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Abstract
Given a set of n jobs with integral release dates, processing times and weights, it is a natural and
important scheduling problem to compute a schedule that minimizes the sum of the weighted flow
times of the jobs. There are strong lower bounds for the possible approximation ratios. In the non-
preemptive case, even on a single machine the best known result is a O(

√
n)-approximation which

is best possible. In the preemptive case on m identical machines there is a O(log min{ nm , P})-
approximation (where P denotes the maximum job size) which is also best possible.

We study the problem in the parametrized setting where our parameter k is an upper bound
on the maximum (integral) processing time and weight of a job, a standard parameter for
scheduling problems. We present a (1 + ε)-approximation algorithm for the preemptive and
the non-preemptive case of minimizing weighted flow time on m machines with a running time of
f(k, ε,m)·nO(1), i.e., our combined parameters are k, ε, andm. Key to our results is to distinguish
time intervals according to whether in the optimal solution the pending jobs have large or small
total weight. Depending on this we employ dynamic programming, linear programming, greedy
routines, or combinations of the latter to compute the schedule for each respective interval.
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1 Introduction

A typical setting in scheduling is that one is given a set of n jobs J where each job j ∈ J is
characterized by a release date rj ∈ N, a processing time pj ∈ N, and a weight wj ∈ N. One
seeks to compute a preemptive or non-preemptive schedule on m machines in which no job j
is processed before its release date rj and where each job can be processed by at most one
machine at a time. Throughout this paper we will assume that the machines are identical. A
natural objective function is to minimize the sum of the weighted flow times of the jobs: for
Cj being the completion time of job j, the objective function is to minimize

∑
j wj(Cj − rj).

Weighted flow time is a well-studied objective function. In the preemptive setting, the best
known result on one machine is a O(log logP )-approximation algorithm [5] (where P denotes
the maximum processing time of a job in the given instance) and for multiple machines in the
unweighted case there is a O(log min{ nm , P})-approximation [15] and there is a lower bound
of Ω(log1−ε P ) [11]. In the non-preemptive setting, even on one machine the best known
approximation ratio is only O(

√
n) and this is best possible [13]. Hence, one can achieve only
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superconstant approximation ratios, apart from the preemptive case on one machine where
in a recent break-through result a pseudo-polynomial time O(1)-approximation algorithm
was found [6] and it is open to get a polynomial time O(1)-approximation (or even a PTAS)
which is considered a long-standing important open problem.

Apart from approximation algorithms, another way to approach NP-hard problems is
fixed-parameter tractability (FPT). One identifies a parameter k which intuitively measures
the difficulty of a given instance and designs an exact algorithm with a running time of
f(k)nO(1) for some computable function f . This is particularly appealing in settings like ours
where there are strong lower bounds for the possible ratio of an approximation algorithm.
Throughout this paper, we define k := maxj max{pj , wj} which is a standard parameter in
the literature for fixed-parameter algorithms for scheduling problems, see [18, 14]. Note that
practical instances might have only a bounded range of job processing times and weights
which makes this parameter relevant in these settings.

Recently, researchers started to combine the paradigms of approximation algorithms
and fixed-parameter tractability (see, e.g., the survey by Marx [17]). Here, one constructs
approximation algorithms that run in FPT time. For example, one constructs a (1 + ε)-
approximation algorithm for instances with parameter k with a running time of f(k, ε) ·nO(1)

or f(k) · nOε(1), where Oε(1) denotes a value that depends only on ε. This is in particular
particularly interesting in cases where there can be no polynomial time (1 + ε)-approximation
algorithm for arbitrary instances or where such an algorithm seems difficult to obtain. In this
paper, we present such an algorithm for the weighted flow time problem where our combined
parameter consists of the number of machines m, the quantity ε in the approximation ratio,
and the value k as defined above.

1.1 Our contribution
We present (1+ε)-approximation algorithms for the preemptive and the non-preemptive cases
of minimizing weighted flow time on m machines with running times of (mk)O(mk3/ε) · nO(1)

(preemptive case) and (mk/ε)O(mk5) ·nO(1) (non-preemptive case), assuming that pj ≤ k and
wj ≤ k for each job j. In particular, we obtain substantially better approximation factors
than the known ratios of O(log logP ), O(log min{ nm , P}), and O(

√
n) for the respective

settings.
To obtain our result in the preemptive case, the high level idea is the following: for

each t denote by WOPT (t) the total weight of the pending jobs at time t in the optimal
solution OPT , i.e., the total weight of the jobs that have been released but that have
not yet been completed by time t. For time intervals during which WOPT (t) is small, in
the optimal solution there can be only few pending jobs (bounded by a function of our
parameters) and we can compute the optimal solution via a dynamic program. For the
other intervals (during which WOPT (t) is large) we compute a preemptive schedule using a
linear program. The LP is not exact since it uses a fractional objective function. However,
we can guarantee that WALG(t), the total weight of the pending jobs at time t in the
computed solution ALG, is bounded by WOPT (t) + g(k, ε,m) for some function g. Since
WOPT (t) is large, the latter term is bounded by (1 + ε)WOPT (t). It is well-known that
the objective function value of OPT equals

∫
t
WOPT (t)dt. Therefore, we can argue that

ALG =
∫
t
WALG(t)dt ≤

∫
t
(1+ε)WOPT (t)dt = (1+ε)OPT . Since we do not know beforehand

the values for t where WOPT (t) is large and small, we devise a dynamic program that scans
the time axis from left to right step by step, guesses the schedules for the time intervals
during which WOPT (t) is small, and computes the LP-solution for all intervals during which
WOPT (t) is large. This yields a (1 + ε)-approximation for the preemptive setting.
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In the non-preemptive case we again distinguish time intervals depending on whether
WOPT (t) is large or small. For values of t where WOPT (t) is small, like before there are only
few options for the pending jobs and, intuitively, we use a dynamic program to compute the
optimal solution. For intervals I during which WOPT (t) is large we can no longer use the LP
since it produces a schedule that is possibly preemptive. Even more, given I and a set of
jobs J ′ that we want to complete within I (some of them might be released during I), it is
not even clear how to determine whether there exists is a non-preemptive schedule for J ′ in
I, even independent of the cost of such a schedule! To this end, we introduce the following
strategy. If at a time t many jobs of the same type are pending, i.e., jobs with the same
processing time and weight, then we schedule a large subset of them as soon as possible after
time t on each machine. We say that they are scheduled as a pack. In case that there are
several job types with many pending jobs, we give priority to the job type with the highest
Smith ratio, i.e., with the largest ratio of weight divided by processing time. We show by an
exchange argument that there indeed exists a feasible non-preemptive schedule that follows
this rule at each time t (though we do not bound its cost at this point).

To bound our cost during an interval in which WOPT (t) is large, for the jobs scheduled
as packs, we compare their cost with an optimal fractional schedule for them and prove
that at each time t the total weight of the pending jobs in the two schedules differs by at
most an additional term ḡ(k, ε,m) (for some function ḡ) which we can bound by εWOPT (t).
For all other scheduled jobs we can show that each time t only few of them are pending
and thus we can bound their total weight by another term εWOPT (t). This implies that
WALG(t) ≤ (1+O(ε))WOPT (t) for each time t and hence our solution is (1+ε)-approximative.
We again devise a DP that scans the time axis from left to right and computes the solution
ALG step by step, yielding a (1 + ε)-approximation algorithm for the non-preemptive case.

Note that in the non-preemptive case, already on one machine and with identical job
weights the problem is NP-hard [13]. Hence, it is necessary to require that pj ≤ k for each
job j for the problem to be FPT in this case. On the other hand, no W [1]-hardness results
are known for the settings of our FPT-algorithms above. Due to space constraints most
proofs had to be omitted or moved to the appendix.

1.2 Other related work
For a single machine in the preemptive setting there is a QPTAS if the processing times
and weights are in a quasi-polynomial range [8]. Its running time is nO(logW logP/ε3) (where
W denotes the maximum job weight in the instance) and it is based on grouping the jobs
according to processing times and weights. Note that the number of different groups appears
in the exponent of n and hence we cannot use its methodology to obtain a running time of the
form f(k, ε)nO(1) or f(k)nOε(1). The latter result was generalized by Bansal to an algorithm
for a constant number of unrelated machines in the case when preemption is allowed by
migration is forbidden, having a running time of 2(mmin{lognW,lognP}3/ε3) [3]. If P ≤ k and
W ≤ k (like in our parametrized setting) this yields a running time of 2(m(lognk)3/ε3) while
our algorithms above for the preemptive case with migration and for the non-preemptive case
(both being incomparable with Bansal’s setting) have running times of (mk)O(mk3/ε) ·nO(1) =
2O(log(mk)·mk3/ε+O(logn)) and (mk/ε)O(mk5) · nO(1) = 2O(log(mk/ε)·mk5+O(logn)), respectively.

