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Abstract
In the property testing model, the task is to distinguish objects possessing some property from
the objects that are far from it. One of such properties is monotonicity, when the objects are
functions from one poset to another. This is an active area of research. In this paper we study
query complexity of ε-testing monotonicity of a function f : [n] → [r]. All our lower bounds are
for adaptive two-sided testers.

We prove a nearly tight lower bound for this problem in terms of r. The bound is Ω
( log r

log log r
)

when ε = 1/2. No previous satisfactory lower bound in terms of r was known.
We completely characterise query complexity of this problem in terms of n for smaller values
of ε. The complexity is Θ

(
ε−1 log(εn)

)
. Apart from giving the lower bound, this improves

on the best known upper bound.

Finally, we give an alternative proof of the Ω(ε−1d logn−ε−1 log ε−1) lower bound for testing
monotonicity on the hypergrid [n]d due to Chakrabarty and Seshadhri (RANDOM’13).
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1 Introduction

The framework of property testing was formulated by Rubinfeld and Sudan [19] and Goldreich
et al. [16]. A property testing problem is specified by a property P , which is a class of functions
mapping some finite set D into some finite set R, and proximity parameter ε, which is a real
number between 0 and 1. An ε-tester is a bounded-error randomised query algorithm which,
given oracle access to a function f : D → R, distinguishes between the case when f belongs
to P and the case when f is ε-far from P. The latter means that any function g ∈ P differs
from f on at least ε fraction of the points in the domain D. The usual complexity measure
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31:2 Adaptive Lower Bound for Testing Monotonicity on the Line

is the number of queries to the function f . A tester is with 1-sided error if it always accepts
a function f in P. A tester is non-adaptive if its queries do not depend on the responses
received to the previous queries. The most general tester is adaptive with 2-sided error,
which we will implicitly assume in this paper.

When both the domain D and the range R are partially ordered sets, a natural property
to consider is that of monotonicity. A function f : D → R is called monotone if x ≤ y implies
f(x) ≤ f(y) for all x, y ∈ D. Usually it is assumed that R is a totally ordered set. In this
case, the property P consists of all monotone functions from D to R. The problem of testing
monotonicity was explicitly formulated and studied by Goldreich et al. [15] in the case when
D is the Boolean hypercube {0, 1}d and R = {0, 1}. This is an active area of research as
exemplified by the papers [11, 14, 7, 6, 9, 8, 17, 1, 2, 10].

However, slightly earlier than Goldreich et al., Ergün et al. studied the same problem for
functions f : [n]→ [r]. Ergün et al. called it spot-checker for sorting, but now this problem
is generally known as monotonicity testing on the line, the line being the totally ordered
set [n]. This problem is the main focus of this paper. Although this problem is arguably
simpler than testing monotonicity on the hypercube, it seems more natural and important
from the practical point of view. Ergün et al. mention that their algorithm can be used
in software quality assurance by providing a very fast verification procedure that checks
whether a presumably sorted array is indeed sorted.

A related problem is that of testing monotonicity on the hypergrid. A hypergrid is a set
[n]d of d-tuples with elements in [n]. For two d-tuples x = (x1, . . . , xd) and y = (y1, . . . , yd),
we have x ≤ y iff xi ≤ yi for all i. We are interested in functions from [n]d to [r] for some
positive integers n, d and r. Clearly, this is a generalisation of both monotonicity testing
on the line (when d = 1) and on the hypercube (when n = 2). These problems are closely
related, so it is important to consider all of them when discussing prior work.

1.1 Prior work
We proceed with a brief discussion of previous results related to our paper. Let us start with
the upper bounds. As mentioned above, the problem of testing monotonicity on the line
was first considered by Ergün et al. [12], who gave an ε-tester with complexity O

(
ε−1 logn

)
.

Concerning the case of functions from the hypercube {0, 1}d to arbitrary [r], Goldreich et
al. [15] proposed the edge tester, and Chakrabarty and Seshadhri [7] proved that it has query
complexity O(d/ε). In the latter paper, an ε-tester for testing monotonicity on the hypergrid
[n]d with complexity O(ε−1d logn) was also constructed.

Now let us turn to the lower bounds. Ergün et al. [12] proved a lower bound2 of Ω(logn)
for testing monotonicity on the line in the so-called comparison-based model. In this model,
each query of the tester may depend only on the order relations between the responses to the
previous queries, but not on the values of the responses themselves.3 Fischer [13] proved that
any lower bound for a monotonicity testing problem in the comparison-based model implies
the same lower bound in the usual value-based model. This immediately gives an Ω(logn)
lower bound for testing monotonicity on the line, matching the upper bound by Ergün et
al. [12]. Chakrabarty and Seshadhri [5] used the same technique to prove a lower bound of

2 If a lower bound does not state dependence on ε, it is assumed that the lower bound holds for some
choice of ε = Ω(1).

3 Note that this does not mean that the tester asks queries of the form f(x)
?
≤ f(y). The query is still

an input x, and the tester learns about the order relations between f(x) and f(y) for all previously
queried y’s.
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Ω(ε−1d logn− ε−1 log ε−1) for testing monotonicity on hypergrids. Unfortunately, Fischer’s
construction is based on Ramsey theory, which means that, in order for this construction to
work, the size of the range, r, has to be really huge.

