer alphabet of size σ = NO(1).

I Example 3. The GD string Ŝ of Figure 1(c) has length n = 6, size N = 28, and W = 12.

I Definition 4. Given two degenerate letters X̂ and Ŷ , their Cartesian concatenation is

X̂ ⊗ Ŷ = {xy | x ∈ X̂, y ∈ Ŷ }.

When Ŷ = ∅ (resp. X̂ = ∅) we set X̂ ⊗ Ŷ = X̂ (resp. = Ŷ). Notice that ⊗ is associative.

I Definition 5. Consider a GD string Ŝ of length n. The language of Ŝ is

L(Ŝ) = Ŝ[0]⊗ Ŝ[1]⊗ · · · ⊗ Ŝ[n− 1].

Given two GD strings R̂ and Ŝ of equal total width the intersection of their languages is
defined by L(R̂) ∩ L(Ŝ).

I Definition 6. Let X̂ = {xi ∈ Σk } and Ŷ = { yj ∈ Σh } be two degenerate letters on
alphabet Σ. Further let us assume without loss of generality that Ŷ is the set that contains
the shorter strings (i.e. h ≤ k). We define the chop of X̂ and Ŷ and the active suffixes of X̂
and Ŷ as follows:

M. Alzamel et al. 21:5

chopX̂,Ŷ = { yj ∈ Ŷ | yj matches a prefix of xi ∈ X̂ }
activeX̂,Ŷ = {xi[h . . . k − 1] | xi[0 . . . h− 1] ∈ chopX̂,Ŷ }

Let w(chopX̂,Ŷ) = min{w(X̂), w(Ŷ)}. When activeX̂,Ŷ = {ε}, we set activeX̂,Ŷ = ∅. We
then have that activeX̂,Ŷ = ∅ either if h = k or if there is no match between any of the
strings in Ŷ and the prefix of a string in X̂; i.e. chopX̂,Ŷ = ∅.

I Example 7. Consider the following degenerate letters X̂ and Ŷ where w(Ŷ) < w(X̂). The
underlined strings in letter Ŷ are prefixes of strings in letter X̂, hence they are in chopX̂,Ŷ .
The suffixes of such strings in X̂ are the active suffixes in activeX̂,Ŷ .

X̂ =

TCCTA

ATCGA

TCCAC

CATTA

 Ŷ =

GCA

CAT

TCC

 chopX̂,Ŷ =
{

CAT

TCC

}
activeX̂,Ŷ =

{
TA

AC

}

I Definition 8. Let R̂ and Ŝ be two GD strings of length r and s, respectively. R̂[0] . . . R̂[i]
is the prefix of R̂ that ends at position i. It is called proper if i 6= r − 1. We say that
R̂[0] . . . R̂[i] is synchronized with Ŝ[0] . . . Ŝ[j] if w(R̂[0] . . . R̂[i]) = w(Ŝ[0] . . . Ŝ[j]). We call
these the shortest synchronized prefixes of R̂ and Ŝ, respectively, when ∀ i′ < i, j′ < j

w(R̂[0] . . . R̂[i′]) 6= w(Ŝ[0] . . . Ŝ[j′]).

3 GD String Comparison

In this section, we consider the fundamental problem of GD string comparison. Let R̂ and
Ŝ be of total size N and M , respectively. We provide an O(N +M)-time algorithm in the
standard word RAM model with word size w = Ω(log(N +M)) that works also for integer
alphabets.

Before presenting our efficient implementation, we observe that there is the following
simple algorithm based on DFAs. Each degenerate letter of R̂ and Ŝ can be represented by
a trie, where its leaves are collapsed to a single one. For every two consecutive degenerate
letters, the collapsed leaves of the former trie coincide with the root of the latter trie. An
acyclic DFA is obtained in this way, as illustrated in Appendix A. We can perform the
comparison of R̂ and Ŝ by intersecting their corresponding DFAs using BFS on their product
DFA. The trivial upper bound on the number of reachable states is O(NM), but this can
be improved to O(N +M) by exploiting the structure of the two input DFAs. Each state
in such a DFA has a unique level: the common length of paths from the initial state; and
this structure is inherited by the product DFA. In other words, a level-i state in the product
DFA corresponds to a pair of level-i states in the input DFAs. Observe that a level-i state
in one DFA is uniquely represented by the label of the path from the root of its trie, and
for a fixed DFA and level, these labels have uniform lengths. Considering the two states
composing a reachable state in the product DFA, it is easy to see that the shorter label must
be a suffix of the longer label. Hence, the state in the DFA with longer labels at level i
uniquely determines the state in the DFA with shorter labels at level i. Consequently, the
number of reachable level-i states in the product DFA is bounded by the number of level-i
states in the input DFAs, and the size is O(N +M).

We observe that the cost of implementing the above ideas has an extra logarithmic factor
due to state branching and, moreover, GD string comparisons require to build the DFAs
each time. We show how to obtain O(N +M) time for integer alphabets, without creating
DFAs. We show that, even if the size of L(R̂) ∩ L(Ŝ) can be exponential in the total sizes of
R̂ and Ŝ (Fact 9), the problem of GD string comparison, i.e. deciding whether L(R̂) ∩ L(Ŝ)
is non-empty, can be solved in time linear with respect to the sum of the total sizes of the
two GD strings (Theorem 17) and is thus of independent interest.

WABI 2018

21:6 Degenerate String Comparison and Applications

I Fact 9. Given two GD strings R̂ and Ŝ, L(Ŝ) ∩ L(R̂) can have size exponential in the
total sizes of R̂ and Ŝ.

We next show when it is possible to factorize L(R̂)∩L(Ŝ) into a Cartesian concatenation.

I Lemma 10. Consider two GD strings Ŝ = Ŝ′Ŝ′′ and R̂ = R̂′R̂′′ such that w(Ŝ) = w(R̂).
If Ŝ′ is synchronized with R̂′, then L(R̂) ∩ L(Ŝ) = (L(R̂′) ∩ L(Ŝ′))⊗ (L(R̂′′) ∩ L(Ŝ′′)).

Proof. It is clear that L(Ŝ)∩L(R̂) ⊇ (L(R̂′)∩L(Ŝ′))⊗ (L(Ŝ′′)∩L(R̂′′)). Indeed, consider a
string x ∈ L(R̂′)∩L(Ŝ′) and a string y ∈ L(Ŝ′′)∩L(R̂′′): then, by the definition of Cartesian
concatenation, xy ∈ L(R̂′)⊗ L(R̂′′) = L(R̂) and xy ∈ L(Ŝ′)⊗ L(Ŝ′′) = L(Ŝ).
We now prove the opposite inclusion. Consider a string z ∈ L(Ŝ) ∩ L(R̂). By definition,
z = x0x1 . . . xr−1 = y0y1 . . . ys−1, with xi ∈ R̂[i], yj ∈ Ŝ[j],∀ 0 ≤ i ≤ r − 1,∀ 0 ≤ j ≤ s− 1.
Let R̂′ = R̂[0] . . . R̂[i], Ŝ′ = Ŝ[0] . . . Ŝ[j]. Assume by contradiction that z /∈ (L(R̂′)∩L(Ŝ′))⊗
(L(Ŝ′′) ∩ L(R̂′′)): without loss of generality, x0 . . . xi /∈ L(Ŝ′). Since L(Ŝ′)⊗ L(Ŝ′′) = L(Ŝ),
it follows that z = x0x1 . . . xr−1 /∈ L(Ŝ) =⇒ z /∈ L(Ŝ) ∩ L(R̂), that is a contradiction. J

By applying Lemma 10 wherever R̂ and Ŝ have synchronized prefixes, we are then left
with the problem of intersecting GD strings with no synchronized proper prefixes. We now
define an alternative decomposition within such strings (see also Example 12).

I Definition 11. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with no
synchronized proper prefixes. We define

c-chain(R̂, Ŝ) = max
q
{0 ≤ q ≤ r + s− 2 | chopq 6= ∅},

where chopi denotes the set chopÂi,B̂i
, and (Â0, B̂0), (Â1, B̂1), . . . , (Âq, B̂q), pos(Âi),pos(B̂i)

are recursively defined as follows:

Â0 = R̂[0], B̂0 = Ŝ[0], and pos(Â0) = pos(B̂0) = 0. For 0 < i ≤ r + s− 2, if chopi−1 6= ∅,

Âi =
{
R̂[pos(Âi−1) + 1] and pos(Âi) = pos(Âi−1) + 1 if w(chopi−1) = w(Âi−1)
activeÂi−1,B̂i−1

and pos(Âi) = pos(Âi−1) otherwise

B̂i =
{
Ŝ[pos(B̂i−1) + 1] and pos(B̂i) = pos(B̂i−1) + 1 if w(chopi−1) = w(B̂i−1)
activeÂi−1,B̂i−1

and pos(B̂i) = pos(B̂i−1) otherwise

The generation of pairs (Âi, B̂i) stops at i=q either if q=r+s−2, or when chopq+1 = ∅,
in which case R̂ and Ŝ only match until (Âq, B̂q). Intuitively, Âi (respectively, B̂i) represents
suffixes of the current position of R̂ (respectively, of Ŝ), while pos(B̂i) (respectively, pos(Âi))
tells which position of R̂ (respectively, Ŝ) we are chopping.

I Example 12 (Definition 11). Consider the following GD strings R̂ and Ŝ with no synchron-
ized proper prefixes: chop0 is the first red set from the left, chop1 is the first blue one, chop2
is the second red one, etc. The c-chain(R̂, Ŝ) terminates when q = 7.

R̂ =

C G C A C

A G C C G

A A G T C︸︷︷︸
Â2︸ ︷︷ ︸

Â1︸ ︷︷ ︸
Â0

·

A A T

T A G︸︷︷︸
Â5︸ ︷︷ ︸
Â4︸ ︷︷ ︸
Â3

·

C T C G

G C A G

C T C A︸︷︷︸
Â7︸ ︷︷ ︸

Â6

Ŝ =

{
A︸︷︷︸
B̂0

}
·

GC

AG︸︷︷︸
B̂1

·

T C T

C G A

T C A︸︷︷︸
B̂3︸ ︷︷ ︸

B̂2

·
{

A︸︷︷︸
B̂4

}
·

T C T C

G C T C

C G C A︸︷︷︸
B̂6︸ ︷︷ ︸
B̂5

·
{

G︸︷︷︸
B̂7

}

M. Alzamel et al. 21:7

I Definition 13. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with
w(R̂) = w(Ŝ) and no synchronized proper prefixes. We define GR̂,Ŝ as a directed acyclic
graph with a structure of up to r + s− 1 levels, each node being a set of strings, as follows,
where we assume without loss of generality that w(R̂[0]) > w(Ŝ[0]):
Level k = 0: consists of a single node:

n0 = {x ∈ R̂[0] |x = y0 . . . yq0with yj ∈ chopj ∀j : 0 ≤ j ≤ q0}, where q0 is the index of
the rightmost chop containing suffixes of R̂[0].

Level k > 0: consists of ` = |chopqk−1
| nodes. Assuming without loss of generality that level

k−1 has been built with suffixes of R̂[pos(Âqk−1)], level k contains suffixes of a position
of Ŝ. Let c0, . . . , c`−1 denote the elements of chopqk−1

. Then, for 0 ≤ i≤ `−1, the i-th
node of level k is:
ni={yqk−1+1 . . . yqk

| ciyqk−1+1 . . . yqk
∈B̂qk−1with yj ∈chopj ∀j : qk−1+1 ≤ j≤qk}, where

qk is the index of the rightmost chop containing suffixes of Ŝ[pos(B̂qk−1)].
Every string in level k − 1 whose suffix is ci is the source of an edge having the whole
node ni as a sink.

We define paths(GR̂,Ŝ) as the set of strings spelled by a path in GR̂,Ŝ that starts at n0 and
ends at the last level.

Note that the size of GR̂,Ŝ is at most linear in the sum of the sizes of R̂ and Ŝ, as the
nodes contain strings either in R̂ or in Ŝ with no duplications, and each node has out-degree
equal to the number of strings it contains.

I Example 14 (Definition 13). GR̂,Ŝ for the GD strings R̂, Ŝ of Example 12 is:

q0 = 2 and the strings in level 0 belong to (chop0 ⊗ chop1 ⊗ chop2) ∩ R̂[0]. Level 1 contains
suffixes of strings in B̂2 (and of strings in B̂3 as chop3 = {A, T} and indeed q1 = 3), level 2
suffixes of strings in Â3 (as q2 = 5), level 3 suffixes of strings in B̂5 (q3 = 6), level 4 suffixes
of strings in Â6 (q4 = 7). The three paths from level 0 to level 4 correspond to the three
strings in L(R̂) ∩ L(Ŝ): AGCCGAATCTCG, AAGTCAATCTCG, AAGTCTAGCTCG.

Let Gk
R̂,Ŝ

be GR̂,Ŝ truncated at level k, and let |Gk
R̂,Ŝ
| be the length of the strings it

spells. Let Lk(Ŝ) denote the set of prefixes of length |Gk
R̂,Ŝ
| of L(Ŝ).

I Lemma 15. Let R̂, Ŝ be two GD strings with w(R̂) = w(Ŝ) = W and no synchronized
proper prefixes. Then Lk(Ŝ) ∩ Lk(R̂) = paths(Gk

R̂,Ŝ
) for all levels k of GR̂,Ŝ such that

Lk(Ŝ) ∩ Lk(R̂) 6= ∅.

Proof. Again, let us assume without loss of generality that w(R̂[0]) > w(Ŝ[0]). We prove
the result by induction on k.
[Level k = 0] By construction, n0 contains strings in R̂[0] ∩ (chop0⊗· · ·⊗chopq0), which
have length |G0

R̂,Ŝ
|, and are also in Ŝ[0], and hence belong to both L0(Ŝ) and L0(R̂).

WABI 2018

21:8 Degenerate String Comparison and Applications

[Level k > 0] By inductive hypothesis, we have that Lk−1(Ŝ) ∩ Lk−1(R̂) = paths(Gk−1
R̂,Ŝ

):
suppose that Lk(Ŝ) ∩ Lk(R̂) 6= ∅, otherwise the graph ends at level k − 1. We first show
that paths(Gk

R̂,Ŝ
) ⊆ Lk(Ŝ)∩Lk(R̂): by Definition 13, any z ∈ paths(Gk

R̂,Ŝ
) can be written as

z = z′z′′ with z′ in paths(Gk−1
R̂,Ŝ

) and with z′′ that belongs to some node at level k of Gk
R̂,Ŝ

reached by an edge leaving a suffix of z′. By inductive hypothesis z′ ∈ Lk−1(Ŝ) ∩ Lk−1(R̂)
and, again by Definition 13, z′′ ∈ chopqk−1+1 ⊗ · · · ⊗ chopqk

; since Lk(Ŝ) ∩ Lk(R̂) 6= ∅ these
chops are not empty, their concatenation contains the suffix of length |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| of

strings in both Lk(R̂) and Lk(Ŝ), and hence z ∈ Lk(Ŝ) ∩ Lk(R̂).
We now show that Lk(Ŝ) ∩ Lk(R̂) ⊆ paths(Gk

R̂,Ŝ
): consider string u ∈ Lk(Ŝ) ∩ Lk(R̂)

that can be written as u = u′u′′ with u′ the prefix of u having length |Gk−1
R̂,Ŝ
| which then

belongs to Lk−1(Ŝ) ∩ Lk−1(R̂); then, by inductive hypothesis, u′ ∈ paths(Gk−1
R̂,Ŝ

) and, since
u ∈ Lk(Ŝ)∩Lk(R̂), then there is an edge linking a suffix of u′ at level k−1 with a node at level
k of Gk

R̂,Ŝ
containing a |Gk

R̂,Ŝ
| − |Gk−1

R̂,Ŝ
| long suffix u′′ of u, and hence u ∈ paths(Gk

R̂,Ŝ
). J

As a special case of Lemma 15, if L(Ŝ)∩L(R̂) 6= ∅, then GR̂,Ŝ is built up to the last level
and the following holds.

I Theorem 16. Let R̂, Ŝ be two GD strings having lengths, respectively, r and s, with
w(R̂)=w(Ŝ) and no synchronized proper prefixes. Then GR̂,Ŝ has exactly r + s− 1 levels,
and we have that L(Ŝ) ∩ L(R̂) = paths(GR̂,Ŝ).

GR̂,Ŝ is thus a linear-sized representation of the possibly exponential-sized (Fact 9) set
L(Ŝ) ∩ L(R̂).

We now show an O(N +M)-time algorithm for the standard word RAM model, denoted
by GDSC, that decides whether L(R̂) and L(Ŝ) share at least one string (returns 1)
or not (returns 0). GDSC starts with constructing the generalized suffix tree TR̂,Ŝ of
all the strings in R̂ and Ŝ. Then it scans R̂ and Ŝ starting with R̂[0] and Ŝ[0] storing
in chopR̂,Ŝ the latest chopi and in activeR̂,Ŝ the latest activeÂi,B̂i

using TR̂,Ŝ . For an
efficient implementation, suffixes in activeR̂,Ŝ are stored (e.g. for activeÂ0,B̂0

assuming that
w(R̂[0]) > w(Ŝ[0])) as index positions of R̂[0] and the starting position of the suffix as
activeR̂,Ŝ .suff. The next comparison is made between the corresponding suffixes of R̂[0] of
length w(ˆR[0])−activeR̂,Ŝ .suff and Ŝ[1], identifying first the minimum length of the two, and
proceeding with the same process. The comparison of letters can be: (i) between R̂[i] and
Ŝ[j]; or (ii) between the corresponding strings of activeR̂,Ŝ .index and R̂[i]; or (iii) between the
corresponding strings of activeR̂,Ŝ .index and Ŝ[j]. If the two GD strings have a synchronized
proper prefix, this will result in activeR̂,Ŝ = ∅ at positions i in R̂ and j in Ŝ. At this point,
the comparison is restarted with the immediately following pair of degenerate letters.

I Theorem 17. Algorithm GDSC is correct. Given two GD strings R̂ and Ŝ of total sizes
N and M , respectively, over an integer alphabet, algorithm GDSC requires O(N +M) time.

Proof. The correctness follows directly from Lemma 10, Lemma 15, and Theorem 16.
Constructing the generalized suffix tree TR̂,Ŝ can be done in time O(N +M) [12]. For

the sets pair (Âi, B̂i) as in Definition 11, such that w(Âi) = k and w(Âi) ≤ w(B̂i), we query
TR̂,Ŝ with the k-length prefixes of strings in B̂i. For integer alphabets, instead of spelling
the strings from the root of TR̂,Ŝ , we locate the corresponding terminal nodes for (Âi, B̂i). It
then suffices to find longest common prefixes between these suffixes to simulate the querying

M. Alzamel et al. 21:9

process. Since all suffixes are lexicographically sorted during the construction of TR̂,Ŝ , we
can also have the suffixes considered by pair (Âi, B̂i) lexicographically ranked with respect
to (Âi, B̂i). Hence we do not perform the longest common prefix operation for all possible
suffix pairs, but only for the lexicographically adjacent ones within this group. This can
be done in O(1) time per pair after O(N +M)-time pre-processing over TR̂,Ŝ [7]. chopi is
thus populated with the k-length prefixes of strings in B̂i found in Âi. The set activeÂi,B̂i

of
active suffixes can be found by chopping the suffixes of the string in B̂i from their prefixes
successfully queried in TR̂,Ŝ . This requires time O(|Âi|+ |B̂i|) for processing (Âi, B̂i).

Let R̂ and Ŝ be of length r and s, respectively. Assume that R̂ and Ŝ have no synchronized
proper prefixes. Then Theorem 16 ensures that the total number of comparisons cannot exceed
r+ s− 2: this results in a time complexity of O(N +M +

∑r+s−2
i=0 (|Âi|+ |B̂i|)) = O(N +M).

If R̂ and Ŝ have synchronized proper prefixes, we perform the comparison up to the
shortest synchronized prefixes (i.e. the set of active suffixes becomes empty) and then restart
the procedure from the immediately following pair of degenerate letters. Clearly the total
number of comparisons also in this case cannot be more than r + s− 2. J

4 Computing Palindromes in GD Strings

Armed with the efficient GD string comparison tool, we shift our focus on our initial
motivation, namely, computing palindromes in GD strings.

I Definition 18. A GD string Ŝ is a GD palindrome if there exists a string in L(Ŝ) that is
a palindrome.

A GD palindrome Ŝ[i] . . . Ŝ[j] in Ŝ, whose total width is w(Ŝ[i] . . . Ŝ[j]), can be encoded
as a pair (c, r), where its center is c = w(Ŝ[0]...Ŝ[i−1])+w(Ŝ[0]...Ŝ[j])−1

2 , when i > 0, otherwise,
c = w(Ŝ[0]...Ŝ[j])−1

2 , when i = 0; its radius is r = w(Ŝ[i]...Ŝ[j])
2 . Ŝ[i] . . . Ŝ[j] is called maximal

if no other GD palindrome (c, r′) exists in Ŝ with r′ > r. Note that we only consider the
GD palindromes Ŝ[i] . . . Ŝ[j] that start with the first letter of some string X ∈ Ŝ[i] and end
with the last letter of some string Y ∈ Ŝ[j], while the center can be anywhere: in between or
inside degenerate letters. That is, in Ŝ there are 2 · w(Ŝ)− 1 = 2W − 1 possible centers.

I Example 19. Consider the GD string Ŝ of Figure 1(c) where palindromes are underlined;
one starts at Ŝ[0] and ends at Ŝ[2]: it corresponds to (c, r) = (2.5, 3). A second palindrome
starts at Ŝ[4] and ends at Ŝ[5]: it corresponds to (c, r) = (9, 2.5).

In this section, we consider the following problem. Given a GD string Ŝ of length n, total
size N , and total width W , find all GD strings Ŝ[i] . . . Ŝ[j], with 0 ≤ i ≤ j ≤ n− 1, that are
GD palindromes. We give two alternative algorithms: one finds all GD palindromes seeking
them for all (i, j) pairs; and the other one finds them starting from all possible centers. The
two algorithms have different time complexities: which one is faster depends on W , N , and
n. In fact, they compute all GD palindromes, but report only the maximal ones.

We first describe algorithm MaxPalPairs. For all i, j positions within Ŝ, in order to
check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome, we apply the GDSC algorithm to Ŝ[i] . . . Ŝ[j]
and its reverse, denoted by rev(Ŝ[i] . . . Ŝ[j]); the reverse is defined by reversing the sequence
of degenerate letters and also reversing the strings in every degenerate letter. GD palindromes
are, finally, sorted per center, and the maximal GD palindromes are reported. Sorting the
(i, j) pairs by their centers can be done in O(W) time using bucket sort, which is bounded
by O(N) since N ≥W .

WABI 2018

21:10 Degenerate String Comparison and Applications

Since there are O(n2) pairs (i, j), and since by Theorem 17 algorithm GDSC takes time
proportional to the total size of Ŝ[i] . . . Ŝ[j] to check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome,
algorithm MaxPalPairs takes O(n2N) time in total. In algorithm MaxPalCenters,
we consider all possible centers c of Ŝ. In the case when c is in between two degenerate
letters we simply try to extend to the left and to the right via applying GDSC. In the
case when c is inside a degenerate letter we intuitively split the letter vertically into two
letters and try to extend to the left and to the right via applying GDSC. At each extension
step of this procedure we maintain two GD strings L̂ (left of the center) and R̂ (right
of the center) such that they are of the same total width. We consider the reverse of L̂
(similar to algorithm MaxPalPairs) for the comparison. In the case where c occurs inside a
degenerate letter to make sure we do not identify palindromes which do not exist, for all j
split strings of the degenerate letter, we check that L̂R[0][j][0 . . . k − 1] = R̂[0][j][0 . . . k − 1]
where L̂R = rev(L̂) and k = min(w(LR[0]), w(R̂[0])). If no matches are found, we move
onto the next center. Otherwise, when a match is found, we update rev(L̂) and R̂ with the
remainder of the split degenerate letter (if its length is greater than k), as well as the next
degenerate letters. Algorithm GDSC is applied to compare rev(L̂) and R̂. After a positive
comparison, we overwrite L̂ and R̂ by adding the degenerate letters of the current extension
until w(L̂) = w(R̂) (or until the end of the string is reached). This process is repeated as
long as GDSC returns a positive comparison, that is, until the maximal GD palindrome with
center c is found. The radius reported is then the total sum of all values of w(L̂). If GDSC
returns a negative comparison at center c, we proceed with the next center, because we
clearly cannot have a GD palindrome centered at c extended further if rev(L̂) ∩ R̂ is empty.

By Theorem 17 and the fact that there are 2W − 1 possible centers, we have that
algorithm MaxPalCenters takes O(WN) time in total. We obtain the following result.

I Theorem 20. Given a GD string of length n, total size N , and total width W , over an
integer alphabet, all (maximal) GD palindromes can be computed in time O(min{W,n2}N).

The problem that gained significant attention recently is the factorization of a string X of
length n into a sequence of palindromes [3, 13, 30, 9, 5, 2]. We say that X1, X2, . . . , X` is
a (maximal) palindromic factorization of string X, if every Xi is a (maximal) palindrome,
X = X1X2 . . . X`, and ` is minimal. In biological applications we need to factorize a sequence
into palindromes in order to identify hairpins, patterns that occur in single-stranded DNA
or, more commonly, in RNA. Next, we define and solve the same problem for GD strings.

I Definition 21. A (maximal) GD palindromic factorization of a GD string Ŝ is a sequence
P̂1, . . . , P̂` of GD strings, such that: (i) every P̂i is either a (maximal) GD palindrome or a
degenerate letter of Ŝ; (ii) Ŝ = P̂1 . . . P̂`; (iii) ` is minimal.

After locating all (maximal) GD palindromes in Ŝ using Theorem 20, we are in a
position to amend the algorithm of Alatabbi et al [3] to find a (maximal) GD palindromic
factorization of Ŝ. We define a directed graph GŜ = (V, E), where V = {i | 0 ≤ i ≤ n} and
E = {(i, j + 1) | Ŝ[i . . . j] (maximal) GD palindrome of Ŝ} ∪ {(i, i + 1)|0 ≤ i < n}. Note
that V contains a node n being the sink of edges representing (maximal) GD palindromes
ending at Ŝ[n− 1]. For maximal GD palindromes, E contains no more than 3W edges, as the
maximum number of maximal GD palindromes is 2W − 1. For GD palindromes, E contains
O(n2) edges, as the maximum number of GD palindromes is O(n2). A shortest path in GŜ
from 0 to n gives a (maximal) GD palindromic factorization. For maximal GD palindromes,
the size of GŜ is O(W), as n ≤ W , and so finding this shortest path requires O(W) time
using a standard algorithm. For GD palindromes, the size of GŜ , and thus the time, is O(n2).

M. Alzamel et al. 21:11

I Theorem 22. Given a GD string Ŝ of length n, total size N , and total width W , over an
integer alphabet, a (maximal) GD palindromic factorization of Ŝ can be computed in time
O(min{W,n2}N).

5 A Conditional Lower Bound under SETH

In this section, we show a conditional lower bound for computing palindromes in de-
generate strings. Let us first define the 2-Orthogonal Vectors problem. Given two sets
A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn} of d-bit vectors, where d = ω(logn), the
2-Orthogonal Vectors problem asks the following question: is there any pair αi, βj of vectors
that is orthogonal? Namely, is

∑d−1
k=0 αi[k] · βj [k] equal to 0? For the moderate dimension of

this problem, we follow [16], assuming n2−εdO(1) ≤ n2d. The following result is known.

I Theorem 23 ([16, 21, 22, 33]). The 2-Orthogonal Vectors problem cannot be solved in
O(n2−ε · dO(1)) time, for any ε > 0, unless the Strong Exponential Time Hypothesis fails.

We next show that the 2-Orthogonal Vectors problem can be reduced to computing
maximal palindromes in degenerate strings thus obtaining a similar conditional lower bound
to the upper bound obtained in Theorem 20 for computing all GD palindromes.

I Theorem 24. Given a degenerate string of length 4n over an alphabet of size σ = ω(logn),
all maximal GD palindromes cannot be computed in O(n2−ε · σO(1)) time, for any ε > 0,
unless the Strong Exponential Time Hypothesis fails.

Proof. Let d = σ and consider the alphabet Σ = {0, 1, . . . , σ − 1}. We say that two subsets
of Σ match if they have a common element. Given a d-bit vector α, we define µ(α) to be
the following subset of Σ: s ∈ µ(α) if and only if α[s] = 1. Thus, two vectors α and β are
orthogonal if and only if the sets µ(α) and µ(β) are disjoint. In the string comparison setting,
two degenerate letters µ(α) and µ(β) do not match if and only if α and β are orthogonal.
The reduction works as follows. Given A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn}, we
construct the following simple degenerate string of length 4n in time O(nσ):

S = µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn)µ(α1)µ(β1)µ(α2)µ(β2) . . . µ(αn)µ(βn).

· · ·

Then the 2-Orthogonal Vectors problem for the sets A and B has a positive answer if
and only if at any position of S, from 0 to 2n, there does not occur a palindrome of length at
least 2n. All such occurrences can be easily verified from the respective palindrome centers
in time O(n). In other words, if at any position of S there does not occur a palindrome of
length at least 2n, this is because we have a mismatch between a pair µ(αi), µ(βj) of letters,
which implies that there exists a pair αi, βj of orthogonal vectors. Also, by the construction,
all such pairs are to be (implicitly) compared, and thus, if there exists any pair that is
orthogonal the corresponding mismatch will result in a palindrome of length less than 2n. J

6 Experimental Results

We present here a proof-of-concept experiment but we anticipate that the algorithmic tools
developed in this paper are applicable in a wide range of biological applications.

We first obtained the amino acid sequences of 5 immunoglobulins within the human
V regions [15] and converted these into mRNA sequences [31]. The letters X, S, T, Y, Z, R

WABI 2018

21:12 Degenerate String Comparison and Applications

Table 1 Coordinates of (maximal) palindromes identified within hypervariable regions I and II.

Hypervariable Region
I II

V [34] This paper [34] This paper

VkII
18-27 11-36 119-130 118-131

104-113 104-113 169-180 169-180
VkIII 18-27 11-30 132-142 131-145
VλII 63-74 62-81 140-152 140-152
VλIII 51-74 50-75 132-143 131-144
VλV 96-104 95-104 134-141 134-141

and H were replaced by degenerate letters according to IUPAC [23]. Each other letter,
c ∈ {A, C, G, U}, was treated as a single degenerate letter {c}. An average of 47% of the total
number of positions within the 5 sequences consisted of one of the following: X, S, T, Y, Z, R and
H. We then used algorithm MaxPalPairs to find all maximal palindromes in the 5 sequences.
Table 1 shows the palindromes identified within hypervariable regions I and II. Our results are
in accordance with Wuilmart et al [34] who presented a statistical (fundamentally different)
method to identify the location of palindromes within regions of immunoglobulin genes. The
ranges we report are greater than or equal to the ones of [34] due to the maximality criterion.

References

1 Karl Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.
2 Michał Adamczyk, Mai Alzamel, Panagiotis Charalampopoulos, Costas S. Iliopoulos, and

Jakub Radoszewski. Palindromic decompositions with gaps and errors. In CSR, volume
10304 of LNCS, pages 48–61. Springer International Publishing, 2017.

3 Ali Alatabbi, Costas S. Iliopoulos, and M. Sohel Rahman. Maximal palindromic factoriza-
tion. In PSC, pages 70–77, 2013.