In the non-preemptive setting, on m machines one can achieve a ratio of
O(
√
n/m log(n/m)) and there is a lower bound of Ω(n1/3−ε) [15]. Minimizing flow time was

also studied in the online setting. In the unweighted case on one machine the SRPT algorithm
is optimal and on parallel machines it achieves a competitive ratio of O(log min{ nm , P})
which is best possible [15, 11]. In the weighted case, for one machine there is an O(log2 P )-
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competitive semi-online algorithm known [9] and for multiple machines there is a lower bound
of Ω(min{

√
P ,
√
W, (n/m)1/4}) [9]. This was improved recently to a O(log(min{P,D,W}))-

competitive algorithm [2] (where D is the maximum ratio of the job densities), using the
O(logD)-competitive algorithm from [4]. Many results are known in the resource augmenta-
tion setting in which the online algorithm is given faster machines than the adversary, see [16,
Chapter 15] and references therein.

If all jobs are released at time zero, the problem is equivalent to minimizing the weighted
sum of completion times. This problem admits a polynomial time (1 + ε)-approximation
algorithm and in the preemptive case even an EPTAS [1]. This was generalized to PTASs
for related machines [7] for which in the non-preemptive case there is also an EPTAS [10].

Approximation schemes with a running time of f(k)·nOε(1) (where the parameter k denotes
the size of the desired solution) are known for Maximum Independent Set of Rectangles,
Two-dimensional Geometric Knapsack with rotations [12], and for Unsplittable Flow on a
Path [19] while PTASs are open for these problems.

2 Preemptive case

We present our (1 + ε)-approximation algorithm for minimizing the weighted flow time on m
identical machines with preemption, i.e., P |rj , pmtn|

∑
wjFj . Our algorithm has a running

time of kO(m·k3/ε)nO(1), assuming that pj , wj ∈ {1, ..., k} for each job j, i.e., our combined
parameter is k +m+ 1/ε. We proceed in two steps: first, we show that there is a structured
solution OPT ′ such that c(OPT ′) ≤ (1 + ε)c(OPT ). Then, we devise a dynamic program
that computes a solution with this structure whose cost is at most the cost of OPT ′.

We group the jobs into groups. For each `, `′ ∈ {1, ..., k} we define J`,`′ := {j|pj =
` ∧ wj = `′}. First, we prove by some simple exchange arguments that for each job group
the optimal solution OPT essentially processes its jobs in the order of their release dates
and hence the number of partially processed jobs of each group is small. Throughout this
paper, whenever we speak about the order of the release dates of the jobs, we break ties in a
fixed arbitrary order. Also, we will assume that 1/ε ∈ N and define Γ := ∪t∈N0εt.

I Lemma 1. By losing a factor of 1 + ε in the approximation ratio, we can assume the
following properties for OPT : for each t ∈ Γ, each machine i works on exactly one job during
the entire interval [t, t+ ε) or is idle during [t, t+ ε). Also, for each job class J`,`′ and each
time t, the jobs of J`,`′ that are partially but not completely scheduled at time t are among
the mk/ε jobs with the earliest release dates pending at time t.

For ease of notation, in the sequel we will denote by OPT the (1 + ε)-approximative
solution due to Lemma 1.

2.1 Near-optimal solution
We define a near-optimal structured solution OPT ′. For a schedule S and any t ≥ 0 letWS(t)
denote the total weight of the jobs j that satisfy rj ≤ t but that are not finished by time t in S.
We define Ilow :=

⋃
t∈Γ:WOPT (t)≤3mk3/ε2 [t, t+ ε) and Ihigh :=

⋃
t∈Γ:WOPT (t)>3mk3/ε2 [t, t+ ε).

For each time interval [t, t+ ε) ⊆ Ilow with t ∈ Γ we define the schedule OPT ′ to be identical
to OPT . For the timesteps in Ihigh we consider each maximally large interval in Ihigh. Let
[t1, t2) ⊆ Ihigh be such an interval with t1, t2 ∈ Γ. In order to define OPT ′ during [t1, t2), we
compute a schedule using a linear program. For each job j, denote by p′j ∈ N the amount of
work of j that OPT finishes during [t1, t2). Note that p′j is an integral multiple of ε. Our
linear program computes a schedule for [t1, t2) such that we finish exactly p′j units of work
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of each job j during [t1, t2), at each time t ∈ [t1, t2) each job j is processed by at most one
machine, and the objective function is a fractional objective in which we assume that we
split each job j into p′j/ε unit size pieces of weight εwj/p′j each. This yields the following
linear program that we denote by (LP).

min
∑
j∈J

∑
t∈{t1,t1+ε,...,t2−ε}

xijt · (t+ ε)εwj
p′j

s.t.
m∑
i=1

∑
t∈{t1,t1+ε...,t2−ε}

xijt = p′j ∀j ∈ J

m∑
i=1

xijt ≤ 1 ∀j ∈ J ∀t ∈ {t1, t1 + ε, ..., t2 − ε}∑
j∈J

xijt ≤ 1 ∀i ∈ [m] ∀t ∈ {t1, t1 + ε, ..., t2 − ε}

xijt ≥ 0 ∀j ∈ J ∀i ∈ [m] ∀t ∈ {rj , rj + ε, ..., t2 − ε}

We compute an optimal extreme point solution to (LP) in polynomial time. By interpreting
(LP) as a model for a suitable instance of bipartite matching one can easily argue that this
solution is integral. We simplify it to ensure that at each time at most mk/ε jobs from
the same group are partially processed (where “partially” is defined with respect to the
processing time p′j), using some exchange arguments.

I Lemma 2. Given an optimal integral solution to (LP), in time polynomial in n and
k we can compute an optimal integral solution that has the property that at each time
t ∈ {t1, t1 + ε, ..., t2 − ε} from each job class J`,`′ there are at most mk/ε jobs j such that
0 < p̄j(t) < p′j where p̄j(t) denotes the amount of j that has been processed during [t1, t).

The schedule of OPT ′ during [t1, t2) is now defined by applying Lemma 2 to the optimal
integral solution to (LP). For x being the resulting solution, during an interval [t, t+ε) ⊆ [t1, t2)
with t ∈ Γ we schedule a job j on a machine i if and only if xijt = 1. We do the above
procedure for each maximally large interval [t1, t2) ⊆ Ihigh with t1, t2 ∈ Γ. This completes
the definition of OPT ′.

In order to show that OPT ′ has small cost compared to OPT , we use the following
well-known way to measure the flow time objective function. We define the cost of a schedule
S to be c(S) :=

∑
j∈J wj(CSj − rj) where CSj denotes the completion time of a job j in S.

I Proposition 3. For any schedule S we have that c(S) =
∫
t
WS(t)dt.

By construction have that WOPT ′(t) = WOPT (t) for each t ∈ Ilow. In each maximally
large interval [t1, t2) ⊆ Ihigh the solution OPT ′ equals the solution to (LP) which is the
optimal solution for the fractional objective function. The latter differs from the integral
objective function since there can be jobs that are partially but not completely processed.
However, due to Lemmas 1 and 2 there can be at most 3mk/ε such jobs from each class J`,`′

and thus their total weight is bounded by 3mk3/ε. However, WOPT (t) > 3mk3/ε2 if t ∈ Ihigh
and hence the total contribution of these jobs to WOPT ′(t) is bounded by εWOPT (t) for
each t ∈ Γ. Using Proposition 3 and additionally that the fractional cost of the LP-schedule
is at most the cost of OPT in the same respective interval [t1, t2), we can prove the following
lemma.

