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—— Abstract
In this work, we study the trade-off between the running time of approximation algorithms
and their approximation guarantees. By leveraging a structure of the “hard” instances of the
Arora-Rao-Vazirani lemma [6, 42], we show that the Sum-of-Squares hierarchy can be adapted to
provide “fast”, but still exponential time, approximation algorithms for several problems in the
regime where they are believed to be NP-hard. Specifically, our framework yields the following
algorithms; here n denote the number of vertices of the graph and r can be any positive real

number greater than 1 (possibly depending on n).
1

Al(2-— W)—approximation algorithm for Vertex Cover that runs in exp (#) n°M time.
An O(r)-approximation algorithms for Uniform Sparsest Cut and Balanced Separator that
runs in exp (2%) n®M time.
Our algorithm for Vertex Cover improves upon Bansal et al.’s algorithm [9] which achieves
(2 — ﬁ)-approximation in time exp (%) n®M). For Uniform Sparsest Cut and Balanced Sep-
arator, our algorithms improve upon O(r)-approximation exp (2%) nPW_time algorithms that
follow from a work of Charikar et al. [17].
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1 Introduction

Approximation algorithms and fast (sub)exponential time exact algorithms are among the
two most popular approaches employed to tackle NP-hard problems. While both have had
their fair share of successes, they seem to hit roadblocks for a number of reasons; the PCP
theorem [7, 5] and the theory of hardness of approximation developed from it have established,
for many optimization problems, that trivial algorithms are the best one could hope for (in
polynomial time). On the other hand, the Exponential Time Hypothesis (ETH) [30, 31] and
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the fine-grained reductions surrounding it have demonstrated that “brute force” algorithms
are, or at least close to, the fastest possible for numerous natural problems.

These barriers have led to studies in the cross-fertilization between the two fields, in
which one attempts to apply both techniques simultaneously to overcome known lower
bounds. Generally speaking, these works study the trade-offs between the running time of
the algorithms and the approximation ratio. In other words, a typical question arising here
is: what is the best running time for an algorithm with a given approximation ratio 77

Optimization problems often admit natural “limited brute force” approximation algorithms
that use brute force to find the optimal solution restricted to a subset of variables and then
extend this to a whole solution. Similar to the study of fast exact algorithms for which a
general motivating question is whether one can gain a noticeable speedup over “brute force”,
the analogous question when dealing with approximation algorithms is whether one can do
significantly better than these limited brute force algorithms.

For example, let us consider the E3SAT problem, which is to determine whether a given
3CNF formula is satisfiable. The brute force (exact) algorithm runs in 20" time, while ETH
asserts that it requires 22(") time to solve the problem. The optimization version of E3SAT
is the Max E3SAT problem, where the goal is to find an assignment that satisfies as many
clauses as possible. On the purely approximation front, a trivial algorithm that assigns every
variable uniformly independently at random gives 7/8-approximation for Max E3SAT, while
Hastad’s seminal work [29] established NP-hardness for obtaining (7/8 + €)-approximation
for any constant £ > 0. The “limited brute force” algorithm for Max E3SAT chooses a
subset of O(en) variables, enumerates all possible assignments to those variables and picks
values of the remaining variables randomly; this achieves (7/8 4 ¢)-approximation in time
20(en) - Interestingly, it is known that running time of 292(Pel¥(€)7) js pecessary to gain a
(7/8 + ¢)-approximation if one uses Sum-of-Squares relaxations [26, 53, 40], which gives some
evidence that the running time of “limited brute force” (7/8 + ¢) approximation algorithms
for Max E3SAT are close to best possible.

In contrast to Max E3SAT, one can do much better than “limited brute force” for Unique
Games. Specifically, Arora et al. [3] show that one can satisfy an e fraction of clauses in a
(1—¢)-satisfiable instance of Unique Games in time 2"*/¢*P(1/€) ' a significant improvement over
the trivial 29(¢™) time “limited brute force” algorithm. This algorithm was later improved
by the celebrated algorithm of Arora, Barak and Steurer [2] that runs in time gn”

A number of approximation problems, such as (2 — €)-approximation of Vertex Cover [38,
10], (0.878 - + ) approximation of Max Cut [35], and constant approximation of Non-
uniform Sparsest Cut [18, 39] are known to be at least as hard as Unique Games, but are
not known to be equivalent to Unique Games. If they were equivalent, the subexponential
algorithm of [2] would also extend to these other problems. It is then natural to ask whether
these problems admit subexponential time algorithms, or at least “better than brute force”
algorithms. Indeed, attempts have been made to design such algorithms [2, 27], although
these algorithms only achieve significant speed-up for specific classes of instances, not all
worst case instances.

Recently, Bansal et al. [9] presented a “better than brute force” algorithm for Vertex
Cover, which achieve a (2 — 1/O(r))-approximation in time 2°("/7"). Note that the trade-off
between approximation and running time is more analogous to the [3] algorithm for Unique
Games than with the “limited brute force” algorithm for Max 3ESAT discussed above.

The algorithm of Bansal et al. is partially combinatorial and is based on a reduction
to the Vertex Cover problem in bounded-degree graphs, for which better approximation
algorithms are known compared to general graphs. Curiously, the work of Bansal et al. does
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not subsume the best known polynomial time algorithm for vertex cover: Karakostas [32]
Q)
\/logn

approximation ratio, but if one set r := /logn in the algorithm of Bansal et al. one does

shows that there is a polynomial time algorithm for vertex cover that achieves a | 2 —

not get a polynomial running time.