4 Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal
Mohamed, Solon P. Pissis, and Dimitris Polychronopoulos. On avoided words, absent
words, and their application to biological sequence analysis. Algorithms for Molecular
Biology, 12(1):5, 2017.

5 Mai Alzamel, Jia Gao, Costas S. Iliopoulos, Chang Liu, and Solon P. Pissis. Efficient
computation of palindromes in sequences with uncertainties. In EANN, volume 744 of
CCIS, pages 620–629. Springer, 2017.

6 Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in
a string. Theoretical Computer Science, 141(1):163–173, 1995.

7 Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In LATIN,
volume 1776 of LNCS, pages 88–94. Springer, 2000.

8 Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Pattern matching
on elastic-degenerate text with errors. In SPIRE, volume 10508 of LNCS, pages 74–90.
Springer, 2017.

9 Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palindromic
Length in Linear Time. In CPM, volume 78 of LIPIcs, pages 23:1–23:12. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017.

10 The Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, pages 1–18, 2016.

M. Alzamel et al. 21:13

11 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Woj-
ciech Rytter, and Tomasz Walen. Covering problems for partial words and for indeterminate
strings. Theoretical Computer Science, 698:25–39, 2017.

12 Martin Farach. Optimal suffix tree construction with large alphabets. In FOCS, pages
137–143. IEEE, 1997.

13 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic al-
gorithm for minimum palindromic factorization. Journal of Discrete Algorithms, 28:41–48,
2014.

14 Martin C. Frith, Ulla Hansen, John L. Spouge, and Zhiping Weng. Finding functional
sequence elements by multiple local alignment. Nucleic Acids Res., 32(1):189–200, 2004.

15 J. A. Gally and G. M. Edelman. The genetic control of immunoglobulin synthesis. Annual
Review of Genetics, 6(1):1–46, 1972.

16 Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for first-order properties on
sparse graphs. Electronic Colloquium on Computational Complexity (ECCC), 23:53, 2016.

17 Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis, Ahmad
Retha, Giovanna Rosone, Fatima Vayani, and Luca Versari. On-line pattern matching on
a set of similar texts. In CPM, LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017.

18 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, New York, NY, USA, 1997.

19 Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-
degenerate texts. In LATA, volume 10168 of LNCS, pages 131–142. Springer International
Publishing, 2017.

20 Costas S. Iliopoulos and Jakub Radoszewski. Truly Subquadratic-Time Extension Queries
and Periodicity Detection in Strings with Uncertainties. In CPM, volume 54 of LIPIcs,
pages 8:1–8:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Inform-
atik.

21 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

23 IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for
nucleic acids, polynucleotides, and their constituents. Biochemistry, 9(20):4022–4027, 1970.

24 Richard J. Lipton. On The Intersection of Finite Automata, pages 145–148. Springer US,
Boston, MA, 2010.

25 Glenn Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM, 22(3):346–351, 1975.

26 Lee Ann McCue, William Thompson, Steven Carmack, Michael P. Ryan, Jun S. Liu, Vic-
toria Derbyshire, and Charles E. Lawrence. Phylogenetic footprinting of transcription factor
binding sites in proteobacterial genomes. Nucleic Acids Res., 29(3):774–782, 2001.

27 Brejnev Muhizi Muhire, Michael Golden, Ben Murrell, Pierre Lefeuvre, Jean-Michel Lett,
Alistair Gray, Art YF Poon, Nobubelo Kwanele Ngandu, Yves Semegni, Emil Pavlov Tanov,
et al. Evidence of pervasive biologically functional secondary structures within the genomes
of eukaryotic single-stranded DNA viruses. Journal of virology, 88(4):1972–1989, 2014.

28 Eugene W Myers. Approximate matching of network expressions with spacers. Journal of
Computational Biology, 3(1):33–51, 1996.

29 Nadia Pisanti, Henry Soldano, Mathilde Carpentier, and Joël Pothier. A relational exten-
sion of the notion of motifs: Application to the common 3d protein substructures searching
problem. Journal of Computational Biology, 16(12):1635–1660, 2009.

WABI 2018

21:14 Degenerate String Comparison and Applications

30 Mikhail Rubinchik and Arseny M. Shur. Eertree: An efficient data structure for processing
palindromes in strings. In IWOCA, volume 9538 of LNCS, pages 321–333. Springer Inter-
national Publishing, 2016.

31 Randall T. Schuh. Major patterns in vertebrate evolution. Systematic Biology, 27(2):172,
1978.

32 Henry Soldano, Alain Viari, and Marc Champesme. Searching for flexible repeated patterns
using a non-transitive similarity relation. Pattern Recognition Letters, 16(3):233–246, 1995.

33 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci, 348(2-3):357–365, 2005.

34 C. Wuilmart, J. Urbain, and D. Givol. On the location of palindromes in immunoglobulin
genes. Proceedings of the National Academy of Sciences of the United States of America,
74(6):2526–2530, 1977.

APPENDIX

A GD String Comparison Using Automata

I Example 25. We illustrate here a simple automata-based approach. Say we want to
compare the following two GD strings:

R̂ =
{

AC

CC

}
·

{
ACAAC

CACCC

}
Ŝ =

{
ACA

CCC

}
·

{
ACC

CAA

}
·
{

C
}
.

We construct the DFA for R̂ and the DFA for Ŝ.

r0start

r2

r3

r5 r7 r9 r11

r12

r4 r6 r8 r10r1

A

C

C C

A

A C C

C

C A A

CC

s0start

s1 s3

s5

s6 s8

s10 s11

s2 s4 s7 s9

A

C

C

A C

A

C

C

A

C

A

C

C

Their product DFA gives their intersection: ACACAAC and CCCACCC.

r0, s0start

r2, s1

r1, s2

r3, s3

r3, s4

r4, s5

r5, s5

r6, s6

r7, s7

r8, s8

r9, s9

r10, s10

r11, s10

r12, s11

A

C

C A C A A

C

C C A C C

C

We observe that computing the product DFA is alphabet-dependent, due to branching
(transition function) on the same letter in the states of the two input DFAs.

A Multi-labeled Tree Edit Distance for Comparing
“Clonal Trees” of Tumor Progression
Nikolai Karpov
Department of Computer Science, Indiana University, Bloomington, IN, USA
nkarpov@iu.edu

Salem Malikic
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
smalikic@sfu.ca

Md. Khaledur Rahman
Department of Computer Science, Indiana University, Bloomington, IN, USA
morahma@iu.edu

S. Cenk Sahinalp
Department of Computer Science, Indiana University, Bloomington, IN, USA
cenksahi@iu.edu

Abstract
We introduce a new edit distance measure between a pair of “clonal trees”, each representing
the progression and mutational heterogeneity of a tumor sample, constructed by the use of
single cell or bulk high throughput sequencing data. In a clonal tree, each vertex represents a
specific tumor clone, and is labeled with one or more mutations in a way that each mutation
is assigned to the oldest clone that harbors it. Given two clonal trees, our multi-labeled tree
edit distance (MLTED) measure is defined as the minimum number of mutation/label deletions,
(empty) leaf deletions, and vertex (clonal) expansions, applied in any order, to convert each
of the two trees to the maximal common tree. We show that the MLTED measure can be
computed efficiently in polynomial time and it captures the similarity between trees of different
clonal granularity well. We have implemented our algorithm to compute MLTED exactly and
applied it to a variety of data sets successfully. The source code of our method can be found in:
https://github.com/khaled-rahman/leafDelTED.

2012 ACM Subject Classification Applied computing → Computational genomics, Computing
methodologies → Combinatorial algorithms

Keywords and phrases Intra-tumor heterogeneity, tumor evolution, multi-labeled tree, tree edit
distance, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.22

Funding NK is supported by NSF CCF-1525024 and IIS-1633215. SM is supported by a Vanier
Canada Graduate Scholarship.

1 Introduction

According to the clonal theory of cancer evolution [26], cancer originates from a single cell
which had acquired a set of mutations that provide it proliferative advantage compared
to the neighboring healthy cells. As tumor grows, cancer cells acquire new mutations and
some of them might accumulate set of mutations conferring further selective advantage or
disadvantage compared to the other cells. This continues over a period of time and at the
time of the clinical diagnosis, tumors are usually heterogeneous consisting of multiple cellular

© Nikolai Karpov, Salem Malikic, Md. Khaledur Rahman, and S. Cenk Sahinalp;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nkarpov@iu.edu
mailto:smalikic@sfu.ca
mailto:morahma@iu.edu
mailto:cenksahi@iu.edu
https://github.com/khaled-rahman/leafDelTED
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

time

Number of cells

Healthy
cells

Set of mutations providing
selective advantage

= {𝑀1, 𝑀2, … }
𝑴𝟏,𝑴𝟐,
𝑴𝟑

𝑴𝟒,𝑴𝟓,
𝑴𝟔,𝑴𝟕

𝑴𝟖,𝑴𝟗,
 𝑴𝟏𝟎 𝑴𝟏𝟏, 𝑴𝟏𝟐

Figure 1 Graphical overview of tumor initiation and growth (left) and the corresponding clonal
tree of tumor evolution (right). Sets of mutations providing proliferative advantage and driving the
emergence of new clones are denoted as stars in the left and as sets of corresponding mutations in
the right panel (e.g. red star from the left panel represents the set of mutations {M1, M2, M3}.)
Node corresponding to the healthy cells is omitted as it would be non-informative.

populations, harboring distinct sets of mutations, leading to different phenotypes. Each such
cellular population is considered to be a clone. The whole process of tumor initiation and
growth is illustrated in Figure 1 (left panel).

One of the most widely used ways of depicting mutational heterogeneity and tumor
progression over time is by the use of a clonal tree of tumor evolution. Here, each individual
vertex represents a distinct clone and each mutation (i.e. its label) is placed as part of the
label of clone where it occurs for the first time in evolutionary history. In this work we
focus on trees built by the use of single nucleotide variants (SNVs), which represent the
most widely used type of mutations in reconstructing trees of tumor evolution [12]. We also
assume that each SNV occurs exactly once during the course of tumor evolution and never
gets lost (infinite sites assumption, usually abbreviated as ISA). Some recently introduced
methods (e.g. SiFit [10]) allow for the violations of ISA and, in such cases, we expect that
labels corresponding to mutations vioalating ISA are removed from the trees prior to distance
calculation. In order to simplify our figures, in each figure in this work we omit the node
representing population of healthy cells. Namely, such node would be non-informative as it
would always be label-free (since healthy cells are assumed to contain none of the mutations
relevant to cancer progression) and attached as the parent of root node in each of the figures
presented in this work. See Figure 1 for an illustration of tumor growth (left panel) and the
corresponding clonal tree of tumor evolution (right panel). Note that the children of a vertex
in a clonal tree are unordered.

A popular alternative to the clonal tree is the mutation tree, a special case of the clonal
tree, where along each edge there is exactly one mutation [21, 14] - thus a mutation tree
is a clonal tree with the highest possible granularity. As can be expected, any clonal tree
can be easily converted to the mutation tree as follows. Consider an arbitrary edge (u, v)
and assume WLOG that a set of all mutations assigned to it is {M1,M2, . . . ,Mk}. Now
replace each edge (u, v) by a path with vertices {w0 = u,w1, w2, . . . , wk−1, wk = v} and

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:3

edges {(w0, w1), (w1, w2), . . . , (wk−1, wk)}, such that exactly one mutation, WLOG Mi, is
assigned to the edge (wi−1, wi) for each i ∈ {1, 2, . . . , k}. Note that from a given clonal tree
which is not mutation tree (i.e. contains at least one node with two or more labels), multiple
different mutation trees can be obtained. There are additional tree representations [14] for
tumor evolution but in this work we focus on clonal trees only.

Similarity/distance measures between tree representations of tumor
evolution
In the past few years, we have witnessed rapid developments in computational methods for
inferring trees of tumor evolution from both bulk and single cell high throughput sequencing
(HTS) data [21, 14, 9, 18, 11, 6, 15, 27, 16, 25, 8, 5].

In order to assess the accuracy of the proposed method, many of these studies use
simulated HTS data extracted from synthetic tumor compositions. The inferred tree is
then compared against the (synthetic) ground truth. (We will call the ground truth tree
the true tree.) Other studies, such as the Pan Cancer Analysis of Whole Genomes Project
(PCAWG) compare trees inferred by participating methods on real tumor samples to reach a
consensus tree. In order to compare clonal trees with varying granularity (granularity can be
measured in terms of the average number of mutations assigned to a clone) the measure(s)
used should be versatile enough to discriminate real topological differences between trees
from those differences due to the type and coverage of the HTS data used by a method; e.g.
such a distance measure should be equal to 0 between any clonal tree and its corresponding
mutation tree (obtained using the procedure described above).

Unfortunately, comparing trees of tumor evolution has turned out to be a very challenging
problem and available measures fail to capture the differences/similarities between inferred
or true trees. In fact many of existing measures only aim to compare the relative placement
of pairs of mutations across two trees, e.g. whether the two mutations maintain an ancestor-
descendant relationship in both trees [27, 16]. Such measures can not capture topological
differences between distinct trees, e.g. a simple topology with two vertices, where all but one
of the mutations is assigned to the non-root vertex, v.s. a star topology where each vertex
is assigned a single mutation. As a result it is of high importance to have measures of tree
similarity that not only consider the relative placement of mutations but also the topological
structure of the trees.

The standard measure to compare combinatorial objects - such as strings, especially in
bioinformatics, is the edit distance. This measure has numerous applications and a large
number of variants, not only for strings but also for labeled trees, have been considered
in the past. The classical Levenstein edit distance between two strings is defined as the
minimum number of single symbol insertions, deletions and replacements to convert one
of the strings to the other and has a well established dynamic programming algorithm to
compute it (e.g. [35]). The running time of this algorithm is proportional to the product
of the lengths of the two input strings and the existence of a sub-quadratic algorithm is
unlikely [1]. In general, the complexity of computing an edit distance strictly depends on
the set of allowed edit operations. E.g. if we consider a variant of the problem where only
single character mismatches and block reversals are allowed, then the running time reduces
to O(n log2 n) [29] - here n is the total length of the strings; on the other hand, the variant
where only mismatches, block deletion and move operations are allowed is NP -hard [32].

Edit distance measures for rooted trees have typically been defined for those with ordered
vertices, each with a single label; here the goal is to transform one tree to the other by the use
of vertex insertions, vertex deletions and vertex label replacements [31]. Based on the tree
edit distance, a notion of tree alignment has also been introduced, both for vertex ordered as

WABI 2018

22:4 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

well as unordered trees [13]. For many of the vertex ordered cases, there are polynomial time
algorithms that can solve the distance/alignment problem [33, 31, 22, 4, 38, 37, 30, 13, 20, 3],
whereas for several unordered cases, the problems are NP-hard [24, 34] or MAX SNP-
hard [39, 13].

Unfortunately for many of variants of the problem, the time complexity is still unknown [2].
As importantly none of the existing algorithms deal with trees where vertices may have more
than a single (mutational) label - which is at the heart of clonal tree comparison problem.

In this paper we introduce for the first time a tree edit distance measure to compare
trees where vertices may have one or more (mutational) labels. The multi-labeled tree edit
distance (MLTED) measure we introduce in this paper successfully captures the differences
between clonal trees: for example it satisfies a key condition that two clonal trees from
which it is possible to produce two identical mutation trees have a distance 0. Even though
MLTED is defined for (the more general) vertex unordered trees, we show that there is an
algorithm to exactly compute it in polynomial time. We have implemented this algorithm
and applied it to a number of synthetic and real data sets to compare trees inferred by some
of the available tumor history reconstruction methods with success.

2 Definitions

A rooted tree T = (V,E) is a connected, acyclic, undirected graph with set of vertices V
(also denoted as V (T)) and edges E (also denoted as E(T)), with a particular vertex, r
identified as the root. For each non-root vertex v, any vertex u that lies on the simple path
between v and the root is considered to be its ancestor; in particular, the node u = p(v)
on this path which has an edge to v is considered to be its parent. The depth of vertex v
denoted d(v), is thus defined as the number of its ancestors. The lowest common ancestor of
any pair of vertices u and v, denoted lca(u, v), is defined as a common ancestor of both u
and v whose depth is maximum possible. The structure of a tree induces partial order � on
its vertices: u � v denotes that u is an ancestor of v.

In this work, we consider multi-labeled trees in which each vertex v has a subset Lv of
labels from a universe L. Additionally, each label is unique to a vertex, i.e. Lu ∩ Lv = ∅ for
each pair of distinct vertices u and v. We denote the set of all labels assigned to the vertices
of T as L(T). In other words, L(T) =

⋃
v∈V (T)

Lv.

Consider the following types of edit operations on multi-labeled tree:
deleting a label where one of the labels is removed from some set Lv,
deleting a vertex where a vertex is removed from the tree. This operation is allowed to
be performed only for unlabeled leaves, i.e. vertices with no labels and no children,
expanding a vertex where vertex v is replaced by two vertices v1 and v2 such that all
children of v after this operation are children of v2, and the parent of v is the parent of
v1, and v1 is the parent of v2. Each of the labels from Lv is assigned to exactly one of
the Lv1 and Lv2 .

We define the edit distance between two multi-labeled trees as the minimal number of
label deletions, such that together with an arbitrary number of vertex deletions and vertex
expansions (which do not contribute to the distance), they transform both trees to a common
third tree (which will be defined as the maximal common tree of the two input trees). As
can be observed, the distance between two trees is upper bounded by the total number of
labels in the two trees.1

1 Note that typically edit distance measures are based on symmetric edit operations, in a way that each

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:5

3 Set Alignment Problem

Our algorithm for computing the distance between trees is based on finding a maximal
common tree, as will be defined below. We first show connection between this notion and our
edit distance measure and then demonstrate how this notion works for paths, which form
the base case. We later extend this definition to the general case and provide an efficient
algorithm for computing the maximal common tree.

A Common tree of arbitrary multi-labeled trees T1 and T2 is any multi-labeled tree which
can be obtained from each of T1 and T2 by the use of edit operations defined above. A
maximal common tree of T1 and T2 is a common tree of T1 and T2 having the largest number
of labels among all common trees of T1 and T2. Our MLTED measure between T1 and T2 is,
by definition, equal to the difference between the total number of labels in T1 and T2 and
twice the number of labels in their maximal common tree. In other words, tree edit distance
is defined as the total number of labels required to be removed from the two trees in order
to transform them to their maximal common tree.

If the two trees are simple paths, then any common tree between them is also a path.
Let the ordered sequence of vertices of the first tree/path be v1, v2, . . . , vn with respective
label sets S1, S2, . . . , Sn, and the ordered sequence of vertices of the second tree/path be
w1, w2, . . . , wm with respective label sets P1, P2, . . . , Pm. (Assume that Si, Pj are subsets
of L and that any label u ∈ L occurs exactly in one of S1, S2, . . . , Sn and exactly in one of
P1, P2, . . . , Pm.) Let f : L → {1, 2, . . . , n} and g : L → {1, 2, . . . ,m} be the functions that
map labels to vertex indices, respectively in the first and the second tree such that vf(a)
denotes the vertex of label a in the first tree and wg(a) denotes the vertex of the label a in
the second tree.

It is easy to see that computing a maximal common tree in this special case is equivalent
to the following generalized version of the string edit distance problem for a pair of ordered
sets.

Set Alignment Problem
Instance: Two ordered set of labels: (S1, S2, . . . , Si) and (P1, P2, . . . , Pj) where
1 ≤ i ≤ n and 1 ≤ j ≤ m.

Task: Find set A(i, j) ⊆ (
i⋃

p=1
Sp)

⋂
(

j⋃
q=1

Pq) of maximal size such that, for each pair

(a, b) of labels from A(i, j), the following holds: f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b).

The following lemma offers an efficient algorithm for solving the Set Alignment
Problem. Our approach for computing edit distance between two arbitrary trees (presented
in Section 4) uses this algorithm as a subroutine.

I Lemma 1. Let D(i, j) be the size of the set which is answer of the Set Alignment
Problem for the instance where input sequences are (S1, . . . , Si) and (P1, . . . , Pj) (i.e.
according to the notation from the above D(i, j) = |A(i, j)|). Then the following hold:

D(i, 0) = D(0, j) = 0, for all non-negative integers i and j.
D(i, j) = max (D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj |, for all positive integers i and j.

operation is complemented by a reverse operation (e.g. deleting a label is the reverse of inserting the
same label). In such cases, the edit distance is defined as the minimum number of operations required
to transform one combinatorial object into another. Although it is possible to define our edit distance
measure similarly (with label insertions complementing label deletions), we chose to present our distance
by specifying deletions only for keeping the description compact.

WABI 2018

22:6 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Proof. The first equation easily follows from the fact that A(i, 0) ⊆ ∅ and A(0, j) ⊆ ∅.
For the second equation, we first prove that D(i, j) ≥ max(D(i, j−1),D(i−1, j))+|Si∩Pj |.

In order to prove this, observe that each of A(i, j − 1) ∪ (Si ∩ Pj) and A(i− 1, j) ∪ (Si ∩ Pj)
represent a valid candidate solution for the instance of Set Alignment Problem with the
input sequences (S1, . . . , Si) and (P1, . . . , Pj). Namely, in the case of set A(i, j−1)∪ (Si∩Pj)
(analogous applies to the set A(i− 1, j) ∪ (Si ∩ Pj)), if we consider two arbitrary labels a
and b of this set, then:

If a ∈ A(i, j − 1) and b ∈ A(i, j − 1) then f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) holds by the
definition of A(i, j − 1).
If a ∈ A(i, j − 1) and b ∈ Si ∩ Pj then f(a) ≤ i and g(a) ≤ j − 1. On the other hand,
f(b) = i and g(b) = j hence f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) is obviously satisfied.
Case where a ∈ Si ∩ Pj and b ∈ A(i, j − 1) is analogous to the previous case.
Case where both a and b are from Si ∩ Pj is trivial since in this case f(a) = f(b) = i and
g(a) = g(b) = j implying that f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) holds in this case as well.

Now it suffices to prove that D(i, j) ≤ max(D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj |. In order
to prove this, consider the partition of A(i, j) into A(i, j) \ (Si ∩ Pj) and Si ∩ Pj . We
claim that at most one of the sets Si and Pj has non-empty intersection with the set A(i,
j)\ (Si∩Pj). To prove this, assume on contrary that there exists a ∈ Si∩ (A(i, j) \ (Si ∩ Pj))
and b ∈ Pj ∩ (A(i, j) \ (Si ∩ Pj)). Since a ∈ Si we have f(a) = i. For b we have that
b ∈ A(i, j) and b /∈ Si implying that f(b) ≤ i− 1. Similarly, g(a) ≤ j − 1 and g(b) = j. By
the above assumption, both a and b belong to A(i, j) but obviously they violate constraint
f(a) ≤ f(b) ⇐⇒ g(a) ≤ g(b) which is, by definition of A(i, j) satisfied for all of its labels.
This contradiction directly implies our latest claim. To finalize the proof of inequality D(i,
j) ≤ max(D(i, j − 1),D(i− 1, j)) + |Si ∩ Pj | assume WLOG that the intersection of Si and
A(i, j) \ (Si ∩ Pj) is the empty set. This implies that A(i, j) does not contain any label from
Si\(Si∩Pj). ThereforeD(i, j) ≤ D(i−1, j)+|Si ∩ Pj | ≤ max(D(i, j−1),D(i−1, j))+|Si∩Pj |
which completes our proof. J

Lemma 1 provides a dynamic programming formulation for calculating distance D(n,m)
between trees T1 and T2.

I Observation 2. Total time and total space required for calculating number of labels in each
of the sets Si ∩ Pj, where i ∈ [n] and j ∈ [m] are both O(

n∑
i=1
|Si|+

m∑
j=1
|Pj |+ nm).

Proof. For each label from u ∈ L we can store two indices f(u) and g(u). This can be
implemented in the above time and space by using a hash table. If we know these indices, we
can fill the table Iij , where Iij = |Si ∩ Pj |, by iterating through elements of L and increasing
the value of If(x)g(x) by one for each x ∈ L. J

I Lemma 3. The Set Alignment Problem is solvable in O(
n∑

i=1
|Si|+

m∑
j=1
|Pj |+nm) time

and space.

Proof. Follows straightforwardly from Lemma 1 and Observation 2. J

4 Computing a maximal common tree in the general case

We now describe an efficient algorithm for computing a maximal common tree. Note that in
the remainder of the paper we call all vertices in a tree with exactly one child as non-crucial
vertices and all other vertices, i.e. leaves, and vertices with two or more children, as crucial

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:7

vertices. Now consider the sequence of edit operations applied to a tree T1 in the process to
reaching a common tree T with another tree T2.

I Observation 4. Each edit operation applied to any vertex deletes at most one crucial vertex
and creates at most one (new) crucial vertex; no edit operation can increase the number of
crucial vertices.

Proof. The proof follows through a simple case analysis on the edit operations we allow.
The edit operation of deleting a label does not change the topology of the tree or the set
of crucial vertices in the tree.
The edit operation of deleting a leaf u does change the topology of a tree, but with respect
to the set of crucial vertices, the only update is that u is lost, and, (i) provided that u
was the only child of p(u), p(u) becomes crucial, or (ii) provided that u was one of the
two children of p(u), p(u) becomes non-crucial, or (iii) provided that u was one of more
than two children of p(u), p(u) stays crucial. All other vertices remain unaltered.
Finally, the edit operation of expanding, i.e., splitting a vertex v into v1 and v2 does
change the topology of the tree but it does not create a new crucial vertex if v is non-
crucial; however, if a vertex v is crucial, then v2 becomes crucial after the edit operation,
but v1 stays non-crucial. J

The observation above indicates that an edit operation applied to a crucial vertex u may
create a new crucial vertex v. In that case, we say that the crucial vertex u in T1 corresponds
to a crucial vertex v in T ′1 (if latter was created). In case of an expansion of vertex u in T1
to two vertices u1 and u2, we say that u corresponds to u2 in T ′1. In case of a deletion of
a leaf u, if p(u) which was originally non-crucial, became crucial, then we say that u in T1
corresponds to p(u) in T ′1. For any vertex v which remains unedited and crucial in T ′1, we
say that v in tree T1 corresponds to v in the tree T ′1.

Finally, we say that v in T1 corresponds to v′ in T if for the sequence of trees T1 = T 0
1 , T

1
1 ,

. . . , T l
1 = T (where T i+1

1 is obtained from T i
1 by an edit operation) there exists the sequence

of vertices v = v0, v1, . . . , vl = v (where vl ∈ V (T l
1)) such that vi corresponds to vi+1 for all

i. We extend the notion of correspondence to T2 in a similar manner.
Given trees T1 and T2, their common tree T and the vertices in T1 and T2 that correspond

to every crucial vertex in T , it is straightforward to establish the edit operations to transform
T1 and T2 to T . The algorithm to compute T makes use of this observation.

I Observation 5. Given two sets of crucial vertices u1, . . . , ul and v1, . . . , vl in T1 and T2
respectively such that ui and vi correspond to same crucial vertex in the common tree T for
each i, we can reconstruct a common tree T ′ such that the number of labels in T ′ is at least
that in T .

Proof. Here we describe the procedure of reconstructing the tree T ′ in two steps.
In the first step we delete each label which cannot belong to T in a trivial manner: let

S1 (S2) be the set of vertices which do not lie on a path from the root of T1 (T2) to some
ui (vi). Then we delete all vertices from S1 (and S2) together with their labels. Note that
no label which is present in tree T will be deleted: if a vertex v does not belong to a path
from the root to some crucial vertex in T , then any label from Lv cannot be present in T .
However, if any label in T that is in Lv for some vertex v which lies on a path from the root
to a leaf w (which is necessarily crucial) then there must exist a pair of vertices ui, vi which
correspond to the leaf w.

Thus, starting from the leaf level, we can delete all vertices which do not belong to a
path from the root to any ui (and vi). It is easy to see that this first step transforms T1 and
T2 into isomorphic trees - the isomorphism φ on r1, u1, . . . , ul which transforms T1 into T2 is
φ(r1) = r2, φ(u1) = v1, . . . , φ(ul) = vl (here ri is the root of Ti).

WABI 2018

22:8 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Let T ′1 and T ′2 denote the trees respectively produced from T1 and T2 after applying the
first step. Notice that, T ′1 and T ′2 are also topologically isomorphic to T and T ′.

In the second step, for each pair of vertices vi and ui we consider the pair of “maximal”
paths from vi and ui to the associated root, which do not contain other vertices from v1, . . . , vl

and u1, . . . , ul. For this pair of paths we apply a sequence of edit operations that expand
vertices and delete labels, such that the resulting paths will be identical with the maximum
possible number of labels.

T ′ is the tree produced as a result of the second step. Note that on any pair of paths from
the vertex pair ui and vi to the respective root, the set of labels observed will be identical.
This implies that T ′ is a common tree with number of labels necessarily lower bounded by
that of T . J

The above observation implies that we can reduce the problem of computing a maximal
common tree between two multi-labeled trees to the problem of finding an optimal pair of
sequences of vertices u1, . . . , ul and v1, . . . , vl corresponding to the maximal common tree.

Our general algorithm for computing the distance between two multi-labeled trees requires
constant time access to the solutions to many instances of the Set Alignment Problem,
which we compute in a preprocessing step.

Solving Set Alignment Problem for all pairs of sequences u1, . . . , ul and v1, . . . , vl is
impractical. Fortunately, special conditions with respect to the structure of these sequences
help us develop an efficient algorithm for finding an optimal pair of sequences as explained
below.

The algorithm for computing an optimal pair of sequences will need the solutions to
Set Alignment Problem for all possible downward paths; we call this auxiliary problem
Pairwise Alignments on a Tree.

Given a pair of vertices u, v such that u � v, let the following sequence of sets of vertex
labels be denoted as P(u, v) = (Lw1 , . . . , Lwk

) where w1(= u), w2, . . . , wk(= v) is called
the downward path between u and v. Then we can define Pairwise Alignments on a
Tree problem formally as follows.

Pairwise Alignments on a Tree
Instance: Two rooted unordered multi-labeled trees T1 = (V1, E1) and T2 = (V2, T2)
with associated sets of labels for each vertex.
Task: For each 4-tuple (a, b, c, d) such that a, b ∈ V1, c, d ∈ V2, a � b and c � d,
compute and store the answer for Set Alignment Problem on P(a, b),P(c, d).

In the next lemma, we introduce equations for computing Pairwise Alignments on a
Tree which forms the basis of our dynamic programming algorithm.

I Lemma 6. Given a, b ∈ V (T1); c, d ∈ V (T2); a � b; c � d, let D(a, c, b, d) be the solution
for the instance P(a, b), P(c, d) of Set Alignment Problem. Then
1. If a = b and c = d then D(a, c, b, d) = |Lb ∩ Ld|.
2. If a = b and c 6= d then D(a, c, b, d) = D(a, c, b, p(d)) + |Lb ∩ Ld|.
3. If a 6= b and c = d then D(a, c, b, d) = D(a, c, p(b), d) + |Lb ∩ Ld|.
4. Otherwise D(a, c, b, d) = max(D(a, c, p(b), d),D(a, c, b, p(d))) + |Lb ∩ Ld|.

Proof. Each of the cases above holds true as a direct consequence of Lemma 1. J

Through a straightforward application of the above lemma, we obtain the following.

I Lemma 7. If I1 and I2 denote the heights of T1 and T2, respectively, Pairwise Align-
ments on a Tree is solvable in O (|V1||V2|I1I2 + |L(T1)|+ |L(T2)|) time and space.

