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Abstract
The intertwined relationship between urban functionality and human activity has been widely
recognized and quantified with the assistance of big geospatial data. In specific, urban land
uses as an important facet of urban structure can be identified from spatiotemporal patterns of
aggregate human activities. In this article, we propose a space, time and activity cuboid based
analytical framework for clustering urban spaces into different categories of urban functionality
based on the variation of activity intensity (T -fiber), mixture (A-fiber) and interaction (I- and
O-fiber). The ability of the proposed framework is empirically evaluated by three case studies.
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1 Introduction

Human activities and urban functionality are strongly intertwined. As stated in [3], “Land
use typically refers to the distribution of activities across space, including the location and
density of different activities, where activities are grouped into relatively coarse categories,
such as residential, commercial, office, industrial and other activities”. It implies that different
land use types inherently demonstrate distinct patterns of activity density and intensity [12],
which are their most intuitive characteristics and can be both aggregate and temporal.

The interconnection between land use and urban activity, on the one hand, enables the
generation, allocation and prediction of urban activities in space and time. For instance,
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Figure 1 Urban land use inference as a analog to remote sensing.

there exists an abundant body of literature in urban modeling relying on the link between the
two [1]. On the other hand, urban activity and its spatiotemporal dynamics can be regarded
as good proxies of urban land use distributions. The usage of a specific urban space depends
on those who occupy it and when, and what they do. These factors, in turn, constitute of a
unique signature of the given urban space or land use zone [10]. Yet, an universal analytical
framework for unraveling the relationship between urban land use types and their associated
signatures of human activity is still missing.

Earlier research attempts show that utilizing urban activities to identify land use types
can be analog to remote sensing for geographical classification [7]. As shown in Figure 1, the
signature of changes of activity intensity along time can be taken as spectral characteristics of
remote sensing for differentiating geographical objects. Recent advances in land use inferences
and urban space segmenting based on urban activities follow this scheme in general. The
procedure can be summarized as: (1) building feature vectors of urban spaces (e.g., places
and regions) based on the variations of human activities in a predefined temporal granularity
(e.g., hours of weekdays and weekends); (2) classifying urban spaces into different land use
types (e.g., residential, commercial, leisure) based on the similarity between their feature
vectors using mainstream clustering algorithms. Due to this fact, traditional classification
approaches used in remote sensing are naturally adapted for the purpose, for instance
Principal Component Analysis [10], K-means [8], Supervised Classification [11], and just
name a few. However, it is still an open and interesting question that how to build the
signature from the spatiotemporal dynamics of human activity to inform stakeholders the
characteristic of the underlying urban spaces.

In this article, we will show readers a proposed space, time and activity cuboid based
analytical framework for understanding the functionality of urban spaces based on human
mobility data. With the cuboid, different activity signatures are derived for urban land use
inference from the perspectives of the variation of activity intensity, mixture and interaction.
The proposed framework is applied in three case studies based on three types of activity
datasets (i.e., bus ridership, taxicab ridership and metro ridership) in different geographical
regions. For each of the three types of activities, we build, normalize and cluster the signatures
of each urban zone using different approaches. The results are accessed by the ground truth
land use map as an evaluation of the capabilities of each combination of activity, feature,
normalization and clustering algorithm.
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Figure 2 The STA cuboid of human activity in space and time. In A, B and C, the 3-dimension
tensor X consists of I regions, J time slots and K features (or activities). In addition, S-norm,
T -norm and A-norm define the normalizations of fibers x : jk (i.e., fixing time and activity), xi : k

(i.e., fixing space and activity), xij : (i.e., fixing space and time), respectively. Intuitively, S-fiber
x : jk quantifies the spatial distribution of a given activity ak at the given time tj , T -fiber xi : k the
temporal signature of a given activity ak in the given region ri, and A-fiber xij : the mixture of
distinct activities in a give region ri and at a given time tj . In principle, S-norm captures the relative
intensity of activities in different regions (volume), T -norm the fluctuations of activity intensity
along time (shape), and A-norm the component of activities of a region (texture). Additionally, if
the interaction between spatial regions can be observed, a new tensor X consists of I regions (I = J)
and K time slots is built in D. Under this scenario, SS-norm captures the flow patterns between
each pair of regions along time (network), and I-fiber x : jk, O-fiber xi : k quantify the inflow and
outflow of human mobility in the region, respectively.