I Lemma 4. It holds that c(OPT ′) ≤ (1 + ε)c(OPT ).
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2.2 Dynamic program
We give a dynamic program that computes a schedule whose cost is at most c(OPT ′). It
scans the time axis from left to right. Given a timestep t ∈ Γ with t ∈ Ilow it intuitively
guesses the schedule of OPT during [t, t + ε). If t + ε ∈ Ilow then it proceeds with the
timestep t+ ε. If t+ ε ∈ Ihigh then it guesses the earliest timestep t′ ∈ Γ such that t < t′

and t′ ∈ Ilow, and additionally it guesses the characteristics of the pending jobs at time t′.
For the time interval [t, t′) it computes a schedule using (LP). At each time t ∈ Ilow there
are at most 3mk3/ε2 pending jobs in OPT and due to Lemma 1 there are only f(k,m, ε)
many possibilities for their characteristics, for some function f . Hence, we can embed the
whole procedure into a dynamic program that has f(k, ε,m) cells for each time t ∈ Γ.

We assume w.l.o.g. that minj rj = 1 and that maxj rj = O(n2k) since we can shift
the release dates uniformly and if maxj rj is too large then we can split the instance into
independent subinstances. Note that then OPT ′ finishes its last job by time T := maxj rj+nk
the latest.

We define now our dynamic program formally. We say that a configuration for a time
t ∈ Γ specifies for each job its remaining processing time at time t. Formally, a configuration
is a vector (p̄j)j∈J such that 0 ≤ p̄j ≤ pj and p̄j/ε ∈ N for each j ∈ J . For each time t ∈ Γ
there is a configuration that corresponds to the pending jobs of OPT at time t. We will
show now that if t ∈ Ilow then there are only mkO(mk3/ε) possibilities for this configuration,
using that there can be only 3mk3/ε2 pending jobs at time t.

I Lemma 5. For each time t ∈ Γ we can compute in time (mk)O(mk3/ε)nO(1) a set C(t) of
at most (mk)O(mk3/ε) configurations such that if t ∈ Ilow ∩ Γ then one of them corresponds
to OPT at time t. The set C(T ) contains only the configuration cT in which all jobs have
completed.

Proof. If t ∈ Ilow∩Γ thenWOPT (t) ≤ 3mk3/ε2 and hence there can be at most 3mk3/ε2 jobs
pending at time t. For each of them there are only k2 options which class it belongs to, k/ε
possibilities for how much processing time is left, and then by Lemma 1 only 3mk3/ε2 +mk/ε

possibilities for its identiy. This yields (k3/ε(3mk3/ε2 + mk/ε))3mk3/ε2 = (mk)O(mk3/ε)

combinations. For each of them we can compute the corresponding set of jobs in time nO(1),
yielding a running time of (mk)O(mk3/ε)nO(1) for the computation of all combinations. J

Our dynamic program has a cell (t, c) for each combination of a time t ∈ Γ ∩ [0, ..., T ] and a
configuration c ∈ C(t). We say that a job is pending in c if it has not yet been completed
according to c. The entry of the cell (t, c) stores a schedule for the time interval [t, T ) in
which the remaining parts of the pending jobs in c are scheduled and additionally all jobs j
with rj > t. Then the cell (0, c0) stores a schedule for the whole instance where c0 denotes
the configuration in which no job has been worked on yet, i.e., p̄j = pj for each job j.

For the base case, we assign to the cell (T, cT ) the empty schedule. Suppose we are given
a cell (t, c) with t < T . We compute its schedule as follows. The reader may imagine that
t ∈ Ilow and that c is the configuration of OPT ′ (and hence OPT ) at time t. Intuitively, we
guess the schedule of OPT ′ during [t, t+ ε). Formally, we try all possibilities for up to m
jobs j1, ..., jm′ that are pending in c and that are among the mk/ε jobs with earliest release
dates among the pending jobs at time t of their respective job class (note that we can assume
that OPT ′ does not schedule other jobs during [t, t+ ε), see Lemma 1). In particular, the
number of schedules to enumerate is bounded by g(k, ε,m) for some function g. Each guess
of a set of jobs j1, ..., jm′ to be processed during [t, t+ ε) yields a configuration c′ for time
t+ ε. If c′ ∈ C(t+ ε) then we append the schedule stored in DP (t+ ε, c′) to the schedule
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for [t, t + ε). Note that in case that OPT ′ is in configuration c at time t and we guessed
j1, ..., jm′ correctly, for the interval [t, t + ε) we obtain the same schedule as OPT ′ (up to
permutation of machines) and at time t+ ε the schedule OPT ′ is in configuration c′.

If c′ /∈ C(t + ε) then we guess the smallest time t′′ ∈ Γ with t′′ > t such that t′′ ∈ Ilow
and additionally the configuration c′′ of OPT ′ at time t′′. For the time interval [t+ ε, t′′) we
compute a schedule using (LP): for each job j ∈ J denote by p̄′j its remaining processing time
at time t+ ε according to c′ and by p̄′′j its remaining processing time at time t′′ according
to c′′. We solve (LP) where for each job j we define p′j := p̄′j − p̄′′j . If the LP does not
have a solution then we reject our guess. Otherwise, we apply Lemma 2 to the resulting
solution. We append the schedule in DP (t′′, c′′) to the computed schedules for [t, t+ ε) and
for [t+ε, t′′). Note that if all guesses were correct, then for [t, t′′) we obtain the same schedule
as OPT ′ (up to permutation of machines). Each enumerated guess yields a schedule for the
jobs pending at time t in c (completing their remaining processing time according to c) and
the jobs j with rj > t (processing them completely). Among all these solutions, we store in
DP (t, c) the solution that minimizes the sum of the weighted flow times of all the latter jobs.

One can show by induction over the DP-cells that the cost of the solution in the cell
(0, c0) (note that c0 ∈ C(0) since minj rj = 1) is bounded by c(OPT ′): whenever we process a
DP-cell (t, c) such that OPT ′ is in configuration c at time t, among our enumerated guesses
are the jobs that OPT processes during [t, t+ ε), and t′′ and c′′ according to OPT ′ which
then yields the same schedule for [t, t′′) as OPT ′. The number of DP-cells is bounded by
the total number of configurations for all relevant time steps, see Lemma 5. Moreover, we
can compute the entry for each DP-cell by performing (mk)O(mk3/ε) · nO(1) guesses (for the
jobs jobs j1, ..., jm′ , t′′ and c′′) and a computation of nO(1) for each guess. This yields the
following theorem.

I Theorem 6. For the problem of minimizing the weighted flow time on m identical machines
with preemption and job release dates, P |rj , pmtn|

∑
wjFj, there is a (1 + ε)-approximation

algorithm with a running time of (mk)O(mk3/ε) · nO(1), assuming that pj , wj ∈ {1, ..., k} for
each job j.

3 Non-preemptive case

In this section we present a (1 + ε)-approximation algorithm for the non-preemptive setting,
i.e, for P |rj |

∑
wjFj , whose running time is bounded by f(k, ε,m) · nO(1) for some function

f , assuming that pj , wj ∈ {1, ..., k} for each job j.
Similar to Lemma 1 in the preemptive case, we can assume that OPT schedules the jobs

in order of their release dates.

I Lemma 7. We can assume that if OPT starts a job j ∈ J`,`′ before a job j′ ∈ J`,`′ then
rj is released before rj′ , breaking ties in an arbitrary fixed order. Also, each job starts and
ends at an integral time point.

3.1 Near-optimal solution
Like in the preemptive case, we first define a structured solution OPT ′ with c(OPT ′) ≤
(1 + ε)c(OPT ) and then provide a dynamic program that finds a solution with cost at most
c(OPT ′). To define OPT ′, we split the time horizon into two parts I ′low and I ′high. We
define I ′low :=

⋃
t∈N:WOPT (t)≤22k2m2/ε[t, t + 1) and I ′high :=

⋃
t∈N:WOPT (t)>22k2m2/ε[t, t + 1).

For each time step [t, t+ 1) ⊆ I ′low with t ∈ N we define OPT ′ to be identical to OPT . Let
[t1, t2) ⊆ I ′high be a maximally large interval of I ′high (and thus t1, t2 ∈ N). Our goal is now

APPROX/RANDOM 2018



28:8 Fixed-Parameter Approximation Schemes for Weighted Flowtime

to define a structured schedule for [t1, t2) whose cost is by at most a factor 1 + ε larger
than the cost of OPT during [t1, t2). Let J ′ denote the jobs that in OPT are started and
completed during [t1, t2). In the preemptive case we defined a schedule for J ′ during [t1, t2)
via (LP). However, an LP-solution might preempt (and migrate) jobs. Instead, we look for
a structured non-preemptive solution that our dynamic program can easily compute later.
Note that if we are given the interval [t1, t2) with the set of jobs J ′ it is not even clear how
compute any non-preemptive schedule, even independent of the cost.