Large values of r in the above lower bounds may lead one to study complexity of testing
monotonicity with respect to the size of the range, r, rather than the size of the domain, n.
Moreover, there are two parameters related to the output of the function f : the size of the
range (codomain) r, and the size of the image t =

∣∣f([n])
∣∣: the number of different values

attained by the function. Clearly, t ≤ r. This means it is more interesting to prove upper
bounds in terms of t and lower bounds in terms of r.

Let us start with the upper bounds. First, it is easy to see that if r = 2, then O(1/ε) queries
suffice to ε-test monotonicity on the line. Generalising this observation, Pallavoor et al. [18]
constructed an ε-tester for monotonicity on the line with complexity O( 1

ε log t) for general t,
as well as an ε-tester for monotonicity on hypergrids with complexity O

(
d
ε log d

ε log t
)
. Since

t ≤ n, the lower bound of Ω(logn) due to Fischer [13] implies the lower bound of Ω(log t) for
all n ≥ t and r large enough.4

The main prior technique capable of proving strong lower bounds for functions with small
range is that of communication complexity. Blais et al. introduced this technique in [3], where
it was proven that Ω

(
min{d, r2}

)
queries are required to test a function f : {0, 1}d → [r] for

monotonicity. In a subsequent paper [4] a non-adaptive lower bound of Ω(d logn) was proven
for functions f : [n]d → [nd] on the hypergrid. In the special case of d = 1, this gives a lower
bound of Ω

(
log min{n, r}

)
for testing monotonicity of a function f : [n]→ [r] on the line.

1.2 Our results
Our main contribution is an adaptive lower bound for testing monotonicity on the line. In
order not to obstruct our main argument, we first prove the bound for ε = Ω(1), and then
show how to adapt the construction for smaller values of ε.

I Theorem 1. Every adaptive bounded-error 1/2-tester for monotonicity of a function
f : [2k]→ [k3k] has query complexity Ω(k).

Unlike [13, 5], we bypass Ramsey theory and construct two explicit distributions of
functions that are hard to distinguish by an adaptive algorithm. In terms of the size of the
domain, n, this gives the same lower bound of Ω(logn) as in Fischer’s paper [13], but with
vastly reduced range size. A more direct construction can be beneficial for generalisation to
other models, like quantum testers, since it is not known how to adapt Fischer’s technique
to the quantum settings.

In terms of the size of the range, r, this gives a lower bound of of Ω
( log r

log log r
)
, thus nearly

matching the upper bound by Pallavoor et al. [18]. Finally, we get a slightly worse estimate
(in terms of the range size) than that of Blais et al. [4] but for adaptive testers. We prove
Theorem 1 in Section 3.

In Section 4, we consider the case of general ε. First, we show that the construction of
Theorem 1 can be used to prove an Ω

(
ε−1 log(εn)

)
lower bound for ε-testing monotonicity

on the line. For large values of ε, this matches the upper bound of O
(
ε−1 logn

)
due to Ergün

et al. [12], but is slightly worse when ε is close to 1/n. However, we manage to improve the
algorithm and prove an upper bound of O

(
ε−1 log(εn)

)
for all εn ≥ 2, thus matching our

lower bound. If εn < 2, the complexity is obviously Θ(n), hence, this completely resolves the
problem of ε-testing monotonicity on the line for all values of n and ε ≤ 1/2.

4 The size of the domain of a function f : [n] → [r] can be inflated without changing its distance to
monotonicity by replacing f with the function f ′ : [nk]→ [r] given by f ′(x) = f(bx/kc).

APPROX/RANDOM 2018
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Finally, in Section 5, we show how our construction can be adapted to prove the lower
bound Ω(ε−1d logn − ε−1 log ε−1) for ε-testing monotonicity on the hypergrid [n]d. This
coincides with the bound by Chakrabarty and Seshadhri [5], but, again, our construction
bypasses Ramsey theory, which results in a vastly reduced range size.

2 Preliminaries

Although this is not standard, it will be convenient for us to denote [n] = {0, 1, . . . , n− 1},
and [a..b] = {a, a+ 1, . . . , b− 1}. Thus, [n] = [0..n], and note that [a..b] does not contain b.

An assignment α : S → [r] is a function defined on a subset S ⊆ [n]. The weight of α
is the size of S. We say that f agrees with α if f(x) = α(x) for all x ∈ S. This is notated
by f ⇁ α. The choice of notation is to distinguish it from f ∼ µ which means that f is
distributed according to the probability distribution µ.

All logarithms are to the base of 2.

3 Proof of Theorem 1

We will define a probability distribution µ on monotone functions f : [2k] → [k3k] and a
probability distribution ν on functions g : [2k]→ [k3k] that are 1/2-far from monotone. It
will be impossible to distinguish these two distributions using fewer than Ω(k) queries. Let
m = k3, so that r = mk.

