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Abstract
We design a sublinear-time approximation algorithm for quadratic function minimization prob-
lems with a better error bound than the previous algorithm by Hayashi and Yoshida (NIPS’16).
Our approximation algorithm can be modified to handle the case where the minimization is done
over a sphere. The analysis of our algorithms is obtained by combining results from graph limit
theory, along with a novel spectral decomposition of matrices. Specifically, we prove that a ma-
trix A can be decomposed into a structured part and a pseudorandom part, where the structured
part is a block matrix with a polylogarithmic number of blocks, such that in each block all the
entries are the same, and the pseudorandom part has a small spectral norm, achieving better
error bound than the existing decomposition theorem of Frieze and Kannan (FOCS’96). As an
additional application of the decomposition theorem, we give a sublinear-time approximation
algorithm for computing the top singular values of a matrix.
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1 Introduction

Quadratic function minimization/maximization is a versatile tool used in machine learning,
statistics, and data mining and can represent many fundamental problems such as linear
regression, k-means clustering, principal component analysis (PCA), support vector machines,
kernel machines and more (see [17]). In general, quadratic function minimization/maxi-
mization is NP-Hard. When the problem is convex (for minimization) or concave (for
maximization), we can solve it by solving a system of linear equations, which requires O(n3)
time, where n is the number of variables. There are faster approximation methods based on
stochastic gradient descent [3], and the multiplicative update algorithm [5]. However, these
methods still require Ω(n) time, which is prohibitive when we need to handle a huge number
of variables.
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17:2 Sublinear-Time Quadratic Minimization via Spectral Decomposition of Matrices

Quadratic function minimization over a sphere is also an important problem. This
minimization problem is often called the trust region subproblem since it must be solved
in each step of a trust region algorithm. Trust region algorithms are among the most
important tools in solving nonlinear programming problems, as they are robust and can
be applied to ill-conditioned problems. In addition, trust region subproblems are useful in
many other problems such as constrained eigenvalue problems [9], least-square problems [24],
combinatorial optimization problems [4] and many more. While the problem is non-convex,
it has been shown that the problem exhibit strong duality properties and is known to be
solved in polynomial time (see [2, 23]). In particular, it was shown to be equivalent to some
semidefinite programming optimization problems that can be solved in polynomial time
([19, 1]). As in the non-constrained case, there are approximation algorithms based on gradient
descent [18] and on reducing the problem to a sequence of eigenvalues computations [12].
However, as in the unconstrained case, these methods require running time which is linear in
the number of the non-zero elements of the matrix (which might be linear in n).

1.1 Our Contributions
In this work, we provide sublinear-time approximation algorithms for minimizing quadratic
functions, assuming random access to the entries of the input matrix and the vector.

First, we consider unconstraind minimization. Specifically, for a matrix A ∈ Rn×n and
vectors d, b ∈ Rn, we consider the following quadratic function minimization problem:

min
v∈Rn

ψn,A,d,b(v), where ψn,A,d,b(v) = 〈v, Av〉+ n 〈v,diag(d)v〉+ n 〈b,v〉 . (1)

Here diag(d) ∈ Rn×n is a matrix whose diagonal entries are specified by d and 〈·, ·〉 denotes
the standard inner product.

I Theorem 1. Fix ε > 0 and let v∗ and z∗ be an optimal solution and the optimal value,
respectively, of Problem (1). Let S be a random set such that each index i ∈ {1, 2, . . . , n} is
taken to S independently w.p k/n with

k = max
{
O

(
log2 n

ε2

)
,

(
1
ε

)O(1/ε2)
}
.

Then, the following holds with probability at least 2/3: Let ṽ∗ and z̃∗ be an optimal solution
and the optimal value, respectively, of the problem

min
v∈R|S|

ψ|S|,A|S ,d|S ,b|S (v) ,

where ·|S is an operator that extracts a submatrix (or subvector) specified by an index set S.
Then,∣∣∣∣ 1

|S|2
z̃∗ − 1

n2 z
∗
∣∣∣∣ ≤ εLmax

{
‖ṽ∗‖22
|S|

,
‖v∗‖22
n

}
,

where L = max{maxi,j |Aij |,maxi |di|,maxi |bi|}.

Recently, Hayashi and Yoshida [10] proposed a constant-time sampling method for this
problem with an additive error of O(εLK2

∞n
2) for K∞ = max{‖v∗‖∞, ‖ṽ∗‖∞}, where v∗ and

ṽ∗ are the optimal solutions to the original and sampled problems, respectively. Although
their algorithm runs in constant time, the guarantee is not meaningful when K∞ = ω(1)
because the optimal value is always of order O(Ln2). Theorem 1 shows that we can improve
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the additive error to O(εLK2
2n

2), where K2 = max{‖v∗‖2/
√
n, ‖ṽ∗‖2/

√
s}, as long as the

number of samples s is polylogarithmic (or more). We note that we always have K2 ≤ K∞
and the difference is significant when v∗ and ṽ∗ are sparse. For example, if v∗ and ṽ∗ have
only O(1) non-zero elements, then we have K2 = O(K∞/

√
s). Our new bound provides a

trade off between the additive error and the time complexity, which was unclear from the
argument by Hayashi and Yoshida [10].

Moreover, we consider minimization over a sphere. Specifically, given a matrix A ∈ Rn×n,
vectors b,d ∈ Rn and r > 0, we consider the following quadratic function minimization
problem over a sphere of radius r:

min
v:‖v‖2≤r

ψn,A,d,b(v) . (2)

We give the first sublinear-time approximation algorithm for this problem.

I Theorem 2. Let v∗ and z∗ be an optimal solution and optimal value, respectively, of
Problem (2). Let ε > 0 and let S be a random set such that each index i ∈ {1, 2, . . . , n} is
taken to S independently w.p k/n with

k = max
{
O

(
log2 n

ε2

)
,

(
1
ε

)O(1/ε2)
}
.

Then, the following holds with probability at least 2/3: Let ṽ∗ and z̃∗ be an optimal solution
and the optimal value, respectively, of the problem

min
‖v‖2≤

√
|S|
n r

ψ|S|,A|S ,d|S ,b|S (v) .

Then,∣∣∣∣ 1
|S|2

z̃∗ − 1
n2 z

∗
∣∣∣∣ ≤ εLr2

n
,

where L = max{maxi,j |Aij |,maxi |di|,maxi |bi|}.

We can design a constant-time algorithm for (2) by using the result of [10], but the resulting
error bound will be O(εLr2), which is n times worse than the bound in Theorem 2.