We define a structured schedule that has the pack-property. Intuitively, this property
implies that if at some time t there are many pending jobs of the same class then we schedule
a pack, i.e., a large subset of them, as soon as we can. Formally, we say that a job j is ready
at time t if rj ≤ t and if j has not been started before t. A set of ready jobs Q ⊆ J ′ forms a
pack if all jobs in Q are of the same class and if p(Q) = m · k!, where for any set of jobs J̃
we define p(J̃) :=

∑
j∈J̃ pj .

I Definition 8 (Pack-property). A schedule for the jobs J ′ in the interval [t1, t2) has the
pack-property if for each integral time t ∈ [t1, t2) at which a machine finishes a job or such
that there is machine that is idle during [t− 1, t) the following holds:

If for some job class J`,`′ there are jobs from J ′ ∩ J`,`′ with a total processing time of at
least 4m2kk! that are ready at time t, we say that the class J`,`′ is waiting. For a waiting
job class J`,`′ let Q`,`′ denote the m · k!/` ready jobs with earliest release dates among
the ready jobs in J`,`′ .
Among the waiting jobs classes, let J`,`′ be a waiting job class with highest density, i.e.,
that maximizes `′/`, breaking ties in a fixed arbitrary way. For each machine i let t(i)
denote the earliest time t′ ≥ t when i is not processing a job that it is executing during
[t − 1, t). We require that then each machine i schedules k!/` jobs from Q`,`′ during
[t(i), t(i) + k!). In the resulting schedule, we call the jobs in Q`,`′ pack-jobs and we say
that they are scheduled as the pack Q`,`′ .

We first prove that a schedule for [t1, t2) with the pack-property always exists and
afterwards we will bound its cost. We will do this via a repeated exchange argument: starting
with the optimal schedule, if at some time t the schedule does not obey the pack-property
then we move some jobs in the schedule such that the pack-property holds at time t. Note
that in OPT a machine might work on a job j /∈ J ′ during [t1, t2) if j is started before t1
or completed after t2. For each machine i, denote by t1(i) and t2(i) the earliest and latest
times in [t1, t2] at which i does not work on a job in J ′.

I Lemma 9. There is a schedule for the jobs J ′ during the interval [t1, t2) that fulfills the
pack-property such that each machine i works on jobs in J ′ only during [t1(i), t2(i)).

We apply Lemma 9 to each maximally large interval [t1, t2) ⊆ I ′high and its corresponding
job set J ′. Then we possibly swap jobs from the same class such that the resulting schedule
satisfies Lemma 7. Denote by OPT ′ the resulting schedule.

3.2 Bounding the cost
We want to prove that c(OPT ′) ≤ (1 + ε)c(OPT ). The intuition is the following: recall that
in a schedule with the pack-property some job are pack-jobs. The non-pack-jobs are all other
jobs that are scheduled during a maximally large interval [t1, t2) ⊆ I ′high, denoted by Jnp. At
each time t ∈ I ′high there can be only few pending jobs in Jnp since if the total processing
time of pending non-pack jobs from one class was at least 4m2kk! then some of them would
be pack-jobs. Hence, the contribution to WOPT ′(t) of the non-pack-jobs is negligible for each
t ∈ I ′high and hence the same holds for their contribution to the objective function.
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I Proposition 10. For each time t ∈ I ′high let W np
OPT ′(t) denote the total weight of the pending

jobs in Jnp at time t in OPT ′ and then it holds that W np
OPT ′(t) ≤ 4m2k3k! ≤ ε ·WOPT (t).

Therefore,
∫
t∈I′

high
W np
OPT ′(t)dt ≤ ε ·OPT .

Let Jp denote the jobs that are scheduled as pack-jobs during a maximally large inter-
val [t1, t2) ⊆ I ′high. When in OPT ′ a set of jobs Q̄`,`′ is scheduled as a pack then for each
machine i we can identify a time t(i) such that the jobs from Q̄`,`′ are scheduled exactly
during [t(i), t(i) + k!). It can happen that t(i) 6= t(i′) for two machines i, i′. In order to
simplify the analysis, we define a new schedule OPT ′′p only for the pack-jobs in which the
latter does not happen and such that the cost of OPT ′′p is similar to the cost of the pack
jobs in OPT ′. Intuitively, OPT ′′p is a greedy schedule: one can interpret the jobs from each
pack as m super-jobs with processing time k! each such that each machine is assigned one of
these super-jobs. In our schedule, these super-jobs are scheduled greedily by their density
(or, equivalently, by their weight).

Let Q1, ..., Qs be a partition of the pack-jobs such that for each r the jobs in Qr are
scheduled as the pack Qr. For each pack Qr denote by tr the earliest start time of a job in
Qr in OPT ′. In OPT ′′p we define that on each machine i for each pack Qr the jobs in Qr
are scheduled during [tr, tr + k!). Intuitively, to achieve this we shift some of the jobs of Qr
in OPT ′ to the left. Denote by OPT ′′p the resulting schedule. At time tr all jobs from Qr
are already released and thus in OPT ′′p no job is scheduled before its release date. Together
with the following lemma this implies that OPT ′′p is feasible.

I Lemma 11. For any two packs Qr, Qr′ with r 6= r′ we have that [tr, tr+k!)∩[tr′ , tr′ +k!) = ∅.

Proof. Assume w.l.o.g. that tr ≤ tr′ . In OPT ′, for the pack Qr there is a machine i such
that the jobs from Qr are scheduled during [tr, tr + k!) and for any machine i′ 6= i the jobs
from Qr are scheduled during [tr + αi′ , tr + αi′ + k!) for some αi′ ∈ {0, ..., k − 1}. Hence,
tr′ ≥ tr + k!. J

When we constructed OPT ′′p based on OPT ′, we shifted each job by at most k − 1 units to
the left and hence the cost of the schedule changes only marginally.

I Lemma 12. We have that W p
OPT ′(t) ≤WOPT ′′

p
(t) + k2m ≤WOPT ′′

p
(t) + εWOPT (t) where

W p
OPT ′(t) denotes the total weight of the pending pack-jobs in OPT ′ at time t.

Proof. Observe that in OPT ′ and OPT ′′p the completion time of a job differs by at most k.
Hence, at each point in time OPT ′′p has completed at most km jobs more than OPT ′ and
the total weight of these jobs is at most k2m. Therefore, W p

OPT ′(t) ≤ WOPT ′′
p

(t) + k2m ≤
WOPT ′′

p
(t) + εWOPT (t) for each t ∈ I ′high. J

We want to prove now that OPT ′′p has small cost. Consider a maximally large interval
[t1, t2) ⊆ I ′high. We define an artificial instance Ip consisting of only the pack-jobs scheduled
during [t1, t2). We assign an artificial release date t′r to all jobs in each pack Qr. Intuitively,
t′r is defined to be the earliest time when we might schedule the jobs in Qr as pack-jobs
because at this time all jobs in Qr and many other jobs of the same class with later release
dates have already been released. Formally, assume that J`,`′ is the (unique) job class such
that Qr contains jobs from J`,`′ . We define t′r to be the earliest time when all jobs in Qr are
released and the total processing time of already released jobs j ∈ J`,`′ with rj ≥ minj′∈Qr rj
is at least 4m2kk!. Note that OPT ′ does not process a job in Qr earlier than t′r since in
OPT ′ the jobs in Qr are processed as pack jobs. We consider the solution to (LP) for this
instance where we define p′j := pj for each j ∈ Jp. Let x∗ be this solution and let FRAC
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be the resulting fractional schedule. We partition the jobs Jp into groups J (1)
p , J

(2)
p , ..., J

(γ)
p

according to their densities: for each group J
(g)
p all jobs j ∈ J (g)

p have exactly the same
density wj/pj and for two jobs j, j′ with j ∈ J (g)

p and j′ ∈ J (g′)
p with g < g′ we have that

wj/pj < wj′/pj′ . In particular, jobs in different groups have different densities.

I Lemma 13. We can assume w.l.o.g. that in FRAC for each t ∈ I ′high with t ∈ N we have
that during [t, t+ 1) either all machines are idle or all machines work on jobs from a pack
Qr such that each job j ∈ Qr has the highest density wj/pj among all pending jobs at time t.
Moreover, for each group J (g)

p at each time t there is at most one pack Qr containing jobs
from J

(g)
p from which some jobs or some parts of some jobs have already been processed, but

not all jobs completely.

