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Abstract
We continue the investigation of polynomial-time sparsification for NP-complete Boolean Con-
straint Satisfaction Problems (CSPs). The goal in sparsification is to reduce the number of
constraints in a problem instance without changing the answer, such that a bound on the num-
ber of resulting constraints can be given in terms of the number of variables n. We investigate
how the worst-case sparsification size depends on the types of constraints allowed in the problem
formulation (the constraint language). Two algorithmic results are presented. The first result
essentially shows that for any arity k, the only constraint type for which no nontrivial sparsifi-
cation is possible has exactly one falsifying assignment, and corresponds to logical OR (up to
negations). Our second result concerns linear sparsification, that is, a reduction to an equivalent
instance with O(n) constraints. Using linear algebra over rings of integers modulo prime powers,
we give an elegant necessary and sufficient condition for a constraint type to be captured by a
degree-1 polynomial over such a ring, which yields linear sparsifications. The combination of
these algorithmic results allows us to prove two characterizations that capture the optimal spar-
sification sizes for a range of Boolean CSPs. For NP-complete Boolean CSPs whose constraints
are symmetric (the satisfaction depends only on the number of 1 values in the assignment, not
on their positions), we give a complete characterization of which constraint languages allow for
a linear sparsification. For Boolean CSPs in which every constraint has arity at most three, we
characterize the optimal size of sparsifications in terms of the largest OR that can be expressed
by the constraint language.
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15:2 Best-Case and Worst-Case Sparsifiability of Boolean CSPs

1 Introduction

Background

The framework of constraint satisfaction problems (CSPs) provides a unified way to study
the computational complexity of a wide variety of combinatorial problems such as CNF-
Satisfiability, Graph Coloring, and Not-All-Equal SAT. The framework uncovers
algorithmic approaches that simultaneously apply to several problems, and also identifies
common sources of intractability. For the purposes of this discussion, a CSP is specified using
a (finite) constraint language, which is a set of (finite) relations; the problem is to decide the
satisfiability of a set of constraints, where each constraint has a relation coming from the
constraint language. The fact that many problems can be viewed as CSPs motivates the
following investigation: how does the complexity of a CSP depend its constraint language?
A key result in this area is Schaefer’s dichotomy theorem [18], which classifies each CSP over
the Boolean domain as polynomial-time solvable or NP-complete.

Continuing a recent line of investigation [10, 12, 15], we aim to understand for which
NP-complete CSPs an instance can be sparsified in polynomial time, without changing the
answer. In particular, we investigate the following questions. Can the number of constraints
be reduced to a small function of the number of variables n? How does the sparsifiability of a
CSP depend on its constraint language? We utilize the framework of kernelization [5, 8, 16],
originating in parameterized complexity theory, to answer such questions.

The first results concerning polynomial-time sparsification in terms of the number n
of variables or vertices were mainly negative. Under the assumption that NP 6⊆ coNP/poly
(which we tacitly assume throughout this introduction), Dell and van Melkebeek [7] proved a
strong lower bound: For any integer d ≥ 3 and positive real ε, there cannot be a polynomial-
time algorithm that compresses any instance ϕ of d-CNF-SAT on n variables, into an
equivalent SAT instance ϕ′ of bitsize O(nd−ε). In fact, there cannot even be an algorithm
that transforms such ϕ into small equivalent instances ψ of an arbitrary decision problem.
Since an instance of d-CNF-SAT has at most 2dnd ∈ O(nd) distinct clauses, it can trivially
be sparsified to O(nd) clauses by removing duplicates, and can be compressed to size O(nd)
by storing it as a bitstring indicating for each possible clause whether or not it is present.
The cited lower bound therefore shows that the trivial sparsification for d-CNF-SAT cannot
be significantly improved; we say that the problem does not admit nontrivial (polynomial-
time) sparsification. Following these lower bounds for SAT, a number of other results were
published [6, 9, 14] proving other problems do not admit nontrivial sparsification either.

This pessimistic state of affairs concerning nontrivial sparsification algorithms changed
several years ago, when a subset of the authors [12] showed that the d-Not-All-Equal SAT
problem does have a nontrivial sparsification. In this problem, clauses have size at most d
and are satisfied if the literals do not all evaluate to the same value. While there can be Ω(nd)
different clauses in an instance, there is an efficient algorithm that finds a subset of O(nd−1)
clauses that preserves the answer, resulting in a compression of bitsize O(nd−1 logn). The
first proof of this result was based on an ad-hoc application of a theorem of Lovász [17]. Later,
the underlying proof technique was extracted and applied to a wider range of problems [10].
This led to the following understanding: if each relation in the constraint language can be
represented by a polynomial of degree at most d, in a certain technical sense, then this
allows the number of constraints in an n-variable instance of such a CSP to be reduced
to O(nd). The sparsification for d-Not-All-Equal SAT is then explained by noting that
such constraints can be captured by polynomials of degree d− 1. It is therefore apparent
that finding a low-degree polynomial to capture the constraints of a CSP is a powerful tool
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to obtain sparsification algorithms for it. Finding such polynomials of a certain degree d, or
determining that they do not exist, proved a challenging and time-intensive task (cf. [11]).