The proofs of Theorems 1 and 2 rely on a novel decomposition theorem of matrices, which
will be discussed in Section 1.3. As another application of this decomposition theorem, we
show that for any (small) t, we can approximate the t-th largest singular values of a matrix
A ∈ [−L,L]n×m (denoted σt(A)) to within an additive error of O(L

√
εtnm) in time

max
{
O

(
max{log2 n, log2m}

ε2

)
,

(
1
ε

)O(1/ε2) }
.

Our algorithms are very simple to implement, and do not require any structure in the input
matrix. However, similar results (with better running time) can be obtained by applying
known sampling techniques from [8]. Formally, we prove the following.

I Theorem 3. Given a matrix A ∈ [−L,L]n×m, ε ∈ (0, 1), let

k = max
{
O

(
max{log2 n, log2m}

ε2

)
,

(
1
ε

)O(1/ε2)
}
.

Then, for every t = O(k), there is an algorithm that runs in poly(k) time, and outputs a
value z such that with probability at least 2/3,

|σt(A)− z| ≤ L
√
εtnm.

APPROX/RANDOM 2018
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We note that since the σt(A) ≤ L
√

nm
t (see Fact 5), the relative error the algorithm achieves

is at least
√
ε · t. Therefore, to get meaningful approximation, one must have that

√
ε · t < 1.

So, if we wish to set ε = O(1) then we must have t = O(1). We refer the reader to the full
version for the singular values algorithms and their analysis.

1.2 Related work

In machine learning context, Clarkson et al. [5] considered several machine learning opti-
mization problems and gave sublinear-time approximation algorithms for those problems. In
particular, they considered approximate minimization of a quadratic function over the unit
simplex ∆ = {x ∈ Rn | xi ≥ 0,

∑
i xi = 1}. Namely, given a positive semidefinite matrix

A ∈ Rn×n and b ∈ Rn, they showed that it is possible to obtain an approximate solution to
minx∈∆ x>Ax + x>b (up to an additive error of ε) in Õ(n/ε2) time, which is sublinear in the
input size Θ(n2). In contrast, our algorithms run in polylogarithmic time and are much more
efficient. Hayashi and Yoshida [11] proposed a constant-time approximation algorithm for
Tucker decomposition of tensors, which can be seen as minimizing low-degree polynomials.

In addition to the work of Hayashi and Yoshida [10] mentioned above, an additional line
of relevant work is constant-time approximation algorithms for the max cut problem on dense
graphs [6, 16]. Let LG ∈ Rn×n be the Laplacian matrix of a graph G on n vertices. Then, the
max cut problem can be seen as maximizing 〈x, LGx〉 subject to xi ∈ {−1/

√
n, 1/

√
n}, and

these methods approximate the optimal value to within O(εn). Our method for approximating
the largest singular values can be seen as an extension of these methods to a continuous
setting.

1.3 Techniques

The main ingredient in our proof is a novel spectral decomposition theorem of matrices,
which may be of independent interest. The theorem states that we can decompose a matrix
A ∈ Rn×m into a structured matrix Astr ∈ Rn×m and a pseudorandom matrix Apsd ∈ Rn×m.
Here, Astr is structured in the sense that it is a block matrix with a polylogarithmic number
of blocks such that the entries in each block are equal. Also, Apsd is pseudorandom in the
sense that it has a small spectral norm. Formally, we prove the following. For a matrix
A ∈ Rn×m, we define its max norm as ‖A‖max = max1≤i≤n max1≤j≤m |Aij |.

I Theorem 4. For any matrix A ∈ [−L,L]n×m and γ ∈ (0, 1), there exists a decomposition
A = Astr +Apsd with the following properties for N =

√
nm:

1. Astr is structured in the sense that it is a block matrix with
(

1
γ

)O(1/γ2)
blocks, such that

the entries in each block are equal.
2. ‖Apsd‖2 ≤ γNL.
3. ‖Astr‖max = L/γO(1).
Our decomposition theorem is a strengthening of the matrix decomposition result of Frieze
and Kannan [7, 6]. In particular, they showed that any matrix A ∈ Rn×m can be decomposed
to D1 + · · · + Ds + W for s = O(1/γ2), where the matrices Di are block matrices and
‖W‖C ≤ γnm‖A‖max. Here, ‖W‖C is the cut norm, which is defined as

max
S⊆{1,...,n}

max
T⊆{1,...,m}

∣∣∣∣∣∣
∑
i∈S

∑
j∈T

Wij

∣∣∣∣∣∣ .
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By using a result of Nikiforov [20] that ‖W‖2 = O(
√
nm · ‖W‖max · ‖W‖C) and the fact that

the Frieze-Kannan result implies ‖W‖max ≤
√
s‖A‖max, we get that ‖W‖2 = O(nm·‖A‖max),

which is too loose, and thus insufficient for our applications.
Given our decomposition theorem, we can conclude the following. When approximat-

ing (1) and (2), we can disregard the pseudorandom part Apsd. This will not affect our
approximation by much, since Apsd has a small spectral norm. In addition, as Astr consists
of a polylogarithmic number of blocks, such that the entries in each block are equal, we can
hit all the blocks by sampling a polylogarithmic number of indices. Hence, we can expect
that A|S is a good approximation to A. To formally define the distance between A and A|S
and to show it is small, we exploit graph limit theory, initiated by Lovász and Szegedy [14]
(refer to [13] for a book).

2 Preliminaries

For an integer n we let [n] def= {1, 2, . . . , n}. Given a set of indices S = {i1, . . . , ik}, and
a vector v ∈ Rn, we let v|S ∈ Rk be the restriction of v to S; that is, (v|S)j = vij , for
every i ∈ [k]. Similarly, for a matrix A ∈ Rn×m and sets SR = {i1, . . . , ikR} ⊆ [n] and
SC = {j1, . . . , jkC} ⊆ [m], we denote the restriction of A to SR × SC by A|SR×SC ∈ RkR×kC ;
that is, (A|SR×SC )j` = Aiji` , for every j ∈ [kR] and ` ∈ [kC ]. When SR = SC = S we
often use A|S as a shorthand for A|S×S . We use the notation x = y ± z as a shorthand for
y − z ≤ x ≤ y + z.
Given a matrix A ∈ Rn×m we define the Frobenius norm of A as ‖A‖F =

√∑
(i,j)∈[n]×[m]A

2
ij

and the max norm of A as ‖A‖max = maxi∈[n],j∈[m] |Aij |. For a matrix A ∈ Rn×m, we let
σ`(A) denote the `-th largest singular value of A. It is well known that the largest singular
value can be evaluated using the following.

σ1(A) = max
v∈Rm: ‖v‖2≤1

‖Av‖2 .

In addition, we state the following fact regarding the singular values.

I Fact 5. Let A ∈ Rn×m, and consider the singular values of A: σ1(A) ≥ . . . ≥ σmin{n,m}(A).
Then, for every 1 ≤ ` ≤ min{n,m}, σ`(A) ≤ ‖A‖F√

`
.