Proof. The number of jobs in each pack is mk!/` where ` denotes the size of each job in the
pack and, in particular, this value is divisible by m. Also, a solution to (LP) is optimal if
for each t ∈ I ′high during [t, t + 1) each machine works on a job j with the largest density
wj/pj among all available jobs. Hence, using a greedy algorithm we can construct an optimal
fractional solution with the latter property that satisfies the claim of the lemma. J

For each t ∈ I ′high denote by W̃FRAC(t) the total fractional pending weight of the jobs j with
rj ≤ t that have not completed by time t in FRAC. Formally, for each job j ∈ Jp and each
t ∈ I ′high let pj(t) denote the remaining processing time of job j at time t in FRAC. We
define W̃FRAC(t) :=

∑
j∈Jp

pj(t)wjpj .
In the next lemma, we prove that W̃FRAC(t) is not too large compared to WOPT (t) for

each t. Note that even though W̃FRAC(t) denotes the fractional remaining weight which is
not larger than the integral remaining weight, for some t it can be thatWOPT (t) < W̃FRAC(t)
because OPT can work on a job j in a pack Qr before FRAC can do this since possibly
rj < t′r. However, for each job class J`,`′ the total weight of such jobs is bounded by 4m2k3k!
at each time t which we will use to prove the following lemma.

I Lemma 14. For each group J (g)
p and each time t ∈ {t1, ..., t2−1} we have that W̃FRAC(t) ≤

WOPT (t) + 4m2k5k!.

In the next lemma, we show that WOPT ′
p
(t) is not much larger than W̃FRAC(t) which we

will eventually use in order to bound the cost of OPT ′p and hence of OPT ′. For a set of jobs
J̄ denote by W J̄

OPT ′′
p

(t) and W̃ J̄
FRAC(t) the integral and fractional weight of its pending jobs

at time t in OPT ′p and FRAC, respectively.

I Lemma 15. For each group J (g)
p and each t ∈ {t1, ..., t2 − 1} we have that W J(g)

p
OPT ′′

p
(t) ≤

W̃
J(g)

p
FRAC(t) + 2γ−gmk · k!. Therefore, WOPT ′′

p
(t) ≤ W̃FRAC(t) + 2k2

mk · k! ≤ WOPT ′′
p

(t) +
εWOPT (t).

Using Lemmas 14 and 15 we bound the cost of OPT ′.

I Lemma 16. It holds that c(OPT ′) ≤ (1 + ε)c(OPT ).

3.3 Dynamic program
We present now a dynamic program that computes a solution ALG which satisfies that
c(ALG) ≤ c(OPT ′) ≤ (1 + ε)c(OPT ). It has two stages: in the first stage, it intuitively
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guesses the schedule for each t ∈ I ′low and the maximally large intervals of I ′high. Note that
for each t ∈ I ′low we have that WOPT (t) ≤ 22k2

m2/ε and hence the number of different
configurations at time t can be bounded by some function f(k, ε,m). In the second stage, it
computes a solution for each maximally large subinterval of I ′high that obeys the pack-property.
To this end, note that if at a time τ during such a subinterval [τL, τR) no job class is waiting
then the number of released by infinished jobs at time τ can be bounded by some function
g(k, ε,m). Thus, we can guess the schedule for the interval [τ, τ + 1) in FPT-time and
continue with the time point τ + 1. Otherwise, the pack-property dictates which jobs we
need to schedule next on the machines, i.e., we need to schedule a pack of jobs from the
waiting job class of highest density (among all waiting job classes). We embed the guessing
steps into a dynamic program that intuitively scans the time axis from left to right.

We assume w.l.o.g. that minj rj = 1, maxj rj = O(n2k2), and that OPT ′ finishes its last
job before time T := maxj rj + nk, otherwise we can split the instance into independent
subinstances. Similarly to the preemptive setting, we say that a configuration for a time t
specifies which jobs are pending at time t, which jobs are being processed on some machine
at time t, and the remaining processing time for each job of the latter kind at time t.
Formally, a configuration is a vector (p̄j)j∈J such that 0 ≤ p̄j ≤ pj and p̄j ∈ N for each
j ∈ J and an assignment of the currently running jobs to the machines, given by a function
run : {1, ...,m} → J ∪ {⊥} where run(i) = ⊥ if at time t no job is running on machine i that
was started before t. We allow only configurations in which the jobs in run({1, ...,m}) are
exactly the partially processed jobs, i.e, the jobs j with 0 < p̄j < pj . For each time t there is
a configuration that corresponds to the status of OPT at time t. The following lemma is an
analog of Lemma 5 of the non-preemptive case.

I Lemma 17. For each time t ∈ N we can compute in time (mk/ε)O(mk5)nO(1) a set C′(t)
of at most (mk/ε)O(mk5) configurations such that if t ∈ I ′low then one of them corresponds
to OPT at time t. The set C′(T ) contains only the configuration cT in which all jobs have
completed.

Our first stage DP has a DP-cell for each tuple (t, c) where t ∈ {0, ..., T} is a time and c is
a configuration in C′(t) according to Lemma 17. A cell (t, c) corresponds to the subproblem
of computing a schedule for the interval [t, T ) that schedules all jobs j that are pending at
time t according to c or that satisfy rj > t. Moreover, if a job j is running on a machine i at
time t according to c, then its remaining part has to finish on machine i before another job
can be processed on the same machine.

For the base case, the cell (T, cT ) stores an empty schedule. Suppose we are given a cell
(t, c) with t < T . The reader may imagine that t ∈ I ′low and that at time t the schedule
OPT ′ is in configuration c. Intuitively, we guess the smallest time t′ > t with t′ ∈ I ′low and
the configuration c′ of OPT ′ at time t′. Formally, for each time t′ > t with t′ ∈ N, and each
configuration c′ ∈ C′(t′) we do the following: in case that c and c′ are inconsistent we discard
the guess. Formally, note that the information about the partially processed jobs according
to c and c′ imply when those jobs have to be executed during [t, t′). We discard the guess if
this would imply that a machine has to work on two jobs at the same time, if a job has to
be started at different times or on different machines according to c and c′, if in c′ a job is
pending that is already finished according to c, or if the resulting schedule would contradict
Lemma 7. In case that t′ = t+ 1 we have that c and c′ imply the schedule during [t, t+ 1),
up to permutation of machines that work on unit size jobs during [t, t+ 1). We append to
this schedule the schedule stored in the cell (t′, c′) for the time interval [t′,∞).
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If t′ > t + 1 then we create a subproblem for the second stage DP. This subproblem
consists of

the time interval [t, t′) =: [τL, τR),
the set of jobs J ′ that have to be completely processed during [τL, τR) according to c,
and c′, i.e., the jobs j that are ready at time τL according to c or satisfy rj > τL and
that are finished at time τR according to c′, and
the at most 2m jobs that are partially but not completely processed at time τL and
τR according to c and c′, together with their starting times and the information on
which machine they are assigned. Note that since τL and τR are fixed, there are only 2k
possibilities for the starting time of each such job. We denote by S the resulting schedule
for these jobs.

Denote by (τL, τR, J ′, S) the resulting tuple which forms the input to our second stage DP. In
this DP, intuitively we scan the time axis from left to right in order to compute a schedule for
J ′ that satisfies the pack-property and that does not conflict with S. If at a time τ ∈ [τL, τR)
no job class is waiting then we guess the schedule for the interval [τ, τ + 1) and continue with
the time point τ + 1. Otherwise, we select a waiting job class J`,`′ of highest density among
all waiting job classes and schedule a pack of J`,`′ as soon as possible.

Formally, our second stage DP has an entry (τ, c) for each combination of a time
τ ∈ {τL, ..., τR − 1} and a configuration c ∈ C′′(τ) where C′′(τ) is the set of all configurations
of the second stage DP for time τ , consisting only of jobs in J ′, such that for each job class
J`,`′ the total processing time of the ready jobs is less than 4m2kk!, i.e., there is no job class
that is waiting at time τ . The subproblem for (τ, c) is the problem of computing a schedule
S′ for the interval [τ, τR) for the jobs j ∈ J ′ that are pending at time τ according to c or
which satisfy rj > τ and we require that this schedule is consistent with S, i.e., at each time
τ no machine schedules one job according to S and another job according to S′. The cost of
this schedule is the cost of all jobs in J ′ that finish during [τ, τR).