The polynomial-based framework [10] also resulted in some linear sparsifications. Since
“1-in-d” constraints (to satisfy a clause, exactly one out of its ≤ d literals should evaluate to
true) can be captured by linear polynomials, the 1-in-d-SAT problem has a sparsification
with O(n) constraints for each constant d. This prompted a detailed investigation into
linear sparsifications for CSPs by Lagerkvist and Wahlström [15], who used the toolkit of
universal algebra in an attempt to obtain a characterization of the Boolean CSPs with a
linear sparsification. Their results give a necessary and sufficient condition on the constraint
language of a CSP for having a so-called Maltsev embedding over an infinite domain. They
also show that when a CSP has a Maltsev embedding over a finite domain, then this
can be used to obtain a linear sparsification. Alas, it remains unclear whether Maltsev
embeddings over infinite domains can be exploited algorithmically, and a characterization of
the linearly-sparsifiable CSPs is currently not known.

Our contributions

We analyze and demonstrate the power of the polynomial-based framework for sparsifying
CSPs using universal algebra, linear algebra over rings, and relational analysis. We present
two new algorithmic results. These allow us to characterize the sparsifiability of Boolean
CSPs in two settings, wherein we show that the polynomial-based framework yields optimal
sparsifications. In comparison to previous work [10], our results are much more fine-grained
and based on a deeper understanding of the reasons why a certain CSP cannot be captured
by low-degree polynomials.

Algorithmic results. Our first result (Section 3) shows that, contrary to the pessimistic
picture that arose during the initial investigation of sparsifiability, the phenomenon of
nontrivial sparsification is widespread and occurs for almost all Boolean CSPs! We prove
that if Γ is a constraint language whose largest constraint has arity k, then the only reason
that CSP(Γ) does not have a nontrivial sparsification, is that it contains an arity-k relation
that is essentially the k-ary OR (up to negating variables). When R ⊆ {0, 1}k is a relation
with |{0, 1}k \R| 6= 1 (the number of assignments that fail to satisfy the constraint is not
equal to 1), then it can be captured by a polynomial of degree k− 1. This yields a nontrivial
sparsification compared to the Ω(nk) distinct applications of this constraint that can be in
such an instance.

Our second algorithmic result (Section 4) concerns the power of the polynomial-based
framework for obtaining linear sparsifications. We give a necessary and sufficient condition
for a relation to be captured by a degree-1 polynomial. Say that a Boolean relation R ⊆
{0, 1}k is balanced if there is no sequence of vectors s1, . . . , s2n, s2n+1 ∈ R for n ≥ 1 such
that s1 − s2 + s3 . . . − s2n + s2n+1 = u ∈ {0, 1}k \ R. (The same vector may appear
multiple times in this sum.) In other words: R is balanced if one cannot find an odd-length
sequence of vectors in R for which alternating between adding and subtracting these vectors
component-wise results in a 0/1-bitvector u that is outside R. For example, the binary OR
relation 2-or = {0, 1}2 \ {(0, 0)} is not balanced, since (0, 1)− (1, 1) + (1, 0) = (0, 0) /∈ 2-or,
but the 1-in-3 relation R=1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is. We prove that if a Boolean
relation R is balanced, then it can efficiently be captured by a degree-1 polynomial and
the number of constraints that are applications of this relation can be reduced to O(n).
Hence when all relations in a constraint language Γ are balanced—we call such a constraint
language balanced—then CSP(Γ) has a sparsification with O(n) constraints. We also show

IPEC 2018



15:4 Best-Case and Worst-Case Sparsifiability of Boolean CSPs

that, on the other hand, if a Boolean relation R is not balanced, then there does not exist a
degree-1 polynomial over any ring that captures R in the sense required for application of the
polynomial framework. The property of being balanced is (as defined) a universal-algebraic
property; these results thus tightly bridge universal algebra and the polynomial framework.

Characterizations. The property of being balanced gives an easy way to prove that certain
Boolean CSPs admit linear sparsifications. But perhaps more importantly, this character-
ization constructively exhibits a certain witness when a relation can not be captured by
a degree-1 polynomial, in the form of the alternating sum of satisfying assignments that
yield an unsatisfying assignment. In several scenarios, we can turn this witness structure
against degree-1 polynomials into a lower bound proving that the problem does not have a
linear sparsification. As a consequence, we can prove two fine-grained characterizations of
sparsification complexity.

Characterization of symmetric CSPs with a linear sparsification (Section 5)
We say that a Boolean relation is symmetric if the satisfaction of a constraint only depends
on the number of 1-values taken by the variables (the weight of the assignment), but does
not depend on the positions where these values appear. For example, “1-in-k”-constraints are
symmetric, just as “not-all-equal”-constraints, but the relation Ra→b = {(0, 0), (0, 1), (1, 1)}
corresponding to the truth value of a → b is not. We prove that if a symmetric Boolean
relation R is not balanced, then it can implement (Definition 2.7) a binary OR using constants
and negations but without having to introduce fresh variables. Building on this, we prove
that if such an unbalanced symmetric relation R occurs in a constraint language Γ for which
CSP(Γ) is NP-complete, then CSP(Γ) does not admit a sparsification of size O(n2−ε) for
any ε > 0. Consequently, we obtain a characterization of the sparsification complexity of
NP-complete Boolean CSPs whose constraint language consists of symmetric relations: there
is a linear sparsification if and only if the constraint language is balanced. This yields linear
sparsifications in several new scenarios that were not known before.