3 Spectral Decomposition Theorem

In this section we will prove the following decomposition theorem.

I Theorem 6 (Spectral decomposition, restatement of Theorem 4). For any matrix A ∈
[−L,L]n×m and γ ∈ (0, 1), there exists a decomposition A = Astr +Apsd with the following
properties for N =

√
nm:

1. Astr is structured in the sense that it is a block matrix with O
((

1
γ10

)3/γ2)
blocks, such

that the entries in each block are equal.
2. ‖Apsd‖2 ≤ 7γNL.
3. ‖Astr‖max ≤ 2

γ11L.

The above theorem will serve as a central tool in the analysis of our algorithms. The fact
that Astr is a block matrix with polylogarithmic number of blocks, such that the entries in
each block are equal, implies that by using polylogarithmic number of samples, we can query

APPROX/RANDOM 2018



17:6 Sublinear-Time Quadratic Minimization via Spectral Decomposition of Matrices

(with high probability) an entry from each of the blocks. In addition, the fact that Apsd has
a small spectral norm allows us to disregard it, which only paying a small cost in the error of
our approximation.

In order to prove the theorem, we introduce the following definition, two lemmas and a
claim.

I Definition 7. We say that a partition Q is a refinement of a partition P = {V1, . . . , Vp},
if Q is obtained from P, by splitting some sets Vi into one or more parts.

I Lemma 8. Given a matrix A ∈ [−L,L]n×m and γ ∈ (0, 1), there exists a block matrix

Astr ∈ Rn×m with O
((

1
γ10

)3/γ2)
blocks such that the entries in each block are equal and

‖A−Astr‖2 ≤ 7γNL, where N =
√
nm.

In order to prove Lemma 8, we will need to prove the following.

I Lemma 9. Given a matrix A ∈ [−L,L]n×m and γ ∈ (0, 1), let A′ =
∑
`:σ`≥γNL σ`u

`(v`)>.
Then, ‖A′‖max ≤ L

γ3 .

Proof. Assume that A has s singular values such that σ` ≥ γNL. For any ` ∈ [s], let
M` = σ`u

`(v`)>, and let B denote
∑
`: σ`<γNL σ`u

`(v`)>. Then, we can write A as,

A = σ1u1(v1)> + · · ·+ σsu
s(vs)>︸ ︷︷ ︸

A′

+
∑

`: σ`<γNL
σ`u

`(v`)> = M1 + · · ·+Ms +B .

Consider any ` ∈ [s], (i, j) ∈ [n]× [m], and let β`ij
def= |σ`u`iv`j |.

Let cAj denote the j-th column of the matrix A. So, cAj = cM1
j + · · ·+ cMs

j + cBj . For any
` ∈ [s], cM`

j is perpendicular to cBj and all {cMt
j }t such that t 6= `, and thus,

‖cAj ‖2 ≥ ‖c
M`
j ‖2 = ‖σ`u`v`j‖2 = σ`|v`j | .

Let rAi denote the i-th row of the matrix A. Then similarly, we have ‖rAi ‖2 ≥ σ`|u`i |, and it
follows that ‖cAj ‖2‖r

A
i ‖2 ≥ σ`β`ij .

On the other hand, since A ∈ [−L,L]n×m, we have ‖cAj ‖2 ≤
√
nL and ‖rAi ‖2 ≤

√
mL,

and therefore,

β`ij ≤
√
nmL2

σ`
≤
√
nmL2

γNL
= L

γ
.

By the fact that s ≤ 1
γ2 , we get that ‖A′‖max ≤ L

γ3 , which concludes the proof. J

With this lemma at hand, we are ready to prove Lemma 8.
Proof of Lemma 8: Recall that A can be written as,

A =
∑
`

σ`u
`(v`)> ,

where σ1 ≥ · · · ≥ σmin{n,m} ≥ 0 are the singular values of A and u1, . . . ,umin{n,m} ∈ Rn
and v1, . . . ,vmin{n,m} ∈ Rm are the corresponding left and right singular vectors. If we let
A′ be such that

A′ =
∑

`: σ`≥γNL
σ`u

`(v`)> ,
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then we have that ‖(A−A
′)x‖2

‖x‖2
≤ γNL for any x ∈ Rm.

Next we show the existence of Astr, which is a block matrix (with O
((

1
γ10

)3/γ2)
blocks),

such that Astr has the same value on every block. We construct Astr as follows.
Let ε = ε(γ) be determined later and let J = 1

γ2 . Let δn
def= ε

J
√
n
and T def= (Jε )3/2, and

partition the interval [0, 1] into buckets Bn1 , . . . , BnT , BnLarge such that

Bnt
def= [(t− 1)δn, tδn) ∀t ∈ [T ] and BnLarge

def= [
√
J/εn, 1] .

For every u` such that σ` ≥ γNL, we define a partition P`R = {P `R,1 . . . , P `R,T ,Σ`
R} of the

indices in [n] so that P `R,t = {i ∈ [n] | |u`i | ∈ Bnt } for each t ∈ [T ] and Σ`R = {i ∈ [n] | |u`i | ∈
BnLarge}. We eliminate emptysets from P`R if exist. Note that by the definition of Σ`

R we
have that |Σ`R| ≤ εn/J . Next, for every ` such that σ` ≥ γNL, we define û` as follows.

û`i =
{

0, if |u`i | ∈ BnLarge ,

δn(t− 1), if |u`i | ∈ Bnt for some t ∈ [T ] .
.

Next, let ΣR =
⋃
`:σ`≥γNL Σ`

R and let PR be a partition of [n] \ ΣR that refines all {P `R,t |
P `R,t 6= ∅} for which ` is such that σ` ≥ γNL.

Similarly define v̂` from v` by setting δm = ε
J
√
m
, and defining P`C = {P `C,1, . . . , P `C,T ,Σ`C}

analogously for each `. Let ΣC =
⋃
`:σ`≥γNL Σ`C and let PC be a partition of [m] \ ΣC that

refines all {P `C,t | P `C,t 6= ∅} for which ` is such that σ` ≥ γNL.
Define,

Astr def=
∑

`: σ`≥γNL
σ`û

`(v̂`)> and Apsd def= A−Astr.