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:9

Proof. The algorithm is a straightforward implementation of Observation 2 and Lemma 6.
Namely, from Observation 2 it follows that the values of |La ∩ Lb|, for all a ∈ V1 and
b ∈ V2, can be computed by the use of algorithm having time and space complexity
O (|V1||V2|+ |L(T1)|+ |L(T2)|). After computing these values, all entries in D can be com-
puted in the time and space that are proportional to the number of all possible combinations
of a, b, c, d, which is bounded by |V1||V2|I1I2. Now, combining the above with the obvious
inequality |V1||V2|I1I2 ≥ |V1||V2|, we have that the overall time and space complexity of the
proposed algorithm is O (|V1||V2|I1I2 + |L(T1)|+ |L(T2)|). J

Let M : V (T1) ∪ V (T2) → V (T1) ∪ V (T2) be the (partial) bijective mapping between
vertices v and w of T1 and T2, respectively, which correspond to the same crucial vertex u in
their common tree T ; i.e. M(v) = w and M(w) = v.

I Observation 8. For any pair of vertices a, b ∈ V1 (or V2) the lowest common ancestor of
a and b, namely lca(a, b), has a mapping, M(lca(a, b)) which is equal to lca(M(a),M(b)).
For any triplet of vertices a, b, c ∈ V1 (or V2), the lowest common ancestor of a, b is equal to
the lowest common ancestor of b, c if and only if lca(M(a),M(b)) = lca(M(b),M(c)).

We now present our algorithm for computing the size of a maximal common tree, which
is a combination of dynamic programming and an algorithm for finding a maximum cost
matching.

I Theorem 9. The mapping which corresponds to a maximal common tree can be computed
in time O(|V1||V2|(|V1|+ |V2|) log(|V1|+ |V2|) + |V1||V2|I1I2 + |L(T1)|+ |L(T2|).

Proof. For i ∈ {1, 2} and x ∈ Vi, let Ti(x) denote multi-labeled tree which is identical to
subtree of Ti rooted at x, except that the set of labels assigned to the root node in Ti(x) is
empty. We first define function G : V1 × V2 → N, such that G(a, b) denotes the size of the
maximal common tree between trees T1(a) and T2(b), where we are assuming that M(a) = b.
The maximal common tree is then indicated by max

(a,b)∈V1×V2
[G(a, b) + D(r1, r2, a, b)]. The key

observation of our algorithm is that the computation of G(a, b) can be reduced to finding
a maximum cost matching for an auxiliary graph. Let a1, . . . , an be the children of a, and
b1, . . . , bm be the children of b. The structure conditions on mapping provide the guarantee
that all vertices which are leaves of downward paths from a without internal crucial vertices,
lie in distinct subtrees. Using the Observation 8 this implies that each such vertex lies in
distinct subtrees with roots a1, . . . , an and b1, . . . , bm. For the simplicity of notation, for
i ∈ {1, . . . , n}, denote the subtree of T1 with root at ai as Fi. Analogously, we denote subtree
of T2 rooted at bj , where j ∈ {1, 2, . . . ,m}, by Hj . For a pair of subtrees, we define the
score of an optimal choice of pairs of mapped vertices; c(Fi, Hj) = max

c∈V (Fi),d∈V (Hj)
(D(a, b, c,

d) +G(c, d)). Thus the cost of edges in this graph is equal to the size of a maximal common
tree if we choose an optimal mapped pair of vertices in these subtrees. However, we should
find an optimal choice such that a subtree corresponds to a subtree in another tree, under
the condition that we cannot construct correspondence of two subtrees into single subtree;
this problem is the well known maximum weighted bipartite matching problem, which can
be solved in a polynomial time [19]. Finally, we can construct a bipartite graph on the set
of vertices a1, . . . , an, b1, . . . , bm with the cost of an edge (ai, bj) equal to c(Fi, Hj). Thus
our algorithm returns the score of an optimal assignment in this graph where the optimal
value of the G(a, b) can be reduced to the computation of G(x, y) for all x and y such that
a � x and b � y and finding the maximum weighted matching on auxiliary graph (which is
complete bipartite graph with n+m vertices and nm edges). Thus we can summarize our
algorithm as follows.

WABI 2018

22:10 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

If a or b is a leaf then G(a, b) = 0.
Otherwise let Q be a complete weighted bipartite graph on vertices a1, . . . , an, b1, . . . , bm

(ai is the root of Fi, and bj is the root of Hj) in which the weight of an edge (ai, bj) is
equal to max

c∈V (Fi),d∈V (Hj)
(D(ai, bj , c, d) + G(c, d));then G(a, b) is equal to the cost of an

optimal assignment in Q.

The time to construct auxiliary graphs is bounded by O(|V1||V2|I1I2), the most time
consuming part of this algorithm is the solution to the assignment problem. However, the
time needed to solve this problem for a graph with n vertices and m edges is bounded by
O(nm logn). If na is the number of children of a vertex a in the first tree, and nb is the number
of children of a vertex b in the second tree then the total time is bounded by O(

∑
a,b

(na +

nb)nanb log(na + nb)) which can be bound (up to constant factor) by O(|V1||V2|(|V1| +
|V2|) log(|V1| + |V2|)) or O((|V1|

∑
j

n2
b + |V2|

∑
i

n2
a) log(|V1| + |V2|)). The second bound is

significantly better if the maximal degree of a vertex is bounded by a small value. J

The above theorem finalizes the description of our algorithm for computing the edit
distance between two multi-labeled trees.

5 Discussion and an application

5.1 The existing measures and their limitations
There are number of measures in the literature that are being used to compare clonal trees.
Two of the most widely used measures include: (1) Ancestor-Descendant Accuracy (ADA),
measure which considers only mutations originating at nodes(clones) which are in ancestor-
descendant relationship in the true tree and returns the fraction of pairs of such mutations for
which the relationship is preserved in the inferred tree. (2) Different-Lineage Accuracy (DLA),
defined analogously as ADA, where only pairs of mutations originating from different clones
which are in neither ancestor-descendant nor descendant-ancestor relationship are considered.
In addition to these two measures, used in [27, 15, 16, 17] and elsewhere, (3) Clustering
Accuracy (CA) [15] and (4) Co-Clustering Accuracy (CCA) [17] were also introduced in order
to measure the accuracy in the placement of mutations originating from the same clone in
true tree. CA measures the fraction of label pairs that are both co-located in the same vertex
in both trees, whereas CCA measures the proximity in the inferred tree of pairs of mutations
originating from the same clone in true tree (see [15] and [17] for definitions of CA and CCA).
Finally, (5) Pair-wise Marker Shortest Path Distance (PMSPD) [25] is (symmetric) distance
measure calculated as the sum, over all label pairs, of the absolute difference of path length
between the two labels in true tree with the equivalent length calculated in the inferred tree.

All of the above mentioned are designed to compare inferred tree against the given true
tree and no single measure can capture the overall similarity/difference between two arbitrary
trees. Furthermore, for each of the measures there exist cases where it returns high similarity
for topologically very different true and inferred trees. We will illustrate this below by
presenting several examples using trees from Figure 2 where true tree and four trees inferred
by (hypothetical) methods are shown. Each vertex in any one of these trees have one or
more labels (corresponding to mutations in clonal trees) represented by A,B,C, . . . , J .

For ADA measure, one needs to consider all pairs of labels in the true tree: {(A,B), (A,C),
(A,D), (A,E), (A,F), (A,G), (A,H), (A, I), (A, J)}. We see that ‘Inferred tree 1’ has the max-
imum score despite being topologically very different from ’True tree’. The same tree can be

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:11

A

B,C,D,E,F G,H,I,J

(a) True tree

A

B C D E F G H I J

(b) Inferred tree 1

A

B,C,D G,H

E,F I,J

(c) Inferred tree 2

A

B G

C

D

E

F

H

I

J

(d) Inferred tree 3

A

B,C,D,E,F

G,H,I,J

(e) Inferred tree 4

Figure 2 (a) True clonal tree depicting the evolution of hypothetical tumor. (b)-(e) Hypothetical
trees inferred by methods for reconstructing history of tumor evolution (input data to these methods
is assumed to be obtained from the hypothetical tumor mentioned in the description of ’True
tree’). These trees are used as examples which demonstrate limitations of the existing measures for
calculating similarity/distance between true and each of the four inferred trees (details provided
in Section 5.1). In Section 5.2.1 we discuss the application of MLTED in calculating similarities
between these pairs of trees.

used as an illustration for the limitations of DLA measure where the following set of label pairs
need to be considered in true tree {(B,G), (B,H), (B, I), (B, J), (C,G), (C,H), (C, I), (C, J),
(D,G), (D,H), (D, I), (D,J), (E,G), (E,H), (E, I), (E, J), (F,G), (F,H), (F, I), (F, J)}. Clus-
tering of mutations in ‘Inferred tree 4’ is in the perfect agreement with the clustering in the
‘True tree’ hence both CA and CCA measures will return maximum score for this tree, even
though it is also topologically very different from ‘True tree’. Finally, the calculation of the
PMSPD measure between the ‘True tree’ and ‘Inferred tree 1’, as well as ‘Inferred tree 2’, is
shown in Figure 3. This measure assigns the same score to these two inferred trees, despite
the fact that ‘Inferred tree 2’ is, from the perspective of interpreting tumor evolution, much
closer to ‘True tree’.

WABI 2018

22:12 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

5.2 Applications of MLTED

In order to facilitate the interpretation of results, for two arbitrary trees T1 and T2, in addition
to the MLTED similarity measure which returns the number of mutations in common tree of T1
and T2 and is denoted here as MLTED(T1, T2), we also introduce MLTED-normalized(T1,

T2) defined as MLT ED(T1,T2)
max(a,b) , where a and b denote number of mutations in T1 and T2.

MLTED-normalized can be interpreted as similarity measure which takes values from [0, 1],
with higher values denoting higher similarity among trees. In the discussion of results below,
all presented scores represent MLTED-normalized similarity measure, although it is obviously
equivalent to MLTED (assuming that the sets of node labels are known for both trees, which
is true in all of our comparisons).

5.2.1 Application to the synthetic examples with the available ground
truth

In this section we discuss similarity between true and inferred trees shown in Figure 2.
‘Inferred tree 1’ has relatively low score equal to 0.3 which rewards the proper placement

of mutation A and correctly inferred phylogenetic relations for pairs of mutations originating
from different clones, but penalizes for extensive branching which leads to the inaccurate
placement to different branches of mutations originating from the same clone, as well as to
significant topological differences between this and true tree. In contrast, and as expected
based on our discussion from the introduction, ‘Inferred tree 2’ (which represents slightly
refined version of ‘True tree’ where green and yellow clones are each split into two adjacent
clones belonging to the same branch) and ‘Inferred tree 3’ (which represents fully resolved
mutation tree that can be obtained from ‘True tree’) both have score 1. ‘Inferred tree 4’,
having score 0.6, is rewarded for the proper placement of mutation A and large cluster
of mutations appearing for the first time at green clone, but is penalized for inaccurate
placement of yellow clone from where 4 out of 10 mutations originate.

5.2.2 Application to real data

In order to demonstrate the application of measure developed in this work in real settings
where true tree is usually not available, we analyzed two datasets obtained by sequencing real
samples of triple-negative breast cancer (TNBC) and acute lymphoblastic leukemia (ALL).
For each sample, we inferred trees of tumor evolution by the use of SCITE [14], SiFit [10]
and PhISCS2. We provide more details about these methods and parameters used in running
them, as well as details of obtaining real data, in the Appendix. Inferred trees and very
detailed discussion of the calculated MLTED-normalized scores for pairs of inferred trees are
shown in Figure 4 and Figure 5 (for the TNBC sample) and Figure 6 (for the ALL sample).
We show that MLTED-normalized score recognizes high similarity in the placement of vast
majority of mutations between two trees (as demonstrated for trees inferred by PhISCS and
SiFit for TNBC sample where score equals 0.82), but also penalizes for topological differences
and different sorting of mutations along linear chains (as demonstrated for trees inferred by
SCITE and SiFit for ALL sample where the score equals 0.69).

2 Available at https://github.com/haghshenas/PhISCS

https://github.com/haghshenas/PhISCS

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:13

6 Conclusion and Future Work

Comparing clonal and mutation trees inferred by different methods and/or by the use of
different types of input data, currently represents an important challenge in intra-tumor
heterogeneity and evolution studies. In this work, we show that the most widely used
measures for comparing clonal/mutation trees usually capture only some specific aspects
of tree similarity and can also report the similarity score which is in sharp contrast to the
expected result (e.g. perfect score is sometimes given to inferred tree which is very different
from the true tree). Motivated by these, we introduce new measure, termed MLTED, for
calculating similarity between trees of tumor evolution. From the above discussion and
results on synthetic and trees obtained by analyzing real datasets, we conclude that MLTED
successfully captures similarities and differences, relevant in proper interpretation of tumor
evolution, between two given trees. The proposed similarity measure represents a promising
alternative to the existing measures and has wider domain of applications (as it does not
require the presence of reference tree). We expect that MLTED becomes a part of the gold
standard in assessing the performance of methods for inferring trees of tumor evolution on
simulated data, as well as in comparing similarity and finding consensus tree of trees reported
by different methods in the cases where real data is used as the input and ground truth is
usually not available.

In the current implementation, MLTED is designed for trees built by the use of SNVs
under the ISA. Such trees are an output of the vast majority of the existing methods for
studying tumor evolution. However, some recent studies based on the analysis of single-cell
sequencing datasets suggest the possibility of ISA violation in some cases [23]. With the rapid
advancements in the field of single-cell sequencing, we expect developments of sophisticated
computational methods based on finite sites model and using SNVs, copy number and other
structural aberrations in inferring clonal/mutation trees. These will also require some future
work in extending MLTED to properly capture the key differences among trees reported by
such methods.

References
1 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time

(unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58,
2015. doi:10.1145/2746539.2746612.

2 P. Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci., 337(1-
3):217–239, 2005. doi:10.1016/j.tcs.2004.12.030.

3 W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26(2):370–385,
1998. doi:10.1006/jagm.1997.0899.

4 W. Chen. New algorithm for ordered tree-to-tree correction problem. J. Algorithms,
40(2):135–158, 2001. doi:10.1006/jagm.2001.1170.

5 Nilgun Donmez, Salem Malikic, Alexander W. Wyatt, Martin E. Gleave, Colin Collins,
and S Cenk Sahinalp. Clonality inference from single tumor samples using low-coverage
sequence data. Journal of Computational Biology, 24(6):515–523, 2017. doi:10.1089/cmb.
2016.0148.

6 A. G. Deshwar et al. Phylowgs: reconstructing subclonal composition and evolution from
whole-genome sequencing of tumors. Genome biology, 16(1):35, 2015.

7 C. Gawad et al. Dissecting the clonal origins of childhood acute lymphoblastic leukemia
by single-cell genomics. Proceedings of the National Academy of Sciences, 111(50):17947–
17952, 2014.

WABI 2018

http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://dx.doi.org/10.1006/jagm.1997.0899
http://dx.doi.org/10.1006/jagm.2001.1170
http://dx.doi.org/10.1089/cmb.2016.0148
http://dx.doi.org/10.1089/cmb.2016.0148

22:14 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

8 El-Kebir M. et al. Inferring the mutational history of a tumor using multi-state perfect
phylogeny mixtures. Cell systems, 3(1):43–53, 2016.

9 F. Strino et al. Trap: a tree approach for fingerprinting subclonal tumor composition.
Nucleic acids research, 41(17):e165–e165, 2013.

10 H. Zafar et al. Sifit: inferring tumor trees from single-cell sequencing data under finite-sites
models. Genome biology, 18(1):178, 2017.

11 Hajirasouliha I. et al. A combinatorial approach for analyzing intra-tumor heterogeneity
from high-throughput sequencing data. Bioinformatics, 30(12):i78–i86, 2014.

12 J. Kuipers et al. Advances in understanding tumour evolution through single-cell sequen-
cing. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1867(2):127–138, 2017.

13 Jiang T. et al. Alignment of trees - an alternative to tree edit. Theor. Comput. Sci.,
143(1):137–148, 1995. doi:10.1016/0304-3975(95)80029-9.

14 K. Jahn et al. Tree inference for single-cell data. Genome biology, 17(1):86, 2016.
15 M. El-Kebir et al. Reconstruction of clonal trees and tumor composition from multi-sample

sequencing data. Bioinformatics, 31(12):i62–i70, 2015.
16 S. Malikic et al. Clonality inference in multiple tumor samples using phylogeny. Bioinform-

atics, 31(9):1349–1356, 2015.
17 S. Malikic et al. Integrative inference of subclonal tumour evolution from single-cell and

bulk sequencing data. To appear in proceedings of RECOMB, 2018.
18 W. Jiao et al. Inferring clonal evolution of tumors from single nucleotide somatic mutations.

BMC bioinformatics, 15(1):35, 2014.
19 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.
28874.

20 J. Jansson and A. Lingas. A fast algorithm for optimal alignment between similar ordered
trees. Fundam. Inform., 56(1-2):105–120, 2003. URL: http://content.iospress.com/
articles/fundamenta-informaticae/fi56-1-2-07.

21 R. Kim, K.I. & Simon. Using single cell sequencing data to model the evolutionary history
of a tumor. BMC bioinformatics, 15(1):27, 2014.

22 P.N. Klein. Computing the edit-distance between unrooted ordered trees. In Algorithms -
ESA ’98, 6th Annual European Symposium, Venice, Italy, August 24-26, 1998, Proceedings,
pages 91–102, 1998. doi:10.1007/3-540-68530-8_8.

23 Jack Kuipers, Katharina Jahn, Benjamin J Raphael, and Niko Beerenwinkel. Single-cell
sequencing data reveal widespread recurrence and loss of mutational hits in the life histories
of tumors. Genome research, 27(11):1885–1894, 2017.

24 P. Kilpeläinen & H. Mannila. Ordered and unordered tree inclusion. SIAM J. Comput.,
24(2):340–356, 1995. doi:10.1137/S0097539791218202.

25 E. M. Ross & F. Markowetz. Onconem: inferring tumor evolution from single-cell sequen-
cing data. Genome biology, 17(1):69, 2016.

26 P.C. Nowell. The clonal evolution of tumor cell populations. Science, 194(4260):23–28,
1976.

27 Victoria Popic, Raheleh Salari, Iman Hajirasouliha, Dorna Kashef-Haghighi, Robert B
West, and Serafim Batzoglou. Fast and scalable inference of multi-sample cancer lineages.
Genome biology, 16(1):91, 2015.

28 Daniele Ramazzotti, Alex Graudenzi, Luca De Sano, Marco Antoniotti, and Giulio Cara-
vagna. Learning mutational graphs of individual tumor evolution from multi-sample se-
quencing data. arXiv preprint arXiv:1709.01076, 2017.

29 S. Muthukrishnan & S.C. Sahinalp. An efficient algorithm for sequence comparison with
block reversals. Theor. Comput. Sci., 321(1):95–101, 2004. doi:10.1016/j.tcs.2003.05.
005.

http://dx.doi.org/10.1016/0304-3975(95)80029-9
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-07
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-07
http://dx.doi.org/10.1007/3-540-68530-8_8
http://dx.doi.org/10.1137/S0097539791218202
http://dx.doi.org/10.1016/j.tcs.2003.05.005
http://dx.doi.org/10.1016/j.tcs.2003.05.005

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:15

30 S. M. Selkow. The tree-to-tree editing problem. Inf. Process. Lett., 6(6):184–186, 1977.
doi:10.1016/0020-0190(77)90064-3.

31 K. Zhang & D.E. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM J. Comput., 18(6):1245–1262, 1989. doi:10.1137/0218082.

32 D. Shapira & J.A. Storer. Edit distance with block deletions. Algorithms, 4(1):40–60, 2011.
doi:10.3390/a4010040.

33 Kuo-Chung T. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979. doi:
10.1145/322139.322143.

34 J. Matoušek & R. Thomas. On the complexity of finding iso- and other morphisms for par-
tial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992. doi:10.1016/0012-365X(92)
90687-B.

35 R.A. Wagner and M.J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168–
173, 1974. doi:10.1145/321796.321811.

36 Yong Wang, Jill Waters, Marco L Leung, Anna Unruh, Whijae Roh, Xiuqing Shi, Ken
Chen, Paul Scheet, Selina Vattathil, Han Liang, et al. Clonal evolution in breast cancer
revealed by single nucleus genome sequencing. Nature, 512(7513):155, 2014.

37 D. Shasha & K. Zhang. Fast algorithms for the unit cost editing distance between trees. J.
Algorithms, 11(4):581–621, 1990. doi:10.1016/0196-6774(90)90011-3.

38 K. Zhang. Algorithms for the constrained editing distance between ordered labeled trees and
related problems. Pattern Recognition, 28(3):463–474, 1995. doi:10.1016/0031-3203(94)
00109-Y.

39 K. Zhang and T. Jiang. Some MAX snp-hard results concerning unordered labeled trees.
Inf. Process. Lett., 49(5):249–254, 1994. doi:10.1016/0020-0190(94)90062-0.

Supplementary Figures

J I H G F E D C B A

A 1 1 1 1 1 1 1 1 1 0

B 2 2 2 2 0 0 0 0 0

C 2 2 2 2 0 0 0 0

D 2 2 2 2 0 0 0

E 2 2 2 2 0 0

F 2 2 2 2 0

G 0 0 0 0

H 0 0 0

I 0 0

J 0

(a) Distances for ’True tree’

J I H G F E D C B A

A 1 1 1 1 1 1 1 1 1 0

B 2 2 2 2 2 2 2 2 0

C 2 2 2 2 2 2 2 0

D 2 2 2 2 2 2 0

E 2 2 2 2 2 0

F 2 2 2 2 0

G 2 2 2 0

H 2 2 0

I 2 0

J 0

(b) Distances for ’Inferred tree 1’

J I H G F E D C B A

A 2 2 1 1 2 2 1 1 1 0

B 3 3 2 2 1 1 0 0 0

C 3 3 2 2 1 1 0 0

D 3 3 2 2 1 1 0

E 4 4 3 3 0 0

F 4 4 3 3 0

G 1 1 0 0

H 1 1 0

I 0 0

J 0

(c) Distances for ’Inferred tree 2’

Figure 3 Distances between pairs of labels required for calculating Pair-wise Marker Shortest
Path Distance (PMSPD) for trees from Figure 2. Entries in each matrix represent length of path
between labels (note that labels are shown in the first row and the first column of each matrix).
Distance is calculated as the sum of absolute values of differences between pairs of entries which are
at the same position in both matrices. Red colored entries in labels pairwise distance matrix shown
in (b)/(c) differ from the corresponding entries in matrix for true tree shown in (a) and therefore
contribute to the overall distance. PMSPD assigns the same score to ’Inferred tree 1’ and ’Inferred
tree 2’, despite the fact that ‘Inferred tree 2’ is, from the perspective of interpreting tumor evolution,
much closer to ‘True tree’.

WABI 2018

http://dx.doi.org/10.1016/0020-0190(77)90064-3
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.3390/a4010040
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1016/0012-365X(92)90687-B
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1016/0196-6774(90)90011-3
http://dx.doi.org/10.1016/0031-3203(94)00109-Y
http://dx.doi.org/10.1016/0031-3203(94)00109-Y
http://dx.doi.org/10.1016/0020-0190(94)90062-0

22:16 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

Clone 1

PTEN,TBX3
SETBP1,JAK1
CDH6,AKAP9

Clone 2

ECM2,NOTCH3
ARAF,NOTCH2

MAP2K7
NTRK1,AFF4

Clone 3

MAP3K4

Clone 6

ECM1

Clone 7

PPP2R1A,SYNE2
AURKA

Clone 4

CHRM5

Clone 5

TGFB2

(a) Tree for TNBC dataset inferred by SiFit

Clone 1

PTEN,TBX3
SETBP1,JAK1
CDH6,AKAP9
MAP3K4

Clone 2

ECM2,NOTCH3
ARAF,NOTCH2

MAP2K7

Clone 3

AFF4,NTRK1

Clone 4

CHRM5

Clone 6

ECM1

Clone 7

PPP2R1A
SYNE2

Clone 8

AURKA

Clone 5

TGFB2

Clone 9

CBX4

Clone 10

TNC

(b) Tree for TNBC dataset inferred by PhISCS

Figure 4 Clonal trees of tumor evolution, inferred by SiFit and PhISCS, for triple-negative breast
cancer (TNBC) dataset originally published in [36] and consisting of the binary presence/absence
profile of 22 mutations across 16 single cells. Names of the clones are assumed not to be included as
part of the node label. Trees are very similar to each other in placement of the vast majority of
mutations: (i) Clone 1 in the SiFit tree is almost identical (with respect to the set of mutations
assigned to its label) to Clone 1 in PhISCS tree (ii) Clone 2 in SiFit tree is split into two adjacent
clones, namely Clone 2 and Clone 3, in PhISCS tree. Analogous applies to Clone 7. (iii) The order
of mutations in genes CHRM5 and TGFB2, as well as in most other pairs of mutations (including
the pairs where both mutations are at the same node), is same among the trees. Notable exceptions
leading to some dissimilarities between the trees include mutations in genes MAP3K4 and ECM1.
In addition, mutations in genes CBX4 and TNC are absent in tree reported by SiFit. Removing
these four mutations and their corresponding nodes from each tree (if present) and assigning each of
the Clone 4 and Clone 7 in SiFit tree as child of Clone 2, and Clone 7 as child of Clone 3 in PhISCS
tree, we obtain trees which are same up to the existence of splits of single into two adjacent clones
belonging to the same lineage (see (ii) from above). MLTED-normalized score for the two trees
equals 0.82, which well reflects the overall high topological similarity and concordance in ordering
pairs of mutations.

,

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:17

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4 TGFB2

SYNE2

AURKA

Figure 5 Mutation tree for TNBC dataset (see Figure 4 for details) inferred by SCITE. This
tree can be obtained from PhISCS tree by expanding nodes having more than one label, hence
MLTED-normalized score between the two trees is maximum possible (i.e. equals 1). Compared
with tree inferred by SiFit, SCITE tree has analogous topological similarities and differences as tree
inferred by PhISCS, and MLTED-normalized score for these two trees is also equal to 0.82.

,

WABI 2018

22:18 Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression

RIMS2
SIGLEC10

PLEC

XPO7 LINC00052 FGD4,RRP8
FAM105A

ZC3H3

BRD7P3

BDNF-AS

PCDH7

INHA
CMTM8 TRRAP

ATRNL1

(a) Tree for ALL dataset inferred by SiFit

RIMS2

SIGLEC10

PLEC

LINC00052 ZC3H3

XPO7

BRD7P3

BDNF-AS

FGD4

RRP8

PCDH7

FAM105A

INHA ATRNL1

CMTM8 TRRAP

(b) Tree for ALL dataset inferred by SCITE

Figure 6 Trees inferred by SCITE and SiFit for acute lymphoblastic leukemia (ALL) patient
dataset from [7] consisting of 115 single cells and 16 mutations. Unsurprisingly, due to large number
of single-cells in this dataset, sequencing noise and similarities in the scoring schemes used in PhISCS
and SCITE (see Section A) both methods report the same mutation tree so we only focus on
SCITE in this discsussion. The most notable difference among the two trees is in the placement and
ordering of mutations in genes ZC3H3, XPO7 and BRD7P3 as well as in the ordering of mutations
in genes FGD, RRP8, FAM105A, BDNF-AS and PCDH7. Furthermore, the relative order also
differs for mutations in genes TRRAP and ATRNL1. However, in contrast to these important
differences, the trees still share most of the major branching events in tumor evolution and have
consistent ancestor-descendant order for most of the pairs of mutations. All these are reflected in
MLTED-normalized score of 0.69 assigned to this pair of trees.

,

N. Karpov, S. Malikic, M.K. Rahman, and C. Sahinalp 22:19

A Details of obtaining trees of tumor evolution for the real data sets

A.1 Summary of methods used for inferring trees of tumor evolution
In this work, we inferred trees of tumor evolution by the use of SCITE [14], SiFit [10] and
PhISCS3. Each of the methods takes as the input single-cell sequencing (SCS) data matrix
and estimated noise rates of SCS experiment. The underlying scoring used in PhISCS is
analogous to that in SCITE and the major difference among the two methods is in the
type of tree returned in the output. While SCITE searches for the maximum likelihood
mutation tree, PhISCS reports the maximum likelihood clonal tree. Due to the equivalence
in tree scoring, assuming that both methods find the optimal solution, clonal tree reported
by PhISCS is expected to represent compressed version of mutation tree reported by SCITE
(i.e. we expect that tree reported by SCITE belongs to the set of mutation trees which can be
obtained from clonal tree reported by PhISCS). Similarly as PhISCS, SiFit also returns clonal
tree of tumor evolution but uses different tree search methodology and does not necessarily
yield the same output as PhISCS nor SCITE (as demonstrated in [10]).

A.2 Details of obtaining input data and running SCITE, SiFit and
PhISCS

We obtained binary SCS data mutation matrix for TNBC patient sample from [28] and for
ALL patient sample from [7]. For each sample, false positive and false negative rates of
sequencing experiment were estimated in the original studies [36, 7] and provided as the
input to the methods used in the analysis. In order to obtain better convergence, we run
MCMC based methods SiFit and SCITE for very large number of iterations. For SiFit, we
set number of iterations to 5,000,000. For SCITE we set number of repetitions of the MCMC
to 3 and chain length of each MCMC repetition to 1,000,000. PhISCS is combinatorial
optimization based method which provided guarantee of the optimality for each solution.

3 Available at https://github.com/haghshenas/PhISCS

WABI 2018

https://github.com/haghshenas/PhISCS

Heuristic Algorithms for the Maximum Colorful
Subtree Problem
Kai Dührkop
Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany
kai.duehrkop@uni-jena.de

Marie A. Lataretu
Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany
marie.lataretu@uni-jena.de

W. Timothy J. White
Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany, and
Berlin Institute of Health, Berlin, Germany
tim.white@bihealth.de

https://orcid.org/0000-0002-1997-0176

Sebastian Böcker
Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany
sebastian.boecker@uni-jena.de

https://orcid.org/0000-0002-9304-8091

Abstract
In metabolomics, small molecules are structurally elucidated using tandem mass spectrometry
(MS/MS); this computational task can be formulated as the Maximum Colorful Subtree problem,
which is NP-hard. Unfortunately, data from a single metabolite requires us to solve hundreds or
thousands of instances of this problem – and in a single Liquid Chromatography MS/MS run,
hundreds or thousands of metabolites are measured.

Here, we comprehensively evaluate the performance of several heuristic algorithms for the
problem. Unfortunately, as is often the case in bioinformatics, the structure of the (chemically)
true solution is not known to us; therefore we can only evaluate against the optimal solution of
an instance. Evaluating the quality of a heuristic based on scores can be misleading: Even a
slightly suboptimal solution can be structurally very different from the optimal solution, but it is
the structure of a solution and not its score that is relevant for the downstream analysis. To this
end, we propose a different evaluation setup: Given a set of candidate instances of which exactly
one is known to be correct, the heuristic in question solves each instance to the best of its ability,
producing a score for each instance, which is then used to rank the instances. We then evaluate
whether the correct instance is ranked highly by the heuristic.

We find that one particular heuristic consistently ranks the correct instance in a top position.
We also find that the scores of the best heuristic solutions are very close to the optimal score;
in contrast, the structure of the solutions can deviate significantly from the optimal structures.
Integrating the heuristic allowed us to speed up computations in practice by a factor of 100-fold.

2012 ACM Subject Classification Applied computing → Computational biology, Applied
computing → Metabolomics / metabonomics

Keywords and phrases Fragmentation trees, Computational mass spectrometry

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.23

Funding WTJW funded by Deutsche Forschungsgemeinschaft (grant BO 1910/9).