This overview raises a number of interesting questions: is it possible to replicate, or
improve, the vertex cover approximation of Bansal et al. [9] using Sum-of-Square relaxations?
A positive result would show that, in a precise sense, (7/8 + ¢) approximation of Max 3SAT
is “harder” than (2 — ¢) approximation for Vertex Cover (since the former requires poly(e) - n
rounds while the latter would be achievable with n/exp(1/¢) rounds). Is it possible to have a
“better than brute force” approximation algorithm for vertex cover that recovers Karakostas’s
algorithm as a special case? Is it possible to do the same for other problems that are known to
be Unique-Games-hard but not NP-hard, such as constant-factor approximation of balanced
separator?

1.1 Our Results

In this work, we answer the above questions affirmatively by designing “fast” exponential time
approximation algorithms for Vertex Cover, Uniform Sparsest Cut and (Uniform) Balanced
Separator. For Vertex Cover, our algorithm gives (2 — 1/0(r))-approximation in time
exp(n/ 27’2)710(1) where n is the number of vertices in the input graph and r is a parameter
that can be any real number at least one (and can depend on n). This improves upon
the aforementioned recent algorithm of Bansal et al. [9] which, for a similar approximation
ratio, runs in time exp(n/r")n®®). For the other two problems, our algorithms give O(r)-
approximation in the same running time, which improves upon a known O(r)-approximation
algorithms with running time exp(n/2")n®™) that follow from [17]:

» Theorem 1 (Main Theorem). For any r > 1, there are exp(n/2" )n®® -time (2 —1/0(r))-
approzimation algorithm for Vertex Cover on n-vertexr graphs, and, exp(n/2"2)no(1)-time
O(r)-approxzimation algorithms for Uniform Sparsest Cut and Balanced Separator.

We remark that, when we take r = Cy/logn for a sufficiently large constant C', our
algorithms coincide with the best polynomial time algorithms known for all three problems [32,
6.

1.2 Other Related Works

To prove Theorem 1, we use the Sum-of-Square relaxations of the problems and employ the
conditioning framework from [13, 52] together with the main structural lemma from Arora,
Rao and Vazirani’s work [6]. We will describe how these parts fit together in Section 2.
Before we do so, let us briefly discuss some related works not yet mentioned.

Sum-of-Square Relaxation and the Conditioning Framework. The Sum-of-Square (SoS)
algorithm [47, 49, 41] is a generic yet powerful meta-algorithm that can be utilized to
any polynomial optimization problems. The approach has found numerous applications in
both continuous and combinatorial optimization problems. Most relevant to our work is
the conditioning framework developed in [13, 52]. Barak et al. [13] used it to provide an
algorithm for Unique Games with similar guarantee to [2], while Raghavendra and Tan [52]
used the technique to give improved approximation algorithms for CSPs with cardinality
constraints. A high-level overview of this framework is given in Sections 2.2 and 2.3.
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Approximability of Vertex Cover, Sparsest Cut and Balanced Separator. All three prob-
lems studied in our work are very well studied in the field of approximation algorithms and
hardness of approximation. For Vertex Cover, the greedy 2-approximation algorithm has been
known since the 70’s (see e.g. [25]). Better (2 — Q(loil%))—approximation algorithms were
independently discovered in [11] and [45]. These were finally improved by Karakostas [32]
who used the ARV Structural Theorem to provide a (2 — £2(1/+/log n))-approximation for
the problem. On the lower bound side, Hastad [29] show that (7/6 — ¢)-approximation for
Vertex Cover is NP-hard. The ratio was improved in [21] to 1.36. The line of works that very
recently obtained the proof of the (imperfect) 2-to-1 game conjecture [36, 19, 20, 37] also yield
NP-hardness of (v/2 — ¢)-approximate Vertex Cover as a byproduct. On the other hand, the
Unique Games Conjecture (UGC) [33] implies that approximating Vertex Cover to within a
factor (2 —€) is NP-hard [38, 10]. We remark here that only Hastad reduction (together with
Moshkovitz-Raz PCP [46]) implies an almost exponential lower bond in terms of the running
time, assuming ETH. Putting it differently, it could be the case that Vertex Cover can be
approximated to within a factor 1.5 in time say 20(vV™) | without refuting any complexity
conjectures or hypotheses mentioned here. Indeed, the question of whether a subexponential
time (2 — e)-approximation algorithm for Vertex Cover exists for some constant € > 0 was
listed as an “interesting” open question in [2], and it remains so even after our work.

As for (Uniform) Sparsest Cut and Balanced Separator, they were both studied by
Leighton and Rao who gave O(logn)-approximation algorithms for the problems [43]. The
ratio was improved in [6] to O(y/Iogn). In terms of hardness of approximation, these problems
are not known to be NP-hard or even UGC-hard to approximate to even just 1.001 factor.
(In contrast, the non-uniform versions of both problems are hard to approximate under
UGC [18, 39].) Fortunately, inapproximability results of Sparsest Cut and Balanced Separator
are known under stronger assumptions [22, 34, 51]. Specifically, Raghavendra et al. [51]
shows that both problems are hard to approximate to any constant factor under the Small Set
Expansion Hypothesis (SSEH) [50]. While it is not known whether SSEH follows from UGC,
they are similar in many aspects, and indeed subexponential time algorithms for Unique
Games [2, 13] also work for the Small Set Expansion problem. This means, for example, that
there could be an O(1)-approximation algorithm for both problems in subexponential time
without contradicting with any of the conjectures. Whether such algorithm exists remains
an intriguing open question.

Fast Exponential Time Approximation Algorithms. As mentioned earlier, Bansal et al. [9]
recently gave a “better than brute force” approximation algorithm for Vertex Cover. Their
technique is to first observe that we can use branch-and-bound on the high-degree vertices;
once only the low-degree vertices are left, they use Halperin’s (polynomial time) approximation
algorithm for Vertex Cover on bounded degree graphs [28] to obtain a good approximation.
This approach is totally different than ours, and, given that the only way known to obtain
(2 — Q(1/+/Togn))-approximation in polynomial time is via the ARV Theorem, it is unlikely
that their approach can be improved to achieve similar trade-off as ours.