Characterization of sparsification complexity for CSPs of low arity (Section 6)
By combining the linear sparsifications guaranteed by balanced constraint languages with the
nontrivial sparsification when the largest-arity relations do not have exactly one falsifying
assignment, we obtain an exact characterization of the optimal sparsification size for all
Boolean CSPs where each relation has arity at most three. For a Boolean constraint language Γ
consisting of relations of arity at most three, we characterize the sparsification complexity
of Γ as an integer k ∈ {1, 2, 3} that represents the largest OR that Γ can implement using
constants and negations, but without introducing fresh variables. Then we prove that CSP(Γ)
has a sparsification of size O(nk), but no sparsification of size O(nk−ε) for any ε > 0, giving
matching upper and lower bounds. Hence for all Boolean CSPs with constraints of arity at
most three, the polynomial-based framework gives provably optimal sparsifications.

2 Preliminaries

For a positive integer n, define [n] := {1, 2, . . . , n}. For an integer q, we let Z/qZ denote
the integers modulo q. These form a field if q is prime, and a ring otherwise. We will use
x ≡q y to denote that x and y are congruent modulo q, and x 6≡q y to denote that they are
incongruent modulo q. For statements marked with a star (F), the (full) proof can be found
in the full version [4].
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Parameterized complexity. A parameterized problem Q is a subset of Σ∗ × N, where Σ is
a finite alphabet. Let Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N → N be a
computable function. A generalized kernel for Q into Q′ of size h(k) is an algorithm that,
on input (x, k) ∈ Σ∗ × N, takes time polynomial in |x|+ k and outputs an instance (x′, k′)
such that: (i) |x′| and k′ are bounded by h(k), and (ii) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q′ = Q.

Since a polynomial-time reduction to an equivalent sparse instance yields a generalized
kernel, lower bounds against generalized kernels can be used to prove the non-existence of
such sparsification algorithms. To relate the sparsifiability of different problems to each
other, the following notion is useful.

I Definition 2.1. Let P,Q ⊆ Σ∗ × N be two parameterized problems. A linear-parameter
transformation from P to Q is a polynomial-time algorithm that, given an instance (x, k) ∈
Σ∗ × N of P, outputs an instance (x′, k′) ∈ Σ∗ × N of Q such that the following holds:
1. (x, k) ∈ Q if and only if (x′, k′) ∈ P, and
2. k′ ∈ O(k).
It is well-known [1, 2] that the existence of a linear-parameter transformation from problem P
to Q implies that any generalized kernelization lower bound for P, also holds for Q.

Operations, relations, and preservation. A Boolean operation is a mapping from {0, 1}k

to {0, 1}, where k, a natural number, is said to be the arity of the operation; we assume
throughout that operations have positive arity. From here, we define a partial Boolean
operation in the usual way, that is, it is a mapping from a subset of {0, 1}k to {0, 1}. We
say that a partial Boolean operation f of arity k is idempotent if f(0, . . . , 0) = 0 and
f(1, . . . , 1) = 1; and, self-dual if for all (a1, . . . , ak) ∈ {0, 1}k, when f(a1, . . . , ak) is defined,
it holds that f(¬a1, . . . ,¬ak) is defined and f(a1, . . . , ak) = ¬f(¬a1, . . . ,¬ak).

I Definition 2.2. A partial Boolean operation f : {0, 1}k → {0, 1} is balanced if there exist
integer values α1, . . . , αk, called the coefficients of f , such that∑

i∈[k] αi = 1,
(x1, . . . , xk) is in the domain of f if and only if

∑
i∈[k] αixi ∈ {0, 1}, and

f(x1, . . . , xk) =
∑

i∈[k] αixi for all tuples in its domain.

A relation over the set D is a subset of Dk; here, k is a natural number called the arity
of the relation. Throughout, we assume that each relation is over a finite set D. A Boolean
relation is a relation over {0, 1}.

I Definition 2.3. For each k ≥ 1, we use k-or to denote the relation {0, 1}k \ {(0, . . . , 0)}.

A constraint language over D is a finite set of relations over D; a Boolean constraint
language is a constraint language over {0, 1}. For a Boolean constraint language Γ, we define
CSP(Γ) as follows.

CSP(Γ) Parameter: The number of variables |V |.
Input: A tuple (C, V ), where C is a finite set of constraints, V is a finite set of variables,
and each constraint is a pair R(x1, . . . , xk) for R ∈ Γ and x1, . . . , xk ∈ V .
Question: Does there exist a satisfying assignment, that is, an assignment f : V → {0, 1}
such that for each constraint R(x1, . . . , xk) ∈ C it holds that (f(x1), . . . , f(xk)) ∈ R?