By Fact 5 we have that σ` ≤ NL√
`

for all ` ≥ 1. Therefore, we can have at most

J = 1/γ2 indices such that σ` ≥ γNL. Thus, the partition PR satisfies |PR| ≤
((

J
ε

) 3
2γ2
)

=(
1
γ2ε

)(3/2γ2)
. Similarly, we have |PC | ≤

(
1
γ2ε

)(3/2γ2)
. Therefore, the resulting matrix is a

block matrix with O
((

1
γ2ε

) 3
γ2
)

many blocks, such that all the entries in each block are the

same. We refer to PR and PC the row partition of Astr and the column partition of Astr

respectively.
Next, we have that

‖Apsdx‖ = ‖(A−Astr)x‖22 ≤ ‖(A−A′)x‖
2
2 + ‖(A′ −Astr)x‖22

≤ γ2N2L2‖x‖22 + ‖(A′ −Astr)x‖22 .

Consider the “error” term ‖(A′ −Astr)x‖22.

‖(A′ −Astr)x‖22 ≤ ‖x‖
2
2

∑
(i,j)∈[n]×[m]

(
A′ij −Astr

ij

)2 = ‖x‖22

( ∑
(i,j)∈Σ̄R×Σ̄C

(
A′ij −Astr

ij

)2
+

∑
(i,j)∈(ΣR×Σ̄C)∪(Σ̄R×ΣC)

(
A′ij −Astr

ij

)2 +
∑

(i,j)∈ΣR×ΣC

(
A′ij −Astr

ij

)2)
,

where Σ̄R = [n] \ ΣR and Σ̄C = [m] \ ΣC .

APPROX/RANDOM 2018



17:8 Sublinear-Time Quadratic Minimization via Spectral Decomposition of Matrices

We analyze each of these terms separately. First, note that

(
A′ij −Astr

ij

)2 =

 ∑
`:σ`≥γNL

σ`(u`iv`j − û`i v̂`j)

2

.

So,

∑
(i,j)∈Σ̄R×Σ̄C

(
A′ij −Astr

ij

)2 =
∑

(i,j)∈Σ̄R×Σ̄C

 ∑
`:σ`≥γNL

σ`(u`iv`j − û`i v̂`j)

2

(∗)
≤

∑
(i,j)∈Σ̄R×Σ̄C

2
√
ε

N

∑
`:σ`≥γNL

σ`

2

(∗∗)
≤

∑
(i,j)∈Σ̄R×Σ̄C

(
2
√
ε

N
· 2NL

γ

)2

≤ 16εN2L2

γ2 .

Here, (∗) follows from the fact that for two indices i ∈ Σ̄R, j ∈ Σ̄C we have that û`i v̂`j =
(u`i ± δn)(v`j ± δm) ≤ u`iv`j ±

2
√
ε

N . (∗∗) follows from the fact that there can be at most 1/γ2

indices `, such that σ` ≥ γNL, and therefore

∑
`:σ`≥γNL

σ` ≤
1/γ2∑
`=1

σ` ≤
1/γ2∑
`=1

NL√
`
≤ 2NL

γ
. (3)

Next, we have that,∑
(i,j)∈(ΣR×Σ̄C)∪(Σ̄R×ΣC)

(
A′ij −Astr

ij

)2

=
∑

(i,j)∈(ΣR×Σ̄C)∪(Σ̄R×ΣC)

 ∑
`:σ`≥γNL

σ`(u`iv`j − û`i v̂`j)

2

(∗∗∗)=
∑

(i,j)∈(ΣR×Σ̄C)∪(Σ̄R×ΣC)

(
A′ij
)2 ≤ ∑

(i,j)∈(ΣR×Σ̄C)∪(Σ̄R×ΣC)

(
L

γ3

)2
≤ 2εN2L2

γ6 .

Here, (∗ ∗ ∗) follows from the fact that when one of the indices is in ΣR or ΣC we set the
corresponding entry in the rounded vector to 0. In addition, the last inequality follows from
the fact that when we remove the lower singular part of the matrix, we can only increase the
value by at most factor of 1/γ3 (see Lemma 9). Finally,

∑
(i,j)∈ΣR×ΣC

(
A′ij −Astr

ij

)2 =
∑

(i,j)∈ΣR×ΣC

 ∑
`:σ`≥γNL

σ`(u`iv`j − û`i v̂`j)

2

=
∑

(i,j)∈ΣR×ΣC

(
A′ij
)2 ≤ ε2N2L2

γ6

Combining all the three terms and setting ε = γ8 gives,

‖(A′ −Astr)x‖22 ≤ ‖x‖
2
2

(
16ε
γ2 + 2ε

γ6 + ε2

γ6

)
N2L2 ≤ 19γ2‖x‖22N

2L2.
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Therefore, we get that,

‖(A−Astr)x‖22 ≤ 2‖(A−A′)x‖22 + 2‖(A′ −Astr)x‖22
≤ 2(γ2N2L2‖x‖22 + 19γ2‖x‖22N

2L2) ≤ 40γ2‖x‖22N
2L2 ,

and the lemma follows. J
We are left with bounding the max norm of Astr.

I Claim 10. Given a matrix A ∈ [−L,L]n×m and γ ∈ (0, 1), let Astr ∈ Rn×m be the block
approximation matrix defined above. Then, ‖Astr‖max ≤ 2L

γ11

Proof. By the definition of Astr we have that |Astr
ij | = |

∑
`:σ`≥γNL σ`û

`
i v̂
`
j |. By the definition

of the rounding process, we have that for every i ∈ [n] we have that |û`i | ≤
√

J
εn = 1

γ5√n
(recall that J = 1/γ2 and ε = γ8). Similarly, for every j ∈ [m] we have that |v̂`j | ≤ 1

γ5√m .
Therefore,

|Astr
ij | =

∣∣∣∣∣∣
∑

`:σ`≥γNL
σ`û

`
i v̂
`
j

∣∣∣∣∣∣ ≤ 1
γ10N

∑
`:σ`≥γNL

σ` ≤
2L
γ11 ,

where the last inequality uses (3). J

Proof of Theorem 6: The proof follows directly from Lemma 8 and Claim 10. J

4 Dikernels and Sampling Lemmas

In this section we will formalize the idea that A|SR×SC is a good approximation of A when
SR and SC are uniformly random subsets of indices. (The proof for A|S , where S is uniformly
random subset of indices, is almost identical and we omit it.) We start by providing some
background on dikernels and their connection to matrices and then move on to proving our
sampling lemmas.

4.1 Dikernels and Matrices
We call a (measurable) function f : [0, 1]2 → R a dikernel. We can regard a dikernel as a
matrix whose index is specified by a real value in [0, 1]. For two functions f, g : [0, 1]→ R,
we define their inner product as 〈f, g〉 def=

∫ 1
0 f(x)g(x)dx. For a dikernel A : [0, 1]2 → R and

a function f : [0, 1]→ R, we define the function Af : [0, 1]→ R as (Af)(x) = 〈A(x, ·), f〉. In
addition, we define the spectral norm of A as ‖A‖2

def= supf : [0,1]→R
‖Af‖2
‖f‖2

, and the Frobenius

norm of A as ‖A‖F
def=
√∫ 1

0
∫ 1

0 A(x, y)2dxdy.
For an integer n ∈ N, let In1 = [0, 1

n ], and for every 1 < k ≤ n, let Ink = (k−1
n , kn ]. For

x ∈ [0, 1], we define in(x) as the unique integer k ∈ [n] such that x ∈ Ink .