I Lemma 18. The number of DP-cells of the second stage DP is bounded by (mk)O(mk4)n2k2.

Suppose we want to solve a subproblem (τL, τR, J ′, S) using our second stage DP. For
the base case, let c̄τR denote the configuration in which p′j = 0 for each job j ∈ J ′. We
define (τR, c̄tR) to be the empty schedule, for all other configurations c′′ ∈ C′′(τR) we mark
the DP-cell (τR, c′′) as invalid. Intuitively, a cell (τ, c′′) is marked invalid if there is no
non-preemptive schedule for [τ, τR) that finishes before time τR all jobs that are have to be
processed during this interval according to c′′. We describe now how to compute the entry
for a cell (τ, c) such that c ∈ C′′(τ) and τ < τR. We guess the schedule for the time interval
[τ, τ + 1), i.e., for each machine i that at time τ is not processing a previously started job
we try all possibilities to choose a job to start and also allow for the possiblity to keep the
machine idle during [τ, τ + 1). For jobs that start at time τ we require that within their
job class they are the pending jobs with earliest release dates (like in OPT ′, see Lemma 7).
Hence, there are only g̃(k, ε,m) possibilities for some function g̃.

For a given guess, let c̃ denote the resulting configuration at time τ + 1. If c̃ ∈ C′′(τ + 1)
then we append the schedule stored in the cell (τ + 1, c̃), unless (τ + 1, c̃) was marked invalid
in which case we discard our guess. If c̃ /∈ C′′(τ + 1) then according to c′ there must be
a job class that is waiting. Let τ ′ be the smallest time step with τ + 1 ≤ τ ′ such that a
machine finishes a job on which it was working at time τ . In this case, let J`,`′ be the job
class with highest density that is waiting at time τ ′, breaking ties like in the construction of
OPT ′. Let Q`,`′ denote the mk!/` ready jobs with earliest release dates among the ready
jobs in J`,`′ . For each machine i denote by τ(i) the time when it completes its job that it
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executes during [τ, τ + 1) (according our guess and the jobs that started before τ) and let
τ(i) := τ + 1 if there is no such job. On each machine i we schedule k!/` jobs from Q`,`′

during [τ(i), τ(i) + k!). Let c̃′ denote the resulting configuration of the pending jobs in J ′
at time τ + 1 + k!. If c̃′ ∈ C′′(τ + 1 + k!) then the solution for our guess of the schedule
during [τ, τ + 1) consists of the schedule for the jobs running at time τ according c, the just
computed schedule for the jobs in Q`,`′ , and the solution stored in the cell (τ + 1 + k!, c̃′),
unless (τ + 1 + k!, c̃′) was marked invalid in which case we discard our guess. Otherwise,
there must be a waiting job class. In this case we repeat the process (i.e., identify a waiting
jobs class and schedule a pack of its jobs as soon as possible) until we arrive at a time τ ′′
and a configuration c̃′′ ∈ C′′(τ ′′) in which case we append the schedule in the DP-cell (τ ′′, c̃′′)
to the just computed schedule, or, again discard our guess in case that (τ ′′, c̃′′) was marked
invalid. In case that the resulting schedule contradicts S (i.e., according to the computed
schedule a machine i has to work on a job j ∈ J ′ at the same time as it has to work on some
job j′ /∈ J ′ according to S) we discard our initial guess for the interval [τ, τ + 1). Finally,
in the cell (τ, c) we store the computed schedule of minimum cost over all guesses of the
schedule for the interval [τ, τ + 1), or, in case that we discarded all guesses, we mark the cell
(τ, c) as invalid.

Finally, let c̄0 denote the configuration in which p′j = pj for each job j ∈ J ′, i.e., the
configuration of the jobs J ′ at time τL. We observe that c̄0 ∈ C′′(τL) since c ∈ C′(τL) (where
c is the configuration of the cell (t, c) of the first stage DP above) and hence the solution to
the subproblem (τL, τR, J ′, S) is stored in the cell (τL, c̄0).

I Theorem 19. For the problem of minimizing the weighted flow time onm identical machines
with job release dates and without preemption, P |rj |

∑
wjFj , there is a (1 + ε)-approximation

algorithm with a running time of (mk/ε)O(mk5) · nO(1), assuming that pj , wj ∈ {1, ..., k} for
each job j.
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A Omitted proofs

A.1 Proof of Lemma 4
We define a partially fractional objective function: for a given solution S and a value
t ∈ Γ let W̃S(t) =

∑
j∈J:rj≤t

wj
pj
pSj (t) where pSj (t) denotes the total length of each job j that

has not been finished by time t in S. We define a new objective function by
∑
t∈Ilow∩Γ εW (t)+∑

t∈Ihigh∩Γ εW̃ (t). We have that
∑
t∈Ilow∩Γ εWOPT ′(t) +

∑
t∈Ihigh∩Γ εW̃OPT ′(t)

≤
∑
t∈Ilow∩Γ εWOPT (t) +

∑
t∈Ihigh∩Γ εW̃OPT (t) since the solution values of our fractional

schedules in the maximally large intervals of Ihigh are a lower bound on the respective cost
of OPT in these intervals.

On the other hand, for each t ∈ Ihigh ∩ Γ we have that WOPT ′(t) ≤ W̃OPT ′(t) + 3mk3 ≤
W̃OPT ′(t) + εWOPT (t) since WOPT (t) > 3mk3/ε2 and for each job class and each time t
there are at most 3mk/ε jobs that have been started in OPT ′ but not yet completed: at
most mk/ε jobs j for which 0 < p̄j(t) < p′j (where p′j denotes the amount of work that OPT
finishes on job j during the maximally large subinterval of Ihigh that contains t), at most
mk/ε jobs j with p̄j(t) = p′j but p′j < pj (those jobs are partially scheduled at time t2 in
OPT and by Lemma 2 there can be only mk/ε of those) and at most mk/ε jobs j with

http://arxiv.org/abs/1404.1059
http://dx.doi.org/10.1007/978-3-540-92182-0_39
http://arxiv.org/abs/1603.02611
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p̄j(t) = 0 but that have already been partially processed in OPT at time t1 (again, due to
Lemma 2). This yields∫

t

WOPT ′(t)dt =
∑
t∈Γ

εWOPT ′(t)

≤
∑

t∈Γ∩Ilow

εWOPT ′(t) +
∑

t∈Γ∩Ilow

(
εW̃OPT ′(t) + ε2 ·WOPT (t)

)
≤

∑
t∈Γ∩Ilow

εWOPT ′(t) +
∑

t∈Γ∩Ilow

(
εWOPT (t) + ε2 ·WOPT (t)

)
≤ c(OPT ) + ε · c(OPT )
≤ (1 + ε)c(OPT ).

A.2 Proof of Lemma 9
We will transform OPT step by step into a schedule for J ′ satisfying the pack-property. We
consider the timesteps t ∈ {t1, ..., t2 − 1} in increasing order. Define OPTt1−1 := OPT . For
each timestep t ∈ {t1, ..., t2 − 1} we take the schedule OPTt−1, assuming inductively that
OPTt′ fulfills the pack-property for each t′ ∈ {t1, ..., t − 1}. If in OPTt−1 at time t there
is no waiting job class J`,`′ then we define OPTt := OPTt−1 and hence OPTt fulfills the
pack-property at each t′ ∈ {t1, ..., t}. Otherwise, let J`,`′ denote a waiting job class with
maximum density `′/`, breaking ties in an arbitrary fixed order. Denote by J̃`,`′ the at least
4m2k2k! jobs from J`,`′ that are ready at time t. Hence, there must be a machine i∗ such
that jobs from J̃`,`′ with a total processing time of 4mkk! are scheduled on i∗ during [t, t2).
Note that this implies in particular that t2 ≥ t+ 4m2k2k!. For i let t(i) be the earliest time
t′ ≥ t when machine i starts a new job or is idle. We change the order of the jobs on i∗

such that after t(i∗) we first schedule the jobs in J̃`,`′ on i∗ and then all other jobs that are
scheduled on i∗ in OPTt−1 in the same order as in OPTt−1. Next, we swap some of the jobs
in J̃`,`′ on i∗ to the other machines such that each machine i schedules k!/` jobs from J̃`,`′ .