© Kai Dührkop, Marie A. Lataretu, W. Timothy J. White, and Sebastian Böcker;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kai.duehrkop@uni-jena.de
mailto:marie.lataretu@uni-jena.de
mailto:tim.white@bihealth.de
https://orcid.org/0000-0002-1997-0176
mailto:sebastian.boecker@uni-jena.de
https://orcid.org/0000-0002-9304-8091
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Heuristic Algorithms for the Maximum Colorful Subtree Problem

1 Introduction

Metabolomics characterizes the collection of all metabolites in a biological cell, tissue, organ or
organism using high-throughput techniques [10]. Liquid Chromatography Mass Spectrometry
(LC-MS) is one of the predominant experimental platforms for this task [1] and can detect
compounds at the attogram level [8]. Today, a major challenge is to determine the identities
of the thousands of metabolites detected in one LC-MS run. This is also true for related fields
such as natural products research [16,21], biomarker discovery [21], environmental science [13],
or food science. Tandem mass spectrometry (MS/MS) is used to derive information about
the structure of a metabolite by fragmenting the molecule and recording the masses of its
fragments. Interpretation of the hundreds to thousands of MS/MS spectra generated in a
single LC-MS run remains a bottleneck in the analytical pipeline [19]. MS/MS data is usually
searched against spectral libraries [17], but only a small number of metabolites (around 2%)
can be identified in this manner [4].

Fragmentation trees were introduced in 2008 [3] and were initially targeted towards
identifying the molecular formula of the unknown small molecule. Later, it was shown that
the structure of fragmentation trees contains valuable information for structural elucidation
of the underlying molecule [11]. In particular, CSI:FingerID combines fragmentation tree
computation with multiple kernel learning on these trees [6,15], and is the currently best-
performing method for searching MS/MS data in structure databases [14]. Computing
an optimum fragmentation tree naturally leads to the Maximum Colorful Subtree
problem [2,3]. Unfortunately, this problem is NP-hard and also hard to approximate [7, 12].
Algorithms exist to solve the problem either heuristically [12] or exactly [3, 12, 20]. The
problem is a variant of the well-studied Graph Motif problem [5,9].

Optimization problems in bioinformatics research are designed so that the optimal
solution (with regards to the objective function) is “similar” to the true solution, such as
the biologically correct phylogenetic tree, the “true” sequence alignment, etc. Unfortunately,
many of these optimization problems are NP-hard; furthermore, the true solution is often
not known to us. Approximation algorithms are algorithms for (usually) NP-hard problems
with provable guarantees on the distance of the returned solution to the optimal one. But
this provable guarantee is only for the objective function; in bioinformatics research, we are
rarely interested in the objective function value beyond using it to find the optimal solution.
Heuristics in bioinformatics are usually designed to find solutions structurally similar to the
optimum solution or, even better, the true solution. This makes it intrinsically difficult to
evaluate the performance of these heuristics, as we have to define a measure on the structural
similarity between the heuristic solution and the true solution; furthermore, the true solution
has to be known, which is often not the case.

We will use an alternative approach to evaluate the performance of a heuristic: For many
applications, one biological instance results in many computational instances, corresponding
to candidates or hypotheses; the score of the solution to each instance is used to rank its
corresponding hypothesis. Although the true solution may not be known, we may have
information regarding the correct candidate or hypothesis. To this end, we can evaluate a
heuristic based on its ability to top-rank the correct candidate.

We propose several heuristics for the Maximum Colorful Subtree problem, and
evaluate these heuristics with regards to their ranking quality. We find that one particular
heuristic allows us to quickly shrink the set of plausible candidates (molecular formulas of
the precursor molecule). This can be used as a filter, such that optimum solutions have to
be sought only for a (preferably small) subset of candidates. We also evaluate whether the
structure of the constructed solutions is similar to the optimum solution.

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:3

2 Fragmentation trees and the Maximum Colorful Subtree problem

Tandem mass spectrometry selects ions with a particular mass, fragments these ions by
collision with neutral molecules such as argon or nitrogen, then records the masses of the
resulting fragments. Assuming that only identical copies with identical structure are selected,
we say that one precursor ion with some precursor mass was selected. Mass spectrometry
measures mass-to-charge instead of mass, but we may assume that all small molecules carry
a single charge. Masses of fragments of the molecule are recorded as peaks in the MS/MS
spectrum.

Details of how to transform the MS/MS spectrum of an (unknown) compound into one
or more instances of the Maximum Colorful Subtree problem have been published
elsewhere [2, 3]; we briefly recapitulate the process. We consider all molecular formulas from
some ground set, such as, all molecular formulas built from the elements CHNOPS. We
decompose the precursor mass into all possible candidate molecular formulas from this ground
set; each candidate molecular formula generates one instance (graph). For each instance,
we decompose the fragment peaks in the MS/MS spectrum, ensuring that each fragment
molecular formula is a subformula of the candidate molecular formula for the precursor
mass. These molecular formulas constitute the nodes of a graph; each node is colored by
the peak it stems from. An edge, representing a possible fragmentation event, is present
between molecular formulas u, v if and only if v is a proper subformula of u. Now, both
nodes and edges receive a certain weight [2], based both on prior knowledge (e.g., distribution
of loss masses) and the data (e.g., mass difference between a peak and its hypothetical
molecular formula); but as pointed out in [3], we may encode both kinds of weights using
only edge weights. SIRIUS 4 default weights are used, see [2]. The maximum colorful subtree
within each instance is computed, and its weight is used to rank the corresponding candidate
molecular formula of the precursor peak.

We can formulate fragmentation tree computation as a stochastic optimization problem,
where we try to “best explain” the observed data (the fragmentation spectrum of a small
molecule obtained through tandem mass spectrometry) under a hypothesis (the molecular
formula of the small molecule, represented by the root vertex) using a maximum a posteriori
estimator. The likelihood function rewards hypotheses that explain high-intensity peaks.
Each peak in the fragmentation spectrum must be explained at most once, in accordance
with the parsimony principle. Böcker and Dührkop [2] then show that one can find the
maximum a posteriori hypothesis by solving a particular Maximum Colorful Subtree
instance, where edge weights are logs of probabilities of fragmentation events under the
model.

We now describe the formal Maximum Colorful Subtree optimization problem. Let
G = (V, E) be a node-colored, rooted, directed acyclic graph (DAG) with root r ∈ V and
edge weights w : E → R. Let C(G) be the set of colors used in G, let c(v) ∈ C(G) be the
color assigned to node v ∈ V , and let c(U) := {c(v) | v ∈ U} for U ⊆ V . We will consider
subtrees T = (VT , ET) of G rooted at r. We say that T is colorful if all of its nodes have
different colors. The Maximum Colorful Subtree problem asks to find a colorful r-rooted
subtree T of G of maximum weight. We may assume that G is (weakly) connected and that
r is the unique source of G, as we can remove all nodes from the graph which cannot be
reached by a path from the root r, without changing the optimal solution. We say that a
subgraph G′ ⊆ G is full if v ∈ G′ implies that every edge and vertex reachable from v in G

is also in G′.

WABI 2018

23:4 Heuristic Algorithms for the Maximum Colorful Subtree Problem

24

7

5 0

3

0

0

2

0 5

0 0 0 0 0

-1

2

7

-6 3

5

6

-6 -3

-2 -3 1
-4
4

-1

2

7

3

5

6

-3

1 4

Figure 1 Illustration of the Remove Dangling Subtrees (RDS) postprocessing. Left: Input tree,
where each node v is labeled by its score D[v]. Right: Output tree of weight 24.

We note that previous work on the problem also makes the assumption of a single source,
albeit usually implicitly [3,11,12,20]. From an algorithmic standpoint, problem variants with
or without a given root are “basically equivalent”: Given an algorithm that does not assume
a fixed root r, we can solve an instance of the problem variant with root r by introducing a
superroot r∗ connected solely to r, sufficiently large edge weight w(r∗, r) and a new color for
r∗. For the reverse direction, we solve the problem for every r ∈ V , then choose the best
solution.

There are two peculiarities when computing fragmentation trees that are different from the
general problem, and that we will make use of here. First, any DAG used for fragmentation
tree computation is transitive: That is, uv ∈ E and vw ∈ E implies uw ∈ E. Second, a
coloring c : V → C(G) of DAG G = (V, E) is order-preserving if there is an ordering ‘≺’
on the colors C(G) such that c(u) ≺ c(v) holds for every edge uv of G [7]. Computing
fragmentation trees naturally results in order-preserving colors, as nodes can be colored by
the fragment mass that is responsible for this node, and edges exist only between nodes
from larger to smaller masses. The Maximum Colorful Arborescence problem [7]
asks to find a rooted colorful subtree T of G of maximum weight, where G is a DAG with
order-preserving colors and edge weights. See [7] for numerous complexity results. Here,
we will stick with the name “Maximum Colorful Subtree problem”, but nevertheless
assume that the coloring is order-preserving, unless indicated otherwise.

3 Heuristics for the Maximum Colorful Subtree problem

The following postprocessing methods can be applied to a tree T = (VT , ET) after any
heuristic: The Remove Dangling Edges (RDE) postprocessing iteratively removes edges
uv from T , where v is a leaf and w(uv) < 0; this is repeated until no more such edges
are found. In contrast, the Remove Dangling Subtrees (RDS) postprocessing does not
consider a single edge at a time, but rather full subtrees: Each node u ∈ VT is scored by the
maximum weight of any full subtree rooted in u. Score D[u] can be computed using dynamic
programming:

D[u] :=
∑

uv∈ET

max{0, w(u, v) + D[v]}

Clearly, D[u] ≥ 0. For each edge uv with w(u, v) + D[v] < 0 we remove uv and the subtree
below it. Both postprocessings can be computed in O(|VT |) time using a tree traversal, as
every edge is considered once and |ET | = |VT | − 1. Figure 1 shows an example of the RDS
postprocessing.

We now present heuristics for finding a colorful subtree with root r in a transitive DAG
with order-preserving coloring and unique source r.

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:5

Kruskal-style. This heuristic sorts all edges of the graph by decreasing edge weight, then
iteratively adds edges from the sorted list, ensuring that the growing subgraph is colorful
and that each node has at most one incoming edge. Since r is the unique source of G, and
since G is transitive, this will ultimately result in a colorful subtree of G. This heuristic
is similar to Kruskal’s algorithm for computing a minimum spanning tree; it was called
“greedy heuristic” in [3].
Prim-style. This heuristic progresses similarly to Prim’s algorithm for calculating a
minimum spanning tree: The tree T = (VT , ET) initially contains only the root r of G.
In every step, we consider all edges uv with u ∈ VT and v /∈ VT such that c(v) /∈ c(VT);
among these, we choose the edge with maximum weight and add it to the tree. We repeat
until all colors in the graph are used in the tree; recall that G is transitive, so rv ∈ E for
each v 6= r. We explicitly do not quit when adding the first negative-weight edge uv, as
the newly reached node v may allow us to later add other edges with positive weight. The
Prim-style heuristic will usually result in a different tree than the Kruskal-style heuristic,
due to the colorfulness constraint.
Insertion. This heuristic is a modification of the “insertion heuristic” from [12]. We again
start with a tree T = (VT , ET) containing only the root r of G. The heuristic greedily
attaches nodes labeled with unused colors. For every node v with c(v) = c′ unused, and
every node u already part of the solution, we calculate how much we gain by attaching v

to u. To calculate this gain I(u, v), we take into account the score of the edge uv as well
as the possibility of rerouting other outgoing edges of u through v:

I(u, v) := w(uv) +
∑

x∈VT ,w(vx)>w(ux)

(
w(vx)− w(ux)

)
where we assume w(uv) = −∞ if uv /∈ E. The node with maximum gain is then attached
to the partial solution, and edges are rerouted as required. See [12] for details; different
from there, we do not iterate over colors in some fixed order but instead, consider all
unused colors in every step.
Top-down. The top-down heuristic [3] is also greedy, but always adds paths beginning at
the root to the partial solution. The partial solution initially contains only the root r

of G. The heuristic greedily constructs a path starting at the root which is added to the
partial solution; the next node of the path is chosen so that it maximizes the weight of
the added edge, simultaneously ensuring that the partial solution remains colorful and
does not violate the tree property. If no such edge exists, the algorithm restarts at the
root, and searches for another path. It terminates if no edge at the root can be selected.
In the resulting tree, all internal nodes but the root have exactly one child. This heuristic
extends even simpler heuristics that attach all nodes to the root, which have been in
frequent use for molecular formula determination from MS/MS data.
Critical Path1. Again, we iteratively build a tree T = (VT , ET); initially, the partial
solution T contains only the root r of G. The score S[u] of a node u ∈ V is the maximum
weight of a path p from u to any node v, such that c(p) ∩ c(VT) ⊆ {c(u)}; that is, the
path does not use nodes with colors already present in the tree, except for the color of
the starting node. We can compute S[u] using the recurrence

S[u] := maxuv∈E,c(v)/∈c(VT){0, S[v] + w(uv)} (1)

where we use that the coloring of G is order-preserving, since in that case no two nodes
of the path have the same color. We assume max ∅ = 0 when computing (1). We iterate
over the ordered colors c in reverse order, computing S[u] for all nodes u of color c. The

WABI 2018

23:6 Heuristic Algorithms for the Maximum Colorful Subtree Problem

r

u

2

z

5

v

1

x

3 y

2

Figure 2 Left: Example for the Critical Path1 heuristic. Nodes are labeled by score, solid lines
show the tree, dashed lines the rest of the graph. Grayed-out nodes have colors already used in
the subtree. Right: An example input graph for which Critical Path1 produces a better tree than
Critical Path2. Nodes v and z are the same color; all other nodes have distinct colors. The two
solid edges are the suboptimal tree output by Critical Path2. Critical Path1 initially chooses the
path ruvx for a score of 6, then adds vy for a total of 8. Critical Path2 begins in the same way by
choosing the first edge ru of the heaviest path for a score of 2, but in its second step it chooses the
weight-5 edge rz, as the heaviest path starting with uv has weight 4. No further edges can be added,
so the total weight is 7.

critical path p of maximum score can be found by backtracing from the maximum entry
S[u] with u ∈ VT . We add p to T , then iterate, recomputing S for the new set of used
colors c(Vt). See Figure 2 (left) for an example.
Critical Path2. This heuristic also relies on critical paths, but adds, in each iteration,
only the first edge of the critical path to the partial solution. We note that this heuristic
does not dominate the Critical Path heuristic, meaning that in certain cases, the subtree
computed by this heuristic has smaller weight than that computed by the Critical Path
heuristic; see Figure 2 (right) for an example.
Critical Path3. This heuristic combines the Insertion heuristic with the Critical Path
heuristic: In each step the heuristic chooses the edge uv with u ∈ VT that maximizes the
sum of critical path score and insertion score S[u] + I(u, v).
Maximum. All heuristics compute lower bounds of the maximum score; therefore the
maximum score over all heuristic solutions is also a lower bound.

3.1 Time complexity of the heuristics
Let n := |V |, m := |E|, and k := |C(G)|. Clearly, k ≤ n and in applications, we usually have
k � n. Furthermore, |VT | ≤ k holds for the returned subtree T = (VT , ET).

It is easy to check that the Kruskal-style heuristic has time complexity O(m log n) for
sorting all edges according to weight. Connectivity testing can then be performed in
sub-logarithmic time per considered edge using a union-find data structure [18]; checking
for colorfulness is easily accommodated by initially placing all nodes of the same color in
the same component. The overall time complexity thus remains O(m log n). Similarly,
the Prim-style heuristic requires O(m log n) time.
For the Insertion heuristic, computing the gains I(u, v) for a particular v and for all u

requires O(k2) time, since u, x ∈ VT . Hence, choosing one v to attach to the growing tree
requires O(k2n) time, resulting in O(k3n) total running time.
However there exists a more complicated yet faster implementation for this heuristic:
For each v ∈ V , we maintain two scores, in(v) and out(v), which correspond to the two
terms on the RHS of the definition of I(u, v). Specifically, in(v) = maxu∈VT

w(uv), and

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:7

out(v) =
∑

x∈VT
max{0, w(vx) − w(pT (x), x)}, where pT (x) is the parent of x in T for

all x ∈ T . To choose the next node to insert, we look for the node v ∈ V maximizing
in(v) + out(v), ignoring nodes of already-used colors, which takes O(n) time (and could
in practice often finish early if we search in decreasing order of one of these terms, and
know an upper bound on the other). We then perform a single O(k)-time scan to find its
optimal parent in the tree, and then make two further updates: First, for all u ∈ V , set
in(u)← max{in(u), w(vu)} and out(u)← out(u)+max{0, w(uv)−w(pT (v), v)}. Second,
for all x ∈ VT , check whether the incoming edge yx (i.e., y = pT (x)) can be improved by
rerouting via v; if so, delete yx, insert vx and for all u ∈ V such that w(yx) ≤ w(ux),
set out(u)← max{0, out(u)− (w(vx)− w(yx))}. The second update, which dominates,
needs O(kn) time per inserted node, for O(k2n) overall.
The Top-down heuristic searches at most k times for the maximum weight edge leaving a
node; since there are O(n) such edges, the running time is O(kn).
For the Critical Path1 heuristic, we need O(m) time to compute the S[u] values and to
identify the path of maximum weight. This is repeated at most k − 1 times, resulting
in a total running time of O(km). The same holds true for Critical Path2. For Critical
Path3 we can again maintain an out(v) table that contains the score bonus we get for
attaching a node in the intermediate tree as a child of v and deleting its previous incoming
edge. After each insertion of an edge into the intermediate tree we have to perform the
two update operations on out which takes O(kn) time per insertion. In total we need
O(k2n + km) time to compute Critical Path3. In applications, k is very small and n� m,
so the O(km) part for calculating the critical paths requires most of the computation
time.

3.2 Computing the k-best fragmentation trees exactly
Even if we do not trust the structural quality of the heuristic solution, the above heuristics
allow us to speed up fragmentation tree computation: We first select a single candidate
(molecular formula of the precursor) using one of the heuristics, then compute the optimal
solution for this instance using an exact method [3,12,20]. In practice, this approach has two
shortcomings: Even though certain heuristics show a very good performance in selecting the
correct molecular formula (see below), this correct answer is not known to us in application;
but we will observe that the computed fragmentation tree will often not be the optimum
fragmentation tree, if we also consider other molecular formula candidates and corresponding
instances.

Even worse, it is usually not sufficient in application to select a single best candidate using
the heuristic, then re-compute the fragmentation tree for the corresponding instance. Instead,
we usually want to know optimal fragmentation trees for the k best-scoring candidates. This
is independent of whether results are reported to the user, who wants to use fragmentation
tree structure to survey if computations and, hence, the assigned precursor molecular formula
are trustworthy; or, if we perform some downstream computational analysis based on
fragmentation tree structure, such as CSI:FingerID [6]. In particular for “large” metabolites
with mass beyond 600 Dalton, this is necessary because neither the heuristics nor the exact
method will always allow us to find the correct candidate; only by considering several
candidates can we be sufficiently sure that the correct answer is present.

We propose the following heuristic to compute optimum fragmentation trees for the
k-best molecular formula candidates: First, we compute heuristic solutions for all candidates,
and order molecular formula candidates according to the heuristic score. Next, we compute

WABI 2018

23:8 Heuristic Algorithms for the Maximum Colorful Subtree Problem

optimum fragmentation trees for the k best candidates; for small k, we can instead choose
some fixed parameter, such as 10 candidates. We estimate the maximum ∆ ≥ 0 of differences
between the score of the optimum solution and the corresponding heuristic solution, using
those candidates for which we know the exact solution. We now assume that the score
difference is upper-bounded by ∆ for all candidates. We continue to process candidates and
compute optimum fragmentation trees from the sorted list, updating the k-best candidates
and the corresponding score threshold; we stop computations when the heuristic score of a
candidate plus ∆ is smaller than the current score threshold. Clearly, our assumption made
above may be violated for certain inputs, making this method a heuristic.

4 Data and Instances

To evaluate whether a heuristic is capable of ranking the correct molecular formula in the
top position, we have to use reference data where the true compound structure is known for
each MS/MS measurement. We use reference compounds from GNPS [19]; each reference
compound is one instance, corresponding to several graphs (for the different molecular
formula candidates of the precursor mass) we have to solve. We then filter instances: For
example, we require a mass accuracy of 10 ppm (parts per million), and discard compounds
where the precursor mass is missing or outside this mass range. All details can be found
in [2]. This leaves us with 4 050 compounds, each of which is then transformed into typically
many instances of the Maximum Colorful Subtree problem. Each reference compound
resulted in between 1 and 21 748 candidate molecular formulas, with median 53 and average
263.8 candidates. To avoid proliferating running times, we consider only the 60 most intense
peaks in a MS/MS spectrum that can be decomposed, which is again SIRIUS 4 default
behavior. We fix the SIRIUS tree size parameter, which is usually adapted at runtime, at
−0.5. In addition, we switch off SIRIUS’s spectral recalibration.

5 Results

We applied all but the Critical Path heuristics using the RDS postprocessing. We do
not evaluate the RDE postprocessing, as it is dominated by RDS (that is, the score is
at least as good, in all cases) which, in turn, dominates solutions without postprocessing.
Furthermore, both kinds of postprocessing are very fast in practice. For the Critical Path
heuristics, RDS cannot improve a solution for variants 1 and 2; while it is in principle
possible that it could improve a solution for variant 3, this is very unlikely, and to keep
results of the Critical Path heuristics consistent, we disabled the RDS postprocessing for
all 3 variants. All heuristics were implemented in Java 8. For the exact method, we
use the Integer Linear Program (ILP) from [12] with the CPLEX solver 12.7.1 (IBM,
https://www.ibm.com/products/ilog-cplex-optimization-studio).

First, we evaluated the power of the different heuristics to rank the correct answer
(molecular formula) at the top position; see Fig. 3 (left). We also compared against the
exact solution. We observe similar identification rates for the Critical Path heuristics, the
Maximum heuristic and the exact method. To test whether this trend is true not only for the
top rank, but also for the top k ranks, we also evaluated how often any method is capable to
rank the correct answer in its top k, for varying k; see Fig. 3 (right). Identification rates differ
much more strongly when varying k for one method than for different methods and one k; to
ease interpretation, we normalize identification rates by subtracting the identification rate of
the exact method. We see that all heuristics but for the three Critical Path variants result

https://www.ibm.com/products/ilog-cplex-optimization-studio

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:9

Critical Path3 Critical Path2 Critical Path1 Kruskalstyle Primstyle Insertion Topdown exact Maximum

60

65

70

75

80

id
en

tif
ie

d
m

ol
ec

ul
ar

 fo
rm

ul
as

 (
%

)

1 2 3 4 5 6 7 8 9 10
ranking

5

4

3

2

1

0

1

di
ffe

re
nc

e
in

 id
en

tif
ic

at
io

n
ra

te
 (

pe
rc

en
ta

ge
 p

oi
nt

s)

Critical Path3

Critical Path2

Critical Path1

Kruskalstyle
Primstyle

Insertion
Topdown
exact
Maximum

Figure 3 Performance evaluation, finding the correct molecular formula. Left: Percentage of
compounds where the correct molecular formula received the highest score. Note the zoom of the
y axis. Right: Percentage point difference against exact computations; how often is the correct
answer part of the top k output of each method? Note that “Maximum” is one of the heuristics.

in inferior rankings, losing one or more percentage points for most ranks. In contrast, the
Critical Path heuristics rank solutions with power comparable to the exact method, and the
latter two variants often outperform the exact method. Somewhat surprisingly, the maximum
over all heuristics performs even better than the best heuristic.

Second, we compared running times of the different methods; see Fig. 4. Running times
were measured using a single thread on an Intel E5-2630v3 at 2.40 GHz with 64 GB RAM. The
total running time for the exact methods over all instances is almost one month, underlining
the importance of speeding up computations. But also note that solving all instances exactly
requires only about 100-fold the time required for constructing the instance graphs. For
each method, we sorted all instances by running time; we then determined how much time
is required to solve the “easiest” x% of instances for that method, for each 0 ≤ x ≤ 100.
Generally, the ordering of instances is different for each method. For all methods, we observe
that the “hardest” 5% of the instances are responsible for most of the total running time;
this has been observed before [2, 12]. In comparison to the exact method, all heuristics are
very fast – at least two orders of magnitude faster. In particular, each heuristic is faster than
the method for constructing the instance graphs; running all heuristics, as required for the
Maximum heuristic, requires about the same time as the graph construction. Comparing
heuristics’ running times, we see that the Kruskal-style heuristic is slowest, and that the
first variant of the Critical Path heuristic is faster in practice than variants 2 and 3, but not
significantly.

Third, we compared the scores reached by the different heuristics to the scores of the
exact solutions; see Fig. 5 (left). For each compound, we only considered the instance of the
Maximum Colorful Subtree that corresponds to the true candidate molecular formula.
We report scores relative to the exact solution (at 100%), and sorted instances with respect to
this relative score. In the resulting plot, it is not obvious which of the heuristics “Insertion”,
“Kruskal-style” and “Critical Path1” should be preferred. We see that Critical Path3 heuristic
and, hence, the maximum of all methods are able to compute (almost) optimal solutions for
about 80% of the instances. In turn, this means that even for these methods which perform
extremely well in ranking the correct answer, we miss the optimal solution in about 20% of
the instances. In addition, we compared scores of the Critical Path3 heuristic against the
exact method in more detail, see Fig. 5 (right): We see that for instances where the heuristic
does not find the optimal solution, the computed solution is only “slightly suboptimal” with

WABI 2018

23:10 Heuristic Algorithms for the Maximum Colorful Subtree Problem

0 20 40 60 80 100
computed instances (%)

106

105

104

103

102

101

100

101

102

103

104

105

106

107

ru
nn

in
g

tim
e

(s
) 1 minute

1 hour

1 day

1 month

Critical Path3

Critical Path2

Critical Path1

Kruskalstyle
Primstyle

Insertion
Topdown
exact
graph building
Maximum

Figure 4 Running times of the different methods. One instances consists of all graphs generated
for one compound in the dataset, considering all decompositions of the precursor mass. For each
method, instances are sorted with respect to running time, and we report amortized running times.
We also report running times for constructing the instance DAGs and for the exact method.

respect to its score. In fact, Pearson correlation between the two measures is +1.00.
Fourth, we evaluate the solution structure quality of the Critical Path3 heuristic.

Unfortunately, the “true fragmentation tree” cannot be determined experimentally [11].
To this end, we compare heuristic tree structures against tree structures computed using
the exact method. For each compound, we restrict the comparison to the true candidate
molecular formula; for other candidate molecular formulas, the optimal tree cannot possibly
be the “‘true fragmentation tree”. See Fig. 6. For tree sizes, we observe rather large deviations
between heuristic and optimal trees; in contrast, the overall distribution of tree sizes is highly
similar. But if we compare tree structures, we observe much larger differences between the
Critical Path3 heuristic and the exact method: We measure structural similarity comparing
either the set of node labels (fragments) or the set of edge labels (losses) of the two trees.
We estimate the similarity of two (finite) sets A, B using the Jaccard similarity coefficient
J(A, B) = |A ∩B| / |A ∪B| ∈ [0, 1]. We observe that more than 20% of the heuristic trees
differ from the corresponding optimal tree; for at least 10%, this difference is significant.

6 Conclusion

We have presented heuristics for the Maximum Colorful Subtree problem. Our evaluation
shows that the Critical Path3 heuristic is well-suited for choosing the correct candidate
molecular formula, when applied to tandem mass spectrometry data of small molecules. Our
evaluation sidesteps the catch-22 that we want to evaluate solutions based on structure and
not score when, at the same time, the correct solution structure is not known. Even when
the heuristic returns a suboptimal solution, the score is usually very close to the optimal
score. Furthermore, the heuristics allow us to rank candidates, and to restrict computation
of exact solutions to the top-ranked candidates (Sec. 3.2). In application, this combination
resulted in significant speedups without sacrificing fragmentation tree quality.

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:11

0 20 40 60 80 100
instances (%) sorted by score

0.0

0.2

0.4

0.6

0.8

1.0

he
ur

is
tic

 s
co

re
 r

el
at

iv
e

to
 e

xa
ct

 s
co

re

Critical Path3

Critical Path2

Critical Path1

Kruskalstyle
Primstyle
Insertion
Topdown
Maximum

50 0 50 100 150 200 250
exact method

50

0

50

100

150

200

250

C
rit

ic
al

 P
at

h3

Figure 5 Left: Relative scores of the heuristics. For each Maximum Colorful Subtree
instance, we consider the relative score in comparison to the exact method at 100%. For each
method, instances are sorted with respect to relative score. Right: Comparison of the score of the
Critical Path3 heuristic in comparison to the optimal score of the instance. For each compound, we
consider only the true molecular formula candidate.

The structure of the heuristic tree deviates significantly from the optimal tree for more
than 20% of the instances. We therefore argue against using this tree for downstream
analysis, such as machine learning [6,15]. A back-of-the-envelope calculation indicates the
problem: If we assume that 20% of the heuristic trees are “structurally faulty”, then a
pairwise comparison of trees will result in 36% tree pairs where at least one of the trees is
“structurally faulty”.

Building an instance DAG requires more time than running any of the presented heuristics.
We conjecture that there is only limited potential for speeding up the graph building phase.
To this end, whereas searching for better (and not significantly slower) heuristics is still a
valid undertaking, faster heuristics are of little practical use. It is worth mentioning that
computing exact solutions for the NP-hard Maximum Colorful Subtree problem takes
only about 100-fold the time needed for constructing the graph instances; further speed-up
is possible using data reductions and a stronger ILP formulation of the problem from [20].

Even elaborate heuristics for a bioinformatics problem, which are capable of finding
solutions with objective function value very close to the optimum, can result in solutions
which are structurally very dissimilar from the optimum structure. We showed that this
is not only a theoretical possibility, but happens regularly for real-world instances. This
underlines the importance of finding exact solutions for bioinformatics problems; the structure
of solutions found by heuristic, including local search heuristics such as Markov chain Monte
Carlo, may deviate significantly from the optimal solution.

Availability

The Critical Path3 heuristic and the exact method are available through the SIRIUS 4
software (https://bio.informatik.uni-jena.de/software/sirius/) and also from
GitHub (https://github.com/boecker-lab/sirius). Source code for all other heuristics
will be made available upon request. Instances are available from https://bio.informatik.
uni-jena.de/data/.

WABI 2018

https://bio.informatik.uni-jena.de/software/sirius/
https://github.com/boecker-lab/sirius
https://bio.informatik.uni-jena.de/data/
https://bio.informatik.uni-jena.de/data/

23:12 Heuristic Algorithms for the Maximum Colorful Subtree Problem

0 20 40 60 80 100
instances (%)

0

10

20

30

40

50

60
nu

m
be

r
of

 v
er

tic
es

0 10 20 30 40 50 60
number of vertices

0

100

200

300

400

500

600

co
un

t

Number of vertices for tree size parameter = 2.5

50 60 70 80 90 100
instances (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

si
m

ila
rit

y
co

ef
fic

ie
nt

fragments
losses

Figure 6 Left: Size of the fragmentation tree. Instances are sorted with respect to the size of the
optimal fragmentation tree (black); green bars indicate the corresponding tree sizes for the Critical
Path3 heuristic. Middle: Distribution of tree sizes for the exact method (black) and the Critical
Path3 heuristic (green). Right: Comparison of the fragmentation tree structure, optimal tree vs. the
tree computed by the Critical Path3 heuristic. Note the zoom of the x axis. In all three cases, we
consider only the true molecular formula candidate for each compound.