I Definition 11. Given a matrix A ∈ Rn×m, we construct the corresponding dikernel A as
A(x, y) = Ain(x),im(y). In addition, given two sets of indices SR ⊆ [n] and SC ⊆ [m], when
we write A|SR×SC , we first extract the matrix A|SR×SC and then consider its corresponding
dikernel.

The following lemma shows that the spectral norms of A and A are essentially the same up
to normalization. The proof can be found in Appendix A.1.
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17:10 Sublinear-Time Quadratic Minimization via Spectral Decomposition of Matrices

I Lemma 12. Let A ∈ Rn×m be a matrix. Then, we have

max
v∈Rm

‖Av‖22
‖v‖22

= nm · sup
f : [0,1]→R

‖Af‖22
‖f‖22

.

I Corollary 13. Let A ∈ Rn×m be a matrix. Then,

‖A‖2 =
√
nm · ‖A‖2 .

Proof. The proof is immediate by the definition of the spectral norm and Lemma 12. J

I Definition 14. Let µ be a Lebesgue measure. A map π : [0, 1]→ [0, 1] is measure preserving
if the pre-image π−1(X) is measurable for every measurable set X and µ(π−1(X)) = µ(X).
A measure preserving bijection is a measure preserving map whose inverse map exists and
is also measurable. For a measure preserving bijection π and a dikernel A, we define the
dikernel π(A), as π(A)(x, y) = A(π(x), π(y)).

4.2 Sampling Lemmas
In this subsection, we will prove that given matrices A1, . . . , AT ∈ [−L,L]n×m, we obtain a
good approximation of their corresponding dikernels, by sampling a small number of elements.
The next lemma states that there is a way to “align” the sampled matrices with the original
matrices. We refer the reader to Appendix A.1 for the full proofs.

I Lemma 15. Given matrices A1, . . . , AT ∈ [−L,L]n×n and γ ∈ (0, 1), let Astr
1 , . . . , Astr

T

be the block approximation matrices as in Lemma 8. In addition, for t ∈ [T ], let PAtR =
{V At1 , . . . , V Atp } and PAtC = {V ′At1 , . . . , V ′Atq } be the row and column partitions of Astr

t (from
Lemma 8). Let SR be a set of size sR, generated by picking each element in [n] independently
with probability kR/n, and let SC be a set of size sC , generated by picking each element in
[m] independently with probability kC/m for some kR, kC > 0.

Then, there exists a measure preserving bijection π : [0, 1] → [0, 1] such that for every
t ∈ [T ]

E
SR,SC

[
‖Astr

t − π(Astr
t |SR×SC )‖2

]
= O

(
L

γ11 ·max
(√

pT/2

s
1/2
R

,

√
qT/2

s
1/2
C

))
.

In the following lemma we prove concentration around the mean.

I Lemma 16. Let γ > 0, and A1, . . . , AT ∈ [−L,L]n×m. Let SR be a set generated by picking
each element in [n] independently with probability kR/n and let SC be a set generated by
picking each element in [m] independently with probability kC/m for some kR, kC > 0. Then,
with probability at least 89/100 there exists a measure preserving bijection π : [0, 1]→ [0, 1]
such that for every t ∈ [T ],

‖At − π (At|SR×SC) ‖2 ≤ 210γLT + 10LT
(√

8 logn
kC

+
√

8 logm
kR

+
√

4 logn logm
kRkC

)

+O

(
LT

γ11

(
1
γ10

) 3T
4γ2

·max
(

1
k

1/4
R

,
1

k
1/4
C

))
,

where N =
√
nm.
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Algorithm 1 Minimization Algorithm(A, n, ε, k).
1: Let S ⊆ {1, 2, . . . , n} such that each index i is taken to S independently w.p k/n.
2: if |S| > 2k then
3: Abort
4: return minv∈R|S| ψ|S|,A|S ,d|S ,b|S (v).

5 Applications

5.1 Quadratic Function Minimization
In this section, we show that we can approximately solve quadratic function minimization
problems in polylogarithmic time.

Recall that we are given a matrix A ∈ Rn×n and vectors d, b ∈ Rn, and consider the
following quadratic function minimization problem:

min
v∈Rn

ψn,A,d,b(v), where ψn,A,d,b(v) = 〈v, Av〉+ n 〈v,diag(d)v〉+ n 〈b,v〉 . (4)

Here diag(d) ∈ Rn×n is a matrix whose diagonal entries are specified by d.
First, we describe our algorithm for minimizing quadratic functions. We first sample a set

of indices S ⊆ {1, 2, . . . , n} with each index included with probability k/n, where k is some
constant. If |S| is too large, we immediately stop the process by claiming that the algorithm
has failed. Otherwise, we solve the problem on A|S , d|S , b|S and then output the optimal
solution. The detail is given in Algorithm 1.

Due to our extensive use of dikernels in the analysis, we introduce a continuous version
of problem (4). The real valued function Ψn,A,d,b on function f : [0, 1]→ R is defined as

Ψn,A,d,b(f) = 〈f,Af〉+
〈
f2,D1

〉
+ 〈f,B1〉 ,

where D and B are the corresponding dikernels of d ·1> and b ·1> respectively, f2 : [0, 1]→ R
is a function such that f2(x) = f(x)2 for every x ∈ [0, 1] and 1 : [0, 1]→ R is the constant
function that has the value 1 everywhere.

In order to prove Theorem 1, we prove that the minimizations of ψn,A,d,b and Ψn,A,d,b

are essentially equivalent. The proof of the lemma can be found in Appendix A.2.

I Lemma 17. Let A ∈ Rn×n and b,d ∈ Rn. Then, for any r > 0

min
v:‖v‖2≤r

ψn,A,d,b(v) = n2 · inf
f :‖f‖2≤

r√
n

Ψn,A,d,b(f) .

With the above lemma, we are ready to prove our main result.
Proof of Theorem 1: By applying Chernoff bounds, we have that with probability at least
1− o(1), the size of S is at most 2k. As before, we apply Lemma 16 with γ = O(ε),

k = max
{
O

(
log2 n

ε2

)
,

(
1
ε

)O(1/ε2)
}
,

and SC = SR = S3. Then, with probability at least 2/3 there exists a measure preserving
bijection π : [0, 1]→ [0, 1] such that for any function f : [0, 1]→ R,

max
{∣∣∣ 〈f, (A− π(A|S))f〉

∣∣∣, ∣∣∣ 〈f, (D − π(D|S))f〉
∣∣∣, ∣∣∣ 〈f, (B − π(B|S))f〉

∣∣∣} ≤ εL

3 ‖f‖
2
2 .