Let f : {0, 1}k → {0, 1} be a partial Boolean operation, and let T ⊆ {0, 1}n be a Boolean
relation. We say that T is preserved by f when, for any tuples t1 = (t11, . . . , t1n), . . . , tk =
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15:6 Best-Case and Worst-Case Sparsifiability of Boolean CSPs

(tk1 , . . . , tkn) ∈ T , if all entries of the tuple (f(t11, . . . , tk1), . . . , f(t1n, . . . , tkn)) are defined, then
this tuple is in T . We say that a Boolean constraint language Γ is preserved by f if each
relation in Γ is preserved by f . We say that a Boolean relation is balanced if it is preserved by
all balanced operations, and that a Boolean constraint language is balanced if each relation
therein is balanced.

Define an alternating operation to be a balanced operation f : {0, 1}k → {0, 1} such that
k is odd and the coefficients alternate between +1 and −1, so that α1 = +1, α2 = −1,
α3 = +1, . . ., αk = +1. We have the following.

I Proposition 2.4 (F). A Boolean relation R is balanced if and only if for all odd k ≥ 1,
the relation R is preserved by the alternating operation of arity k.

We will use the following straightforwardly verified fact tacitly, throughout.

I Observation 2.5. Each balanced operation is idempotent and self-dual.

For b ∈ {0, 1}, let ub : {0, 1} → {0, 1} be the unary operation defined by ub(0) = ub(1) = b;
let major : {0, 1}3 → {0, 1} to be the operation defined by major(x, y, z) = (x∧y)∨(x∧z)∨(y∧
z); and, let minor : {0, 1}3 → {0, 1} to be the operation defined by minor(x, y, z) = x⊕ y ⊕ z,
where ⊕ denotes exclusive OR. We say that a Boolean constraint language Γ is tractable if it
is preserved by one of the six following operations: u0, u1, ∧, ∨, minor, major; we say that
Γ is intractable otherwise. It is known that, in terms of classical complexity, the problem
CSP(Γ) is polynomial-time decidable when Γ is tractable, and that the problem CSP(Γ) is
NP-complete when Γ is intractable (see [3] for a proof; in particular, refer there to the proof
of Theorem 3.21).

Constraint Satisfaction and Definability.

I Assumption 2.6. By default, we assume in the sequel that the operations, relations, and
constraint languages under discussion are Boolean, and that said operations and relations are
of positive arity. We nonetheless sometimes describe them as being Boolean, for emphasis.

I Definition 2.7. Let us say that a Boolean relation T of arity m is cone-definable from a
Boolean relation U of arity n if there exists a tuple (y1, . . . , yn) where:

for each j ∈ [n], it holds that yj is an element of {0, 1} ∪ {x1, . . . , xm} ∪ {¬x1, . . . ,¬xm};
for each i ∈ [m], there exists j ∈ [n] such that yj ∈ {xi,¬xi}; and,
for each f : {x1, . . . , xm} → {0, 1}, it holds that (f(x1), . . . , f(xm)) ∈ T if and only if
(f̂(y1), . . . , f̂(yn)) ∈ U . Here, f̂ denotes the natural extension of f where f̂(0) = 0,
f̂(1) = 1, and f̂(¬xi) = ¬f(xi).

(The prefix cone indicates the allowing of constants and negation.)

I Example 2.8. Let R = {(0, 0), (0, 1)} and let S = {(0, 1), (1, 1)}. We have that R is
cone-definable from S via the tuple (¬x2,¬x1); also, S is cone-definable from R via the same
tuple.

When Γ is a constraint language over D, we use Γ∗ to denote the expansion of Γ where
each element of D appears as a relation, that is, we define Γ∗ as Γ ∪ {{(d)} | d ∈ D}.

The following is a key property of cone-definability; it states that relations that are
cone-definable from a constraint language Γ may be simulated by the constraint language,
and thus used to prove hardness results for CSP(Γ).

I Proposition 2.9 (F). Suppose that Γ is an intractable constraint language, and that ∆
is a constraint language such that each relation in ∆ is cone-definable from a relation in Γ.
Then, there exists a linear-parameter transformation from CSP(Γ∗ ∪∆) to CSP(Γ).
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3 Trivial versus non-trivial sparsification

It is well known that k-CNF-SAT allows no non-trivial sparsification, for each k ≥ 3 [7]. This
means that we cannot efficiently reduce the number of clauses in such a formula to O(nk−ε).
The k-or relation is special, in the sense that there is exactly one k-tuple that is not contained
in the relation. We show in this section that when considering k-ary relations for which there
is more than one k-tuple not contained in the relation, a non-trivial sparsification is always
possible. In particular, the number of constraints of any input can efficiently be reduced to
O(nk−1). Using Lemmas 3.4 and 3.6, we will completely classify the constraint languages
that allow a non-trivial sparsification as follows.

I Theorem 3.1 (F). Let Γ be an intractable (Boolean) constraint language. Let k be the
maximum arity of any relation R ∈ Γ. The following dichotomy holds.