References

1 Alexander A Aksenov, Ricardo da Silva, Rob Knight, Norberto P Lopes, and Pieter C
Dorrestein. Global chemical analysis of biology by mass spectrometry. Nature Reviews
Chemistry, 1(7):0054, 2017.

2 Sebastian Böcker and Kai Dührkop. Fragmentation trees reloaded. J Cheminform, 8:5,
2016. doi:10.1186/s13321-016-0116-8.

3 Sebastian Böcker and Florian Rasche. Towards de novo identification of metabolites by
analyzing tandem mass spectra. Bioinformatics, 24:I49–I55, 2008. Proc. of European
Conference on Computational Biology (ECCB 2008). doi:10.1093/bioinformatics/
btn270.

4 Ricardo R. da Silva, Pieter C. Dorrestein, and Robert A. Quinn. Illuminating the dark
matter in metabolomics. Proc Natl Acad Sci U S A, 112(41):12549–12550, 2015. doi:
10.1073/pnas.1516878112.

5 Riccardo Dondi, Guillaume Fertin, and Stéphane Vialette. Complexity issues in vertex-
colored graph pattern matching. J Discrete Algorithms, 9(1):82–99, 2011. doi:doi:10.
1016/j.jda.2010.09.002.

6 Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu, and Sebastian Böcker. Searching
molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl
Acad Sci U S A, 112(41):12580–12585, 2015. doi:10.1073/pnas.1509788112.

7 Guillaume Fertin, Julien Fradin, and Géraldine Jean. Algorithmic aspects of the
maximum colorful arborescence problem. In Proc. of Theory and Applications of Models of
Computation (TAMC 2017), volume 10185 of Lect Notes Comput Sci, pages 216–230, 2017.
doi:10.1007/978-3-319-55911-7_16.

8 Alaa Khedr, Soad S Abd El-Hay, and Ahmed K Kammoun. Liquid chromatography-tandem
mass spectrometric determination of propofol in rat serum and hair at attogram level
after derivatization with 3-bromomethyl-propyphenazone. Journal of pharmaceutical and
biomedical analysis, 134:195–202, 2017. doi:10.1016/j.jpba.2016.11.051.

9 Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in
graphs: Application to metabolic networks. IEEE/ACM Trans Comput Biology Bioinform,
3(4):360–368, 2006.

http://dx.doi.org/10.1186/s13321-016-0116-8
http://dx.doi.org/10.1093/bioinformatics/btn270
http://dx.doi.org/10.1093/bioinformatics/btn270
http://dx.doi.org/10.1073/pnas.1516878112
http://dx.doi.org/10.1073/pnas.1516878112
http://dx.doi.org/doi:10.1016/j.jda.2010.09.002
http://dx.doi.org/doi:10.1016/j.jda.2010.09.002
http://dx.doi.org/10.1073/pnas.1509788112
http://dx.doi.org/10.1007/978-3-319-55911-7_16
http://dx.doi.org/10.1016/j.jpba.2016.11.051

K. Dührkop, M.A. Lataretu, and W.T. J. White, and S. Böcker 23:13

10 Gary J. Patti, Oscar Yanes, and Gary Siuzdak. Metabolomics: The apogee of the omics
trilogy. Nat Rev Mol Cell Biol, 13(4):263–269, 2012. doi:10.1038/nrm3314.

11 Florian Rasche, Aleš Svatoš, Ravi Kumar Maddula, Christoph Böttcher, and Sebastian
Böcker. Computing fragmentation trees from tandem mass spectrometry data. Anal Chem,
83(4):1243–1251, 2011. doi:10.1021/ac101825k.

12 Imran Rauf, Florian Rasche, François Nicolas, and Sebastian Böcker. Finding maximum
colorful subtrees in practice. J Comput Biol, 20(4):1–11, 2013. doi:10.1089/cmb.2012.
0083.

13 Emma L Schymanski, Heinz P Singer, Jaroslav Slobodnik, Ildiko M Ipolyi, Peter Oswald,
Martin Krauss, Tobias Schulze, Peter Haglund, Thomas Letzel, Sylvia Grosse, Nikolaos S
Thomaidis, Anna Bletsou, Christian Zwiener, María Ibáñez, Tania Portolés, Ronald
de Boer, Malcolm J Reid, Matthias Onghena, Uwe Kunkel, Wolfgang Schulz, Amélie
Guillon, Naïke Noyon, Gaëla Leroy, Philippe Bados, Sara Bogialli, Draženka Stipaničev,
Pawel Rostkowski, and Juliane Hollender. Non-target screening with high-resolution mass
spectrometry: critical review using a collaborative trial on water analysis. Analytical and
bioanalytical chemistry, 407:6237–6255, 2015. doi:10.1007/s00216-015-8681-7.

14 Emma Louise Schymanski, Christoph Ruttkies, Martin Krauss, Céline Brouard, Tobias
Kind, Kai Dührkop, Felicity Ruth Allen, Arpana Vaniya, Dries Verdegem, Sebastian
Böcker, Juho Rousu, Huibin Shen, Hiroshi Tsugawa, Tanvir Sajed, Oliver Fiehn, Bart
Ghesquière, and Steffen Neumann. Critical Assessment of Small Molecule Identification
2016: Automated methods. J Cheminf, 9:22, 2017. doi:10.1186/s13321-017-0207-1.

15 Huibin Shen, Kai Dührkop, Sebastian Böcker, and Juho Rousu. Metabolite identification
through multiple kernel learning on fragmentation trees. Bioinformatics, 30(12):i157–i164,
2014. Proc. of Intelligent Systems for Molecular Biology (ISMB 2014). doi:10.1093/
bioinformatics/btu275.

16 Aleksandra Skirycz, Sylwia Kierszniowska, Michaël Méret, Lothar Willmitzer, and George
Tzotzos. Medicinal bioprospecting of the amazon rainforest: A modern eldorado? Trends
in biotechnology, 34:781–790, 2016. doi:10.1016/j.tibtech.2016.03.006.

17 Stephen E. Stein. Mass spectral reference libraries: An ever-expanding resource for chemical
identification. Anal Chem, 84(17):7274–7282, 2012. doi:10.1021/ac301205z.

18 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. J Comput System Sci, 18(2):110–127, 1979.

19 Mingxun Wang, Jeremy J. Carver, Vanessa V. Phelan, Laura M. Sanchez, Neha Garg,
Yao Peng, Don Duy Nguyen, Jeramie Watrous, Clifford A. Kapono, Tal Luzzatto-Knaan,
Carla Porto, Amina Bouslimani, Alexey V. Melnik, Michael J. Meehan, Wei-Ting Liu, Max
Crüsemann, Paul D. Boudreau, Eduardo Esquenazi, Mario Sandoval-Calderón, Roland D.
Kersten, Laura A. Pace, Robert A. Quinn, Katherine R. Duncan, Cheng-Chih Hsu,
Dimitrios J. Floros, Ronnie G. Gavilan, Karin Kleigrewe, Trent Northen, Rachel J. Dutton,
Delphine Parrot, Erin E. Carlson, Bertrand Aigle, Charlotte F. Michelsen, Lars Jelsbak,
Christian Sohlenkamp, Pavel Pevzner, Anna Edlund, Jeffrey McLean, Jörn Piel, Brian T.
Murphy, Lena Gerwick, Chih-Chuang Liaw, Yu-Liang Yang, Hans-Ulrich Humpf, Maria
Maansson, Robert A. Keyzers, Amy C. Sims, Andrew R. Johnson, Ashley M. Sidebottom,
Brian E. Sedio, Andreas Klitgaard, Charles B. Larson, Cristopher A. Boya P, Daniel Torres-
Mendoza, David J. Gonzalez, Denise B. Silva, Lucas M. Marques, Daniel P. Demarque, Egle
Pociute, Ellis C. O’Neill, Enora Briand, Eric J N. Helfrich, Eve A. Granatosky, Evgenia
Glukhov, Florian Ryffel, Hailey Houson, Hosein Mohimani, Jenan J. Kharbush, Yi Zeng,
Julia A. Vorholt, Kenji L. Kurita, Pep Charusanti, Kerry L. McPhail, Kristian Fog Nielsen,
Lisa Vuong, Maryam Elfeki, Matthew F. Traxler, Niclas Engene, Nobuhiro Koyama,
Oliver B. Vining, Ralph Baric, Ricardo R. Silva, Samantha J. Mascuch, Sophie Tomasi,
Stefan Jenkins, Venkat Macherla, Thomas Hoffman, Vinayak Agarwal, Philip G. Williams,

WABI 2018

http://dx.doi.org/10.1038/nrm3314
http://dx.doi.org/10.1021/ac101825k
http://dx.doi.org/10.1089/cmb.2012.0083
http://dx.doi.org/10.1089/cmb.2012.0083
http://dx.doi.org/10.1007/s00216-015-8681-7
http://dx.doi.org/10.1186/s13321-017-0207-1
http://dx.doi.org/10.1093/bioinformatics/btu275
http://dx.doi.org/10.1093/bioinformatics/btu275
http://dx.doi.org/10.1016/j.tibtech.2016.03.006
http://dx.doi.org/10.1021/ac301205z

23:14 Heuristic Algorithms for the Maximum Colorful Subtree Problem

Jingqui Dai, Ram Neupane, Joshua Gurr, Andrés M C. Rodríguez, Anne Lamsa, Chen
Zhang, Kathleen Dorrestein, Brendan M. Duggan, Jehad Almaliti, Pierre-Marie Allard,
Prasad Phapale, Louis-Felix Nothias, Theodore Alexandrov, Marc Litaudon, Jean-Luc
Wolfender, Jennifer E. Kyle, Thomas O. Metz, Tyler Peryea, Dac-Trung Nguyen, Danielle
VanLeer, Paul Shinn, Ajit Jadhav, Rolf Müller, Katrina M. Waters, Wenyuan Shi, Xueting
Liu, Lixin Zhang, Rob Knight, Paul R. Jensen, Bernhard Ø. Palsson, Kit Pogliano, Roger G.
Linington, Marcelino Gutiérrez, Norberto P. Lopes, William H. Gerwick, Bradley S.
Moore, Pieter C. Dorrestein, and Nuno Bandeira. Sharing and community curation of
mass spectrometry data with Global Natural Products Social molecular networking. Nat
Biotechnol, 34(8):828–837, 2016. doi:10.1038/nbt.3597.

20 W. Timothy J. White, Stephan Beyer, Kai Dührkop, Markus Chimani, and Sebastian
Böcker. Speedy colorful subtrees. In Proc. of Computing and Combinatorics Conference
(COCOON 2015), volume 9198 of Lect Notes Comput Sci, pages 310–322. Springer, Berlin,
2015. doi:10.1007/978-3-319-21398-9_25.

21 David S Wishart. Emerging applications of metabolomics in drug discovery and precision
medicine. Nature reviews. Drug discovery, 15:473–484, 2016. doi:10.1038/nrd.2016.32.

http://dx.doi.org/10.1038/nbt.3597
http://dx.doi.org/10.1007/978-3-319-21398-9_25
http://dx.doi.org/10.1038/nrd.2016.32

Parsimonious Migration History Problem:
Complexity and Algorithms
Mohammed El-Kebir
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
melkebir@illinois.edu

https://orcid.org/0000-0002-1468-2407

Abstract
In many evolutionary processes we observe extant taxa in different geographical or anatomical
locations. To reconstruct the migration history from a given phylogenetic tree T , one can model
locations using an additional character and apply parsimony criteria to assign a location to each
internal vertex of T . The migration criterion assumes that migrations are independent events.
This assumption does not hold for evolutionary processes where distinct taxa from different
lineages comigrate from one location to another in a single event, as is the case in metastasis and
in certain infectious diseases. To account for such cases, the comigration criterion was recently
introduced, and used as an optimization criterion in the Parsimonious Migration History
(PMH) problem. In this work, we show that PMH is NP-hard. In addition, we show that a
variant of PMH is fixed parameter tractable (FPT) in the number of locations. On simulated
instances of practical size, we demonstrate that our FPT algorithm outperforms a previous integer
linear program in terms of running time.

2012 ACM Subject Classification Applied computing → Molecular evolution, Mathematics of
computing → Trees, Mathematics of computing → Combinatorial optimization

Keywords and phrases Reconciliation, maximum parsimony, metastasis, infection, phylogenetics,
phylogeography, fixed parameter tractability

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.24

1 Introduction

A phylogenetic tree, or phylogeny for short, models an evolutionary process such as those that
arise in the development of cancer, species, pathogens and languages. In a character-based
phylogeny, taxa are described by the same set of traits, where each trait is modeled by a
single character with discrete states. Mathematically, a character-based phylogeny is a tree T
whose vertices are taxa labeled by a vector of character states, assigning a single state to
each character in each taxon. While the leaves of T correspond to extant taxa with observed
character states, the internal vertices and edges of T are typically inferred algorithmically
using different criteria such as maximum parsimony [4] or maximum likelihood [3].

In some evolutionary processes, extant taxa occur in different geographical or anatomical
locations and one wishes to reconstruct the locations of ancestral taxa. Slatkin and Mad-
dison [10] noted that locations can be modeled by an additional character and introduced
the migration criterion. That is, given a phylogeny T with a location `(u) assigned to each
leaf u, the authors proposed to assign a location `(v) to each internal vertex v of T such that
the number µ(T, `) of migrations, i.e. edges (v, w) where `(v) 6= `(w), is minimized (Fig. 1).
Slatkin and Maddison [10] noted that this is an instance of the small phylogeny problem
and can be solved in polynomial time [4, 9]. Later, McPherson et al. [7] used the migration
criterion to study the migration history in metastatic ovarian cancers, where locations are
distinct anatomical locations with metastasis that occur within the same patient.

© Mohammed El-Kebir;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:melkebir@illinois.edu
https://orcid.org/0000-0002-1468-2407
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Parsimonious Migration History Problem: Complexity and Algorithms

Migration number

Phylogenetic tree

Migration
graph .

Vertex .
labeling .

comigration

comigration

comigration

Comigration number

Figure 1 Migration histories are labelings of the vertices of a phylogenetic tree by
locations. Vertex labeling ` assigns to each vertex u a location `(u). A migration is an edge (u, v)
where `(u) 6= `(v). Here, vertex labeling ` of T incurs 6 migrations (bichromatic edges) and thus
has migration number µ(T, `) = 6. Although migrations (u, v) and (w, x) have identical source
and target locations, they could not have happened simultaneously as taxon w is a descendant of
taxon v. A comigration is a set of migrations between the same pair of locations that occur on
distinct branches of the phylogenetic tree T . The comigration number is the smallest partition of
migrations into comigrations. Here, vertex labeling ` of T has comigration number γ(T, `) = 3. The
set of migrations determines the migration graph G, a multi-graph whose vertices are locations.

Underlying the migration criterion is the assumption that migrations are independent
events. While this assumption is justified for evolutionary processes where shared location of
taxa is uninformative, in certain evolutionary processes migrations of distinct taxa between
the same locations are not independent events. For instance, in cancer, metastases may be
seeded by groups of tumor cells from different clones (taxa) that migrate together in the
bloodstream or lymphatics. Moreover, in certain infectious diseases, such as those caused
by Hepatitis-B and C, HIV and Ebola, different strains of the pathogen can infect a person
through a single transmission event. As such, the migration criterion does not always apply.

Recently, El-Kebir et al. [2] introduced the comigration criterion, where multiple mi-
grations between the same pair of locations are counted as a single event (Fig. 1). The
authors showed that the problem of assigning locations to ancestral taxa under the migration
and comigration criteria is a multi-objective optimization problem, with tradeoffs between
both criteria and the topology of the migration graph, a directed multi-graph capturing
all migrations between locations (Fig. 2). This problem was called the Parsimonious
Migration History (PMH) and was solved using an integer linear program (ILP). The
hardness of PMH was an open problem.

In this work, we show that PMH is NP-hard. On the positive side, we show that when
the migration graph is restricted to a tree, PMH is fixed parameter tractable (FPT) in the
number of locations. Using simulated data of metastatic cancers, we show that for practical
PMH instances with a small number of locations, the FPT algorithm outperforms the ILP
in terms of running time.

2 Preliminaries

Let T be a tree rooted at vertex r(T). We denote the edge set by E(T), the vertex set by
V (T) and the leaf set by L(T). We denote by Tv the subtree of T rooted at vertex v. We
denote the parent vertex of a non-root vertex v 6= r(T) by π(v). We write u �T v if and only
if vertex u occurs on the unique path from r(T) to v. Note that �T is reflexive, i.e. v �T v
for all vertices v ∈ V (T). We write u ≺T v if and only if u �T v and u 6= v. We denote the
lowest common ancestor of a vertex subset U ⊆ V (T) by lcaT (U). We say that two vertices

M. El-Kebir 24:3

u, v are incomparable or occur on distinct branches if and only if u 6�T v and v 6�T u. Note
that u 6�T v and v 6�T u if and only if lcaT ({u, v}) 6∈ {u, v}.

A phylogenetic tree T is a rooted tree, whose leaves correspond to taxa that are labeled by
different locations. We denote the set of locations by Σ. Since the leaf set L(T) is composed
of taxa observed at the present time, we know their locations and are thus given the function
ˆ̀ : L(T)→ Σ, assigning location ˆ̀(v) to each leaf v ∈ L(T). We use ˆ̀(L(Tu)) where u ∈ V (T)
as a shorthand for {ˆ̀(v) | v ∈ L(Tu}}. Typically, the edges of a phylogenetic tree are labeled
by mutations. As the problem that we consider does not use mutations, they are omitted.

3 Problem Statement

Given a phylogenetic tree T with leaf labeling ˆ̀ : L(T) → Σ, the task is to reconstruct
the migration history by inferring the location of origin of each ancestral taxon. In other
words, we wish to extend the given leaf labeling ˆ̀ to a vertex labeling ` : V (T) → Σ such
that `(v) = ˆ̀(v) for each leaf v ∈ L(T). To distinguish different vertex labelings ` of a
phylogenetic tree T , we use two different optimization criteria.

The first criterion was introduced by Slatkin and Maddison [10] and considers migrations,
which are defined as follows.

I Definition 1 ([2, 10]). A migration is an edge (u, v) ∈ E(T) that connects two vertices
with different locations, i.e. `(u) 6= `(v).

The migration number µ(T, `) is the number of migrations incurred by `. Slatkin and
Maddison [10] noted that the problem of finding a vertex labeling with minimum migration
number is an instance of the small phylogeny maximum parsimony problem with a single
multi-state character (with states Σ). As such, this problem can be solved in polynomial
time using either the Fitch [4] or the Sankoff algorithm [9].

The second criterion, which was recently introduced in [2], allows for the simultaneous
migration, or comigration, of individuals from different (ancestral) taxa between the same
locations. This criterion is applicable to evolutionary processes where locations are seeded by
individuals from distinct taxa through a single event. Two migrations (u, v) 6= (w, x), where
v �T w, between the same pair of locations, i.e. `(u) = `(w) and `(v) = `(x), could never
have occurred simultaneously. This is because taxon w is a descendant of taxon v, and thus
migration (u, v) must have occurred prior to migration (w, x) (Fig. 1). To account for such
scenarios, we define comigrations as follows.

I Definition 2 ([2]). A comigration is a subset X of pairwise incomparable migrations
between the same locations. That is, for all distinct pairs (u, v), (u′, v′) ∈ X of migrations it
holds that (i) `(u) 6= `(v), (ii) `(u) = `(u′), (iii) `(v) = `(v′), (iv) v 6�T v′ and (v) v′ 6�T v.

Employing the principle of parsimony, we define the comigration number γ(T, `) as the
smallest partition of migrations into comigrations [2]. As shown in [2], we have that

γ(T, `) =
∑

s,t∈Σ : s 6=t
γ(T, `, s, t) (1)

where γ(T, `, s, t) is the maximum number of edges (u, v) ∈ E(T) with `(u) = s and `(v) = t

that are on the same path of T starting from the root r(T).
The set of migrations incurred by a vertex labeling ` of T determines the migration

graph G. More formally, the vertices of G are locations, and there is a directed edge (s, t)
for each edge (u, v) in T where (i) s 6= t, (ii) `(u) = s and (iii) `(v) = t. The migration

WABI 2018

24:4 Parsimonious Migration History Problem: Complexity and Algorithms

a b cP = {S,M}
(µ⇤, �̂) = (5, 3)

P = {S}
(µ⇤, �̂) = (6, 2)

Vertex
labeling `C

GC

`A
Migration
graph .

(S).
GA

GB

`B

Phylogenetic tree Leaf labelingT ˆ̀ (T, ˆ̀) (T, ˆ̀)

(M). (R).

P = {S,M,R}
(µ⇤, �̂) = (4, 4)

Figure 2 The Parsimonious Migration History (PMH) problem is a constrained multi-
objective optimization problem, with tradeoffs between the migration number, comi-
gration number and the migration pattern. Given a phylogenetic tree T whose leaves are
labeled by locations via ˆ̀ and a set P of allowed migration patterns, the task is to extend ˆ̀ to a
vertex labeling ` such that: (i) the resulting migration graph G adheres to P, (ii) ` has the minimum
migration number µ∗(T) and (iii) subsequently smallest comigration number γ̂(T). (a) In the most
restrictive case, P = {S}, the migration graph is required to be a tree, yielding vertex labeling `A

with µ(T, `A) = 6 and γ(T, `A) = 2. The resulting migration graph GA has a single-source seeding
(S) pattern. (b) In the case P = {S,M}, the migration graph is required to not contain a directed
cycle, yielding vertex labeling `B with µ(T, `B) = 5, γ(T, `B) = 3, and migration graph GB with
a multi-source seeding (M) pattern. (c) In the case P = {S,M,R}, the migration graph is left
unrestricted, yielding vertex labeling `C with minimum migration number µ(T, `C) = 4, smallest
comigration number γ(T, `C) = 4, and migration graph GC with a reseeding (R) pattern.

graph G is a multi-graph because there may exist multiple directed edges between the same
pair of locations. Different topologies of G correspond to different migration patterns. We
distinguish three migration patterns: (i) in single-source seeding (S), the migration graph G
is a tree (Fig. 2a); (ii) in multi-source seeding (M), some locations are the target of migrations
from distinct source locations but G itself does not have a directed cycle (Fig. 2b); and (iii)
in reseeding (R), G has a directed cycle (Fig. 2c).

There are tradeoffs between the migration number, the comigration number and the
migration pattern, as shown in [2] and briefly reviewed in the following. Let T be a
phylogenetic tree whose leaves are labeled by m = |Σ| locations. Any vertex labeling ` of T
has migration number µ(T, `) ≥ m− 1 and comigration number γ(T, `) ≥ m− 1. While there
may not exist a vertex labeling ` with migration number µ(T, `) = m− 1, there always exists
a vertex labeling ` with comigration number γ(T, `) = m− 1 for any leaf-labeled tree T . For
instance, a labeling ` that assigns the same location to all internal vertices has comigration
number γ(T, `) = m − 1. Moreover, a vertex labeling ` incurs a single-source seeding (S)
pattern if and only if γ(T, `) = m− 1. Let µ∗(T) = min` µ(T, `) be the minimum migration
number of T . In general, there may not exist a vertex labeling ` of T that simultaneously
achieves the minimum migration number µ(T, `) = µ∗(T) and minimum comigration number
γ(T, `) = m − 1 (Fig. 2). To examine these tradeoffs, El-Kebir et al. [2] introduced the
following constrained multi-objective optimization problem that considered three different
sets P of allowed migration patterns: (i) P = {S}, requiring the migration graph G to be an
S pattern (Fig. 2a); (ii) P = {S,M}, requiring the migration graph to be either an S or M
pattern (Fig. 2b); (iii) P = {S,M,R} meaning that G is unrestricted (Fig. 2c).

I Problem 1 (Parsimonious Migration History (PMH) [2]). Given a phylogenetic
tree T with leaf labeling ˆ̀ : L(T)→ Σ and a set P of allowed migration patterns, find a vertex
labeling ` such that: (i) `(v) = ˆ̀(v) for each leaf v ∈ L(T); (ii) ` has the minimum migration

M. El-Kebir 24:5

number µ(T, `) = µ∗(T) = min`′ µ(T, `′) and subsequently the smallest comigration number
γ(T, `) = γ̂(T) = min`′:µ(T,`′)=µ∗(T) γ(T, `′); and (iii) the resulting migration graph G is a
tree if P = {S}, a directed acyclic graph if P = {S,M} or unrestricted if P = {S,M,R}.

4 Results

We have the following two results for the case where the migration graph G is restricted to a
tree (i.e. P = {S}).

I Theorem 3. PMH is NP-hard when P = {S}.

I Theorem 4. PMH is fixed parameter tractable in |Σ| when P = {S}.

Both theorems rely on the following important proposition that we prove first.

I Proposition 5. Let T be a phylogenetic tree, and let ` be a vertex labeling of T such that
the migration graph G is a tree. Then, `(u) �G lcaG(ˆ̀(L(Tu))) for any vertex u ∈ V (T).

Proof. Suppose for a contradiction that there exists a vertex labeling ` of T such that
`(u) 6�G lcaG(ˆ̀(L(Tu))) for a vertex u of T . For brevity, we define s = lcaG(ˆ̀(L(Tu))). By
our premise, there exists a leaf v ∈ L(Tu) such that ˆ̀(v) 6∈ V (G`(u)). By definition of lcaG,
there exists a unique path from s to ˆ̀(v) in G. Moreover, since v is reachable from u in T ,
there exists a path from `(u) to ˆ̀(v) in G. We distinguish two cases. First, ˆ̀(v) �G π(`(u)).
This case contradicts that G is a tree, as there would be a directed cycle between `(u) and
ˆ̀(v) in G. Second, ˆ̀(v) and `(u) are incomparable in G. Thus, the path from s to ˆ̀(v) does
not contain `(u). This, however, contradicts that there exists a path from `(u) to ˆ̀(v). J

4.1 NP-hardness
We show NP-hardness of the PMH problem in the case where P = {S} by reduction from 3-
Satisfiability (3-SAT). In 3-SAT, we are given a Boolean formula φ =

∧k
i=1(yi,1∨yi,2∨yi,3)

in 3-conjunctive normal form (3-CNF) with n variables and k clauses, and wish to decide
whether there exists a truth assignment θ : [n] → {0, 1} that satisfies all the clauses of φ.
We define ψ(yi,j) = 1 if literal yi,j is of the form x, and define ψ(yi,j) = 0 if literal yi,j is
of the form ¬x. Truth assignment θ satisfies clause (yi,1 ∨ yi,2 ∨ yi,3) provided there exists
a j ∈ {1, 2, 3} such that θ(x) = ψ(yi,j) where x is the variable corresponding to literal yi,j .
Without loss of generality, we may assume that each clause of φ consists of three distinct
variables. We denote the n variables of φ by x1, . . . , xn and the k clauses of φ by c1, . . . , ck.
3-SAT is among the 21 problems proven to be NP-hard by Karp [6].

We construct a tree T with location set Σ = {⊥, x1, . . . , xn,¬x1, . . . ,¬xn, c1, . . . , ck} such
that the migration graph G∗ of any optimal vertex labeling `∗ models a truth assignment θ.
More specifically, we want to ensure that: (i) `∗ labels the root of T by ⊥; (ii) for each
variable x of φ, either {(⊥, x), (x,¬x)} ⊆ E(G∗) if θ(x) = 1, or {(⊥,¬x), (¬x, x)} ⊆ E(G∗)
if θ(x) = 0; and (iii) θ is satisfiable if and only if `∗ encodes a truth assignment that satisfies
all clauses of θ. We accomplish these three requirements using three types of gadgets that
form subtrees of T (Fig. 3a): (i) n variable gadgets T [x1], . . . , T [xn], each with 2B leaves
(Fig. 3b); (ii) a single root gadget T [⊥] with A leaves (Fig. 3c); and (iii) 3k clause literal
gadgets T [y1,1], . . . , T [yk,3], each with 9 leaves (Fig. 3d). Fig. 4 shows an example reduction.

Let `∗ be an optimal vertex labeling of T under the restriction P = {S}, and let G∗ be
the resulting migration graph. By setting B > 10k + 1 and A > 2Bn+ 27k, we accomplish
the first two requirements, as shown by the following two lemmas.

WABI 2018

24:6 Parsimonious Migration History Problem: Complexity and Algorithms

Phylogenetic tree

a

Clause literal gadget

.

db

Variable gadget

(leaves) (9 leaves)

. . .

c

Root gadget

(leaves)

Figure 3 Given a Boolean formula φ =
∧k

i=1(yi,1 ∨ yi,2 ∨ yi,3) in 3-conjunctive nor-
mal form, we construct the phylogenetic tree T composed of three types of gadgets.
(a) Tree T has n variable gadgets (panel b), a single root gadget (panel c) and 3k clause literal
gadgets (panel d). The location set Σ contains a location corresponding to a positive and negative
literal of each variable, a location corresponding to each clause and a special location ⊥. That is,
Σ = {x1, . . . , xn,¬x1, . . . ,¬xn, c1, . . . , ck,⊥}. (b) For each variable xj , the corresponding variable
gadget T [xj] is composed of 2B leaves where B = 10k + 2. This gadget enforces that either
(xj ,¬xj) ∈ E(G∗) or (¬xj , xj) ∈ E(G∗). (c) The root gadget T [⊥] is composed of A = 2Bn+27k+1
leaves and enforces that `∗(r(T)) = ⊥. (d) For each literal yi,j , the corresponding clause literal
gadget T [yi,j] has 9 leaves, and links variables to clauses. We refer to Fig. 4 for an example.

I Lemma 6. The root vertex r(T) has location `∗(r(T)) = ⊥.

Proof. Suppose for a contradiction that `∗(r(T)) 6= ⊥. Thus, we have that each of the
incoming edges to the leaves of the subtree T [⊥] is a migration. Hence, µ(T, `∗) ≥ A >

2Bn+ 27k. Consider the vertex labeling ` of T where `(v) = ⊥ for each vertex v. Observe
that the resulting migration graph of ` has an S pattern. Only the leaves of subtree T [⊥] are
labeled by ⊥; the remaining 2Bn+ 27k have leaf labels that differ from ⊥. We thus have
µ(T, `) = 2Bn+ 27k. Therefore, µ(T, `) < µ(T, `∗), which contradicts the premise that `∗ is
an optimal vertex labeling. Hence, `∗(r(T)) = ⊥. J

I Lemma 7. For all variables x, {(⊥, x), (x,¬x)} ⊆ E(G∗) or {(⊥,¬x), (¬x, x)} ⊆ E(G∗).

Proof. Suppose for a contradiction that there exists a variable x of φ such that neither
{(⊥, x), (x,¬x)} ⊆ E(G∗) nor {(⊥,¬x), (¬x, x)} ⊆ E(G∗). Let T [x] be the subtree of T
corresponding to the variable gadget of x. Let rx be the root vertex of T [x]. By Lemma 6
and the premise, we have that `∗(rx) 6∈ {x,¬x}. Therefore, the 2B edges incoming to the
leaves of T [x] are migrations in `∗.