[9] is not the first work that gives exponential time approximation algorithms for Vertex
Cover. Prior to their work, Bourgeois et al. [15] gives a (2—1/O(r))-approximation exp(n/r)-
time algorithm for Vertex Cover; this is indeed a certain variant of the “limited brute force”
algorithm. Furthermore, Bansal et al. [9] remarked in their manuscript that Williams and
Yu have also independently come up with algorithms with similar guarantees to theirs, but,
to the best of our knowledge, Williams and Yu’s work is not yet made publicly available.

For Sparsest Cut and Balanced Separator, it is possible to derive O(r)-approximation
algorithms that run in exp(n/2")-time from a work of Charikar et al. [17]. In particular, it
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was shown in [17] that, for any metric space of n elements, if every subset of n/2" elements
can be embedded isometrically into ¢1, then the whole space can be embedded into ¢; with
distortion O(r). Since d-level of Sherali-Adams relaxations for both problems ensure that
every d-size subset of the corresponding distance metric space can be embedded isometrically
into £1, (n/2")-level of Sherali-Adams relaxations, which can be solved in exp(n/2%")) time,
give O(r)-approximation for both problems.

Organization. In the next section, we describe the overview of our algorithms. Then,
in Section 3, we formalize the notations and state some preliminaries. The main lemma
regarding conditioned SoS solution and its structure is stated in Section 4 (and proved in
the appendix). This lemma is subsequently used in all our algorithms which are summarized
in Section 5. We conclude our paper with several open questions in Section 6.

2 Overview of Technique

Our algorithms follow the “conditioning” framework developed in [13, 52]. In fact, our
algorithms are very simple provided the tools from this line of work, and the ARV structural
theorem from [6, 42]. To describe the ideas behind our algorithm, we will first briefly explain
the ARV structural theorem and how conditioning works with Sum-of-Squares hierarchy in
the next two subsections. Then, in the final subsection of this section, we describe the main
insight behind our algorithms. For the ease of explaining the main ideas, we will sometimes
be informal in this section; all algorithms and proofs will be formalized in the sequel.

Due to space constraint, we will focus only on the ¢-Balanced Separator problem; the
algorithms for the two other problems can be found in the full version. In the c-Balanced
Separator problem, we are given a graph G = (V, E) and the goal is to find a partition of V'
into Sy and S; = V' \ Sy that minimizes the number of edges across the cut (Sp, S1) while
also ensuring that |Spl,|S1| = ¢'n for some constant ¢’ € (0, ¢) where n = |V|. Note that the
approximation ratio is the ratio between the number of edges cut by the solution and the
optimal under the condition |Sy|,|S1| = en. (That is, this is a pseudo approximation rather
than a true approximation; this is also the notion used in previous works [43, 6].) For the
purpose of exposition, we focus only on the case where ¢ = 1/3.

2.1 The ARV Structural Theorem

The geometric relaxation used in [6] embeds each vertex i € V into a point v; € R? such
that [|v;]l2 = 1. For a partition (Sp,S1), the intended solution is v; = vy if i € Sy and
v; = —uvy otherwise, where vy is some unit vector. As a result, the objective function
here is }2; i ep 1||v; — v;]13, and the cardinality condition |So|, |S1| > n/3 is enforced by
dijev lvi— v;||3 > 8n/9. Furthermore, Arora et al. [6] also employ the triangle inequality:
lvi —vil|13 < |lvi — vll3 + |log — v;]|3 for all 4, j, k € V. In other words, this relaxation can
be written as follows.

minimize 1 V; — U 2 1
IR 1)
subject to Z v — v;]13 = 8n/9 (2)
i,j€[n]
lvill3 =1 VieV (3)
lvi =51l < lloi = vkll3 + [lox — ;13 Vi, j,keV (4)

APPROX/RANDOM 2018
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Note here that the above relaxation can be phrased as a semidefinite program and hence
can be solved to arbitrarily accuracy in polynomial time. The key insight shown by Arora
et al. is that, given a solution {v;};cv to the above problem, one can find two sets of vertices
T, T’ that are (1/+/logn) apart from each other, as stated below. Note that this version is
in fact from [42]; the original theorem of [6] has a worst parameter with A = Q((logn)?/?).

» Theorem 2 (ARV Structural Theorem [6, 42]). Let {v;}icv be any vectors in R? satisfy-
ing (2), (3), (4). There exist T,T' C V each of size Q(n) such that, for every i € T and
JeT, lvi—vill3 = A =Q(1/ylogn). Moreover, such sets can be found in randomized
polynomial time.

Note that, given the above theorem, it is easy to arrive at the Q(1/+/log n)-approximation
algorithm for balanced separator. In particular, we can pick a number 6 uniformly at random
from [0, A) and then output So = {i € V | 3j € T, ||v; — v;||3 < 0} and S; =V \ Sp. It is
easy to check that the probability that each edge (i,j) € E is cut is at most ||v; — v;[|3/A =
O(y/Iogn- |lv; —v;||3). Moreover, we have |Sp| = |T'| > Q(n) and |S1| > |T"| > Q(n), meaning
that we have arrived at an O(y/logn)-approximate solution for Balanced Separator.

An interesting aspect of the proof of [42] is that the bound on A can be improved if the
solution {v;};ey is “hollow” in the following sense: for every i € V, the ball of radius® 0.1
around ¢ contains few other vectors v;’s. In particular, if there are only m such v;’s, then A
can be made Q(1/y/logm), instead of Q(1/4/logn) in the above version. We will indeed use
this more fine-grained version in our algorithms. To the best of our knowledge, this version
of the theorem has not yet been used in other applications of the ARV Theorem.