2 A space, time and activity cuboid based analytical framework

For urban land use inference, we concentrate on three dimensions as Space, Time and Activity
(STA) and propose a cuboid representation of the three dimensions as shown in Figure 2.
In the cuboid, the Space dimension denotes the I distinct regions which are usually regular
grids across space; the Time dimension represents the J different time slots; and the Activity
dimension contains the K types of activities. Therefore, the proposed STA cuboid quantifies
the distributions of human activities in space and time.

In practice, we usually observe individuals’ diverse activities (large K) in fine spatial and
temporal granularities (large I and J) with the assistance of the increasing availability of
user-centric geospatial data. If fixing activity ak, we can obtain a ST slice demonstrating the
spatial distributions of the given activities along with time (Figure 2A). In the ST slice, each
row is a S-fiber of the distribution of the given activity ak in space at the given time slot tj .
Whereas, each column is a T -fiber of the signature capturing the fluctuations of intensities of
activity ak in region ri at time tj . In a similar way, we can obtain a TA slice if fixing the
location (region) of interest (Figure 2B). The TA slice delineates the intensities of various
types of activities {a1, · · · , aK} and their fluctuations along time {t1, · · · , tJ} within the
given region ri. In the TA slice, each row is a T -fiber while each column is a A-fiber of the

GISc ience 2018



38:4 An Analytical Framework for Understanding Urban Functionalities

component of different types of activities in the given region ri and time slot tj . Fixing time
tj , a SA slice demonstrates how the different types of activities distribute across space, and
its rows are A-fibers and columns S-fibers. Additionally, if the interaction between regions
can be observed, a new tensor X consists of I regions (I = J) and K time slots is built
(Figure 2D). Therefore, SS-norm captures the flow patterns between each pair of regions
along time. Fixing time tk, a SS slice demonstrates how the different regions interact with
each other in space, and its rows are inflow I-fibers and columns outflow O-fibers.

Based on the fibers (i.e., activity signatures) derived from the space-time-activity tensor,
we then relate urban land use and human activity from three distinctive perspective. Consid-
ering that the signatures are organized as time series, the clustering approach is adopted to
assign urban spaces into different categories of urban functionality based on the similarity of
their signatures in terms of the variation of activity intensity (i.e., the T -fiber), the component
of activity type (i.e., A-fiber) and the pattern of spatial interaction (i.e., I- and O-fiber). Note
that, in addition to the signature, different normalization method and clustering algorithm
can result in different classification of urban land use types. To be concise, hereafter we will
concentrate on the activity signature and discuss the normalization and clustering method
briefly.

3 Applications of the framework for urban functionality inference

3.1 Clustering based on the variation of activity intensity (T -fiber)
Using a seven-day taxi trajectory data set collected in Shanghai, we investigate the temporal
variations of both pick-ups and drop-offs, and their association with different land use features.
For each hour in the seven days, we compute the numbers of pick-ups and drop-offs for each
1 km × 1 km cell in the study area as the activity signatures. Two T -dimensional vectors,
denoted by V pickup and V dropoff , can be constructed to represent the temporal variations
of trips for each pixel i in the study area as

V pickup
i = [V 1

i , V 2
i , · · · , V T

i ] (1)
V dropoff
i = [V 1

i , V 2
i , · · · , V T

i ] (2)

Based on the balance between the numbers of drop-offs and pick-ups and its distinctive
temporal patterns V dropoff

i − V pickup
i for each pixel i at time t (= 1, · · · , T ), the study area

is classified into six traffic ‘source-sink’ areas using the K-means clustering method. These
areas are closely associated with various land use types (commercial, industrial, residential,
institutional and recreational) as well as land use intensity. Five sample points are selected
from the study area to represent various locations (land uses), and their corresponding
V pickup and V dropoff are depicted in Figure 3. Their temporal patterns differed significantly.
For example, the average numbers of pick-ups and drop-offs were roughly equal for cells A
and B. In either cell C or D, however, the average number of pick-ups was much fewer than
the average number of drop-offs. Cell E had far lower numbers of pick-ups and drop-offs than
the other four locations. It confirms that the temporal patterns of pick-ups and drops-offs
vary a great deal from place to place, and are manifest of the function of the place.