3 We note that in this case, the sets SR and SC are dependent. However, the proof of Lemma 16 can be
easily modified to the case where the matrix is in [−L, L]n×n, where for this case SR = SC = S.
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17:12 Sublinear-Time Quadratic Minimization via Spectral Decomposition of Matrices

Algorithm 2 Minimization Algorithm Over a Ball(A, n, ε, k, r).
1: Let S ⊆ {1, 2, . . . , n} such that each index i is taken to S independently w.p k/n.
2: if |S| > 2k then
3: Abort
4: return min

‖v‖2≤
√
|S|
n r

ψ|S|,A|S ,d|S ,b|S (v).

Let R = max
{
‖ṽ∗‖2√
|S|
,
‖v∗‖2√

n

}
. Then, by using Lemma 17:

z̃∗ = min
v∈R|S|

ψ|S|,A|S ,d|S ,b|S (v) = min
v:‖v‖2≤R

√
|S|
ψ|S|,A|S ,d|S ,b|S (v)

= |S|2 · min
f :‖f‖2≤R

Ψ|S|,A|S ,d|S ,b|S (f)

= |S|2 · min
f :‖f‖2≤R

{
〈f, (π(A|S)−A) f〉+ 〈f,Af〉+

〈
f2, (π(D|S)−D) 1

〉
+
〈
f2,D1

〉
+ 〈f, (π(B|S)− B) 1〉+ 〈f,B1〉

}
≤ |S|2 · min

f :‖f‖2≤R

{
〈f,Af〉+

〈
f2,D1

〉
+ 〈f,B1〉 ± εL‖f‖22

}
≤ |S|2 · min

f :‖f‖2≤R
Ψn,A,d,b(f)± εL|S|2R2

= |S|
2

n2 · min
v:‖v‖2≤

√
nR
ψn,A,d,b(v)± εL|S|2R2

= |S|
2

n2 · min
v∈Rn

ψn,A,d,b(v)± εL|S|2R2 = |S|
2

n2 z∗ ± εL|S|2R2 .

By rearranging the inequality and applying the union bound the theorem follows. J
As a corollary we show that we can obtain an approximation algorithm for minimizing a

quadratic function over a ball of radius r with better error bounds compared than the one
obtained by Hayashi and Yoshida [10]. The proof of correctness is similar to the proof of
Theorem 1.

I Corollary 18 (Restatement of Theorem 2). Let v∗ and z∗ be an optimal solution and optimal
value, respectively, of min‖v‖2≤r ψn,A,d,b(v). Let ε > 0 and let S be a random set generated
as in Algorithm 2 with

k = max
{
O

(
log2 n

ε2

)
,

(
1
ε

)O(1/ε2)
}
.

Then, we have that with probability at least 2/3, the following hold: Let ṽ∗ and z̃∗ be an
optimal solution and the optimal value, respectively, of the problem

min
‖v‖2≤

√
|S|
n r

ψ|S|,A|S ,d|S ,b|S (v) .

Then,∣∣∣∣ 1
|S|2

z̃∗ − 1
n2 z

∗
∣∣∣∣ ≤ εLr2

n
,

where L = max{maxi,j |Aij |,maxi |di|,maxi |bi|}.
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A Omitted Technical Lemmas and Proofs

A.1 Dikernels and Sampling Lemmas

Proof of Lemma 12: Before starting the proof we introduce some notations and an important
observation. We note that supf :[0,1]→R

‖Af‖2
2

‖f‖2
2

has a minimizer, since the objective function is
weakly continuous and we may assume that ‖f‖2 ≤ 1 which is weakly compact.

For every x ∈ [0, 1] and j ∈ [m], we let A(x, Imj ) = Ain(x)j . Also for every (i, j) ∈ [n]×[m],
we let A(Ini , Imj ) = Aij .

We start by showing that maxv∈Rm
‖Av‖2

2
‖v‖2

2
≤ nm · supf :[0,1]→R

‖Af‖2
2

‖f‖2
2
. Given a vector

v ∈ Rm, we define the function f : [0, 1]→ R as f(x) = vim(x). Then,

‖Af‖22 =
∫ 1

0

(∫ 1

0
A(x, y)f(y)dy

)2

dx =
∫ 1

0

∑
j∈[m]

∫
Im
j

A(x, y)f(y)dy

2

dx

=
∫ 1

0

 1
m

∑
j∈[m]

A(x, Imj )vj

2

dx = 1
n

∑
i∈[n]

 1
m

∑
j∈[m]

A(Ini , Imj )vj

2

= 1
n

∑
i∈[n]

 1
m

∑
j∈[m]

Aijvj

2

= 1
nm2 ‖Av‖22 .

In addition,

‖f‖22 =
∫ 1

0
f(x)2dx =

∑
j∈[m]

∫
Im
j

f(x)2dx = 1
m

∑
j∈[m]

v2
j = 1

m
‖v‖22 .

Next, we will prove that maxv∈Rm
‖Av‖2

2
‖v‖2

2
≥ nm · supf :[0,1]→R

‖Af‖2
2

‖f‖2
2
. Let f : [0, 1]→ R be

a measurable function. Then, for any x ∈ [0, 1], consider the partial derivative,

∂

∂f(x)
‖Af‖22
‖f‖22

=
‖f‖22 ·

∂
∂f(x)‖Af‖

2
2 − ‖Af‖

2
2 ·

∂
∂f(x)‖f‖

2
2

‖f‖42
.

Note that,

∂

∂f(x)‖Af‖
2
2 = ∂

∂f(x) 〈Af,Af〉 = ∂

∂f(x) 〈f, (A
∗A)f〉 ,

where A∗(x, y) = A∗(y, x). So, forM = A∗A, we have

∂

∂f(x)‖Af‖
2
2 = ∂

∂f(x) 〈f,Mf〉

=
∑
j∈[m]

∫
Im
j

M(Imj , im(x))f(y)dy +
∑
j∈[m]

∫
Im
j

M(im(x), Imj )f(y)dy .
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Therefore,

∂

∂f(x)
‖Af‖22
‖f‖22

=
‖f‖22

(∑
j∈[m]

∫
Im
j
M(Imj , im(x))f(y)dy +

∑
j∈[m]

∫
Im
j
M(in(x), Imj )f(y)dy

)
‖f‖42

−
2‖Af‖22 · f(x)
‖f‖42

.