» Theorem 3 (Refined ARV Structural Theorem [6, 42]). Let {v;};cv be any vectors in R?
satisfying (2), (3), (4) and let m = max;ev [{j € V | |vi —v;||3 < 0.01}|. There exist T, T’ C
V each of size Q(n) such that, for everyi € T and j € T', |jv; — v;]|3 = A = Q(1/\/logm).
Moreover, such sets can be found in randomized polynomial time.

2.2 Conditioning in Sum-of-Square Hierarchies

Another crucial tool used in our algorithm is Sum-of-Square hierarchy and the conditioning
technique developed in [13, 52]. Perhaps the most natural interpretation of the sum-of-
square solution with respect to the conditioning operation is to view the solution as local
distributions. One can think of a degree-d sum-of-square solution for Balanced Separator
as a collection of local distributions yg over {0,1}° for subsets of vertices S C V of sizes
at most d that satisfies certain consistency and positive semi-definiteness conditions, and
additional linear constraints corresponding to |So[, |S1] = n/3 and the triangle inequalities.
More specifically, for every U C V and every ¢ : U — {0,1}, the degree-d sum-of-squares
solution gives us Pr,, [Vj € U,j € Sy4(;)] which is a number between zero and one. The
consistency constraints ensure that these distributions are locally consistent; that is, for
every U’ C U € {0, 1}, the marginal distribution of py on U’ is equal to py/. We remark
here that, for Balanced Separator and other problems considered in this work, a solution to
the degree-d SoS relaxation for them can be found in time (Z)O(l) =O0(n/d)°@.

The consistency constraints on these local distributions allow us to define conditioning
on local distributions in the same ways as typical conditional distributions. For instance,
we can condition on the event i € Sy if Pr,,,[i € So] # 0; this results in local distributions

! Here 0.1 can be changed to arbitrary positive constant.
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Wi bucy ivl<d—1 Where pf; is the conditional distribution of g on the event i € Sy. In
USUCV,|UIL Hy {4}
other words, for all ¢ : U — {0, 1},

PrHUu{i} [Z € So A (Vj ceUje S¢(j))]
Prm [Z S So]

P/I‘[V] S U,j S S¢(J)] = .
Hy
Notice that the local distributions are now on subsets of at most d — 1 vertices instead d
vertices as before. That is, the conditioned solution is a degree-(d — 1) solution.

As for the semi-definiteness constraint, it suffices for the purpose of this discussion to
think about only the degree-2 solution case. For this case, the semi-definiteness constraint in
fact yields unit vectors vy, {v;},cy such that

1 i )
Prfi € §] = L {0V Viev,
M 2
1 i , Uj i Uj .
Pr [i,7 € So] = +<v@,v>+(Z@ vj) + (Vi vj) Vi,j € V.
H{iiy

It is useful to also note that the probability that ¢, 7 are on different side of the cut is exactly
equal to 1[lv; — v;||3; this is just because

Pr [Y; #Y;] =Prli € So] + Pr[j € So] —2 Pr [i € Sy Aj € Sy]
Kiini} i Hj H{ing}
1—(v,v5y 1
= ot e - v, 5)
where Y;,Y; are boolean random variables such that i € Sy, and j € Sy;.

Finally, note that the constraints for |Sy|,|S1| > n/3 and the triangle inequalities are

those that, when written in vector forms, translate to (2) and (4) from the ARV relaxation.

2.3 Our Algorithms: Combining Conditioning and ARV Theorem

The conditioning framework initiated in [13, 52] (and subsequently used in [8, 54, 44])
typically proceeds as follows: solve for a solution to a degree-d Sum-of-Square relaxation
of the problem for a carefully chosen value of d, use (less than d) conditionings to make a
solution into an “easy-to-round” degree-O(1) solution, and finally round such a solution.

To try to apply this with the Balanced Separator problem, we first have to understand
what are the “easy-to-round” solutions for the ARV relaxation. In this regards, first observe
that, due to the more refined version of the ARV Theorem (Theorem 3), the approximation
ratio is actually O(y/logm) which can be much better than O(y/logn). In particular, if
m < QO(TZ), this already yields the desired O(r)-approximation algorithm. This will be one
of the “easy-to-round” situations. Observe also that we can in fact relax the requirement
even further: it suffices if |[{j € V| |lv; — v;||3 < 0.01}| < m holds for a constant fraction of
vertices ¢ € V. This is because we can apply Theorem 3 on only the set of such i’s which
would still result in well-separated set of size (n). Recall also that from (5) the condition
[[vi — ;13 < 0.01 is equivalent to Pry,, . [Vi # Y;] < 0.04.

Another type of easy-to-round situation is when, for most (i.e. 0.9n) of i € V', Pr,[i €
So] ¢ [0.2,0.8]. In this case, T = {i € V | Pr,,[i € So] <02} and T" = {j € V | Pr,,[j €
So] > 0.8} is a pair of large well-separated sets; it is not hard to argue that both T, T" are at
least Q(n) and that, for every i € T and j € T, |Jv; — v;||3 is at least 0.6.

To recap, it suffices for us to condition degree-d solution so that we end up in one of the
following two “easy-to-round” cases to get an O(r)-approximation for the problem.

1. For at least n/100 vertices i € V, we have |{j € V' | Pr,,, . [Vi # Y;] < 0.04}| < 20(%)
2. For at least 9n/10 vertices i € V', we have Pr,,[i € So] ¢ [0.2,0.8].