We construct a vertex labeling ` with fewer migrations than `∗. Intuitively, vertex labeling
` corresponds to a truth assignment θ where θ(x) = 1 for all variables x. Initially, we set
` = `∗. Next, we set `(rx) = x. By definition of 3-SAT, each clause ci of φ contains at most
one literal yi,j of the form x or ¬x. Let ci be such a clause with literal yi,j of the form x or ¬x.
Let T [yi,j] be the subtree of T corresponding to the clause literal gadget of yi,j , and let ri,j
be the root vertex of T [yi,j]. We set `(ri,j) = ⊥, `(v1) = ⊥, `(v2) = `(v3) = `(v4) = `(v5) = x

and `(v6) = x (where v1, . . . , v6 are defined in Fig. 3d). We distinguish two cases. First,

M. El-Kebir 24:7

x1

. . .

x1

~x1

. . .

~x1

x1

|

x2

~x3
|. . ._|_

x1

|

|

|

|

~x3

x2

. . .

x2

~x2

. . .

~x2

~x3

. . .

~x3
x3

. . .x3

c1

x1

x1

x1

x1

~x1

~x1

~x1

~x1

x1

x1

x1

x1

x1

~x1c1

x2

x2

x2

x2

~x2

~x2

~x2

~x2

x1

x2

x2

x2

x2

x2

c1

~x3

~x3

~x3

~x3

x3

x3

x3

x3

x1

~x3

~x3

~x3

~x3

~x3

c2

~x1

~x1

~x1

~x1

x1
x1 x1 x1

~x3

x1

x1

x1

x1

x1

c2
~x2

~x2

~x2

~x2

x2

x2

x2

x2

~x3
x2

x2

x2

x2

x2

c2

~x3

~x3

~x3

~x3

x3

x3

x3

x3

~x3

~x3

~x3

~x3

~x3

x3

T [?]

T [x1]

(a) Phylogenetic tree T and optimal vertex labeling `∗.

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2

3 3

(b) Migration graph G∗.

Figure 4 Example reduction. Consider the Boolean formula φ = (y1,1 ∨ y1,2 ∨ y1,3) ∧ (y2,1 ∨
y2,2 ∨ y2,3) = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) with k = 2 clauses and n = 3 variables. Truth
assignment θ(x1) = 1, θ(x2) = 1, θ(x3) = 0 satisfies φ. (a) The corresponding tree T has location
set Σ = {x1, x2, x3,¬x1,¬x2,¬x3, c1, c2,⊥}. The variable gadgets T [x1], T [x2], T [x3] each have
2B = 2(10k+2) = 44 leaves. The root gadget T [⊥] has A = 2Bn+27k+1 = 187 leaves. The variable
literal gadgets T [y1,1], . . . , T [y2,3] each have 9 leaves. The shown vertex labeling `∗ corresponds to
truth assignment θ and has migration number µ(T, `∗) = (B + 1)n+ 25k = (22 + 1) · 3 + 25 · 2 = 119.
Thus, by Lemma 10, the truth assignment θ encoded by `∗ satisfies φ. (b) The corresponding
migration graph G∗, where each edge is labeled by its multiplicity incurred by `∗.

WABI 2018

24:8 Parsimonious Migration History Problem: Complexity and Algorithms

a
Case (i)

.

.

.

b
Case (ii)

c
Case (iii)

.

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

d
Case (iv)

µ � 3 µ � 10

µ � 6 µ � 10

T [y1,1]

T [y1,1]

T [y1,1]

T [y1,1]

T [x1]

T [x1]

T [x1]

T [x1]

Figure 5 A clause literal gadget T [yi,j] imposes four different sets of constraints on
optimal vertex labelings `∗, as shown in Lemma 8. The figure reproduces clause literal gadget
T [y1,1], where y1,1 = x1, depicted in Fig. 4a. (a) If `∗(r(T [x1])) = x1 and `∗(r(T [y1,1])) = x1, vertices
v2, . . . , v5 must be labeled by x1 and the migration number is at least 3. (b) If `∗(r(T [x1])) = x1

and `∗(r(T [y1,1])) = ⊥, vertex v6 must be labeled by x1 and the migration number is at least 10. (c)
If `∗(r(T [x1])) = ¬x1 and `∗(r(T [y1,1])) = ¬x1, vertex v6 must be labeled by ¬x1 and the migration
number is at least 6. (d) If `∗(r(T [x1])) = ¬x1 and `∗(r(T [y1,1])) = ⊥, vertices v2, . . . , v5 must be
labeled by ¬x1 and the migration number is at least 10.

yi,j = x. In this case, the outgoing edge of v1 is a migration. The incoming edges of
v2, v3, v4, v5, v6 are migrations. The four outgoing edges of v6 are migrations. Thus, the
number of migrations incurred by ` in T [yi,j] is 10. Second, yi,j = ¬x. In this case, the
outgoing edge of v1 is a migration. The incoming edges of v2, v3, v4, v5, v6 are migrations.
The outgoing edges of v2, v3, v4, v5 are migrations. Thus, the number of migrations incurred
by ` in T [yi,j] is 10.

In both cases, we have that µ(T [x], `∗) > 2B. On the other hand, µ(T [x], `) = B + 1,
and µ(T [yi,j], `) = 10 for each literal yi,j of the form {x,¬x}. As there at most k literals of
the form {x,¬x}, we have that there are at most B + 1 + 10k migrations incurred by ` in
subtree T [x] and the corresponding clause literal subtrees T [yi,j]. Since B > 1 + 10k, we
have that 2B > B + 1 + 10k. Thus,

µ(T [x], `∗) > 2B > B + 1 + 10k > µ(T [x], `) +
∑

yi,j of form {x,¬x}

µ(T [yi,j], `).

Compared to `∗, the new vertex labeling ` differs in subtree T [x] and in at most k subtrees
T [yi,j]. Hence, µ(T, `∗) > µ(T, `), yielding a contradiction. The lemma now follows. J

Thus, our reduction enables us to encode a truth assignment. We now focus on the third
requirement that links literals to clauses. We start by showing that the clause literal gadget,
when combined with the variable and root gadgets, imposes very specific constraints on `∗.

I Lemma 8. Let x be a variable of φ and let yi,j be a literal corresponding to x. Then, one of
the following four cases must hold, where C = {ci | i ∈ [k]} and X = {`∗(r(T [xi])) | i ∈ [n]}.

M. El-Kebir 24:9

case `∗(r(T [x])) `∗(r(T [yi,j])) `∗(v1) `∗(v2), . . . , `∗(v5) `∗(v6)
(i) yi,j yi,j {yi,j ,¬yi,j} ∪ C yi,j {yi,j ,¬yi,j}
(ii) yi,j ⊥ {⊥} ∪ C ∪X {⊥, yi,j} yi,j

(iii) ¬yi,j ¬yi,j {yi,j ,¬yi,j} ∪ C {yi,j ,¬yi,j} ¬yi,j

(iv) ¬yi,j ⊥ {⊥} ∪ C ∪X ¬yi,j {⊥,¬yi,j}

Proof. The lemma follows by case analysis, with four cases that each correspond to a unique
case in the above table. First, it holds that `∗(r(T [x])) ∈ {yi,j ,¬yi,j} by Lemma 7. Thus,
we distinguish two cases.
1. `∗(r(T [x])) = yi,j : By construction, T [yi,j] has leaves labeled by yi,j and ¬yi,j . Hence, by

Proposition 5, Lemma 6 and the fact that `∗(r(T [x])) = yi,j , we have that `∗(r(T [yi,j])) ∈
{yi,j ,⊥}. Thus, we distinguish two additional subcases.
a. `∗(r(T [yi,j])) = yi,j : Vertices v2, v3, v4, v5 must be labeled by yi,j as their parent

r(T [yi,j]) is labeled by yi,j and they themselves are the parents of leaves labeled by
yi,j . The four children of v6 are leaves labeled by ¬yi,j , and the parent r(T [yi,j]) of v6
is labeled yi,j . Thus, v6 must be labeled by either yi,j or ¬yi,j . Vertex v1 is the child
of r(T [yi,j]) labeled by yi,j , and thus the only literals that can label v1 are yi,j and
¬yi,j . In addition, v1 can be labeled by clauses c1, . . . , ck. This subcase corresponds
to case (i) of the above table, and is depicted in Fig. 5a.

b. `∗(r(T [yi,j])) = ⊥: Vertex v6 must be labeled by yi,j as its parent r(T [yi,j]) is labeled
by ⊥ and its four children are leaves labeled by ¬yi,j . Vertices v2, v3, v4, v5 must each
be labeled by either yi,j or ⊥ as their parent r(T [yi,j]) is labeled by ⊥ and their children
are leaves labeled by yi,j . As vertex v1 is the child of r(T [yi,j]) and its only child a
leaf labeled by ci, we have that v1 can be labeled by ⊥, all clauses C = {c1, . . . , ck}
and all active literals X. This subcase corresponds to case (ii) of the above table, and
is depicted in Fig. 5b.

2. `∗(r(T [x])) = ¬yi,j : By construction, T [yi,j] has leaves labeled by yi,j and ¬yi,j . Hence, by
Proposition 5, Lemma 6 and the fact that `∗(r(T [x])) = ¬yi,j , we have that `∗(r(T [yi,j])) ∈
{¬yi,j ,⊥}. Thus, we distinguish two additional subcases.
a. `∗(r(T [yi,j])) = ¬yi,j : Vertex v6 must be labeled by ¬yi,j as its parent r(T [yi,j]) is

labeled by ¬yi,j and its four children are leaves labeled by ¬yi,j . Vertices v2, v3, v4, v5
must each be labeled by either ¬yi,j or yi,j as their parent r(T [yi,j]) is labeled by ¬yi,j
and their children are leaves labeled by ¬yi,j . Vertex v1 is the child of r(T [yi,j]) labeled
by yi,j , and thus the only literals that can label v1 are yi,j and ¬yi,j . In addition, v1
can be labeled by clauses c1, . . . , ck. This subcase corresponds to case (iii) of the above
table, and is depicted in Fig. 5c.

b. `∗(r(T [yi,j])) = ⊥: Vertices v2, v3, v4, v5 must each be labeled by ¬yi,j as their parent
r(T [yi,j]) is labeled by ⊥ and their children are leaves labeled by yi,j . Vertex v6
must be labeled by either ⊥ or ¬yi,j , as its parent r(T [yi,j]) is labeled by ⊥ and its
four children are leaves labeled by ¬yi,j . As vertex v1 is the child of r(T [yi,j]) and
its only child a leaf labeled by ci, we have that v1 can be labeled by ⊥, all clauses
C = {c1, . . . , ck} and all active literals X. This subcase corresponds to case (iv) of the
above table, and is depicted in Fig. 5d. J

Next, we prove a lower bound on the minimum migration number of T given P = {S}.

I Lemma 9. It holds that µ(T, `∗) ≥ (B + 1)n+ 25k.

Proof. Consider clause i composed of literals yi,1, yi,2 and yi,3. By Lemma 8, the vertex
labeling `∗ of each of the subtrees T [yi,1], T [yi,2] and T [yi,3] must adhere to one of four cases.
It is easy to verify that case (i) has migration number µ(T [yi,j] ≥ 3 (Fig. 5a), case (ii) has

WABI 2018

24:10 Parsimonious Migration History Problem: Complexity and Algorithms

migration number µ(T [yi,j] ≥ 10 (Fig. 5b), case (iii) has migration number µ(T [yi,j] ≥ 6
(Fig. 5c) and case (iv) has migration number µ(T [yi,j] ≥ 10 (Fig. 5d). At most one of T [yi,1],
T [yi,2] and T [yi,3] can be labeled by `∗ according to cases (i) or (iii), due to the restriction
that G∗ must be a tree (i.e. P = {S}). Without loss of generality, we assume that only
T [yi,1] adheres to case (i) or (iii). We distinguish three cases.
1. T [yi,1] is of case (i), and T [yi,2] and T [yi,3] are of cases (ii) or (iv): In T [yi,1], the parent

of vertex v1 is labeled by yi,j . Moreover, in both T [yi,2] and T [yi,3], the parent of vertex
v1 is labeled by ⊥. As such, these two vertices in T [yi,2] and T [yi,3] must be assigned
label yi,j . Hence, the minimum number of migrations induced by `∗ on the subtree of T
induced by vertices r(T), V (T [yi,1]), V (T [yi,2]) and V (T [yi,3]) is 3 + 11 + 11 = 25.

2. T [yi,1] is of case (iii), and T [yi,2] and T [yi,3] are of cases (ii) or (iv): In T [yi,1], the parent
of vertex v1 is labeled by ¬yi,j . Moreover, in both T [yi,2] and T [yi,3], the parent of vertex
v1 is labeled by ⊥. As such, these two vertices in T [yi,2] and T [yi,3] must be assigned
label ¬yi,j . Hence, the minimum number of migrations induced by `∗ on the subtree of
T induced by vertices r(T), V (T [yi,1]), V (T [yi,2]) and V (T [yi,3]) is 6 + 11 + 11 = 28.

3. T [yi,1], T [yi,2] and T [yi,3] are of cases (ii) or (iv): The minimum number of migrations
induced by `∗ on the subtree of T induced by vertices r(T), V (T [yi,1]), V (T [yi,2]) and
V (T [yi,3]) is 10 + 10 + 10 = 30.

Thus, for each clause i, the minimum number of migrations induced by `∗ on r(T), V (T [yi,1]),
V (T [yi,2]) and V (T [yi,3]) is 25. Thus, all k clauses lead to a least 25k migrations. By
Lemmas 6 and Lemma 7, we have that `∗(r(T)) = ⊥ and `∗(r(T [x])) ∈ {x,¬x} for each
variable x. Thus, all variable subtrees T [x] induce (B + 1)n migrations. Hence, µ(T, `∗) ≥
(B + 1)n+ 25k. J

Finally, we show that the above lower bound is tight if and only if φ is satisfiable.

I Lemma 10. Boolean formula φ is satisfiable if and only if µ(T, `∗) = (B + 1)n+ 25k.

Proof. (⇒) We construct a vertex labeling ` with migration number µ(T, `) = (B+1)n+25k
such that the resulting migration graph G has an S pattern.

First, we set `(r(T)) = ⊥. For each variable x, we set `(r(T [x])) = x if θ(x) = 1 and set
`(r(T [x])) = ¬x if θ(x) = 0. Next, we consider each clause i. By the premise, there must
exist a literal in clause i that satisfies the clause. Without loss of generality, we assume that
θ(yi,1) = 1. We assign vertex labels to the vertices of T [yi,1] by setting `(r(T [yi,1])) = yi,1,
`(v1) = . . . = `(v5) = yi,1 and `(v6) = ¬yi,1, according to case (i) of Lemma 8 (Fig. 5a). For
the other two literals yi,j (where j ∈ {2, 3}), we set `(r(T [yi,j])) = ⊥. Let x′ be the variable
corresponding to yi,j . If θ(x′) = ψ(yi,j), we set `(v2) = . . . = `(v5) = yi,j and `(v6) = yi,2,
according to case (ii) of Lemma 8 (Fig. 5b). Otherwise, we set `(v2) = . . . = `(v5) = ¬yi,j
and `(v6) = ¬yi,2, according to case (iv) of Lemma 8 (Fig. 5d).

It is easy to verify that µ(T, `) = (B + 1)n+ 25k. By construction, each literal label yi,j ,
as well as each clause label ci, has a unique parent in G. Thus, G adheres to an S pattern.
By Lemma 9, it holds that µ(T, `∗) ≥ (B + 1)n+ 25k. Hence, ` is an optimal vertex labeling
and µ(T, `∗) = (B + 1)n+ 25k.

(⇐) We construct a truth assignment θ from `∗. By Lemma 7, we have that `∗(r(T [x])) ∈
{x,¬x} for each variable x. We set θ(x) = ψ(`∗(r(T [x]))). We claim that θ satisfies at least
one literal for each clause i of φ.

By Lemmas 6, 7 and 9, we have that `∗ induces, for each clause i, 25 migrations in
the subtree induced by vertices V (T [yi,1]) ∪ V (T [yi,2]) ∪ V (T [yi,3]) ∪ {r(T)}. Thus, one
subtree among T [yi,1], T [yi,2] and T [yi,3] must have 3 migrations, corresponding to case (i)
of Lemma 8 (Fig. 5a). Let T [yi,j] be the subtree with 3 migrations and let x be the variable

M. El-Kebir 24:11

corresponding to yi,j . As `∗(r(T [yi,j])) = yi,j , we have that `∗(r(T [x])) = yi,j and thus
θ(x) = ψ(`∗(r(T [x]))) = ψ(yi,j). Thus, θ satisfies literal yi,j and thereby clause i. The same
argument applies to each clause of φ. Hence, θ is a truth assignment that satisfies φ. J

Phylogenetic tree T has 1+A+(2B+1)n+16kn vertices can be constructed in polynomial
time from φ. For instance, setting B = 10k + 2 and A = 2Bn + 27k + 1 (respecting the
requirement that B > 10k + 1 and A > 2Bn+ 27k), yields a total of 56kn+ 27k + 9n+ 2
vertices in T , which is polynomial in the number k of clauses and the number n of variables.
Thus, by Lemma 10, we have a polynomial time reduction from 3-SAT to PMH, proving
Theorem 3.

4.2 Fixed parameter tractability
A PMH instance (T, ˆ̀) has m = |Σ| locations that label n = |V (T)| vertices. Typically,
m� n in practical problem instances. Here, we show that PMH is fixed parameter tractable
in m and give an algorithm that runs in time O(nmm).

Our algorithm relies on the notion of a migration tree Ĝ, a rooted tree whose vertex set
is Σ. Unlike a migration graph, which is a directed multi-graph, Ĝ is a simple directed graph
with at most one edge between every pair of vertices. We say that a vertex labeling ` is
consistent with migration tree Ĝ provided that for any distinct pair (s, t) of locations there
exists an edge (u, v) ∈ E(T) such that `(u) = s and `(v) = t if and only if (s, t) ∈ E(Ĝ).

For a given PMH instance (T, ˆ̀) and migration tree Ĝ there may not exist a vertex
labeling consistent with Ĝ (Fig. 6). Let lcaĜ(u) = lcaĜ(ˆ̀(L(Tu))) for vertex u ∈ V (T).
For u �T v, let dT (u, v) be the number of edges on the unique path from u to v. We show
that the condition

dT (u, v) ≥ dĜ(lcaĜ(u), ˆ̀(v)) ∀u, v ∈ V (T) such that u �T v, (2)

is both necessary and sufficient for the existence of a vertex labeling of T consistent with Ĝ.

I Lemma 11. If there exists a vertex labeling ` for T consistent with Ĝ then (2) holds.

Proof. Let ` be a vertex labeling for T consistent with Ĝ. Let u and v be vertices of T
such that u �T v. By Proposition 5, we have that `(u) �Ĝ lcaĜ(u). Thus, the number of
migrations on the path from u to v must be at least dĜ(lcaĜ(u), ˆ̀(v)). To accommodate
these migrations, the path from u to v must have at least dĜ(lcaĜ(u), ˆ̀(v)) edges. Hence,
dT (u, v) ≥ dĜ(lcaĜ(u), ˆ̀(v)). J

We prove sufficiency constructively, using the vertex labeling `∗ of T defined as

`∗(v) =
{

lcaĜ(r(T)), if v = r(T),
σ(`∗(π(v)), lcaĜ(v)), if v 6= r(T),

(3)

where σ(s, t) = s if s = t and otherwise σ(s, t) is the unique child of s that lies on the path
from s to t in Ĝ. In the case where σ(`∗(π(v)), lcaĜ(v)) = lcaĜ(v) for all vertices v, vertex
labeling `∗ is identical to the LCA mapping [5] used in the context of gene-tree species-tree
reconciliation to minimize the duplication number.

I Lemma 12. If (2) holds then vertex labeling `∗ for T is consistent with Ĝ.

Proof. For `∗ to be consistent with Ĝ it must hold that: (i) for any distinct pair (s, t) of
locations there exists an edge (u, v) ∈ E(T) such that `(u) = s and `(v) = t if and only if
(s, t) ∈ E(Ĝ), and (ii) `∗(v) = ˆ̀(v) for each leaf v. Condition (i) holds by definition of `∗.

WABI 2018

24:12 Parsimonious Migration History Problem: Complexity and Algorithms

Phylogenetic tree Migration tree

Vertex
labeling .

Leaf
labeling .

Phylogenetic tree

a b

Figure 6 Given a phylogenetic tree T and migration tree Ĝ, there may not exist a
vertex labeling of T consistent with Ĝ. (a) Here, any vertex labeling ` consistent with Ĝ must
label u1, u2, u4 by green. This, however, introduces a migration from green to red, violating Ĝ. By
Lemma 11, there does not a vertex labeling of T consistent with Ĝ. (b) Equivalently, labeling `∗

defined in (3) is not a vertex labeling of T , as it changes the labeling of leaf v4, i.e. `∗(v4) 6= ˆ̀(v4).

That is, each vertex u has either the same label as its parent π(u) or is labeled by a child of
`∗(π(u)) in Ĝ. As for condition (ii), assume for a contradiction that there exists a leaf v such
that `∗(v) 6= ˆ̀(v). Consider the unique path from r(T) to v. Let u1 be the vertex closest to v
such that either u1 = r(T) or `∗(u1) = `∗(π(u1)). Thus, each edge on the path u1, . . . , ut, v

is a migration. By definition of `∗, we have that `∗(u1), . . . , `∗(ut), `∗(v) forms a path of Ĝ.
We distinguish two cases. First, u1 = r(T). We have that `∗(r(T)) = lcaĜ(r(T)). As

`∗(v) 6= ˆ̀(v), we have that d(r(T), v) < dĜ(lcaĜ(r(T)), ˆ̀(v)). This contradicts the premise.
Second, u1 6= r(T). Let u0 = π(u1). As `∗(u0) = `∗(u1), we have that `∗(u1) = lcaĜ(u1).
Since `∗(v) 6= ˆ̀(v), we have that d(u1, v) < dĜ(lcaĜ(u1), ˆ̀(v)). This contradicts the premise.
Hence, `∗ is a vertex labeling of T that is consistent with Ĝ. J

Vertex labeling `∗ has minimum migration number µ(T, `∗). To show this, we prove
the following lemma that states that `∗ assigns each vertex a location nearest to the leaf
set L(Ĝ).

I Lemma 13. Let ` be a vertex labeling ` of T that is consistent with Ĝ. Then, `(u) �Ĝ `∗(u)
for each vertex u ∈ V (T).

Proof. Assume for a contradiction that vertex u is the nearest vertex to r(T) such that
`(u) 6�Ĝ `∗(u) (i.e. dT (r(T), u) is minimum). By Proposition 5, we have that `∗(u) �Ĝ
lcaĜ(u) and `(u) �Ĝ lcaĜ(u). Thus, `(u) 6�Ĝ `∗(u) implies that `∗(u) ≺Ĝ `(u). Moreover,
we have that u 6= r(T), as `∗(r(T)) = `(r(T)) = lcaĜ(r(T)) by the same proposition. Since
u is the nearest vertex to r(T) such that `(u) 6�Ĝ `∗(u), we have that `∗(π(u)) = `(π(u)).

We distinguish two cases. First, `(u) = `(π(u)). Thus, `(u) = `∗(π(u)). Therefore,
`∗(u) ≺Ĝ `(u) implies that `∗(u) ≺Ĝ `∗(π(u)). This contradicts the definition of `∗. Second,
`(u) 6= `(π(u)). As `∗(π(u)) = `(π(u)), we have that (π(u), u) is a migration from `∗(π(u)) =
`(π(u)) to `(u) in ` and to `∗(u) in `∗. By Lemma 12, we have that `∗ is consistent with Ĝ.
As `∗(u) ≺Ĝ `(u), the labeling by ` of edge (π(u), u) results in an edge (`(π(u)), `(u)) that
is not in Ĝ. Hence, ` is not consistent with Ĝ, yielding a contradiction. Both cases yield a
contradiction. Hence, the lemma follows. J

Finally, we prove that `∗ achieves the minimum migration number among all vertex
labelings that are consistent with a given migration tree Ĝ.

I Lemma 14. Let T be a phylogenetic tree with leaf labeling ˆ̀ satisfying (2) for a given
migration graph Ĝ. Then, `∗ is a minimum migration labeling of T that is consistent with Ĝ.

M. El-Kebir 24:13

4 6 8
number m of locations

20

40

60

80

100

120

nu
m

b
er
n

of
ve

rt
ic

es
a

mutation rate
0.1

1.0

4 6 8
number m of locations

10−3

10−2

10−1

100

101

102

103

ti
m

e
[s

]

b

method
ILP-0.1

FPT-0.1

ILP-1.0

FPT-1.0

Figure 7 The fixed parameter tractable (FPT) algorithm is faster than the previously
published [2] integer liner program (ILP) for small number m of locations. Using a tool
for simulating metastatic cancers, we generated 60 PMH instances with varying number m of
locations and number n of vertices. (a) The number of vertices increased with increasing mutation
rate. (b) Running time in seconds (logarithmic scale) for FPT algorithm and ILP for instances with
varying number m of locations and mutation rate.

Proof. Assume for a contradiction that ` is a vertex labeling of T consistent with Ĝ such
that µ(T, `) < µ(T, `∗). Consider a location t such that the number of migrations with
target t is greater in `∗ than `. Observe that t 6= r(Ĝ). Let s be the parent of t in Ĝ. Let
Y = {v ∈ V (T) | `(π(v)) = s, `(v) = t} and Y ∗ = {v ∈ V (T) | `∗(π(v)) = s, `∗(v) = t}. By
the premise we have that |Y ∗| > |Y |.

For any vertex labeling `′ consistent with Ĝ, distinct edges (u, v), (u′, v′) ∈ E(T) labeled
by `′(u) = `′(u′) = s and `′(v) = `′(v′) = t are incomparable. Thus, the vertices in Y (Y ∗)
are pairwise incomparable in T . Let L(t) be the set of leaves u of T labeled by ˆ̀(u) = t′

where t �Ĝ t′. Let L(TY) (L(TY ∗)) be the combined set of leaves in the subtrees rooted
at each vertex v ∈ Y (v ∈ Y ∗). As both ` and `∗ are consistent with Ĝ, we have that
L(t) = L(TY) = L(TY ∗). Since |Y ∗| > |Y | and L(TY) = L(TY ∗), there must exist two
distinct vertices v, w ∈ Y ∗ and vertex u ∈ Y such that u ≺T v and u ≺T w. Since u �T π(v),
u �T π(w) and `∗(π(v)) = `∗(π(w)) = s, we have that `∗(u) �Ĝ s. Given that `(u) = t and
s ≺Ĝ t, we have that `∗(u) �Ĝ s ≺Ĝ t �Ĝ `(u), which contradicts Lemma 13. Hence, `∗ is a
minimum migration labeling of T that is consistent with Ĝ. J

We note that `∗ can be computed in O(nm) time—i.e., each lcaĜ(·) query can be resolved
in O(m) time using a simple post-order tree traversal of Ĝ. The number of unrooted trees on
m labeled vertices is mm−2, which is known as Cayley’s formula [1]. Since every unrooted
tree can be rooted at each of its m vertices, the number of migration trees is mm−1. Thus, a
brute-force algorithm that computes `∗ for each migration tree Ĝ requires O(nmm) time,
proving Theorem 4.

5 Experimental Evaluation

We implemented the FPT algorithm in C++ and used Prüfer sequences [8] to enumerate
migration trees. The code is available at https://github.com/elkebir-group/PMH-S.
Using simulated data of metastatic cancers, we compared the FPT algorithm and the
previously published integer linear program (ILP) [2]. More specifically, for each combination
of m ∈ {4, 6, 8} locations and mutation rates N ∈ {0.1, 1.0}, we simulated 10 metastatic
cancer where each of the m− 1 metastases was seeded by clones from a single location. The
simulation algorithm is described in more detail in [2]. In total, we simulated 60 PMH
problem instances where P = {S}.

WABI 2018

https://github.com/elkebir-group/PMH-S

24:14 Parsimonious Migration History Problem: Complexity and Algorithms

Increasing the mutation rate N resulted in larger phylogenetic trees (Fig. 7a). We ran
both the FPT algorithm and the ILP in single-threaded mode on a computer with two Intel
Xeon CPUs at 2.6 GHz (32 cores) and 512 GB of RAM. As a sanity check, we found that
both the ILP and the FPT algorithm resulted in the same minimum migration number for
each instance (data not shown). We found that the running time of the FPT algorithm is
only moderately affected by the size of the phylogenetic tree in contrast to the ILP (Fig. 7b).
In addition, we found that the FPT algorithm outperformed the ILP for m ∈ {4, 6} locations
in terms of running time, but was slower for m = 8 locations (Fig. 7b). These findings are
in line with the asymptotic running time of O(nmm) for the FPT algorithm. For modest
number m of locations the FPT algorithm is the method of choice due to its simplicity.

6 Conclusion

In this work, we studied the complexity of the Parsimonious Migration History (PMH)
problem, a constrained multi-objective optimization problem for reconstructing the migration
history of a given phylogenetic tree T whose leaves are labeled by locations. For the case
where the resulting migration graph G is restricted to a tree (i.e. P = {S}), we showed
that PMH is NP-hard and fixed parameter tractable in the number m of locations. We
demonstrated that our FPT algorithm runs in time O(nmm) and outperforms the previously
integer linear program for small m on simulated instances of practical size. While we did not
consider the polytomy resolution variant of PMH, as introduced in [2], our hardness proof
easily extends to this case by appropriately binarizing the gadgets used in the reduction.
The hardness of PMH for the cases where G is restricted to a DAG (i.e. P = {S,M}) or left
unrestricted (i.e. P = {S,M,R}) remains open.

References
1 A Cayley. A theorem on trees. The Quart. J. of Pure and Appl. Math., 23:376–8, 1889.
2 Mohammed El-Kebir, Gryte Satas, and Benjamin J Raphael. Inferring parsimonious mi-

gration histories for metastatic cancers. Nature Genetics, 50(5):718–726, 2018.
3 Joseph Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood ap-

proach. Journal of Molecular Evolution, 17(6):368–376, nov 1981.
4 Walter M Fitch. Toward Defining the Course of Evolution: Minimum Change for a Specific

Tree Topology. Systematic Zoology, 20(4):406, 1971.
5 M Goodman et al. Fitting the gene lineage into its species lineage, a parsimony strategy

illustrated by cladograms constructed from globin sequences. Systematic Biology, 28(2):132–
163, 1979.

6 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

7 A W McPherson et al. Divergent modes of clonal spread and intraperitoneal mixing in
high-grade serous ovarian cancer. Nature Genetics, may 2016.

8 H Prüfer. Neuer Beweis eines Satzes über Permutationen. Arch Math Phys, 27:742–4, 1918.
9 David Sankoff. Minimal Mutation Trees of Sequences. SIAM Journal on Applied Mathe-

matics, 28(1):35–42, jan 1975.
10 M Slatkin and W P Maddison. A cladistic measure of gene flow inferred from the phyloge-

nies of alleles. Genetics, 123(3):603–613, 1989.

The Wasserstein Distance as a Dissimilarity
Measure for Mass Spectra with Application to
Spectral Deconvolution

Szymon Majewski1

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
smajewski@impan.pl

Michał Aleksander Ciach1

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
m_ciach@student.uw.edu.pl

Michał Startek
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

Wanda Niemyska
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

Błażej Miasojedow
Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Anna Gambin
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

Abstract
We propose a new approach for the comparison of mass spectra using a metric known in the
computer science under the name of Earth Mover’s Distance and in mathematics as the Wasser-
stein distance. We argue that this approach allows for natural and robust solutions to various
problems in the analysis of mass spectra. In particular, we show an application to the problem of
deconvolution, in which we infer proportions of several overlapping isotopic envelopes of similar
compounds. Combined with the previously proposed generator of isotopic envelopes, IsoSpec,
our approach works for a wide range of masses and charges in the presence of several types of
measurement inaccuracies. To reduce the computational complexity of the solution, we derive an
effective implementation of the Interior Point Method as the optimization procedure. The soft-
ware for mass spectral comparison and deconvolution based on Wasserstein distance is available
at https://github.com/mciach/wassersteinms.