If for all R ∈ Γ it holds that |R| 6= 2k − 1, then CSP(Γ) has a kernel with O(nk−1)
constraints that can be stored in O(nk−1 logn) bits.
If there exists R ∈ Γ with |R| = 2k − 1, then CSP(Γ) has no generalized kernel of bitsize
O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly.

To obtain the kernels given in this section, we will heavily rely on the following notion
for representing constraints by polynomials.

I Definition 3.2. Let R be a k-ary Boolean relation. We say that a polynomial pu over a
ring Eu captures an unsatisfying assignment u ∈ {0, 1}k \R with respect to R, if the following
two conditions hold over Eu.

pu(x1, . . . , xk) = 0 for all (x1, . . . , xk) ∈ R, and (1)
pu(u1, . . . , uk) 6= 0. (2)

The following Theorem is a generalization of Theorem 16 in [13]. The main improvement
is that we now allow the usage of different polynomials, over different rings, for each u /∈ R.
Previously, all polynomials had to be given over the same ring, and each constraint was
captured by a single polynomial.

I Theorem 3.3 (F). Let R ⊆ {0, 1}k be a fixed k-ary relation, such that for every u ∈
{0, 1}k \R there exists a ring Eu ∈ {Q} ∪ {Z/quZ | qu is a prime power} and polynomial pu

over Eu of degree at most d that captures u with respect to R. Then there exists a polynomial-
time algorithm that, given a set of constraints C over {R} over n variables, outputs C′ ⊆ C
with |C′| = O(nd), such that any Boolean assignment satisfies all constraints in C if and only
if it satisfies all constraints in C′.

The next lemma states that any k-ary Boolean relation R with |R| < 2k − 1 admits a
non-trivial sparsification. To prove the lemma, we show that such relations can be represented
by polynomials of degree at most k − 1, such that the sparsification can be obtained using
Theorem 3.3. Since relations with |R| = 2k have a sparsification of size O(1), as constraints
over such relations are satisfied by any assignment, it will follow that k-ary relations with
|{0, 1}k \R| 6= 1 always allow a non-trivial sparsification.

I Lemma 3.4 (F). Let R be a k-ary Boolean relation with |R| < 2k − 1. Let C be a set of
constraints over {R}, using n variables. Then there exists a polynomial-time algorithm that
outputs C′ ⊆ C with |C′| = O(nk−1), such that a Boolean assignment satisfies all constraints
in C′ if and only if it satisfies all constraints in C.
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15:8 Best-Case and Worst-Case Sparsifiability of Boolean CSPs

Proof sketch. We will show that for every u ∈ {0, 1}k \ R, there exists a degree-(k − 1)
polynomial pu over Q that captures u, such that the result follows from Theorem 3.3. We will
prove the existence of such a polynomial by induction on k. For k = 1, the lemma statement
implies that R = ∅. Thereby, for any u /∈ R, we simply choose pu(x1) := 1. This polynomial
satisfies the requirements, and has degree 0. Let k > 1 and let u = (u1, . . . , uk) ∈ {0, 1}k \R.
Since |R| < 2k − 1, we can choose w = (w1, . . . , wk) such that w ∈ {0, 1}k \ R and w 6= u.
We distinguish two cases, depending on whether u and w agree on some position.

Suppose ui 6= wi for all i, and assume for concreteness that u = (0, . . . , 0) and w =
(1, . . . , 1). Then the polynomial pu(x1, . . . , xk) :=

∏k−1
i=1 (i−

∑k
j=1 xj) suffices: pu(0, . . . , 0) =∏k−1

j=1 j 6= 0, while for any (x1, . . . , xk) ∈ R, it holds that
∑k

i=1 xi ∈ [k − 1] and thereby
pu(x1, . . . , xk) = 0; the product has a 0-term. Other values of u and w are handled similarly.

Now suppose ui = wi for some i ∈ [k], and assume for concreteness that u1 = w1 = 1.
Define R′ := {(x2, . . . , xk) | (1, x2, . . . , xk) ∈ R} and let u′ := (u2, . . . , uk). Since (u2, . . . , uk)
and (w2, . . . , wk) are distinct tuples not in R′, by induction there is a polynomial pu′ of
degree k − 2 that captures u′ with respect to R′. Then the polynomial pu(x1, . . . , xk) :=
x1 · pu′(x2, . . . , xk) has degree k − 1 and captures u with respect to R. J

To show the other part of the dichotomy, we will need the following theorem.

I Theorem 3.5 (F). Let Γ be an intractable (Boolean) constraint language, and let k ≥ 1.
If there exists R ∈ Γ such that R cone-defines k-or, then CSP(Γ) does not have a generalized
kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

The next lemma formalizes the idea that any k-ary relation with |{0, 1}k \ R| = 1 is
equivalent to k-or, up to negation of variables. The proof of the dichotomy given in Theorem
3.1 will follow from Lemma 3.4, together with the next lemma and Theorem 3.5.

I Lemma 3.6 (F). Let R be a k-ary relation with |R| = 2k − 1. Then R cone-defines k-or.

4 From balanced operations to linear sparsification

The main result of this section is the following theorem, which we prove below.