20:7
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Here we will pick our d to be n/ 2T2; the running time needed to solve for such a solution
is indeed O(n/d)°@) = exp(n/29(T2))nO(1) as claimed. Now, suppose that we have a
degree-d solution that does not belong to any of the two easy-to-round cases as stated
above. This means that there must be ¢ € V such that Pry,[i € Sp] ¢ [0.2,0.8] and that
{j € V| Pryu, ,,[Yi #Y;] <0.04}] > 20(*) | For simplicity, let us also assume for now that
Pr,, [t € Sp] = 0.5. We will condition on the event ¢ € Sp; let the local distributions after
conditioning be {u; }ucv,vj<d—1- Consider each j € V' such that Pr, , . [Y; # Y;] < 0.04.
Observe first that, before the conditioning, we have Pr, [j € So] > Pry,[i € So]—Pry, i ;3 [Yi #
Yj] > 0.4 and Pr,,[j € So] > Pry,[i € So] + Pr#{i’j}[Yi #Y;] < 0.6.
On the other hand, after the conditioning, we have

Priug, i € 50,5 € So] _ Pry[i € So] = Pry,, [¥i £ Y]

z - > 0.9.
Pr,,[i € So] Pr,,[i € So]

Pr[j € So] =
Hj

Thus, this conditioning makes at least 2" vertices j’s such that Pr,.[j € So] € [0.2,0.8]
beforehand satisfy Pr, [j € So] ¢ [0.2,0.8] afterwards. If we ignore how conditioning affects

the remaining variables for now, this means that, after n/ 2 such conditioning all vertices
J € V must have Pr, [j € So] € [0.2,0.8]. Hence, we have arrived at an “easy-to-round”
solution and we are done! The effect to the other variables that we ignored can easily be
taken into account via a simple potential function argument and by considering conditioning
on both i € Sy and i € Sy; this part of the argument can be found in Section 4. This
concludes the overview of our algorithm.

3 Preliminaries

3.1 Sum-of-Square Hierarchy and Conditioning

We define several notations regarding the Sum-of-Square (SoS) Hierarchy; these notations
are based mainly on [12, 48]. We will only state preliminaries necessary for our algorithms.
We recommend interested readers to refer to [48, 14] for a more thorough survey on SoS.
Let Ry[X1,...,X,] denote the set of all polynomials on X, ..., X, of total degree at
most d. First, we define pseudo-expectation, which represents solutions to SoS Hierarchy:

» Definition 4 (Pseudo-Expectation). A degree-d pseudo-expectation (p.e.) is a linear operator
E:R4[X1,...,X,] = R that satisfies the following:

(Normalization) E[1] = 1.
(Linearity) For any p € Rg[X1,..., X,] and ¢ € Ry[X1,..., X,], E[p + q] = E[p] + E[q].
(Positivity) For any p € R 4/2)[X1,. .., Xu], E[p?] > 0.

Furthermore, I is said to be boolean if E[(X? — 1)p] = 0 for all p € Ry_o[X1,..., X,].

Observe that, while E is a function over infinite domain, E has a succinct representation:
due to its linearity, it suffices to specify the values of all monomials of total degree at most d
and there are n©(@ such monomials. Furthermore, for boolean E, we can save even further
since it suffices to specify only products of at most d different variables. There are only
O(n/d)°@ such terms. From now on, we will only consider boolean pseudo-expectations.
Note also that we use X; as +1 variables instead of 0,1 variable as used in the proof
overview. (Specifically, in the language of the overview section, Pr,,[i € Sy] is now equal to
Bl(1- X.)/2))
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» Definition 5. A system of polynomial constraints (P, Q) consists of a set of equality
constraints P = {p; = 0},c|p| and a set of inequality constraints Q = {q; > 0}¢|o|, where
Di, q; are polynomials over X1,..., X,.

For every S C [n], we use Xg to denote the monomial J], ¢ X;. Furthermore, for every
S C [n] and every ¢ : S — {£1}, let Xy be the polynomial J], ¢ (14 #(i)X;). A boolean
degree-d p.e. E is said to satisfy a system (P, Q) if the following conditions hold:

For all p € P and all S C [n] such that |S| < d — deg(p), we have E[Xgp] = 0.

Forall g € Q, all S C [n] s.t. |S| < d—deg(q) and all ¢ : S — {1}, we have E[Xq] > 0.

It is not hard to verify that finding a degree-d p.e. satisfying (P, Q) can be written as a
semidefinite program of size O(n/d)°(¥) - |P| - |Q| and hence can be solved in poly(O(n/d)? -
|P|-|Q|) time. Finally, we define conditioning in terms of pseudo-expectation:

» Definition 6 (Conditioning). Let E:Ry [X1,...,Xn] = R be any boolean degree-d pseudo-
expectation for some d > 2. For any b € {+1} such that E[X;] # —b, we denote the
conditional pseudo-expectation of E on X; = b by E|x,—p : Rg—1[X1,...,X,] = R where

E|x,_s[p] = % for all p € Ry_1[X1, ..., X,].

The proposition below is simple to check, using the identity (1 + bX;) = %(1 +bX;)2.

» Proposition 7. If E satisfies a system (P, Q), then E|x,—y also satisfies (P, Q).

3.2 ARV Structural Theorems

Having defined appropriate notations for SoS, we now move on to another crucial preliminary:
the ARV Structural Theorem. It will be useful to state the theorem in terms of both metrics
and pseudo-expectation. Let us start by definitions of several notations for metrics.

» Definition 8 (Metric-Related Notations). A metric d on X is a function d : X x X — R3¢
that satisfies (1) d(x,z) = 0, (2) symmetry d(z,y) = d(y,x) and (3) triangle inequality
d(z,z) < d(z,y) +d(y, z), for all z,y,z € X. We use the following notations in this work:

For x € X and S,T C X, d(x,S) := minyeg d(x,y) and d(S,T) := minyecs d(y, T).

We say that S, T are A-separated iff d(S,T) > A.

The diameter of a metric space (X, d) denoted by diam(X, d) is max, yex d(z, y).