2012 ACM Subject Classification Applied computing → Chemistry

Keywords and phrases Mass spectrometry, Tandem mass spectrometry, Wasserstein distance,
Earth mover’s distance, Similarity measure, Jaccard score, Tanimoto similarity

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.25

Funding This work was partially supported by Polish National Science Center grants
2014/12/W/ST5/00592 and UMO-2017/26/D/ST6/00304.

1 Both authors contributed equally to this work.

© Szymon Majewski, Michał Ciach, Michał Startek, Wanda Niemyska, Błażej Miasojedow, and
Anna Gambin;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 25; pp. 25:1–25:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:smajewski@impan.pl
mailto:m_ciach@student.uw.edu.pl
https://github.com/mciach/wassersteinms
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

1 Introduction

Mass Spectrometry (MS) is one of the main analytical techniques of modern proteomics and
metabolomics, which allows for identification and quantification of molecular compounds. In
the first step, the particles are ionized; next, they are separated in an electromagnetic field
according to their mass to charge ratio (m/z), and finally, transferred to a detector. The
detected signal, usually proportional to the number of ions, is plotted against the corres-
ponding m/z value on a mass spectrum. A pair of detected m/z value and the corresponding
signal intensity is called a peak. The signal intensity is often referred to as ion current [11, 3].

The m/z value can be used to infer the chemical composition of molecules (see e.g. [1]),
but it does not give information about its chemical structure. To gain insight into the latter,
several measurement steps are performed in a technique called Tandem Mass Spectrometry
(Tandem MS). After each step, a range of m/z value is selected, and ions from that range
are subjected to fragmentation before the next measurement. The mass spectrum obtained
from the n-th measurement is referred to as an MSn spectrum.

Even though the MS1 spectrum is recorded prior to any fragmentation, a single com-
pound can give rise to several peaks. This is due to the natural occurrence of isotopes –
atoms with the same number of electrons and protons, but different numbers of neutrons.
Molecules which differ only in their isotopic compositions are termed isotopologues. A group
of peaks corresponding to isotopologues of a single molecule is referred to as an isotopic en-
velope (c.f. Fig. 1).

Tandem MS can be used to identify the molecule under study. There are two main
approaches to this task: de novo sequencing and database search. The first one strives to
identify the elemental composition and/or structure of the molecule purely based on the
mass spectrum of fragments. The second one searches a database of mass spectra obtained
from known molecules to find the most similar one [16, 24, 25].

To be able to search for a similar spectrum, either a similarity or a distance measure
needs to be employed. There are two main groups of such measures. The first one relies on
the number of matching peaks. Two peaks are said to match if their m/z values differ by
less than a given threshold. An example of such measure is the Jaccard score, equal to the
number of matching peaks divided by the number of distinct peaks in both spectra. The
second group of measures takes into account both the location and the intensities of peaks.
An example of such measure is the Euclidean distance or the correlation coefficient [16, 24].

Both groups are similar in the sense that they compare peaks with the same m/z value.
As a consequence, they are highly sensitive to even the slightest differences in chemical
formulas. For example, apigenin (C15H10O5) and quercetin (C15H10O7) are two molecules
which differ by two oxygen atoms (see Fig. 1). Even though this difference is relatively
small compared to the overall atom count, the MS1 spectra contain no matching peaks.
Consequently, the discussed measures do not detect any similarity between these molecules.
Some approaches make a preprocessing of spectra to infer an optimal pairwise matching of
peaks before computing the similarity [10].

Our contribution. In the present work, we propose a new measure which quantifies both the
differences in intensities and m/z values of peaks in a continuous way. As such, the measure
is more robust to changes in chemical formulas than the most common measures based on
peak matching. The measure is based on the concept of transporting the ion current between
the spectra. The distance between spectra is equal to the total distance in the m/z domain
covered by the current. This allows to express the distance between spectra in Daltons. This

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:3

Figure 1 Molecular structures and MS1 spectra of apigenin (left) and quercetin (right) showing
their isotopic envelopes. Peak intensities have been normed to sum to 1. The mass spectra have
been downloaded from the MassBank database (MassBank IDs: TY000164, TY000119).

distance is known in the field of probability theory as the (first) Wasserstein metric, and in
the field of image processing as the Earth Mover’s distance. Under certain assumptions, it
can be computed in time linear in the number of distinct peaks in both spectra.

The Wasserstein distance allows to more accurately reflect the differences in chemical
compositions of the molecules; for example, the distance between the MS1 spectra from
Fig. 1 is equal to 31.48 Da, while the difference in their masses is equal to 32.19 Da. Apart
from quantifying the dissimilarity, the computed transport of ion current allows to match
corresponding peaks in the compared spectra, which aids in the detection of differences in
elemental composition and chemical structure (see Fig 2).

As a more advanced application of the Wasserstein distance, we show how it can be used
to efficiently solve the problem of mass spectral deconvolution, i.e. the problem of separating
overlapping isotopic envelopes.

Structure of the article. This article is structured as follows. In the next section, we
introduce the formal definition of the Wasserstein metric. We also give some examples of the
distance and the ion current transport between both experimental and in silico generated
spectra. In Section 3, we give a formal statement of the deconvolution problem and the
proposed solution based on the Wasserstein metric. Next, we show the results of computational
experiments on in silico generated spectra to assess the performance of the solution. The
results show that the Wasserstein distance allows for precise deconvolution in the presence of
measurement errors even when the isotopic envelopes show considerable overlap.

2 The Wasserstein distance

In this section we introduce the first Wasserstein distance for discrete probability measures
with finite support on Rd. It is known in the computer science community as the Earth
Mover’s Distance, and was successfully used in a variety of applications including image
processing [20]. In this article, we assume that the mass spectra are normalized so that the
peak intensities sum to 1. This allows to interpret them as discrete probability measures.

Let µ =
∑n
i=1 wiδxi

and ν =
∑m
j=1 vjδyj

be two discrete probability distributions, where
wi and vi are sets of weights, xi and yi are points in Rd, and δxi is the Dirac delta centered
at xi. Suppose that those measures describe the distribution of some mass, i.e. there is a

WABI 2018

25:4 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

mass of wi at point xi. Then, the Wasserstein distance can be defined as the minimal cost of
transporting all the mass given by µ onto the mass given by ν. An example of such transport
is given by Fig. 2.

Let γ(i, j) denote the amount of mass transported from the point xi to yj . This function is
referred to as a transport plan. Since all the mass from xi needs to be transported somewhere,
we have

∑m
j=1 γ(i, j) = wi. On the other hand, the mass at yj needs to be filled completely,

implying that
∑n
i=1 γ(i, j) = vj . This, combined with the non-negativity of the transport plan,

means that γ(i, j) can be interpreted as the joint probability distribution of the two measures.
Let Γ(µ, ν) denote the set of all possible transport plans between the measures µ and ν.

Then, the Wasserstein distance between the two measures, W1(µ, ν), is equal to the total
distance traversed by the mass under the optimal transport plan:

W1(µ, ν) = min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γ(i, j)||xi − yj ||.

It is easy to see that the function W1 defined above is a metric on the space of discrete
probability measures with finite support. Furthermore, the above construction can be
extended to more general measures, underlying spaces and cost functions. For details we
refer our reader to [21].

In the applications to mass spectrometry data, we will be mainly interested in the W1
distance on the real line. This distance has the following important representation:

I Lemma 1 (Proposition 2.17 in [21]). Let µ and ν be two discrete probability measures with
finite support on real line R, and let Fµ and Fν be their cumulative distribution functions.
Then, we have:

W1(µ, ν) =
∫
R
|Fµ(x)− Fν(x)|dx

Based on the above Lemma, we can easily compute the distance W1(µ, ν) for finite
discrete probability measures corresponding to normalized mass spectra. A common way
of representing such a spectrum is a peak list, i.e. a list of pairs (xi, pi) such that xi are in
increasing order and represent m/z values of peaks with intensities pi.

Algorithm 1, adapted from [12], shows how to compute W1 for two such lists of peaks. It
is based on the observation that the absolute difference between the cumulative distribution
functions of mass spectra, |Fµ − Fν |, is a step function, and therefore it is easily integrable.
Furthermore, the value Fµ(x)− Fν(x) is equal to the surplus of the intensity in µ relative to
ν, which needs to be transported through the point x.

Note that the runtime of Algorithm 1 is O(n+m): in each iteration of the main loop
either i or j is incremented, no index variable will ever exceed the length of the corresponding
list, and the algorithm terminates when both indices have reached the end of their respective
lists.

2.1 Some basic properties
To help the reader gain some initial intuitions behind the Wasserstein distance, in this
short subsection we discuss some of its qualitative properties when applied to mass spectra.
In the next subsection, we illustrate some of the points discussed here by computational
experiments.

First, for MS1 spectra of two molecules, the Wasserstein distance is approximately equal
to the absolute mass difference of the molecules. The other main factor that influences
the distance in this case is the presence of measurement inaccuracies. Note, however, that

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:5

Algorithm 1: Computation of Wasserstein distance between two spectra.
Data: Two lists, N, M, of pairs (x, p), containing the lists of peaks of respective

spectra
Result: W1 distance between given spectra

1 i← 0; j ← 0; ret← 0.0; γ ← an empty transport scheme
2 n← length(N);m← length(M)
3 while i < n ∨ j < m do
4 d← min(N [i].p,M [j].p)
5 ret← ret+ d · |N [i].x−M [j].x|
6 N [i].p← N [i].p− d
7 M [j].p←M [j].p− d
8 γ(i, j)← d

9 if 0 = N [i].p then
10 i← i+ 1
11 else
12 j ← j + 1
13 end
14 end
15 The variable ret contains the Wasserstein distance and γ the transport plan.

this influence remains small as long as the inacurracies in intensity measurements are small
compared to the corresponding peak intensities.

Usually, some inaccuracy in both the intensity and the mass measurement is present.
Naturally, the latter poses a major problem for measures based on peak matching. On the
other hand, the Wasserstein distance is not significantly influenced by small mass measurement
errors – instead, the imprecise measurement simply gets shifted to match its theoretical
counterpart.

The implicit assumption of this metric, which may not be desirable in some applications,
is that the mass difference reflects chemical difference. Therefore, two molecules differing by
an OH group are assumed to be more similar to each other than two molecules differing by
a C2H5 group. It is possible to relax this assumption by applying a different metric in the
mass domain, say c(x, y), in the definition of the Wasserstein distance:

Wc(µ, ν) = min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γ(i, j)c(xi − yj).

An important caveat in this case is that treating all modifications as equivalent may lead
to unexpected results – notably, a protein being treated as a single carbon atom with an
extremely large modification. Furthermore, using other distances in the mass domain may
lead to difficult optimization problems. The use of absolute difference, |xi − yj |, allows to
avoid the optimization in the space of all possible transport plans.

If the two molecules differ by a modification which does not change their fragmentation
pattern, then the Wasserstein distance between their MS2 spectra will not exceed the weight
of the modification. This follows from the observation that the modification is present only
in some of the fragments, which account to a fraction of the total intensity in the spectrum.
Note that this is a highly idealized example, since modifications may significantly change
the fragmentation patterns and inflict a greater influence on the Wasserstein distance. In
general, however, this distance cannot exceed the mass of the heavier molecule.

WABI 2018

25:6 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

119 153 271 272 273

137 153 165 303 304 305285274201 257247229

32 Da = O

Apigenin

Quercetin

m/z

m/z

Ion fragments

2

Figure 2 The optimal ion current transport plan for MS2 spectra of apigenin (top) and quercetin
(bottom), fragmented using 30 eV collision energy. The colors on the quercetin mass spectrum
correspond to the origin of the transported ion current. The isotopic envelope of quercetin is shifted
by 32 Da, i.e. the mass of two oxygen atoms.

Lastly, the structure of the optimal transport plan is highly sensitive to chemical noise,
i.e. the presence of unexpected molecules. Recall that all the intensity from one spectrum
needs to be used to explain all the intensity of the second spectrum. Therefore, if one of the
analyzed spectra contains an additional peak, some of the intensity from the first spectrum
needs to be used to explain it. This may lead to global changes in the structure of the
optimal transport plan. It follows that in the presence of chemical noise, the Wasserstein
distance may not reflect the similarity between the analyzed compounds.

2.2 Case study
To quantitatively analyze the properties of the Wasserstein metric when applied to mass
spectral data, we have analyzed two sets of spectra obtained from the MassBank database [5].
In both cases, we have compared the performance of the Wasserstein distance with two other
popular approaches: the Euclidean distance and the Jaccard score (i.e. the ratio of matching
peaks to the total number of different peaks in both spectra). When analyzing those two
measures, the spectra were binned to 0.01 Da resolution to increase the number of matching
peaks and decrease their sensitivity to small measurement errors. No binning was performed
during the analysis of the Wasserstein metric.

The first test was based on 615 MS1 ESI-QTOF spectra with positive ionization mode.
The goal of comparing MS1 spectra was to verify the correlation between Wasserstein
distance and the difference in mass of the molecules. The spectra have been compared
pairwise, resulting in 188805 pairs. These pairs were then used to compute the Spearman’s
rank correlation between the distance and the absolute difference between masses of the
corresponding molecules. The results are summarized in Table 1.

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:7

Table 1 Spearman’s rank correlations between the Wasserstein distance, Jaccard score, Euclidean
distance, and either the absolute mass difference or Tanimoto similarity of chemical structures.
M, absolute mass difference; W, Wasserstein distance; J, Jaccard score; E, Euclidean distance; T,
Tanimoto similarity; RW, relative Wasserstein distance; RE, relative Euclidean distance (see text).

MS1 spectra
M W J E

M 1.00 0.89 -0.07 -0.37
W – 1.00 -0.08 -0.22

J – – 1.00 -0.17
E – – – 1.00

MS2 spectra
T RW J RE

T 1.00 -0.41 0.22 -0.24
RW – 1.00 -0.21 0.43

J – – 1.00 -0.11
RE – – – 1.00

As expected, the metics based on peak matching are sensitive to mass differences, and
therefore less correlated than the Wasserstein distance. Note that for the Wasserstein and
Euclidean distance the correlation is expected to be positive, while for the Jaccard similarity
metric it is expected to be negative. Surprisingly, we have found a negative correlation
between the mass difference and the Euclidean distance.

The second test was based on MS2 ESI-QTOF spectra with positive ionization mode.
Here, the goal was to investigate the relationship between Wasserstein distance and structural
similarity. Note that this distance is sensitive to the fragmentation intensity – two MS2
spectra obtained for a given molecule can have a large distance if there is a significant
difference in the intensity of fragments. To account for that, we have selected a subset
of 473 MS2 spectra for different molecules in which the precursor peak had around 10%
relative intensity. This resulted in 111628 pairs of spectra. For each pair of spectra, we
have computed the Wasserstein, Jaccard and Euclidean metrics. Next, we have computed
the Tanimoto similarity between the structures of the corresponding molecules, based on
the Morgan circular fingerprints [17, 19]. The fingerprints have been computed using the
RDKit package (http://www.rdkit.org), with the radius of 2 and the default set of the
feature-based invariants. The results are summarized in Table 1.

Note that the selected set of spectra comes from a diverse set of molecules. In particular,
the mean mass is 310 Da, while the standard deviation is 160 Da. This poses a problem for
the Wasserstein metric, as a pairs of small molecules will yield small distances regardless of
the structural similarity. To account for this, we have divided the distance by the product
of masses of the analyzed molecules. Without this correction, the correlation between the
Wasserstein metric and the Tanimoto similarity drops to −0.22. This procedure also improved
the correlation between the Tanimoto similarity and the Euclidean distance, but not the
Jaccard score. We refer to the distances with this correction as relative distances.

The detailed relationship between the relative Wasserstein distance and the Tanimoto
similarity is depicted in Fig. 3. For comparison, the Figure also shows the relationship
between the Tanimoto similarity and the Jaccard score. Note that all compounds with
high Tanimoto similarity have small relative Wasserstein distances. However, this relative
distance is much more variable for compounds with low similarity. This frequent occurence
of molecules with highly divergent structures but similar MS2 spectra decreases the extent
to which the Wasserstein distance correlates with the Tanimoto structural similarity.

The experiments show that the approaches to spectral comparison based on Wasserstein
distance outperform the Jaccard score and the Euclidean distance in terms of correlation to
mass in MS1 spectra and to the chemical structure in MS2 spectra. However, at this moment
the Wasserstein distance should be applied only to MS2 spectra with similar proportions of

WABI 2018

http://www.rdkit.org

25:8 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

Figure 3 The relationship between MS2 spectra and the structural similarity according to the
relative Wasserstein distance (left) and the Jaccard score (right).

precursor molecules, and preferably obtained from compounds of similar mass. The results
so far are optimistic, but more work needs to be done in order to generalize the Wasserstein
distance so that it can be applied to a broader class of mass spectra.

3 Mass Spectral Deconvolution

In the mass spectral literature, the term deconvolution is used to refer to several problems
which usually deal with separating overlapping peaks and/or isotopic envelopes. The authors
of [4] define deconvolution as inferring the relative quantities of molecules with overlapping
isotopic envelopes. Similar problems have been described in [7, 6, 15]. The term deconvolution
is sometimes used as a synonym for deisotoping, that is, conversion of isotopic envelopes into
single peaks with average m/z value and joint intensity [8, 13]. Other authors have used this
term for conversion of m/z values to masses of multiply charged molecules [14, 18, 2].

We propose the following formalization of the mass spectral deconvolution, which encom-
passes several problems described above.

I Problem 2 (Mass Spectral Deconvolution, MSD). Let ν be a normalized mass spectrum,
and let {µi : 1 ≤ i ≤ k} be a collection of normalized mass spectra. Let d(ν, µ) be a distance
measure between spectra. Let ∆k−1 be a k − 1-dimentional probability simplex. Find a set of
weights p∗ ∈ ∆k−1 which minimizes the distance between ν and the convex combination of
{µi : i = 1, 2, . . . , k}:

p∗ = argmin
p∈∆k−1

d

(
k∑
i=1

piµi, ν

)
(1)

In the above definition, ν is referred to as an experimental spectrum, and µi are referred to as
theoretical spectra. Note that neither the distance measure nor the origin of the theoretical
spectra is not specified. Depending on the latter, this definition can be reduced to several
of the problems mentioned at the beginning of this section. For example, if the theoretical
spectra correspond to isotopic envelopes, the solution to MSD can be used for deisotoping,
in which case pi corresponds to the joint intensity of i-th envelope. On the other hand, if µi
correspond to mass spectra of a single molecule with different charges, the problem reduces
to conversion of m/z to mass. Finally, if µi are mass spectra from a database, the problem
can be reduced to annotation of mass spectrum.

In this section, we propose a solution to the deconvolution problem using the Wasserstein
metric as the distance measure, i.e. in (1) we use d = W1. For the sake of clarity, we assume
that the goal of MSD is to infer the proportions of compounds with overlapping isotopic

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:9

envelopes. Therefore, we assume that the user knows the molecular formulas of compounds
which may be found in the analyzed spectrum. The theoretical spectra µi will correspond to
mass spectra of those compounds predicted by the IsoSpec [26] algorithm. Note however
that the proposed method is general, and can be easily extended to other use cases like
deisotoping by simply choosing a different set of the theoretical spectra.

3.1 Efficient algorithm for the MSD problem
In what follows we will present an efficient method of solving MSD problem. First, we
demonstrate the reduction of the original problem to a linear programming problem. Next,
we will show how to use the structure of resulting linear programming problem to efficiently
compute one iteration of a standard primal-dual Interior Point Method (IPM) (see for
example [9]). In this subsection we present the main ideas behind the solution and state the
most important results. The technical details and proofs are relegated to the Appendix.

Let ν =
∑m0
j=1 w0,jδx0,j be the experimental spectrum and for i = 1, 2, . . . , k let µi =∑mi

j=1 wi,jδxi,j
be the i-th theoretical spectrum. Denote the set of all support points from

the empirical and theoretical spectra by S = {xi,j : 1 ≤ j ≤ mi, 0 ≤ i ≤ k} and let n = |S|.
Let s = s1 < s2 < · · · < sn be the vector of ordered elements of S. Notice that the

cumulative distribution functions of µi’s and ν are constant on intervals [sj , sj+1). For
1 ≤ j ≤ n− 1 let fi,j and gj be the values of the cdfs of µi and ν respectively on the interval
[sj , sj+1), and set fi,n = 1 = gn. Let dj = sj+1 − sj be the length of the j-th interval.

Denote by F the k× n matrix with entries F [i, j] = fi,j for any 1 ≤ i ≤ k and 1 ≤ j ≤ n,
Ik an identity matrix of size k, and Jn an (n− 1)× n matrix equal to the identity matrix of
size n without the last row. We define

A =
[
−Jn −Jn 0
F −F −Ik

]
.

Finally, let c be a vector of length 2n+ k, such that c = (g,−g, 0k), where 0k is the vector of
zeros of length k, and b = (−d, 0k) be a vector of length n− 1 + k. The following Lemma,
proved in the Appendix, states that MSD can be reduced to linear programming.

I Lemma 3. The following dual linear programming problems:

min
x

xT c

s.t. Ax = b

x ≥ 0

max
y

yT b

s.t. AT y + z = c

z ≥ 0

(2)

are feasible. Furthermore, for any solution (x∗, y∗, z∗) of the above problem, the vector of the
last k elements of y∗ belongs to the set of solutions of MSD.

We propose to solve the above linear program using IPM, while using the structure of our
linear programming problem to significantly decrease the time and memory cost of each
iteration. In general, IPM for linear programming solves both primal and dual problems
simultaneously, by solving a cleverly chosen nonlinear approximation of those problems using
the Newton’s Method. For an overview of IPM we refer our reader to [9] and references
therein. In Algorithm 2 we present the pseudocode for the general scheme of IPM for the
dual problem (2). In what follows, xt, yt, zt are t-th iterates of variables x, y, z from the
problem, while Xt = diag(xt), Zt = diag(zt) are diagonal matrices.

A triple (xt, yt, zt) is called an ε-feasible ε-solution if it is both primal-dual feasible and
optimal up to ε tolerance. Since the computational cost of each iteration is dominated by

WABI 2018

25:10 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

Algorithm 2: General scheme of a primal-dual Interior Point Method.
Data: Matrix A and vectors b, c defining dual linear problems. A starting point

(x0, y0, z0) and error tolerance ε > 0.
Result: an ε-feasible ε-solution of the linear problem

1 Set t = 0 repeat
2 compute centrality µt = 〈xt, zt〉/(2n+ k) compute primal residual rtp = b−Axt

and dual residual rtd = c−AT yt − zt choose scaling factor σt (see Appendix)
find direction (dx, dy, dz) by solving the system of linear equations:A 0 0

0 AT I

Zt 0 Xt

dxdy
dz

 =

 rtp
rtd

σtµt1−Xtzt

 (3)

find αp ∈ (0, 1] such that xt+1 = xt + αpdx > 0 find αd ∈ (0, 1] such that
zt+1 = zt + αddz > 0 and take yt+1 = yt + αddy t = t+ 1

3 until triple (xt, yt, zt) is an ε-feasible ε-solution;

solving the equation (3), we focus on this part and relegate to the Appendix the discussion
about choosing the stopping condition, the starting point (x0, y0, z0) and the scaling factors σt.

The solution of the equation (3) can be obtained by solving the normal equation

AZ−1
t XtA

T dy = b+AZ−1
t (Xtr

t
d − σtµt1).

After solving the normal equation dx, dz can be obtained using formulas:

dz = z = rtd −AT dy, dx = −xt + Z−1
t (σtµt1−Xtdz).

The computational cost of single step of IPM is dominated by solving the normal equation,
which is of order O((k(n− 1)3). However, thanks to the specific structure of matrix A, for
any v, w we can compute Av, AT v and solve an equation AZ−1

t XtA
T v = w efficiently. The

detailed derivation of efficient algorithm, tailored to deconvolution problem is given in the
Appendix. This allows us to perform one step of IPM efficiently, i.e the cost of single step is
of order O(k3 + k

∑k
i=1mi + n).

I Lemma 4. One step of IPM for problem defined in Lemma 3 can be computed in time
O(k3 + k

∑k
i=1mi + n) and memory O(k2 + n).

Note that the for the given error tolerance ε, the IPM needs O(
√

2n+ k log(ε−1)) iterations
to find an ε-accurate solution.

3.2 Computational experiments
We have performed several computational experiments to illustrate the performance of the
proposed solution to MSD, and to analyze its robustness to various kinds of distorsions
occuring in MS measurements. In contrast to the previous case studies, in this section we
use in silico generated spectra. This allows us to precisely control the signal-to-noise ratio,
and to rigorously estimate the error of the method.

Our main goal is to demonstrate the applicability of the Wasserstein distance to MSD in
case of noisy experimental spectra. There are several sources of noise in mass spectrometric
measurements, among others: (i) precision of the intensity measurement, (ii) precision of the
m/z measurement, (iii) resolving power, i.e. the ability to detect peaks with similar masses,

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:11

Figure 4 An illustration of the simulated measurement inaccuracies based on a theoretical
spectrum of bradykinin (C50H73N15O11). Left: clean spectrum. Middle: noise in the intensity
domain. Right: noise in the mass domain. The apparent change in intensity in the right spectrum is
caused only by blurring the peaks and binning afterwards.

(iv) chemical noise, i.e. presence of unexpected molecules in a spectrum [3]. In this section, we
focus mostly on the first three types of noises, i.e. low resolving power and/or precision. The
first step of all our experiments was to generate the isotopic envelopes of selected molecules
by the IsoSpec algorithm [26]. These envelopes form the set of the theoretical spectra. The
experimental spectrum was obtained by taking a convex combination of the latter. Finally,
the experimental spectrum was distorted in the following manner:

Gaussian noise has been added to the logarithm of the peak intensity, and the result has
been exponentiated,
Each peak has been replaced by the density function of the normal distribution,
The resulting intensity distribution has been binned.

Both Gaussian noises had a standard deviation of 0.01. For binning of the mass spectrum, we
have assumed two resolving powers of the spectrometer: 0.001 Da and 0.01 Da. An example
of the result of this procedure is depicted in Fig. 4. A spectrum without these distortions is
referred to as clean, while the distorted one as noisy.

The performance of our approach to MSD has been quantified by the Root Mean Square
Error (RMSE) between the original and inferred proportions of different isotopic envelopes.
Note that the absolute prediction error for any variable does not exceed RMSE; moreover, if
RMSE for deconvolution of n variables is equal ε, then it cannot happen that the absolute
error exceeds ε/

√
n on every variable at the same time.

We have performed three tests, inspecting the method’s sensitivity to the number of over-
lapping envelopes, molecular mass of deconvolved molecules, and their charge. The first test is
based on random molecules. The next two are based on simulated proteins composed of aver-
agine – a model aminoacid with molecular formula C4 · 9384H7 · 7583N1 · 3577O1 · 4773 S0 ·
0417 and average molecular mass of 111.1254 Da [22]. In the first test, we have inspected
both clean and noisy spectra. In test two and three, only noisy spectra were analyzed. To
check the standard deviation of the prediction error, the tests were replicated, with noise
added independently in each replicate. Below we present each test in detail.

Test no. 1 – increasing number of molecules. This test is based on 17 randomly chosen
isobars consisting of carbon, oxygen, hydrogen, nitrogen and sulfur, each one with the
nominal mass of 30 000 Da. The experimental spectra with a range of interfering isobars
were constructed by gradually extending a subset of those molecules. This procedure was
replicated 20 times, resulting in 340 experimental spectra. The results are shown on Fig. 5.
The prediction error is very low and stable for less than 5 isobars, suggesting that the ratios
of particular elements in the deconvolved molecules have no considerable influence on the
method’s performance.

WABI 2018

25:12 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

Figure 5 The performance of MSD method for increasing number of deconvolved molecules. The
solid line represents the average RMSE over 20 repetitions. The ribbon represents the standard
deviation of the error.

Figure 6 The performance of MSD method for increasing mass of deconvolved molecules. The
solid line represents the average RMSE over 50 repetitions. The ribbon represents the standard
deviation of the error.

Test no. 2 – increasing mass of molecules. In this test, we consider overlapping isotopic
evelopes of two types of proteins: singly charged protein consisting of n units of averagine,
and doubly charged protein consisting of 2n units, where the values of n were selected so that
the average m/z ratio of proteins spans the range from 1,500 Da to 45,000 Da. For any given
n, the isotopic envelopes of the two corresponding proteins were mixed in proportions 0.8
and 0.2 respectively. The procedure was replicated 50 times. The outcome of this experiment
is presented in Fig. 6.

Test no. 3 – increasing charge of molecules. In this test, we consider the following four pro-
teins based on averagine: C1482H2328N408O444S12, C1482H2329N408O444S12, C1482H2330N408
O444S12 and C1481H2341N408O444S12, mixed in proportions 0.3, 0.5, 0.1 and 0.1, respectively.
The first three molecules differ by one hydrogen atom, resulting in partially overlapping
isotopic envelopes. The fourth molecule is an isobar of the second one, as one carbon has
been replaced by 12 hydrogens. All molecules have been equally charged, with the charge
varying from 1 to 10. This yields a sequence of deconvolution problems with increasing
difficulty, because the peaks become more densely packed while the resolution stays constant.
For each charge, 50 replicates were performed. The results are presented in Fig. 7.

Computational experiments show that our approach is able to deconvolve complex spectra
even in the presence of measurement inaccuracies. Even for 17 isobars the RMSE does not
exceed 0.05, which implies that the prediction error does not exceed 0.0125 on all 17 variables
simultaneously. However, it must be noted that our approach to MSD is expected to be
sensitive to chemical noise, because the Wasserstein metric requires that all the intensity of
the experimental spectrum is explained. Therefore, our solution to MSD should be applied
to mass spectra of highly purified compounds.

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:13

Figure 7 The performance of MSD method for increasing charge of deconvolved molecules. The
solid line represents the average RMSE over 50 repetitions. The ribbon represents the standard
deviation of the error.

4 Discussion and conclusions

In this work, we have presented a new method of comparing mass spectra. The method is
based on the first Wasserstein metric, which is a well-established and well-studied metric in
both probability theory and image processing field. Compared to the current approaches for
spectral comparison, it is more robust to differences in chemical composition and measurement
errors. In the MS2 spectra of similar compounds, the Wasserstein distance reflects differences
in both chemical structure and fragmentation intensities.

We have proposed a new formalization of the Mass Spectral Deconvolution (MSD) problem,
which encompasses separating of overlapping isotopic envelopes, deisotoping, and decharging.
We have shown that the Wasserstein distance can be used to effectively solve this problem in
the presence of measurement inaccuracies.

The proposed solution for MSD works for a wide range of m/z values and multiply
charged ions. Furthermore, it is not limited to a single class of compounds like peptides or
metabolites. The theoretical isotopic envelopes can be either predicted in silico or measured
experimentally.

The implementation of the Wasserstein metric for mass spectral comparison and deconvo-
lution is available at https://github.com/mciach/wassersteinms.

References

1 S. Böcker and K. Dührkop. Fragmentation trees reloaded. Journal of Cheminformatics,
8(1):5, 2016.

2 S. Cappadona, P. R. Baker, P. R. Cutillas, A. JR. Heck, and B. van Breukelen. Cur-
rent challenges in software solutions for mass spectrometry-based quantitative proteomics.
Amino acids, 43(3):1087–1108, 2012.