Consider the optimal solution f∗. By the form of the partial derivative, it holds that
f∗(z) = f∗(z′) for almost all z, z′ ∈ [0, 1] such that in(z) = in(z′). That is, f∗ is almost
constant on each of the intervals Im1 , . . . , Imm . Hence, we can define v ∈ Rm as vj = f∗(x),
where x is the dominant value in Imj . Then,

‖Av‖22 =
∑
i∈[n]

∑
j∈[m]

Aijvj

2

= nm2
∫ 1

0

∑
j∈[m]

∫
Im
j

A(x, Imj )f∗(y)dy

2

dx

= nm2
∫ 1

0

(∫ 1

0
A(x, y)f∗(y)dy

)2

dx = nm2‖Af∗‖22

Moreover,

‖f∗‖22 =
∫ 1

0
fN (x)2dx =

∑
j∈[m]

∫
Im
j

f∗(x)2dx = 1
m

∑
j∈[m]

v2
j

Therefore, we have maxv∈Rm ‖Av‖2
2

‖v‖2
2
≥ nm · supf :[0,1]→R

‖Af‖2
2

‖f‖2
2
. J

Proof of Lemma 15: We first note that for any t ∈ [T ], any refinement of the row or
column partitions of Astr

t will give the same block approximation matrix Astr
t . Therefore, let

PR = {V R1 , . . . , V RP } be a partition which refines PA1
R , . . . ,PATR and its size is P = O(pT ).

Similarly, let PC = {V C1 , . . . , V CQ } be a partition which refines PA1
C , . . . ,PATC and its size is

Q = O(qT ).
We denote by zRi the number of elements of SR that falls into the set V Ri . Then,

E
SR

[zRi ] = sR · µ(V Ri ) and Var[zRi ] = µ(V Ri )(1− µ(V Ri ))sR .

Similarly, we denote by zCj the number of elements of SC that falls into the set V Cj . Then,

E
SC

[zCj ] = sC · µ(V Cj ) and Var[zCj ] = µ(V Cj )(1− µ(V Cj ))sC .

We next construct a measure preserving bijection. We define the following two partitions
of the [0, 1] interval.

Let {V R′1 , . . . , V R
′

P } be a partition such that µ(V R′i ) = zRi /sR and µ(V Ri ∩ V R
′

i ) =
min(µ(V Ri ), zRi /sR), and let {V C′1 , . . . , V C

′

Q } be a partition such that µ(V C′j ) = zCj /sC and
µ(V Cj ∩ V C

′

j ) = min(µ(V Cj ), zCj /sC). We construct the dikernel Y : [0, 1]2 → R such that
the value of Y on V R′i × V C

′

j is the same as the value of Astr on V Ri × V Cj . Therefore, the
dikernel Y agrees with Astr on the set Y =

⋃
(i,j)∈[P ]×[Q](V Ri ∩ V R

′

i )× (V Cj ∩ V C
′

j ). Then,
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there exists a bijection π such that π(Astr|SR×SC ) = Y. Then,

1− µ(Y ) ≤ 1−

∑
i∈[P ]

min
(
µ(V Ri ), z

R
i

sR

)∑
j∈[Q]

min
(
µ(V Cj ),

zCj
sC

)
= 1−

1− 1
2
∑
i∈[P ]

∣∣∣∣µ(V Ri )− zRi
sR

∣∣∣∣
1− 1

2
∑
j∈[Q]

∣∣∣∣∣µ(V Cj )−
zCj
sC

∣∣∣∣∣


≤ max


P ∑

i∈[P ]

(
µ(V Ri )− zRi

sR

)2
1/2

,

Q ∑
j∈[Q]

(
µ(V Cj )−

zCj
sC

)2
1/2

 .

Therefore, we have that

(1− µ(Y ))2 ≤ max

P ∑
i∈[P ]

(
µ(V Ri )− zRi

sR

)2

, Q
∑
j∈[Q]

(
µ(V Cj )−

zCj
sC

)2
 .

Taking expectation (over the choice of SR and SC) yields,

E
SR,SC

[1− µ(Y )] ≤ max
(√

Q

sC
,

√
P

sR

)
.

Let U = Astr − Y and consider a corresponding matrix U . U is an N ×M matrix,
where N = lcm(n ·µ(V R1 4V R

′

1 ), . . . , n ·µ(V RP 4V R
′

P )) and M = lcm(m ·µ(V C1 4V C
′

1 ), . . . ,m ·
µ(V CQ4V C

′

Q )). By Claim 10, the absolute value of an entry in the matrix Astr is bounded by
2
γ11L, and thus the absolute value of an entry in U is bounded by 4

γ11L.
Then,

E
SR,SC

[‖U‖22] ≤ E
SR,SC

[‖U‖2F ] = E
SR,SC

 N∑
i=1

M∑
j=1

U2
ij


≤ E
SR,SC

[
NM(1− µ(Y )) · max

(i,j)∈[N ]×[M ]
(U)2

ij

]
≤ NM · max

(i,j)∈[N ]×[M ]
U2
ij · E

SR,SC
[1− µ(Y )]

≤ NM ·
(

4
γ11

)2
L2 ·max

(√
Q

sC
,

√
P

sR

)
.

Using Corollary 13 we get E
SR,SC

[‖U‖2] ≤ 4L
γ11 max

(√
pT/2

s
1/2
R

,

√
qT/2

s
1/2
C

)
, and the lemma

follows. J

In the remaining part of the subsection we will prove Lemma 16. In order to prove the
lemma we introduce the following result regarding a random submatrix from [22] section
5.2.2.

I Lemma 19. Given a matrix A ∈ [−L,L]n×m, let P = diag(χ1, . . . , χn) be the diagonal
matrix where {χi}’s are Bernoulli(kR/n) random variables for kR > 0. In addition, let
R = diag(ξ1, . . . , ξm) be the diagonal matrix where {ξj}’s are Bernoulli(kC/m) random
variables for kC > 0. Then,

E[‖PAR‖22] ≤ 3kR · kC
nm

‖A‖22 + 2kRL2 logn+ 2kCL2 logm+ L2 logn logm .
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The above lemma shows that a random submatrix of size roughly kR×kC gets its “fair share”
of the spectral norm of A.
Proof of Lemma 16: Since SR and SC are set of indices generated by choosing each index
to SR (or SC) with probability kR/n (kC/m), we have that with probability at least 99/100,

|SR| ≥ kR/2 and |SC | ≥ kC/2 .

We henceforth condition on that.
For any measure preserving bijection π : [0, 1]→ [0, 1], and t ∈ [T ] we have

E
SR,SC

[‖At − π(At|SR×SC)‖2] ≤ ‖At −Astr
t ‖2 + E

SR,SC

[
‖Astr

t − π(Astr
t |SR×SC)‖2

]
+ E
SR,SC

[
‖π(Astr

t |SR×SC)− π(At|SR×SC)‖2
]
.