I Theorem 4.1. Let Γ be a balanced (Boolean) constraint language. Then CSP(Γ) has a
kernel with O(n) constraints that are a subset of the original constraints. The kernel can be
stored using O(n logn) bits.

To prove the theorem, we will use two additional technical lemmas. To state them, we
introduce some notions from linear algebra. Given a set S = {s1, . . . , sn} of k-ary vectors in
Zk, we define spanZ(S) as the set of all vectors y in Zk for which there exist α1, . . . , αn ∈ Z
such that y =

∑
i∈[n] αisi. Similarly, we define spanq(S) as the set of all k-ary vectors y over

Z/qZ, such that there exist α1, . . . , αn such that y ≡q

∑
i∈[n] αisi. For an m× n matrix S,

we use si for i ∈ [m] to denote the i’th row of S.

I Lemma 4.2 (F). Let S be an m × n integer matrix. Let u ∈ Zn be a row vector. If
u ∈ spanq({s1, . . . , sm}) for all prime powers q, then u ∈ spanZ({s1, . . . , sm}).

I Lemma 4.3 (F). Let q be a prime power. Let A be an m × n matrix over Z/qZ.
Suppose there exists no constant c 6≡q 0 for which the system Ax ≡q b has a solution, where
b := (0, . . . , 0, c)T is the vector with c on the last position and zeros in all other positions.

Then am ∈ spanq({a1, . . . , am−1}).
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Using these tools from linear algebra, we now prove the main sparsification result.

Proof of Theorem 4.1. We show that for all relations R in the balanced constraint lan-
guage Γ, for all u /∈ R, there exists a linear polynomial pu over a ring Eu ∈ {Z/quZ |
qu is a prime power} that captures u with respect to R. By applying Theorem 3.3 once for
each relation R ∈ Γ, to reduce the number of constraints involving R to O(n), we then reduce
any n-variable instance of CSP(Γ) to an equivalent one on |Γ| · O(n) ∈ O(n) constraints.

Suppose for a contradiction that there exists R ∈ Γ and u /∈ R, such that no prime
power q and polynomial p over Z/qZ exist that satisfy conditions (1) and (2). We can
view the process of finding such a linear polynomial, as solving a set of linear equations
whose unknowns are the coefficients of the polynomial. We have a linear equation for each
evaluation of the polynomial for which we want to enforce a certain value.

Let R = {r1, . . . , r`}. By the non-existence of p and q, the system
1 r1,1 r1,2 . . . r1,k

1 r2,1 r2,2 . . . r2,k

...
...

...
. . .

...
1 r`,1 r`,2 . . . r`,k

1 u1 u2 . . . uk




α0
α1
α2
...
αk

 ≡q


0
0
...
0
c


has no solution for any prime power q and c 6≡q 0. Otherwise, it is easy to verify that q is
the desired prime power and p(x1, . . . , xk) := α0 +

∑k
i=1 αixi is the desired polynomial.

The fact that no solution exists, implies that (1, u1, . . . , uk) is in the span of the remaining
rows of the matrix, by Lemma 4.3. But this implies that for any prime power q, there exist
coefficients β1, . . . , β` over Z/qZ such that u ≡q

∑
βiri. Furthermore, since the first column

of the matrix is the all-ones column, we obtain that
∑
βi ≡q 1. By Lemma 4.2, it follows

that there exist integer coefficients γ1, . . . , γ` such that
∑
γi = 1 and furthermore u =

∑
γiri.

But it immediately follows that R ∈ Γ is not preserved by the balanced operation given by
f(x1, . . . , x`) :=

∑
γixi, which contradicts the assumption that Γ is balanced. J

The kernelization result above is obtained by using the fact that when Γ is balanced, the
constraints in CSP(Γ) can be replaced by linear polynomials. We show in the next theorem
that this approach fails when Γ is not balanced.

I Theorem 4.4 (F). Let R be a k-ary relation that is not balanced. Then there exists
u ∈ {0, 1}k \R for which there exists no polynomial pu over any ring E that captures u with
respect to R.

5 Characterization of symmetric CSPs with linear sparsification

In this section, we characterize the symmetric constraint languages Γ for which CSP(Γ) has
a linear sparsification.

I Definition 5.1. We say a k-ary Boolean relation R is symmetric, if there exists S ⊆
{0, 1, . . . , k} such that a tuple x = (x1, . . . , xk) is in R if and only if weight(x) ∈ S. We call
S the set of satisfying weights for R.

We will say that a constraint language Γ is symmetric, if it only contains symmetric relations.
We will prove the following theorem at the end of this section.

I Theorem 5.2. Let Γ be a finite Boolean symmetric intractable constraint language.
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If Γ is balanced, then CSP(Γ) has a kernel with O(n) constraints that can be stored in
O(n logn) bits.
If Γ is not balanced, then CSP(Γ) does not have a generalized kernel of size O(n2−ε) for
any ε > 0, unless NP ⊆ coNP/poly.

To show this, we use the following lemma.