3.2 Clustering based on the component of activity type (A-fiber)
Leveraging a comprehensive data collection of bus, metro and taxi ridership from Shenzhen,
China, we furture unveil the spatio-temporal interplay between the mixed use of transport
modes and the underlying urban land use. For each spatial analysis unit (SAU), we build
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Figure 3 Temporal variations of pick-ups and drop-offs of 5 sample points in Shanghai, China
(A: downtown; B: residential; C: Hongqiao Airport; D: Pudong Airport; E: suburban) [8].

a volume signature capturing the temporal fluctuations of ridership of mass transit modes
during a day. Taking 15-minutes as the temporal granularity, the signature Vi of a SAU i

is denoted as a 1× T vector quantifying the ridership of bus, metro or cab within the nth
time slot. Targeting to compare three distinct mass transit modes, we therefore obtain the
signatures of volume { V bus

i , V metro
i , V cab

i } for bus, metro and cab ridership within each
SAU i, as well as the signatures of ratio { Rbus

i ,Rmetro
i ,Rcab

i } of ridership of different
mass transit modes over time:

Rbus
i = V bus

i /(V bus
i + V metro

i + V cab
i ) (3)

Rmetro
i = V metro

i /(V bus
i + V metro

i + V cab
i ) (4)

Rcab
i = V cab

i /(V bus
i + V metro

i + V cab
i ) (5)

where ·/· represents the itemwise division between two input vectors.
Applying a novel spectral clustering on the proposed signatures of the ratio of ridership, we

obtain 5 clusters of SAUs that demonstrate distinct patterns of bus, metro and cab ridership
dynamics as shown in Figure 4. In Cluster 1, metro rails play the most important role within
these SAUs. During morning and evening commuting periods, metro ridership increase
significantly. In comparison, the ratios of bus ridership and cab ridership are relatively low.
Besides, the temporal fluctuations of bus ridership and cab ridership are also distinct. In
Cluster 2, bus ridership and metro ridership are at a comparative level, which is significant
higher than cab ridership. It indicates passengers have easy access to bus and metro at
the same time. However, during morning and evening commuting periods, bus and metro
ridership show no significant increase to that of working time periods. In Cluster 3, metro
ridership demonstrate substantial increase during the morning and the evening commuting
periods. On the contrary, bus ridership show no peaks during the commuting periods and
its ratio is very low. In Cluster 4, bus ridership and metro ridership are very similar to
that of Cluster 2. However, within these SAUs, increase of ridership during the morning
commuting period are high while that during the evening commuting period is low. In Cluster
5, bus and metro compete for the dominant mass transit mode during different time regimes.
During the morning commuting period, metro rails are the dominant mass transit mode.
Whereas, during the evening commuting period, buses become the dominant mass transit
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Figure 4 Temporal variations of ridership patterns of mass transit modes associated with different
clusters of SAUs in Shenzhen, China (Cluster 1: business and commercial; Cluster 2: rich residential;
Cluster 3: mixed-use; Cluster 4: middle-income residential; Cluster 5: recreational) [13].

mode. Over the entire day, cab ridership is always relatively low. This phenomena reveals the
transmission of passengers’ preference of different mass transit modes over time. In general,
different categorized urban spaces are associated with different accessibility levels (such as
high-, medium-, and low-ranked) and different urban functionalities (such as residential,
commercial, leisure-dominant, and home-work balanced). The results indicate that the
demographic and socioeconomic attributes of the underlying urban environments can be
revealed by the ridership dynamics of different mass transit modes.