We say that (X,d) is a-spread if 3 d(z,y) > al X%

An (open) ball of radius r around x denoted by By(z, ) is defined as {y € X | d(x,y) < r}.

A metric space (X, d) is said to be (r, m)-hollow if |By(z,r)| < m for all x € X.

» Definition 9 (Negative Type Metric). A metric space (X, d) is said to be of negative type if
Vd is Euclidean, i.e., for some f: X — R, ||f(z) — f(y)||3 = d(x,y) for all 2,y € X.

The ARV Theorem can now be stated as follows:

» Theorem 10 (ARV Structural Theorem - Metric Formulation [6, 42]). Let o, > 0 be any
positive real number and m € N be any positive integer. For any negative type metric space
(X, d) with diam(d) < 1 that is a-spread and (r,m)-hollow, there exist Q4 5(1/y/logm)-
separated subsets T, T C X each of size Q(|X|). Moreover, these sets can be found in
randomized polynomial time.

We remark that the quantitative bound A = Q, g(1/+/logm) follows from Lee’s version
of the theorem [42] whereas the original version only have A = Q, 5(1/(logm)?/3).

As we are using the ARV Theorem in conjunction with the SoS conditioning framework,
it is useful to also state the theorem in SoS notations. To do so, let us first state the following
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fact, which can be easily seen via the fact that the moment matrix (with (7, j)-entry equal to

E[X;X,]) is positive semidefinite and thus is a Gram matrix for some set of vectors:

» Proposition 11. Let E : Ry[X1,..., X,] = R be any degree-2 p.e. that satisfies E[(X; —
X)) < E[(X; — Xg)?] + E[(Xy, — X;)?] for alli,j,k € [n]. Define ds : [n] x [n] = Rsq by
dg(i,7) = E[(X; — X;)?]. Then, ([n],dz) is a negative type metric space.

When it is clear which pseudo-expectation we are referring to, we may drop the subscript
from dg and simply write d. Further, we use all metric terminologies with E in the natural
manner; for instance, we say that 5,7 C [n] are A-separated if dgz(S,T) > A.

Theorem 10 can now be restated in pseudo-expectation notations as follows.

» Theorem 12 (ARV Structural Theorem - SoS Formulation [6, 42]). For any a, 8 > 0 and
meN, let E: Ry [X1,...,Xn] = R be any degree-2 p.e. such that the following hold:
(Boolean) For every i € [n], E[X?] = 1.
(Triangle Inequality) For every i, j, k € [n], E[(Xi—X;)?] < E[(X; — Xp)?|+E[(X, — X;)?].
(Balance) 3-; e in E[(X: — X;)?] > om,z.~
(Hollowness) For all i € [n], |{j € [n] | E[X;X;] >1— 8} <m.
Then, there exists a randomized polynomial time algorithm that, with probability 2/3, produces

Qa,(1/y/1log m)-separated subsets T,T" C [n] each of size Qq 5(n).

Notice that, for boolean E, E[X;X,] = 1 — E[(X; — X;)?]/2 = 1 — dz(i,5)/2. This means
that {j € [n] | E[X;X,] > 1 — B} is simply Ba, (i,28). Another point to notice is that the
metric di can have diam(dg) as large as 4, instead of 1 required in Theorem 10, but this
poses no issue since we can scale all distances down by a factor of 4.

4 Conditioning Yields Easy-To-Round Solution

Our main tool is the following lemma on structure of conditioned solution:

» Lemma 13. Let 7, be any positive real numbers such that 72 < v < 1. Given a

boolean degree-d pseudo-expectation E : R4[X1,...,Xn] — R for a system (P, Q) and an

integer £ < d, we can, in time O(n/d)°Y | find a boolean degree-(d — {) pseudo-expectation

E': Ry_¢[X1,..., Xn] = R for the system (P, Q) such that the following condition holds:
Let Vi_, .y = {i € [n] | E'[X;] € (—7,7)} denote the set of indices of variables whose
pseudo-expectation lies in (—7,7T) and, for each i € [n], let Cy (i) := {j € [n] | E'[X;X;] €
[—7,7]} denote the set of all indices j’s such that E'[X;X;] lies in [—v,~]. Then, for all
1 € Vi_rr), we have

"
=)

In other words, the lemma says that, when d is sufficiently large, we can condition so

|V(—'r,‘r) \C’Y(Z)| <

that we arrive at a pseudo-expectation with the hollowness condition if we restrict ourselves
to V(_r,r). Note here that, outside of V(_ ), this hollowness condition does not necessarily
hold. For instance, it could be that after conditioning all variables be come integral (i.e.
E[X;] € {£1}). However, this is the second “easy-to-round” case for ARV theorem, so this
does not pose a problem for us.

The proof of Lemma 13 is based on a potential function argument. In particular, the

potential function we use is ®(E) = 3 E[X;]2. The main idea is that, as long as there is a

1€[n]
“bad” i € [n] that violates the condition in the lemma, we will be able to finding a conditioning

that significantly increases ®. However, ® is always at most n, meaning that this cannot
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happens too many times and, thus, we must at some point arrive at a pseudo-expectation
with no bad 7. Due to space constraint, we defer the full proof to the appendix.

5 The Algorithms

All of our algorithms follow the same three-step blueprint, as summarized below.

Step I: Solving for Degree—n/ZQ("Z) Pseudo-Expectation. We first consider the system
of constraints corresponding to the best known existing polynomial time algorithm for each
problem, and we solve for degree-n/ 29(r?) pseudo-expectation for such a system.

Step IlI: Conditioning to Get “Hollow” Solution. Then, we apply Lemma 13 to arrive
at a degree-2 pseudo-expectation that satisfies the system and that additionally is hollow,
ie., [Virn \ Cy(4)] < 2 for all i € V(—+,r for appropriate values of 7,7. Recall here that
V=7 and C, (i) are defined in Lemma 13.