Where Astr
t is the matrix obtained by Lemma 8.

By Lemma 8 and Corollary 13, we have that for any t ∈ [T ]

‖At −Astr
t ‖2 ≤ 7γL .

By the facts that |SR| ≥ kR/2, |SC | ≥ kC/2, p = O

((
1
γ10

)3/γ2)
and q = O

((
1
γ10

)3/γ2)
,

Lemma 15 yields that for any t ∈ [T ]:

E
SR,SC

[
‖Astr

t − π(Astr
t |SR×SC )‖2

]
= O

(
L

γ11

(
1
γ10

) 3T
4γ2

·max
(

1
k

1/4
R

,
1

k
1/4
C

))
We are left with bounding E

SR,SC
[‖π(Astr

t |SR×SC )− π(At|SR×SC )‖2]. We apply Lemma 19

on (Astr
t −At)|SR×SC to get

E
SR,SC

[
‖(Astr

t −At)|SR×SC‖
2
2

]
≤ 3kC · kR

nm
‖Astr −A‖22 + 2L2kR logn+ 2L2kC logm+ L2 logn logm

≤ 3kC · kR
nm

· 16γ2L2nm+ 2L2kR logn+ 2L2kC logm+ L2 logn logm

≤ 48L2γ2kR · kC + 2L2kR logn+ 2L2kC logm+ L2 logn logm ,

which implies that,

E
SR,SC

[
‖(Astr

t −At)|SR×SC‖2
]

≤ 7γL
√
kC · kR + L

√
2kR logn+ L

√
2kC logm+ L

√
logm logn .

By applying Corollary 13 and using the fact that the dimension of (Astr −A)|SR×SC at least
kR · kC/4, we get

E
SR,SC

[
‖Astr

t |SR×SC −At|SR×SC‖2
]
≤ 14γL+L

√
8 logn
kc

+L

√
8 logm
kR

+L

√
4 logm logn
kR · kC

.

Putting everything together,

E
SR,SC

[‖At − π(At|SR×SC )‖2] ≤ 21γL+ L

(√
8 logn
kC

+
√

8 logm
kR

+
√

4 logn logm
kRkC

)

+O

(
L

γ11

(
1
γ10

) 3T
4γ2

·max
(

1
k

1/4
R

,
1

k
1/4
C

))
.
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By Markov inequality, with probability at least 9/10T ,

‖At − π(At|SR×SC)‖2 ≤ 210γLT + 10LT
(√

8 logn
kC

+
√

8 logm
kR

+
√

4 logn logm
kRkC

)

+O

(
LT

γ11

(
1
γ10

) 3T
4γ2

·max
(

1
k

1/4
R

,
1

k
1/4
C

))
.

By using a union bound the lemma follows. J

A.2 Quadratic Function Minimization

Proof of Lemma 17: In contrast to the proof of Lemma 12, in this case we have to deal
with constrained optimization, and therefore must consider the KKT optimality conditions.
We start by showing that minv:‖v‖2≤r ψn,A,d,b(v) ≥ n2 · inff :‖f‖2≤

r√
n

Ψn,A,d,b(f). Given a
vector v ∈ Rn such that ‖v‖2 ≤ r, we define the function f : [0, 1] → R as f(x) = vin(x).
Then,

〈f,Af〉 =
∑
i,j∈[n]

∫
In
i

∫
In
j

Aijf(x)f(y)dxdy = 1
n2 〈v, Av〉

〈
f2,D1

〉
=
∑
i,j∈[n]

∫
In
i

∫
In
j

dif(x)2dxdy = 1
n
〈v,diag(d)v〉

〈f,B1〉 =
∑
i,j∈[n]

∫
In
i

∫
In
j

bif(x)dxdy = 1
n
〈v, b〉

In addition,

‖f‖22 =
∫ 1

0
f(x)2dx =

∑
j∈[n]

∫
In
j

f(x)2dx = 1
n

∑
j∈[n]

v2
j = 1

n
‖v‖22 ≤

r2

n
.

Next, we show that minv:‖v‖2≤r ψn,A,d,b(v) ≤ n2 ·inff :‖f‖2≤
r√
n

Ψn,A,d,b(f). First, we note
that the latter problem has a minimizer f : [0, 1]→ R because it is weakly continuous and
coercive (See, e.g., [21]). According to the generalized KKT conditions (see, e.g., Section 9.4
of [15]), there exists λ such that:

(Stationarity) ∂
∂f∗(x)Ψn,A,d,b(f∗(x))− λ ∂

∂f∗(x) (‖f∗‖2 − r/
√
n) = 0 for almost all x.

(Primal feasibility) ‖f∗‖2 − r/
√
n ≤ 0

(Complementary slackness) λ · (‖f∗‖2 − r/
√
n) = 0

The stationarity condition yields:

∂

∂f∗(x)Ψn,A,d,b(f∗(x))− λ ∂

∂f∗(x) (‖f∗‖2 − r/
√
n)

=
∑
i∈n

∫
In
i

Aiin(x)f
∗(y)dy +

∑
j∈n

∫
In
j

Ain(x)jf
∗(y)dy + 2din(x)f

∗(x) + bin(x) − 2λf∗(x) ,

By the form of the partial derivatives, f∗(z) = f∗(z′) for almost all z, z′ ∈ [0, 1] such that
in(z) = in(z′). That is, f∗ is almost constant on each of the intervals In1 , . . . , Inn . Therefore,
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we define v ∈ Rn as vj = f∗(x), where x is the dominant value in Inj . Then,

〈v, Av〉 =
∑
i,j∈[n]

Aijvivj = n2
∑
i,j∈[n]

∫
In
i

∫
In
j

Aijf
∗(x)f∗(y)dxdy = n2 〈f∗,Af∗〉 .

〈v,diag(d)v〉 =
∑
i∈[n]

div
2
i = n

∑
i∈[n]

∫
In
i

dif
∗(x)2dx = n

〈
(f∗)2,D1

〉
.

〈v, b〉 =
∑
i∈[n]

bivi = n
∑
i∈[n]

∫
In
i

bif
∗(x)dx = n 〈f∗,B1〉 .

In addition, ‖f∗‖22 =
∫ 1

0 f
∗(x)2dx =

∑
j∈[n]

∫
In
j
f∗(x)2dx = 1

n‖v‖
2
2 ≤

r2

n .

Hence, we get that

min
v:‖v‖2≤r

ψn,A,d,b(v) ≤ n2 · inf
f :‖f‖2≤

r√
n

Ψn,A,d,b(f) ,

and the lemma follows. J
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