I Lemma 5.3 (F). Let R be a k-ary symmetric relation with satisfying weights S ⊆
{0, 1, . . . , k}. Let U := {0, 1, . . . , k} \ S. If there exist a, b, c ∈ S and d ∈ U such that
a− b+ c = d, then R cone-defines 2-or.

Proof sketch. We will demonstrate the result in the case that b ≤ a, b ≤ c, and b ≤ d; the
other cases are similar. We use the following tuple to express x1 ∨ x2.

(¬x1, . . . ,¬x1︸ ︷︷ ︸
(a−b) copies

,¬x2, . . . ,¬x2︸ ︷︷ ︸
(c−b) copies

, 1, . . . , 1︸ ︷︷ ︸
b copies

, 0, . . . , 0︸ ︷︷ ︸
(k−d) copies

).

Let f : {x1, x2} → {0, 1}, then (¬f(x1), . . . ,¬f(x1),¬f(x2), . . . ,¬f(x2), 1, . . . , 1, 0, . . . , 0)
has weight d /∈ S when f(x1) = f(x2) = 0. It is easy to verify that in all other cases, the
weight is one of a, b, c ∈ S and hence the tuple belongs to R. The other cases are similar. J

We now give the main lemma that is needed to prove Theorem 5.2. It shows that if a
relation is symmetric and not balanced, it must cone-define 2-or.

I Lemma 5.4. Let R be a symmetric (Boolean) relation of arity k. If R is not balanced,
then R cone-defines 2-or.

Proof. Let f be a balanced operation that does not preserve R. Since f has integer
coefficients, it follows that there exist (not necessarily distinct) r1, . . . , rm ∈ R, such that
r1− r2 + r3− r4 · · ·+ rm = u for some u ∈ {0, 1}k \R and odd m ≥ 3. Thereby, weight(r1)−
weight(r2) + weight(r3) − weight(r4) · · · + weight(rm) = weight(u). Let S be the set of
satisfying weights for R and let U := {0, . . . , k} \ S. Define si := weight(ri) for i ∈ [m], and
t = weight(u), such that s1 − s2 + s3 − s4 . . .+ sm = t, and furthermore si ∈ S for all i, and
t ∈ U . We show that there exist a, b, c ∈ S and d ∈ U such that a− b+ c = d, such that the
result follows from Lemma 5.3. We do this by induction on the length of the alternating sum.

If m = 3, we have that s1 − s2 + s3 = t and define a := s1, b := s2, c := s3, and d := t.
If m > 3, we will use the following claim.

I Claim 5.5 (F). Let s1, . . . , sm ∈ S and t ∈ U such that s1 − s2 + s3 − s4 · · · + sm = t.
There exist distinct i, j, ` ∈ [m] with i, j odd and ` even, such that si − s` + sj ∈ {0, . . . , k}.

Use Claim 5.5 to find i, j, ` such that si − s` + sj ∈ {0, . . . , k}. We consider two options.
If si − s` + sj ∈ U , then define d := si − s` + sj , a := si, b := s`, and c := sj and we
are done. The other option is that si − s` + sj = s ∈ S. Replacing si − s` + sj by s in
s1 − s2 + s3 − s4 · · ·+ sm gives a shorter alternating sum with result t. We obtain a, b, c, and
d by the induction hypothesis.

Thereby, we have obtained a, b, c ∈ S, d ∈ U such that a− b+ c = d. It now follows from
Lemma 5.3 that R cone-defines 2-or. J

Using the lemma above, we can now prove Theorem 5.2.
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Proof of Theorem 5.2. If Γ is balanced, it follows from Theorem 4.1 that CSP(Γ) has a
kernel with O(n) constraints that can be stored in O(n logn) bits. Note that the assumption
that Γ is symmetric is not needed in this case.

If the symmetric constraint language Γ is not balanced, then Γ contains a symmetric
relation R that is not balanced. It follows from Lemma 5.4 that R cone-defines the 2-or
relation. Thereby, we obtain from Theorem 3.5 that CSP(Γ) has no generalized kernel of size
O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly. J

6 Low-arity classification

In this section, we will give a full classification of the sparsifiability for constraint languages
that consist only of low-arity relations. The next results will show that in this case, if the
constraint language is not balanced, it can cone-define the 2-or relation.

I Observation 6.1. Each relation of arity 1 is balanced.

I Theorem 6.2 (F). A relation of arity 2 is balanced if and only if it is not cone-interdefinable
with the 2-or relation.

I Theorem 6.3 (F). Suppose that U ⊆ {0, 1}3 is an arity 3 Boolean relation that is not
balanced. Then, the 2-or relation is cone-definable from U .

Combining the results in this section with the results in previous sections, allows us
to give a full classification of the sparsifiability of constraint languages that only contain
relations of arity at most three. Observe that any k-ary relation R such that R 6= ∅ and
{0, 1}k \R 6= ∅ cone-defines the 1-or relation. Since we assume that Γ is intractable in the
next theorem, it follows that k is always defined and k ∈ {1, 2, 3}.