Step llI: Following the Existing Algorithm. Finally, we follow the existing polynomial
time approximation algorithms [6, 32, 1] to arrive at an approximate solution for the problem
of interest. The improvement in the approximation ratio comes from the fact that our
pseudo-expectation is now in the “easy-to-round” regime, i.e., the ARV Theorem gives
separation of Q(1/r) for this regime instead of Q(1/1/logn) for the general regime.

Let us now demonstrate our framework with the Balanced Separator problem.

» Theorem 14. For any r > 1 (possibly depending on n), there exists an exp(n/QQ(Tz))
poly(n)-time O(r)-approzimation for Balanced Separator on n-vertex graphs.

Proof. On input graph G = (V' = [n], E), the algorithm works as follows.

Step I: Solving for Degree—n/ZQ(Tz) Pseudo-Expectation. For every real number OBJ €

R, let (PE% 57, Qébps) be the following system of equations:

1. (Boolean) For all i € [n], X? — 1 =0.

2. (Balance) 3, ;e (X —X;)2—16n2/9 > 0,n/3— 2 ien]

3. (Triangle Inequalities) For all i,j,k € [n], (X; — Xp)* + (Xx — X;)? — (X; — X;)? >
0,(1-X;)2+(1-X;)2—(X;—X;)2>0,and (1+X;)2+(1—-X;)2—(X; —X;)2>0

4. (Objective Bound) 4-OBJ — 37, i 5(Xi — X;)* > 0.

Let D := [1000n/2""] + 2. The algorithm first uses binary search to find the largest OB.J

such that there exists a degree-D pseudo-expectation for (Pg’% 5+ Q2% 5)- Let this value of

OBJ be OBJ*, and let E be a degree-D pseudo-expectation satisfying (’Pg’SOBJ*, QE%BJ*).

Again, observe that this step takes exp (n/?Q(T2)) poly(n) time and OBJ* < OPT where
OPT is the number of edges cut in the balanced separator of G.

Step |l: Conditioning to Get “Hollow” Solution. Use Lemma 13 to find a degree-2 p.e.
E for (Pg,%BJ*’ QE%BJ*) such that for all i € ‘/(,0‘94)_9), IVv(,()_g’o.g) \009(7,)‘ < 27"2.

Step IlI: Following ARV Algorithm. The last step follows the ARV algorithm [6], which
first uses the ARV lemma to obtain two large well separated set. While in the traditional
setting, the structural theorem can be applied immediately; we have to be more careful and
treat the two “easy-to-round” cases differently. This is formalized below.

X; > 0and Zie[n] X;+n/3>0.
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» Claim 15. There exist disjoint subsets T,T’ C [n] that are Q(1/r)-separated. Moreover,
these subsets can be found (with probability 2/3) in polynomial time.

Proof. For every a,b € R, let Vs, = {i € [n] | E'[X;] > a}, Vi, = {i € [n] | E/[X;] < b} and

Viepy ={i€n]|a< E'[X,]| < b}. Let 7 = 0.9. We consider the following two cases:

1. |V>;| 2 0.1n or |V<_,| > 0.1n. Suppose without loss of generality that it is the former.
We claim that |Vgg.g| = 0.2n. To see that this is the case, observe that

n/3= Y  EX]+ Y E[X] >080n—|Veos|) — [Veos| = 0.8n — 1.8|Voss|

i€V\Vgo g i€V<o.8

which implies that |Vgo.g| > 0.2n. Let T = V5, and T" = Vgps. As we have shown,
IT|,|T’"| = Q(n). Moreover, for every i € T and j € T”, triangle inequality implies that

E'[X:X;] <E[X:X] +E[1-X)A+X,)]=1-FE[X;] +E[X;] <1—0.9+0.8=0.9.

That is, E'[(X; — X;)?] = 2 — 2E/[X; X;] > 0.2, completing the proof for the first case.
2. |Va7] <0.1n and [Vg_-| < 0.1n. This implies that [V(_ )| = 0.8n. Moreover,

> E[(X; - X;)%] > 160°/9 — 80|V | — 8n|Ve,| > 0.1n”.
L,J€EV(—r 1)

Hence, applying the ARV Theorem (Theorem 12) to V(_; ;y yields the desired T',T".
Thus, in both cases, we can find the desired T, T’ in randomized polynomial time. <

Once we have found T,T’, we use the following rounding scheme from [43, 6]: pick 6
uniformly at random from [0, d(7',7")). Then, output (S, V\S) where S = {i € [n] | d(i,T) <
0}.

Observe that T'C S and 77 C (V' \ S), which means that |S], |V \ S| > Q(n); in other
words, the output is a valid solution for the problem. Moreover, for every (i,j) € E,
it is easy to see that the probability that i and j end up in different sets is at most
|d(i, T) — d(3,T)|/d(T,T") < d(i,7)/d(T,T") < O(r) - d(i,7). As a result, the expected
number of edges cut is O(r) - 3 (; ;e d(4, j) = O(r) - OBJ*, which completes our proof. <

6 Conclusion and Open Questions

In this work, we use the conditioning framework in the SoS Hierarchy together with the
ARV Theorem to design “fast” exponential time approximation algorithms for Vertex Cover,
Uniform Sparsest Cut and Balanced Separator that achieve significant speed-up over the
trivial “limited brute force” algorithms. While we view this as a step towards understanding
the time vs approximation ratio trade-off for these problems, many questions remain open.