3.3 Clustering based on the pattern of spatial interaction (I- and
O-fiber)

Based on the observation that spatial interaction patterns between places of two specific
land uses are similar, we derive a new type of place signature to infer urban land uses from a
perspective of connections. The method is validated with a case study using taxi trip data
from Shanghai. Assuming that intra-city spatial interactions between N different places
represented by travel flows can be extracted from the massive data sets, in each hour of a day,
an N ×N origin-destination (OD) matrix M t (t ∈ [1, 2, · · · , T ]) of population movements
can be constructed, denoting the population moving from place i to j at time slot t as mt

i,j

(i, j ∈ [1, 2, · · · , N ]). Using mt,k
i,j and mt,k

j,i to denote the outflows from place i to j and inflows
from j to i at time slot t, while the assumed land use type of j is K, we build the grouped
interaction signature V group for place i as

V group
i =

 m1,1
i,. · · · mT,1

i,. m1,1
.,i · · · mT,1

.,i
...

...
...

...
...

...
m1,K

i,. · · · mT,K
i,. m1,K

.,i · · · mT,K
.,i

 (6)

which represents the flow patterns of a place with a trade-off between aggregated patterns
and individual spatial interactions.

Inspired by the expectation-maximization (EM) algorithm, we use an iterative algorithm
combined with the K-means clustering method to link the clustered parcels to their cor-
responding land uses. Figure 5 illustrates the classification result based on the grouped
interaction signature of parcels. By interpreting the mean temporal signature curves and
referring to Google Map information, we assign the roughly corresponding land uses to each
parcel cluster. Type 1 have inflow peaks in the morning, afternoon and early evening, repres-
enting residents coming for work, business and eating/shopping/entertaining, respectively.
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Figure 5 Temporal variations of spatial interaction patterns between different categories of land
uses in Shanghai, China [6].

Whereas, the two outflow peaks in the afternoon and night represent people’s travels for
business and going home, respectively. Therefore, these parcels are urban commercial and
business area. Type 2 covers business and industrial area. Type 3 covers civic facilities,
such as railway stations, hospitals and museums, and their inflow and outflow peaks are
in the daytime. For Type 4, 5 and 6, the normalized mean temporal signatures of them
all show that people leave these regions in the morning and return to these areas in the
evening, which is consistent with the way people use residential areas. According to their
spatial distributions, we name them urban residential area, outskirt urban residential area
and suburban residential area, respectively. Type 7 are considered to be other land use area
with few taxi trips. These results confirm that urban functionality can be better understood
by analyzing the interaction patterns between different land uses.

4 Conclusion and Discussion

In this article, we proposed a space, time and activity cuboid based analytical framework for
understanding the functionality of urban spaces. The core contribution is how to organize
the human activity data into the cuboid for building meaningful and informative activity
signatures. Applied in three case studies with the derived signatures of the variation of
activity intensity, the component of activity type and the pattern of spatial interaction, the
ability of the proposed analytical framework is confirmed. Note that directly following the
remote sensing paradigm surely shows promising potentials for understanding and analyzing
urban spaces. However, there are also several pitfalls should be aware of by researchers and
practitioners as listed below.

Activity: Different activities have substantially distinct spatiotemporal characteristics.
Particularly, the big data revolution has been producing plentiful geo-data associated
with individuals and their activities in space-time. Much more urban phenomenon
are accessible and identifiable by this new and rich data source. For instance, spatial
distributions of mobile phone and taxicab usages are observed to be quite different in
many cities [4]. It is of critical importance to choose what kind of activity to analyze.
Feature selection: Even for a single type of activity, the feature or feature combination
selected also can result in inconsistent results. For instance, the combination of features
related to taxi pick-up/set down dynamics significantly influence the recognition accuracy
of urban land uses in a Chinese city [9]. Therefore, the feature should be carefully selected
based on the research context.

GISc ience 2018
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Normalization: Unlike the spectral curve of remote sensing, which is typically con-
sistent for the same type of geographical objects and invariable with object size, the
signatures of same land use types can be very different in magnitude order, in that
socioeconomic activities change superlinearly with urban area size [2]. To cope with this
issue, normalization is thus usually conducted before clustering the signatures.
Clustering: In the context of using urban activity for land use classification, many
classical clustering algorithms can be used because the signatures of urban zones can
be simply regarded as time series. A comprehensive survey of time series clustering
algorithms can be found in the literature [5]. The main challenge lies in the way to
measure the similarity between the activity signatures.
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