I Claim 20. For each machine i 6= i∗ there is a set of jobs J(i) that i starts and completes
during [t, t + 2k · k! + k) such that there are k! time units in [t, t + 2k · k!) during which
machine i either works on a job in J(i) or is idle.

Proof. It suffices to define J(i) := ∅ if the total amount of idle time on machine i during
[t(i), t(i) + 2k · k!) is at least k!. Otherwise, during [t(i), t(i) + 2k · k! + k) machine i starts
and completes jobs with a total processing time of at least kk! and hence there must be an
integer k′ ≤ k such that i starts and completes at least k!/k′ jobs of size exactly k′. We
define J(i) to be k!/k′ of these jobs. J

Since machine i∗ schedules jobs from J̃`,`′ with a total processing time of at least
4mkk! ≥ mk! + 2kk! + k, there must be mk!/` of them which start at time t+ 2kk! + k or
later. For each machine i 6= i∗ we swap the jobs J(i) with k!/` jobs on i∗ from J̃`,`′ that
start at time t+ 2k · k! + k or later. On machine i, after time t(i) we first schedule the jobs
that were previously on i∗ and then schedule the remaining jobs in the same order as in
OPTt−1. No job is started before its release date since all jobs in J̃`,`′ are ready at time
t. Also, since in OPTt−1 there are k! time units during [t, t+ 2k · k! + k) in which i either
works on a job in J(i) or is idle, each job in J ′ on i completes by time t2(i) the latest. On i∗
we first schedule all jobs from J̃`,`′ and then the jobs from the sets J(i) in an arbitrary order.
Since each job in J(i) starts before time t+ 2k · k! + k in OPTt−1 it starts no earlier than its
release date (after the swap).
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A.3 Proof of Lemma 14

Based on OPT , we construct a schedule OPT for the jobs in Jp that fulfills that WOPT (t) ≤
WOPT (t) + 4m2k5k! for each t and in which no job j in a pack Qr is executed before time t′r.
Then the claim of the lemma follows since for each such schedule S and each t we have that
W̃FRAC(t) ≤WS(t). Consider a job class J`,`′ and let Q1, Q2, ... be its corresponding packs
and let t′1, t′2, ... be there corresponding times t′. To construct OPT , for each pack Qs we
schedule the jobs in Qs during the times when OPT schedules the jobs in Qs+4m2k2 . Observe
that for each job j ∈ Qs+4m2k2 it holds that rj ≥ t′s and hence after this swap each job in
Qs is started no earlier than t′s. We remove the jobs in the last 4m2k2 packs of J`,`′ from
the schedule, one may imagine that we schedule them at the very end after t2. So intuitively,
at each time t the schedule OPT is at most 4m2k2 packs “behind” the schedule OPT .
The total weight of the jobs in 4m2k2 packs is bounded by k · 4m2k2k!. This implies that
W

J`,`′

OPT
(t) ≤W J`,`′

OPT (t) + 4m2k3k! for each t where W J`,`′

OPT (t) and W J`,`′

OPT
(t) denote the pending

weight of the jobs in J`,`′ at time t, respectively. Since there are at most k2 jobs classes, this
implies that WOPT (t) ≤WOPT (t) + 4m2k5k! and hence W̃FRAC(t) ≤WOPT (t) + 4m2k5k!.

A.4 Proof of Lemma 15

The second inequality follows from the first one by a geometric sum argument. We prove
the first inequality. The claim is clearly true for t = t1. For all other t we prove the
lemma by induction over the groups J (1)

p , J
(2)
p , ..., J

(γ)
p . For the base case, consider the

group J
(γ)
p . The jobs in J

(γ)
p have the maximum density among all jobs in the instance.

For this group, we prove the claim by induction over t. More precisely, we prove that
W

J(γ)
p

OPT ′′
p

(t) ≤ W̃
J(γ)

p
FRAC(t) + m · k! for each t. The claim is true for t = t1. Consider an

arbitrary time t and suppose that the claim is true for each time t′ < t. If during [t− 1, t) in
the schedule OPT ′p one machine is working on a job in J (γ)

p then all machines are working
on a job in J

(γ)
p and thus the claim is also true for time t. Similarly, if during [t − 1, t)

the schedule FRAC is not working on a job in J (γ)
p then the claim is also true for time t.

Otherwise, assume that during [t− 1, t) in the schedule OPT ′p no machine is working on a
job in J (γ)

p but in FRAC some machine is working on a job in J (γ)
p . Hence, in FRAC all

machines are working on a job in J (γ)
p during [t− 1, t). Thus, there is a pack Qr consisting

of jobs in J
(γ)
p with tr ≤ t − 1 of density γ with tr ≤ t − 1 but OPT ′p does not yet work

on Qr. This must be because OPT ′p has already started processing jobs from another pack
Qr′ but it has not yet finished them. Suppose that OPT ′p started the pack Qr′ at a time

t̂ < t − 1. Then, however, t̂ ≥ t − 1 − (k! − 1) = t − k! and W J(γ)
p

OPT ′
p
(t̂) = 0. The schedule

FRAC processes the jobs in J (γ)
p at least as fast as OPT ′p and thus also W̃ J(γ)

p
FRAC(t̂) = 0. The

schedule FRAC can schedule at most one job from J
(γ)
p at a time on each machine. Hence,

W
J(γ)

p
OPT ′′

p
(t) ≤ W̃ J(γ)

p
FRAC(t) +mk · k! = W̃

J(γ)
p

FRAC(t) + 2γ−rmk · k!.
Now assume that there is a value g such that the claim is true for each g′ > g. Consider

the group J (g)
p . Again, we prove the claim for J (g)

p by induction over t. At time t = t1 the
claim is clearly true. Suppose that there is a time t such that for each t′ < t the claim is
true. The claim is immediately true for t if in OPT ′p at least one machine (and hence all
machines) work on a job of group J (g)

p during [t− 1, t) or if in FRAC no machine is working
on a job in J (g)

p during [t− 1, t). Therefore, let us assume that the latter statements are both
not true. Let t′′ ≤ t be the latest point in time before t when W

J(g)
p

OPT ′
p
(t′′) ≤ W̃

J(g)
p

FRAC(t′′).
If t′′ = t there is nothing to show so assume that t′′ < t. Hence, during [t′′, t′′ + 1) in the
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schedule FRAC all machines work on a job in J (g)
p but in OPT ′p no machine works on a job

in J (g)
p . In particular, at time t′′ there is a pack Qr with jobs in J (g)

p with t′r ≤ t′′ but at
time t′′ it has neither been completely processed by OPT ′p nor by FRAC. Also, OPT ′p does
not process jobs from Qr during [t′′, t′′ + 1) (otherwise this would contradict our definition
of t′′) and hence Qr has not been started in OPT ′p. Since OPT ′p and FRAC order the packs
from each group J

(g′)
p according to the artificial release dates t′r this implies that also in

FRAC subpack Qr has not been started yet.
Also, at time t′′ in FRAC there is no job available from a group J

(g′)
p with g′ > g

and thus W̃ J(g′)
p

FRAC(t′′) = 0 for each such g′. Hence, the induction hypothesis implies that

W̃
J(g′)

p
OPT ′

p
(t′′) < 2γ−g′

m · k! for each such g′. Let J̄ denote all jobs in packs Qr′ with t′r′ ∈ [t′′, t)

and which are contained in a group J
(g′)
p with g′ > g. Since FRAC works on a jobs in

J
(g)
p during [t − 1, t) all jobs in J̄ finish in FRAC during [t′′, t). Hence, during [t′′, t) in

the schedule FRAC there are at most t− t′′ − p(J̄)/m units of time during which at least
one (and hence all) machines work on jobs in a group J

(g′)
p with g′ > g. At each time

t̂ ∈ [t′′, t) we have that W J(g)
p

OPT ′
p
(t̂) ≥ 1 since otherwise this would contradict our choice

of t′′. Hence, if at a time t̂ ∈ [t′′, t) the schedule OPT ′p does not work on a job in J
(g)
p

then OPT ′p works on a job in a pack that is partially processed at time t′′ or on a job

from a group J
(g′)
p with g′ > g. Recall that W̃ J(g′)

p
OPT ′

p
(t′′) < 2γ−g′

m · k! for each g′ > g.
Hence, the total time, summed up over all machines, during [t′′, t) when OPT ′p does not
work on a job in J (g)

p is bounded by m · k! + p(J̄) +
∑
g′:g′>g 2γ−g′

m · k!. Therefore, OPT ′p
finishes at least m(t − t′′) − p(J̄) − m · k! −

∑
g′:g′>g 2γ−g′

m · k! units of work of jobs in

J
(g)
p during [t′′, t). Since W J(g)

p
OPT ′

p
(t′′) ≤ W̃ J(g)

p
FRAC(t′′) we have that W J(g)

p
OPT ′

p
(t)− W̃ J(g)

p
FRAC(t) ≤

m(t− t′′)−p(J̄)− (m(t− t′′)−p(J̄)−m ·k!−
∑
g′:g′>g 2γ−g′

m ·k!) = 2γ−gm ·k! and therefore

W
J(g)

p
OPT ′

p
(t) ≤ W̃ J(g)

p
FRAC(t) + 2γ−gm · k!.