I Theorem 6.4. Let Γ be an intractable Boolean constraint language such that each relation
therein has arity ≤ 3. Let k ∈ N be the largest value for which k-or can be cone-defined from
a relation in Γ. Then CSP(Γ) has a kernel with O(nk) constraints that can be encoded in
O(nk log k) bits, but for any ε > 0 there is no kernel of size O(nk−ε), unless NP ⊆ coNP/poly.

Proof. To show that there is a kernel with O(nk) constraints, we do a case distinction on k.
(k = 1) If k = 1, there is no relation in Γ that cone-defines the 2-or relation. It follows
from Observation 6.1 and Theorems 6.2 and 6.3 that thereby, Γ is balanced. It now
follows from Theorem 4.1 that CSP(Γ) has a kernel with O(n) constraints that can be
stored in O(n logn) bits.
(k = 2) If k = 2, there is no relation R ∈ Γ with |R| = 23− 1 = 7, as otherwise by Lemma
3.6 such a relation R would cone-define 3-or which is a contradiction. Thereby, it follows
from Theorem 3.1 that CSP(Γ) has a sparsification with O(n3−1) = O(n2) constraints
that can be encoded in O(n2 logn) bits.
(k = 3) Given an instance (C, V ), it is easy to obtain a kernel of with O(n3) constraints by
simply removing duplicate constraints. This kernel can be stored in O(n3) bits, by storing
for each relation R ∈ Γ and for each tuple (x1, x2, x3) ∈ V 3 whether R(x1, x2, x3) ∈ C.
Since |Γ| is constant and there are O(n3) such tuples, this results in using O(n3) bits.

It remains to prove the lower bound. By definition, there exists R ∈ Γ such that R
cone-defines the k-or relation. Thereby, the result follows immediately from Theorem 3.5.
Thus, CSP(Γ) has no kernel of size O(nk−ε) for any ε > 0, unless NP ⊆ coNP/poly. J
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7 Conclusion

In this paper we analyzed the best-case and worst-case sparsifiability of CSP(Γ) for intractable
finite Boolean constraint languages Γ. First of all, we characterized those Boolean CSPs for
which a nontrivial sparsification is possible, based on the number of non-satisfying assignments.
Then we presented our key structural contribution: the notion of balanced constraint
languages. We have shown that CSP(Γ) allows a sparsification with O(n) constraints
whenever Γ is balanced. The constructive proof of this statement can be transformed into
an effective algorithm to find a series of low-degree polynomials to capture the constraints,
which earlier had to be done by hand. By combining the resulting upper and lower bound
framework, we fully classified the symmetric constraint languages for which CSP(Γ) allows
a linear sparsification. Furthermore, we fully classified the sparsifiability of CSP(Γ) when
Γ contains relations of arity at most three, based on the arity of the largest or that can
be cone-defined from Γ. It follows from results of Lagerkvist and Wahlström [15] that for
constraint languages of arbitrary arity, the exponent of the best sparsification size does not
always match the arity of the largest or cone-definable from Γ. (This will be described in
more detail in the upcoming journal version of this work.) Hence the type of characterization
we presented is inherently limited to low-arity constraint languages. It may be possible to
extend our characterization to languages of arity at most four, however.

The ultimate goal of this line of research is to fully classify the sparsifiability of CSP(Γ),
depending on Γ. In particular, we would like to classify those Γ for which O(n) sparsifiability
is possible. In this paper, we have shown that Γ being balanced is a sufficient condition to
obtain a linear sparsification; it is tempting to conjecture that this condition is also necessary.

We conclude with a brief discussion on the relation between our polynomial-based
framework for linear compression and the framework of Lagerkvist and Wahlström [15].
They used a different method for sparsification, based on embedding a Boolean constraint
language Γ into a constraint language Γ′ defined over a larger domain D, such that Γ′ is
preserved by a Maltsev operation. This latter condition ensures that CSP(Γ′) is polynomial-
time solvable, which allows CSP(Γ) to be sparsified to O(n) constraints when D is finite. It
turns out that the Maltsev-based linear sparsification is more general than the polynomial-
based linear sparsification presented here: all finite Boolean constraint languages Γ that are
balanced, admit a Maltsev embedding over a finite domain (the direct sum of the rings Z/quZ
over which the capturing polynomials are defined) and can therefore be linearly sparsified
using the algorithm of Lagerkvist and Wahlström. Despite the fact that our polynomial-
based framework is not more general than the Maltsev-based approach, it has two distinct
advantages. First of all, there is a straight-forward decision procedure to determine whether
a constraint can be captured by degree-1 polynomials, which follows from the proof of
Theorem 4.1. To the best of our knowledge, no decision procedure is known to determine
whether a Boolean constraint language admits a Maltsev embedding over a finite domain.
The second advantage of our method is that when the polynomial framework for linear
compression does not apply, this is witnessed by a relation in Γ that is violated by a balanced
operation. As we have shown, in several scenarios this violation can be used to construct a
sparsification lower bound to give provably optimal bounds.

It would be interesting to determine whether the Maltsev-based framework for sparsifica-
tion is strictly more general than the polynomial-based framework. We are not aware of any
concrete Boolean constraint language Γ for which CSP(Γ) admits a Maltsev embedding over
a finite domain, yet is not balanced.
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