First, as discussed in the introduction, current lower bounds do not rule out subexponential
time approximation algorithms in the regime of our study. For instance, an 1.9-approximation
algorithm for Vertex Cover could still possibly be achieved in say 2°(v™) time. Similarly
for Uniform Sparsest Cut and Balanced Separator, O(1)-approximation for them could still
possibly be achieved in subexponential time. The main open question is to either confirm
that such algorithms exist, or rule them out under certain believable complexity hypotheses.

Another, perhaps more plausible, direction is to try to extend our technique to other
problems for which the known polynomial time approximation algorithms employ the ARV
Theorem. The most obvious candidates are Minimum UnCut, Minimum 2CNF Deletion,
Directed Balanced Separator and Directed Sparsest Cut, which were shown in [1] to admit
O(+/log n)-approximation in polynomial time. While not yet rigorously verified, we believe
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that our technique also yields approximation algorithms with similar running time as Uniform
Sparsest Cut to these problems as well. In this direction, there are also other potentially more
challenging candidates, such as Balanced Vertex Separator, (Non-uniform) Sparsest Cut, and
Minimum Linear Arrangement. While the first problem admits O(+y/logn)-approximation

in polynomial time [23], additional ingredients beyond the ARV Theorem are required in
the algorithm. On the other hand, the latter two problems only admit O(/logn loglogn)-
approximation [4, 16, 24]. It seems challenging to remove this loglogn factor and achieve a

constant factor approximation, even in our “fast” exponential time regime.
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A Proof of the Conditioning Lemma

In this section, we prove Lemma 13. To facilitate our proof, let us prove a simple identity
regarding the potential change for a single variable after conditioning;:

» Proposition 16. Let | : Ry[X1,...,X,] — R be any degree-d pseudo-expectation for some
d > 2 and let i € [n] be such that E[X;] # —1,1. Then, for any j € [n], we have

(F57) @) + (S5 (Bl ) - B
_ (EB[X:X;] — E[X]E[X;))?
B 1 —E[X;]? '

Proof. For succinctness, let a = (1—E[X;])/2,b = E|x,=1[X;] and ¢ = E|x,—_1[X;]. Observe
that, from definition of conditioning, we have

ab+ (1 —a)e=E[(1 - X;)X,;/2] + E[(1 + X;) X, /2] = E[X;].

Hence, the left hand side term of the equation in the proposition statement can be rewritten
as

ab® 4+ (1 —a)c® — (ab+ (1 — a)c)? = a(l — a)(b — c)*. (6)
Let p1; = E[X;]. Now, observe that b — ¢ is simply

E[(1-X)X,]  E[(1+X:)X]]

Elx,=—1[X;] — E|x,=1[X;] =
xi=—1[X;] = Elx,=1[X)] T T+
_ B[O+ p) (1 = X)X — (1= ) (1 + X)X
1—p?
_ E[2(p; — Xi)X,]
1—p?

_ 2(wElX] - E[Xi X))

1— '

Plugging the above equality back into (6) yields the desired identity. <

With the above lemma ready, we now proceed to the proof of Lemma 13. Before we do so,
let us also note that our choice of potential function E[X;]? is not of particular importance;
indeed, there are many other potential functions that work, such as the entropy of X;.

Proof of Lemma 13. We describe an algorithm below that finds E’ by iteratively condition-
ing the pseudo-distribution on the variable X; that violates the condition.
1. Let g = E
2. Fort =1,...,¢, execute the following steps.
a. Let V(t;l,T) ={ien]|E_1[X;] € (—-7,7)}
Moreover, for each i € [n], let CL7'(i) := {j € [n] | E: 1 [X:X;] € [=7,7]}
b. If |V(t__TlT) \ G (i)] < 75y foralli € V(t__Tlﬁ), then output E, ; and terminate.
c. Otherwise, pick ¢ € V(t:Tl_ﬂ such that |V(t:TlT) \ CI )] > =5z Compute
@(Et x,=1) and @(Et x;=—1) and let E; be equal to the one with larger potential.
3. If the algorithm has not terminated, output NULL.
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Notice that, if the algorithm terminates in Step 2b, then the output pseudo-distribution
obviously satisfies the condition in Lemma 13. Hence, we only need to show that the algorithm

always terminates in Step 2b (and never reaches Step 3). Recall that we let ®(E) denote
Zie[n] E[X;]?. To prove this, we will analyze the change in ®(E;) over time. In particular,
we can show the following:

» Claim 17. For every t € [{], ®(E,) — ®(E,_,) > n/L.

Proof. First, notice that it suffices to prove the following because E;_1[(1—X;)/2]+E,_[(1+
X;)/2] =1 and, from our choice of E;, we have ®(E;) = max{®(E;_1|x,=1), P(Et—1|x,=—1)}

[1-X] - M1ex -
(E{ 5 :|'<D(Et1Xi_1)+E|: 5 :|'(I)(]Et+1

Recall that, from our definition of ®, the left hand side above can simply be written as

E%Gﬂlg&]@pﬂwuﬂ%ﬁ+ﬁ{

j€n

Xi_1)> - (I)(Etfﬂ > TL/[

1+ X,

] (Ber|x,=1[X5])" - E_l[XjP) .

From Proposition 16, this is equal to

Z (Et_l[Xin] — IEt_l[Xi]Et_l[Xj])Q N Z (Et—l[Xin} —Et—l[XiNEt—l[Xj])2
‘ 1— B 1[X]2 - o L 1—Eeo1[X]2

j€ln] JEVI NG9

- T ey
JEVI NG ()

(From |V(t:71,7) \ )] = M) > n/t,
where the second inequality follows from |E[X;]|,[E[X,]| < 7 and |E[X;X;]| > v for all
JE VLN C) <

It is now easy to see that Claim 17 implies that the algorithm never reaches Step 3.
Otherwise, we would have ®(Ey) > n/f+®(Ey_1) > --- > n+®(E) > n, a contradiction. <
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