A.5 Proof of Lemma 16
We first prove that for each time t ∈ I ′high it holds that WOPT ′(t) ≤ (1 + ε)WOPT (t). Let
t ∈ I ′high. We have that

WOPT ′(t) = W np
OPT ′(t) +W p

OPT ′(t)
Proposition 10

≤ 4m2k4k! +W p
OPT ′(t)

Lemma 12
≤ 4m2k4k! +WOPT ′′

p
(t) + k2m

≤ 5m2k4k! +
γ∑
g=1

W
J(g)

p
OPT ′′

p
(t)

Lemma 15
≤ 5m2k4k! +

γ∑
g=1

(
W̃

J(g)
p

FRAC(t) + 2γ−gm · k!
)

≤ 5m2k4k! + 2γm · k! + W̃FRAC(t)
Lemma 14
≤ 5m2k4k! + 2k

2
m2 · k! +WOPT (t) + 4m2k5k!

≤ εWOPT (t) +WOPT (t)
= (1 + ε)WOPT (t).
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Since WOPT ′(t) = WOPT (t) for each t ∈ I ′low we conclude that c(OPT ′) =
∑
tWOPT ′(t) ≤

(1 + ε)
∑
tWOPT (t) = (1 + ε)c(OPT ).

A.6 Proof of Lemma 17
Since WOPT (t) ≤ 22k2

m2/ε for each t ∈ I ′low there can be at most 22k2
m2/ε pending jobs at

time t. For each of them, there are k2 options to which class it belongs to and k options for its
remaining processing time. For each job class, there arem! possibilities for the identities of the
at most m partially scheduled jobs and additionally m! possibilities for the machines on which

the partially processed jobs run. This yields
(

1 + 22k2
m2/ε

)k3

(m!)k2+1 = (mk/ε)O(mk5)

possible configurations for the pending jobs, which of them are running at time t on the
machines, and how much of them has already been processed.

A.7 Proof of Lemma 18
For each job class there can be at most 4m2kk! pending jobs and there are k options for
their remaining processing time. This yields (1 + 4m2kk!)k options per job class. There
are k2 job classes and there are m! possibilities to distribute the partially processed jobs
on the m machines. This yields m!(1 + 4m2kk!)k3 = (mk)O(mk4) options in total for each
τ ∈ {τL, ..., τR}.

A.8 Proof of Theorem 19
We first prove the correctness of the second stage DP and then based on this the correctness
of the first stage DP. Given an instance (τL, τR, J ′, S) of the second stage DP such that
τL, τR ∈ I ′low, S is the schedule of all jobs that are partially processed at times τL or τR in
OPT ′, and J ′ is the set of jobs that OPT ′ completely finishes during [τL, τR). We prove
that the second stage DP computes a schedule S′ for the interval [τL, τR) in which

all jobs in J ′ are completed
at each time τ ∈ [τL, τR) each machine i either works on a job j ∈ J ′, or works on some
job j /∈ J ′ according to S, or works on no job at all, and
the cost of the jobs J ′ in S′ is bounded by the cost of the jobs in J ′ in OPT ′, i.e.,∑
j∈J′ wj(CS

′

j −rj) ≤
∑
j∈J′ wj(COPT

′

j −rj) where CS
′

j and COPT ′

j denote the completion
times of job j in S′ and OPT ′, respectively.

In this proof, whenever we refer to a configuration c of OPT ′ at a time τ , we mean the
configuration of OPT ′ restricted to the jobs in J ′. We prove by induction for each cell (τ, c)
of the second stage DP such that OPT ′ is in configuration c at time τ and c ∈ C′′(τ) that
the cost of the schedule for the interval [τ, τR) stored in (τ, c) is upper-bounded by the cost
of OPT ′ during [τ, τR). The claim is true by definition for the base case where τ = τR since
then both schedules are empty. Suppose that there is a value τ ∈ [τL, τR) such that the claim
is true for each (τ ′, c′) with τ ′ ∈ [τL, τR) and τ ′ > τ such that c′ ∈ C′′(τ ′) and OPT ′ is in
configuration c′ at time τ ′. We show that the claim is true for the cell (τ, c) such that OPT ′
is in configuration c at time τ in case that c ∈ C′′(τ). Let c be the configuration of OPT ′ at
time τ . In case that c /∈ C′′(τ) there is nothing to show. Assume that c ∈ C′′(τ). Among all
our guesses for the schedule of the interval [τ, τ + 1) we enumerate one guess that coincides
with the schedule of OPT ′ during [τ, τ + 1). Let c′ denote the resulting configuration at time
τ + 1. If c′ ∈ C′′(τ + 1) then by induction the schedule corresponding to this guess (i.e., the
guessed schedule for [τ, τ +1) plus the schedule for [τ +1, τR) stored in the cell (τ + 1, c′)) has
a cost of at most the cost of OPT ′ during [τ, τR), i.e., the cost of the jobs finishing during
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[τ, τR) in OPT ′. If c′ /∈ C′′(τ + 1) then we schedule a pack or several packs of jobs until we
reach a time τ ′′ and a configuration c̃′′ ∈ C′′(τ ′′). Since OPT ′ satisfies the pack property,
we produce a schedule satisfying the pack property, and at each time τ̂ ∈ {τ + 1, ..., τ ′′ − 1}
there is a waiting job class or all machines are busy with pack jobs, the resulting schedule for
the interval [τ, τ ′′) is identical to the schedule of OPT ′ during [τ, τ ′′). Hence, by induction
we know that the resulting schedule for the interval [τ, τR) for this guess has a cost that is at
most the cost of OPT ′ during the interval [τ, τR). This completes the proof for the second
stage DP.

For the first stage DP, one can prove correctness with a similar induction as in the proof
of Theorem 6, using that for a cell (t, c) with t+ 1 /∈ I ′low the DP guesses the earliest time t′
with t′ > t and t′ ∈ I ′low, the configuration c′ of OPT ′ at time t′, and that then the second
stage DP computes a schedule for the interval [t, t′) which completes the same set of jobs
that OPT ′ completes during [t, t′) and whose cost is upper-bounded by the cost of OPT ′ for
these jobs.

It remains to prove the running time of the algorithm. The number of DP cells of the
first stage DP is bounded by (mk/ε)O(mk5)O(n2k2), using Lemma 17 and that T ≤ O(n2k2).
In order to compute the entry of a cell (t, c) of the first stage DP, we enumerate over
(mk/ε)O(mk5)n2k2 possibilities for (t′, c′). In case that t′ = t+1 we can compute the schedule
for [t, t+ 1) in time nO(1).

If t′ > t + 1 we additionally solve an instance of the second stage DP. The number of
DP-cells of the second stage DP is bounded by (mk)O(mk4)n2k2. To compute the entry of
one cell (t, c) we enumerate over kO(m) schedules for the interval [t, t+ 1) and then possibly
compute a schedule for pack jobs in time nO(1). Hence, we solve the resulting instance of
the second stage DP in time (mk)O(mk4)n2k2kO(m)nO(1) = (mk)O(mk4)nO(1). Therefore, the
schedule of a DP cell of the first stage DP can be computed in time (mk/ε)O(mk5)n2k2 ·
(mk)O(mk4)nO(1) = (mk/ε)O(mk5)nO(1) and thus the entries of all cells can be computed in
time (mk/ε)O(mk5)nO(1)(mk/ε)O(mk5)nO(1) = (mk/ε)O(mk5)nO(1).
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