3 I. Eidhammer, K. Flikka, L. Martens, and S-O. Mikalsen. Computational methods for mass
spectrometry proteomics. John Wiley & Sons, 2008.

4 F. Lermyte et al. Conformational Space and Stability of ETD Charge Reduction Products
of Ubiquitin. J. Am. Soc. Mass Spectrom., Aug 2016.

5 H. Hisayuki et al. Massbank: a public repository for sharing mass spectral data for life
sciences. Journal of Mass Spectrometry, 45(7):703–714, 2010.

6 K. Xiao et al. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in
Protein Tandem Mass Spectra. Sci Rep, 5:14755, Oct 2015.

7 M.M Koek et al. Quantitative metabolomics based on gas chromatography mass spectro-
metry: status and perspectives. Metabolomics, 7(3):307–328, Sep 2011.

WABI 2018

https://github.com/mciach/wassersteinms

25:14 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

8 N. Jaitly et al. Decon2ls: An open-source software package for automated processing and
visualization of high resolution mass spectrometry data. BMC Bioinformatics, 10(1):87,
2009.

9 J. Gondzio. Interior point methods 25 years later. European Journal of Operational Re-
search, 218(3):587–601, 2012.

10 M. E. Hansen and J. Smedsgaard. A new matching algorithm for high resolution mass
spectra. J. of Am. Soc. Mass Spectrom., 15(8):1173–1180, 2004.

11 C. E. Housecroft and E. C. Constable. Chemistry: An introduction to organic, inorganic
and physical chemistry. Pearson education, 2010.

12 Jedrzej Jablonski and Anna Marciniak-Czochra. Efficient algorithms computing distances
between radon measures on r. arXiv preprint arXiv:1304.3501, 2013.

13 Q. Kou, L. Xun, and X. Liu. Toppic: a software tool for top-down mass spectrometry-based
proteoform identification and characterization. Bioinformatics, 32(22):3495–3497, 2016.

14 M. Mann, C. K. Meng, and J. B. Fenn. Interpreting mass spectra of multiply charged ions.
Analytical Chemistry, 61(15):1702–1708, 1989.

15 J. Meija and J.A. Caruso. Deconvolution of isobaric interferences in mass spectra. J. of
Am. Soc. Mass Spectrom., 15(5):654–658, 2004.

16 S. Neumann and S. Böcker. Computational mass spectrometry for metabolomics: identi-
fication of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398(7-
8):2779–2788, 2010.

17 Nina Nikolova and Joanna Jaworska. Approaches to measure chemical similarity–a review.
Molecular Informatics, 22(9-10):1006–1026, 2003.

18 B. B. Reinhold and V. N. Reinhold. Electrospray ionization mass spectrometry: Decon-
volution by an entropy-based algorithm. J. of Am. Soc. Mass Spectrom., 3(3):207–215,
1992.

19 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical
Information and Modeling, 50(5):742–754, 2010.

20 Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2):99–121, Nov 2000.

21 F. Santambrogio. Optimal transport for applied mathematicians. Springer, 2015.

22 Michael W. Senko, Steven C. Beu, and Fred W. McLafferty. Determination of monoiso-
topic masses and ion populations for large biomolecules from resolved isotopic distributions.
Journal of the American Society for Mass Spectrometry, 6(4):229–233, 1995.

23 R. J. Vanderbei et al. Linear programming. Springer, 2015.

24 K. X. Wan, I. Vidavsky, and M. L. Gross. Comparing similar spectra: from similarity index
to spectral contrast angle. J. of Am. Soc. Mass Spectrom., 13(1):85–88, 2002.

25 Ş. Yilmaz, E. Vandermarliere, and L. Martens. Methods to Calculate Spectrum Similarity,
pages 75–100. Springer New York, New York, NY, 2017.

26 M. K. Łącki et al. IsoSpec: Hyperfast Fine Structure Calculator. Anal. Chem., 89(6):3272–
3277, Mar 2017.

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:15

A Appendix

A.1 Derivation of linear program

In this subsection we show how the MSD problem defined in (1) can be reduced to linear
programming in the case when the distance measure is the Wasserstein metric W1. We also
prove Lemma 3.

Recall that our problem is to find:

p∗ = argmin
p∈∆k−1

W1

(
k∑
i=1

piµi, ν

)
(4)

where µi, ν are discrete probability measures with finite support.

First, we show that the MSD problem can be restated as weighted L1 regression on the
probability simplex ∆k−1. Using Lemma 1 we can write:

argmin
p∈∆k−1

W1

(
k∑
i=1

piµi, ν

)
= argmin

p∈∆k−1

∫
R

∣∣∣∣∣
k∑
i=1

piFµi
(x)− Fν(x)

∣∣∣∣∣ dx. (5)

Recall that S denotes the set of points from theoretical and empirical spectra, and that
(si)ni=1 are elements of S ordered increasingly. Note that for x < s1 and x ≥ sn, the function
under the integral on the RHS of (5) is zero. At the same time, the function is constant on
intervals [si, si+1). Let 1 ≤ j ≤ n− 1 let fi,j and gj be the values of the cdf on the interval
[sj , sj+1) of µi and ν respectively, and set fi,n = 1 = gn. For 1 ≤ j ≤ n−1 let dj = sj+1− sj
be the length of the interval. We write:

∫
R

∣∣∣∣∣
k∑
i=1

piFµi(x)− Fν(x)

∣∣∣∣∣ dx =
n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ ,
and we reduce the optimization problem (4) to weighted L1 regression on probability simplex:

p∗ = argmin
p∈∆k−1

n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ (6)

Now, we apply a well known technique of representing weighted L1 regression as linear
programming problem (see e.g. [23]). Let us introduce dummy variables tj , such that
tj ≥ |

∑m
i=1 pifi,j − gj |. With this notation the problem (6) is equivalent to minimizing linear

function
∑n−1
i=1 djtj . For any j the inequality tj ≥ |

∑m
i=1 pifi,j − gj | can be represented by

two linear inequalities, tj ≥
∑m
i=1 pifi,j − gj and tj ≥ −

∑m
i=1 pifi,j + gj . To also take into

account the fact that vector (pi)ki=1 needs to belong to the probability simplex, we just need
to add inequality constraints pi ≥ 0 and equality constraint

∑k
i=1 pi = 1. By rewriting the

WABI 2018

25:16 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

latter as two inequality constraints, we end up with the following linear program:

min
p,t

dT t

s.t. − tj +
m∑
i=1

pifi,j ≤ gj

− tj −
m∑
i=1

pifi,j ≤ −gj

1 ≤
m∑
i=1

pi ≤ 1

pi ≥ 0.

(7)

The minimized function in (7) does not depend itself on p, however variable p appears in
constrains. From the construction of (7) it follows that for any feasible pair (p, t) we have:

dT t ≥
n−1∑
i=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣
with equality holds if and only if tj = |

∑k
i=1 pifi,j − gj |. Therefore for any solution p∗ of

problem (6) there exists t∗ such that (p∗, t∗) is a solution of (7). It also follows that for any
solution (p∗, t∗) of (7), vector p∗ is a solution of (6). Furthermore, since (6) is a problem of
optimizing continuous convex function on a compact set, at least one solution exists.

We have thus reduced MSD problem (4) to a Linear Programming problem. Denote
by F the k × n matrix with entries F [i, j] = fi,j for any 1 ≤ i ≤ k and 1 ≤ j ≤ n, Ik an
identity matrix of size k, and Jn an (n− 1)× n matrix equal to the identity matrix of size n
without the last row. Ussing definitions of vectors g and d, we can rewrite the problem (7)
in a simplified form:

max
t

−dT t

s.t.

−JTn FT

−JTn −FT
0 −Ik

(t
p

)
≤

 g

−g
0k,

where 0k is a zero vector of length k. We bring to our reader’s attention that the constrain∑k

i=1 pi = 1, splits into two inequality constraints
∑k
i=1 pi ≤ 1 and −

∑k
i=1 pi ≤ −1, which

was included in the above program, since the last row of matrix FT contains ones.
Let us recall definitions of c = (g,−g, 0k), b = (−d, 0k) and

A =
[
−Jn −Jn 0
F −F −Ik

]
.

Using the above notation, and adding the slack variables z to replace inequality constrains
by equality constrains, we rewrite the problem (7) as

max
y

yT b

s.t. AT y + z = c

z ≥ 0.

(8)

This summarizes the reduction of the original minimization problem to linear programming.
We end this section with the proof of Lemma 3.

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:17

Proof of Lemma 3. From the above discussion it follows that the feasible region of the
problem (8) is nonempty. Furthermore, note that the problem given by (6) is bounded from
below. This, combined with the inequality:

yT b ≤ −
n−1∑
j=1

dj

∣∣∣∣∣
k∑
i=1

pifi,j − gj

∣∣∣∣∣ ,
means that the maximization problem from Lemma 3 has a solution. From the duality
theory for linear programs it follows that the minimization problem is feasible as well and
the duality gap is zero.

Finally, from the above discussion it follows as well that if (x∗, y∗, z∗) is a solution of
dual problems in Lemma 3, then the last k elements of y∗ form a vector in ∆k−1 that is a
solution of the initial MSD problem. J

A.2 Interior Point Method
We remind our reader that our goal is to solve dual linear problems from Lemma 3. In the
Section 3.1 we presented a general scheme for a primal-dual Interior Point Method for the
case when primal problem has only equality constraints, as is the case for the problem of
interest to us. In this section we discuss the details of the Algorithm 2, and prove our main
claim presented in Lemma 4 by presenting an efficient way of computing one iteration of an
IPM.

We first address the issues of initial conditions (x0, y0, z0), stopping criterion and choosing
the scaling factor σt. The IPM does not require the starting point or the iterates to be in
feasible region. The only requirement is that all elements of vectors xt, zt are positive for t ≥ 0.
Hence we can choose almost arbitrary starting point, although in practice it is beneficial to
choose x, z such that they are not to close to zero. We propose the following choice of x0: for
1 ≤ i ≤ n− 1 we take (x0)i = (x0)n+i = di/2, and (x0)n = 2/3, (x0)2n = 1/3. We also let
(x0)2n+i = 1/3 for 1 ≤ i ≤ k. It is straightforward to check, that such x0 satisfies Ax0 = b,
and x0 > 0. Finding a point (y0, z0) that is dual feasible and z0 ≥ 1 is straightforward using
the connection of the dual problem to L1 regression described in (6). We choose a uniform
vector p ∈ ∆k−1 and tj equal to |

∑k
i=1 pifi,j − gj |+ 1 for all j ≤ n− 1. Taking y0 = (t, p)

and z0 = c−AT y0 we get a dual feasible point with z0 ≥ 1. For now we just note that this
construction can be easily computed using subroutines for computing FT v and AT v for given
vectors v of appropriate size, and vector operations on vectors of size O(n+ k). The efficient
multiplication by FT and AT is described later.

The stopping criterion of the main loop of the IPM is triple (xt, yt, zt) begin and ε-feasible
ε-solution. The residuals rtp, rtd measure how far the triple (xt, yt, zt) is from feasibility, while
the duality gap 〈xt, zt〉 measures how far the point is from optimality. We say a point is an
ε-solution it the duality gap is smaller than a given ε. For a point to be ε-feasible, the norms
of the residuals have to be smaller than ε, that is ‖rtp‖2 < ε and ‖rtd‖2 < ε. In practice usually
different εo, εp, εd are chosen based on the problem, and the stopping criterion is 〈xt, zt〉 ≤ εo,
‖rtp‖2 < εp and ‖rtd‖2 < εd. We also note, that to prevent infinite loops practical algorithms
stop after reaching a set maximal amount of iterations. From the perspective of our analysis,
the most important fact is that checking the stopping criterion is of order O(n+ k).

Choosing the scaling factor can be done in a variety of ways. The simplest method is
to choose σk = γ ∈ (0, 1). More sophisticated approaches like predictor-corrector method
first find the Newton direction (d̂x, d̂y, d̂z) for the most optimistic σ̂t = 0. Then the actual
scaling factor σt is chosen based on how much reduction in duality gap could be achieved

WABI 2018

25:18 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

while going in the direction (d̂x, d̂y, d̂z). Again, for more details on methods of choosing the
scaling factor we refer to [9] and references therein. We just note that there exist methods
for choosing the scaling factor that are both practical and lead to theoretical guarantees on
the number of iterations necessary for an IPM to converge. Furthermore for the state of
the art methods the cost of computing the scaling factor is the same as the cost of solving
the system of linear equations for (dx, dy, dz), and is actually done by solving a system of
equations with the same RHS. As will be clear from what follows, the cost of solving this
system of linear equations does not depend on the RHS.

The above discussion justifies our claim, that the cost of computing one step of an IPM
is dominated by the cost of finding the solution of the system:A 0 0

0 AT I

Zt 0 Xt

dxdy
dz

 =

 rtp
rtd

σtµt1−Xtzt,

 (9)

where rtp = b−Axt and rtd = c−AT yt − zt.
As we previously noted, a common technique for solving the system of equations (9) is to

reduce it to solving the normal equation Σdy = r, where:

Σ = AZ−1
k XkA

T

and

r = b+A(Zk)−1(Xkr
k
d − σkµk1).

This equation is arrived at, after applying a blockwise Gaussian elimination on the linear
system (9). Given a solution dy of the normal equation, we can compute dx, dz from equations
dz = rkd −AT dy and dx = −xk + (Zk)−1(σkµk1−Xkdz).

Therefore as we have noted in Section 3.1 one iteration of IPM can be computed efficiently,
if we can efficiently compute Av, AT v and solve Σv = w for v, w vectors of appropriate
length, and Σ = AHAT where H is a diagonal matrix with positive elements on the diagonal.
We devote the rest of this section to presenting and analyzing methods for those three
computational problems, that take advantage of the specific structure of matrix A.

We first observe that matrix F is related to a sparse matrix. For simplicity we denote
m =

∑k
i=1mi, where mi are the sizes of theoretical spectra.

I Lemma 5. Let U denote an upper-triangular n× n matrix, such that U [i, j] = 1 for i ≤ j
and U [i, j] = 0 for i > j. Then there exists a sparse m × n matrix W , with m nonzero
entries such that F = WU . Furthermore sparse representations of matrices W and WT can
be constructed in O((n+m) log(n+m)) time.

Proof. Let s1 ≤ . . . ≤ sn be the ordered point from set S. For any theoretical measure µi,
we can represent µi as

∑S
j=1 wi,jδsj

, whith only mi nonzero elemets wi,j for each i. Take
matrix W , such that W [i, j] = wi,j . Then the matrix W is sparse and has a total of

∑k
i=1mi

nonzero elements. It is straightforward to check that F = WU , since for any i, j we have
WU [i, j] =

∑
l≤j wi,l = fi,j . In other words, the cdf of distribution µi on interval [sj , sj+1)

is equal to the sum of probability masses in µi with x coordinate less or equal to sj+1.
To finish the proof, we need to show how to construct a sparse representation of W

and WT . In a sparse representation of a matrix, we represent each row of W as a list of
nonzero elements, i.e. (j, wi,j) for j such that wi,j > 0. The matrix W is represented as
list of rows. This is a classic representation of a sparse matrix that allows to compute

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:19

Wv in time
∑k
i=1mi for any vector v ∈ Rn. Constructing the sparse representations of W

and WT is very easy, and needs to be done only once before the first iteration of the IPM.
As previously let ν =

∑m0
j=1 w0,jδx0,j

be the experimental spectrum and for i = 1, 2, . . . , k
let µi =

∑mi

j=1 wi,jδxi,j be the i-th theoretical spectrum. We construct a list of triples
(xi,j , i, wi,j) and sort it with respect to the first element. Then it is enough to pass once
through this sorted list. Each triple with i > 0 corresponds to one element of the matrix
W . Since we pass through the elements in increasing order of x, we can remember how
many different x we have seen so far. For the triple (x, i, w), if we have seen l different x
so far, then we know that we have W [i, l] = w, and we simply add (l, w) to i-th list in the
representation of W and (i, w) to l-th list in the representation of WT . The total cost of
this construction is O((n+m) log(n+m)), due to the sorting of elements, and the memory
needed for storing both representations is O(m). J

I Lemma 6. For any vector v ∈ RN and w ∈ Rn+m−1 the products Av and ATw can be
computed in O(n+ k +m) time and using additional O(n+ k) memory.

Proof. The only nontrivial part of both of those operations is computing Fv or FT v for some
vector v of appropriate length, which can be done efficiently thanks to the representation
F = WU given by Lemma 5. To compute w = Fv, we first compute u = Uv which can
be done in time O(n) by computing suffix sums of vector v, without the need to explicitly
store matrix U . We need O(n) memory to store the result of this operation. Next, we have
w = Wu. Thanks to the sparse representation, this multiplication can be done in O(m)
time and we need O(k) memory for storing the result. Similarly, to compute w = FT v, we
first multiply v by WT and then multiply the result by UT which corresponds to computing
prefix sums, and does not require explicit construction of U . As for multiplication by F we
need O(n+ k +m) time and O(n+ k) memory for those operations. J

We are left with the task of solving a system of linear equations Σv = w, where Σ = AHAT

for a diagonal matrix H with positive elements on the diagonal. To prove that this can be
done efficiently, we first prove.

I Lemma 7. For any diagonal matrix G of size n× n the matrix FGFT can be computed
in O(m(k +m) + n) time and using O(m2) memory.

Proof. It is straightforward to check, that for i, j ≤ n we have UDUT [i, j] =
∑n
l=maxi,j

G[l, l].
We have, also, FGFT = W (UDUT)WT . Therefore if we compute the suffix sums of the
diagonal of G in time and space O(n), we can compute UDUT [i, j] in constant time for any
i, j when we need it. We denote αi,j = UDUT [i, j]. Now let us choose i, j ≤ n. We have:

FGFT [i, j] =
∑
p≤n

∑
q≤n

wi,pαp,qwj,q

Given the sparse representations of rows Wi,Wj the above sum could be computed in time
O(mimj), but there is a faster way. Notice that for q ≥ p we have αp,q = αq,q, and write:∑

1≤p≤q≤n
wi,pαp,qwj,q =

∑
1≤p≤q≤n

wi,pαq,qwj,q (10)

The above sum can be computed in O(mi + mj). Let Li, Lj be the lists containing the
sparse representations of Wi,Wj . We first compute the suffix sums of αq, qwq,j for (q, ·) ∈ Lj ,
which can be done in O(mj) since list Lj is ordered by column number q. Then for any
(p, wi,p) ∈ Li we add to the result the suffix sum of αq, qwq,j for the smallest q ≥ p such

WABI 2018

25:20 The Wasserstein Distance as a Dissimilarity Measure for Mass Spectra

that (q, ·) ∈ Lj . Since lists Li, Lj are ordered by column numbers p, q, this can be done in
O(mi +mj) time in standard way. Therefore (10) can be computed in O(mi +mj).

Similarly, the sum:∑
1≤q<p≤n

wi,pαp,qwj,q =
∑

1≤q<p≤n
wi,pαp,pwj,q

can be computed in O(mi +mj). Therefore after we compute suffix sums of the diagonal of
G in time and memory O(n), the cell (i, j) of matrix FGFT can be computed in O(mi +mj)
time. We have∑

1≤i,j≤n
mi +mj = (2k − 1)m

and therefore the whole matrix FGFT can be computed in O(km+ n) time and O(k2 + n)
memory. J

We can now prove that the normal equation can be solved efficiently, no matter the right
hand side.

I Lemma 8. Let r ∈ Rn+k−1 be a vector and let H be a (2n+ k)× (2n+ k) diagonal matrix,
with positive elements on the diagonal. Then the matrix AHAT has full rank, and equation
AHAT v = r can be found in O(k3 + km+ n) time and O(k2 + n) space.

Proof. First we present a usefull decomposition of matrix AHAT . Suppose that H =
diag(H1, H2, H3) where H1, H2, H3 are diagonal matrices of sizes n, n, k respectively. Then
using the definition of A we can write:

AHAT =
[
Jn(H1 +H2)JTn Jn(H2 −H1)FT
F (H2 −H1)JTn F (H1 +H2)FT +H3

]
(11)

We will use block LDU decomposition for the right hand side of the above equation. For a

given matrix B =
[
B1,1 B1,2
B2,1 B2,2

]
with B1,1 invertible the block LDU decomposition of B is:

B =
[

I 0
B2,1B

−1
1,1 I

] [
B1,1 0

0 B2,2 −B2,1B
−1
1,1B1,2

] [
I B−1

1,1B1,2
0 I

]
We note, that Jn(H1 +H2)JTn is a diagonal (n− 1)× (n− 1) matrix with positive elements
on the diagonal, and is therefore invertible and easy to invert numerically. For brevity, we
denote K = Jn(H1 + H2)JTn and L = Jn(H2 −H1) and G = H1 + H2 − LTK−1L. Using
the block LDU decomposition for (11) we get:

AHAT =
[

In−1 0
FLTK−1 Ik

] [
K 0
0 FGFT +H3

] [
In−1 K−1LFT

0 Ik

]
=: LMR

From above representation it follows, that AHAT has full rank. Indeed, it is a product of
square matrices L,M,R, and it is obvious that L and R have full rank. Furthermore M also
has full rank. To see why, observe that G is a diagonal matrix with positive elements. This
follows from the fact that elementwise we have G ≥ H1 +H2 − (H2 −H1)2/(H1 +H2) (with
equality on all elements except the right bottom row). On the other hand H1 +H2 − (H2 −
H1)2/(H1 + H2) = 4H1H2/(H1 + H2) which is a diagonal matrix with positive elements.
Therefore FGFT is nonnegative definite, and since H3 is positive definite, we conclude that

S. Majewski, M. Ciach, M. Startek, W. Niemyska, B. Miasojedow, and A. Gambin 25:21

FGFT +H3 is positive definite. Since K is positive definite as well, M has full rank and so
does AHAT .

For given vector r we would like to solve the equation LMRv = r. An easy way to do
this, is first solve equation Lv1 = r, then solve equation Mv2 = v1 and lastly Rv3 = v2.
Then we have LMRv3 = LMv2 = Lv1 = r. We can therefore work with each matrix L,M,R

separately.
Solving Lv1 = r is trivial. Let us assume that r = (r1, r2), where r1 is of length n − 1

and r2 has length k. Then:

v1 =
(

r1
r2 − FLTK−1r1

)
which is easy to compute, since the cost of multiplying by LTK−1 is O(n), and we can
efficiently multiply vector by F thanks to Lemma 6. Solving the linear equation Rv3 = v2 is
equally easy, since we can efficiently multiply by FT as well.

The only thing left is solving Mv2 = v1. Assume v1 = (u1, u2) where u1 is of size n− 1
and u2 is of size k. Let P = FGFT +H3. Then P is a positive definite matrix of size k × k
that we can compute in O(km+ n) thanks to Lemma 7. Let v′ be a solution of Pv′ = u2,
that we find using standard methods in time O(k3) and space O(k2). Then v2 = (uT1 , v′T)T
is the solution of equation Mv2 = v1.

Summing up, the cost of finding a solution to the equation AHAT v = r is O(k3 +km+n),
where O(k3) is the cost of inverting a k × k matrix, O(km+ n) is the cost of creating this
matrix, and all other operations have cost linear in n, k,m. For computing the k × k matrix
we need O(k2) memory, but all other operations can be done using additional memory linear
in n, k. J

Proof of Lemma 4. For each iteration we need to solve a finite amount of normal equations
(maybe more than one, depending on our mechanism of choosing scaling factor) and ad-
ditionally perform a finite amount of multiplications Av, AT v , Fv, FT v. Since the other
operations can be done in time and memory linear in n, k,m, we conclude that one iteration
of a primal-dual Interior Point Method can be done in O(k3 + km+ n) time and O(k2 + n)
memory. J

WABI 2018

	p00-frontmatter
	Preface
	Organization

	p01-chindelevitch
	Introduction
	Methods
	Results
	Conclusion

	p02-gagie
	Introduction
	Review of the Burrows-Wheeler Transform
	Theory
	Practice
	Implementation
	Experiments

	Conclusion and Future Work

	p03-rosone
	Introduction
	Preliminaries
	eBWT positional clustering
	Experimental Validation: Reference-Free SNPs Discovery
	Pre-processing (eBWT computation)
	SNP calling
	Validation
	Preliminary Experiments

	Conclusions

	p04-siren
	Introduction
	Background
	Strings and graphs
	FM-index

	Indexing haplotypes
	Positional BWT
	Graph extension
	Records
	GBWT encodings

	GBWT construction
	Basic construction
	Construction in VG

	Haplotype-aware graph simplification
	Experiments
	GBWT construction
	GBWT benchmarks
	Haplotype-aware graphs

	Discussion

	p05-scornavacca
	Introduction
	Preliminaries
	Basic notions
	Reconciliations
	Reconciliation with segmental duplications
	Properties of multi-gene reconciliations

	The computational complexity of the MPRST-SD problem
	The case of lambda >= delta.
	The case of delta > lambda.

	An FPT algorithm
	Experiments
	Conclusion

	p06-mandal
	Introduction
	Methods
	Persistence signature of point cloud data
	Collapse-induced persistent homology from point clouds
	Feature vector generation

	Experiments and results
	Supervised learning based classification models
	Classification result

	Conclusion

	p07-sharan
	Introduction
	Preliminaries
	The Forward-Push algorithm
	A dynamic decremental algorithm for vertex removals
	Results
	Conclusions
	Supplementary proofs

	p08-warnow
	Introduction
	Background Material
	Absolute Fast Convergence under the CFN Model.
	DCM_{NJ}+SQS: an AFC method with good empirical performance but low scalability

	The basic technique: Incremental Tree-Building
	Boosting INC using constraint trees
	Constrained INC
	INC-NJ
	Boosting INC using other constraint trees

	Discussion

	p09-rosen
	Introduction
	The Li and Stephens model
	Li and Stephens like algorithms for large populations

	Our contributions

	Sparse representation of haplotypes
	Information content of a reference panel
	Relation of information content to allele frequency spectrum
	Implementation

	Efficient dynamic programming
	Time complexity

	Lazy evaluation of dynamic programming rows
	Eliminating redundant recurrence evaluations
	Equivalence classes of update map prefixes
	The lazy evaluation algorithm

	Results
	Implementation
	Minor allele frequency distribution for the 1000 Genomes dataset
	Comparison of our algorithm with the linear time forward algorithm
	Lazy evaluation of dynamic programming rows

	Sparse haplotype encoding
	Generating our sparse vectors
	Size of sparse haplotype index

	Discussion and significance
	Applications which use individual forward probabilities
	Generalizability of algorithm
	Other haplotype forward algorithms

	p10-manzini
	Introduction
	Background
	Computing multi-string BWTs
	Merging multi-string BWTs

	The eGap algorithm
	Phase 1: BWT computation
	Phase 2: BWT merging and LCP computation
	Phase 3: LCP merging
	Analysis

	Experiments
	Applications
	Computation of Maximal Repeats
	All pairs suffix-prefix overlaps
	Construction of succinct de Bruijn graphs

	p11-walve
	Introduction
	Related Work
	Definitions
	De Novo Assembly
	Guided Assembly

	Methods
	Overview of Our Method
	Colouring
	Graph Cleaning

	Results
	Data
	Colouring
	Cleaning
	Assembly
	Performance

	Conclusions

	p12-muggli
	Introduction
	Background
	The Pairwise Rmap Alignment Problem
	Methods
	Finite Automaton
	Skip Vertices and Skip Edges

	Generalized Compressed Suffix Array
	Prefix-sorted Automata

	Exact Matching: GCSA Backward Search
	Inexact Matching: GCSA Backward Search Using a Wavelet Tree

	Results and Discussion
	Performance on Simulated E.coli Rmap Data
	Performance on Plum Rmap Data

	Conclusion
	Practical Indexing Considerations
	Pruning the Search
	Size Agreement
	Cut Site Error Frequency

	p13-hartmann
	Introduction
	Idea
	Method
	Computing the separability profile
	Distinguishing between errors and SNVs

	Evaluation
	Discussion

	p14-utro
	Introduction
	Filtrations of finite simplicial complexes, persistent homology, and essential simplices
	Experiments
	Visualization of the essential simplices

	Conclusion

	p15-kosolobov
	Introduction
	Notation and Problem Statement
	Minimum Segmentation Problem
	Positional Burrows–Wheeler Transform
	Modification of the pBWT

	Implementation
	Discussion
	Proof of Lemma 4

	p16-engler
	Introduction
	Assigning charges
	Problem Formulation and Complexity
	Solving epsilon-MCKP
	Score
	Results and Discussion
	Conclusions

	p17-guyeux
	Introduction
	When the number of covariates exceeds the number of observations: the blessing of sparsity
	Previous work on variable selection via l_1-norm penalisation
	The problem of hyper-parameter calibration
	Contributions of the paper

	Methods
	The model and the penalised estimator
	The standard polytomous regression model
	The penalised maximum likelihood estimator

	Algorithms
	Nesterov's algorithm
	The Frank-Wolfe algorithm

	Hyperparameter calibration
	Selection of the parameter by AIC
	BIC Selection
	Adapting the Quantile Universal Threshold selection to ordinal polytomous regression
	Selection of the r parameter by Online Frank-Wolfe algorithm

	Simulation results
	Description of the experiments
	Results

	Discussion
	Conclusion

	p18-vandin
	Introduction
	Methods and Algorithms
	Computational Problem
	Algorithm
	Analysis of DAMOKLE
	Statistical Significance of the Results
	Permutation Testing

	Results
	Simulated data
	Cancer data

	Conclusion

	p19-nakhleh
	Introduction
	Methods
	The D-statistic
	Towards the General Case

	Results
	Simulations
	Multiple Reticulations
	D-Statistic Subsetting

	Analysis Of a Mosquito Genomic Data Set

	Discussion and Conclusions

	p20-chindelevitch
	Introduction
	Methods
	Problem Description
	Overview
	Parameter Fitting and Copy Number Prediction
	Read Recruitment and Match Score Computation
	Simulated Data Generation

	Results
	Performance
	Comparison with ExpansionHunter
	Running Time

	Conclusion

	p21-pissis
	Introduction
	Preliminaries
	GD String Comparison
	Computing Palindromes in GD Strings
	A Conditional Lower Bound under SETH
	Experimental Results
	GD String Comparison Using Automata

	p22-malikic
	Introduction
	Definitions
	Set Alignment Problem
	Computing a maximal common tree in the general case
	Discussion and an application
	The existing measures and their limitations
	Applications of MLTED
	Application to the synthetic examples with the available ground truth
	Application to real data

	Conclusion and Future Work
	Details of obtaining trees of tumor evolution for the real data sets
	Summary of methods used for inferring trees of tumor evolution
	Details of obtaining input data and running SCITE, SiFit and PhISCS

	p23-bocker
	Introduction
	Fragmentation trees and the Maximum Colorful Subtree problem
	Heuristics for the Maximum Colorful Subtree problem
	Time complexity of the heuristics
	Computing the k-best fragmentation trees exactly

	Data and Instances
	Results
	Conclusion

	p24-elkebir
	Introduction
	Preliminaries
	Problem Statement
	Results
	NP-hardness
	Fixed parameter tractability

	Experimental Evaluation
	Conclusion

	p25-ciach
	Introduction
	The Wasserstein distance
	Some basic properties
	Case study

	Mass Spectral Deconvolution
	Efficient algorithm for the MSD problem
	Computational experiments

	Discussion and conclusions
	Appendix
	Derivation of linear program
	Interior Point Method