We define the distribution µ in two different but equivalent ways. First, µ is defined as
the last member in an inductively-defined family µ0, µ1, . . . , µk of distributions, where µi is
supported on functions [2i]→ [mi]. The distribution µ0 is supported on the only function
that maps 0 to 0. Assume that µi is already defined and let us define µi+1. In order to do
that, we independently sample f0 and f1 from µi and a from [m− 1]. The corresponding
function f in µi+1 is given by

f(x) =
{
a ·mi + f0(x), if 0 ≤ x < 2i;
(a+ 1)mi + f1(x− 2i), if 2i ≤ x < 2i+1.

(1)

For an alternative way of defining µ, let us assume that the argument x is written in
binary and the value f(x) in m-ary. We prepend leading zeroes if necessary so that each
number has exactly k digits. We enumerate the digits from left to right with the elements
of [k], so that the 0-th digit is the most significant one, and the (k − 1)-st digit is the least
significant one. For each binary string s of length strictly less than k, sample an element
as from [m− 1] independently and uniformly at random. The i-th digit of f(x) is defined
as as + b, where s is the prefix of x of length i and b is the i-th bit of x. It is easy to see
that both definitions of µ are equivalent, and that any function f from the support of µ is
monotone.

The distribution ν is defined as the uniform mixture of the following distributions νj for
j ∈ [k]. The function g ∼ νj is defined as g(x) = f(x⊕ 2k−1−j) when f is sampled from µ.
Here ⊕ denotes the bit-wise XOR function. In other words, the jth bit of the argument is
flipped before applying f . Alternatively, we may say that g ∼ νj is defined as in the case of
µ with the exception that the j-th digit of g(x) is as + (1− b) instead of as + b.

I Claim 2. Any function g in the support of νj is 1/2-far from monotone.
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Proof. Consider two input strings x < y that differ only in the j-th bit. By the definition of
νj we have g(x) > g(y), thus, {x, y} is a monotonicity-violating pair. We have 2k−1 such
disjoint pairs, and every monotone function differs from g on at least one element of each
pair. J

Now we are ready to start with the proof of Theorem 1. Assume towards contradiction
that there exists a randomised 1/2-tester A with query complexity o(k). Using standard
error reduction, we may assume that A errs with probability at most 1/8 on each input. Let
λ be the uniform mixture of µ and ν. Clearly, A errs with probability at most 1/8 on λ.
The randomised algorithm A can be defined as a probability distribution on deterministic
query algorithms of the same query complexity, hence, one of the deterministic algorithms
in the support of A errs with probability at most 1/8 on λ. Thus, we may assume A is a
deterministic query algorithm. The error probability 1/8 on λ implies that on µ and ν we
have

Pr
f∼µ

[A accepts f ] ≥ 3
4 and Pr

g∼ν
[A accepts g] ≤ 1

4 . (2)

Also, we may assume that k is large enough, so that the query complexity of the deterministic
query algorithm A is less than k/2.

So, A is a decision tree. Its leaves are specified by assignments in the sense that A
terminates its work on input f in a leaf given by assignment α if and only if f agrees with
α. Moreover, the weight of each such α does not exceed the query complexity of A. We
partition all these assignments α into two parts as follows. We say that an integer ` ∈ [r]
is good if it contains no digit 0 and no digit m− 1 (in the m-ary representation as before).
Otherwise, ` is bad. We say that an assignment α is good if all the elements in its image are
good. Otherwise, α is bad. Finally, a leaf of A is good iff the corresponding assignment is
good.

I Claim 3. The probability that A ends its work in a bad leaf when run on an input f
sampled from µ is o(1).

Proof. For each x in the domain of f , the value f(x) is bad only if one of the k elements
as0 , as1 , . . . , ask−1 has value 0 or m − 2, where si is the prefix of x of length i. Thus, the
probability of A to terminate in a bad leaf is at most the probability of finding an element as
with value in {0,m− 2} with k/2 queries, where on each query it is allowed to test the values
of k different as’s. Since the as’s are independent, and the probability of as ∈ {0,m− 2} is
2/(m− 1), we get, using the standard bound on search, that the probability of succeeding is
at most k

2 · k ·
2

m−1 = o(1). J

I Claim 4. For each good assignment α of weight at most k/2,

Pr
f∼µ

[f ⇁ α] ≤ 2 · Pr
g∼ν

[g ⇁ α].

Before we start with the proof of this claim, let us show how Theorem 1 follows from
Claims 3 and 4. In the following, let C be the set of assignments which correspond to the
accepting leaves of A, let B ⊆ C be the subset of bad assignments, and G ⊆ C be the subset
of good assignments. Then,

Pr
f∼µ

[A accepts f ] =
∑
α∈B

Pr
f∼µ

[f ⇁ α] +
∑
α∈G

Pr
f∼µ

[f ⇁ α]

≤ o(1) + 2
∑
α∈G

Pr
g∼ν

[g ⇁ α] ≤ o(1) + 2 Pr
g∼ν

[A accepts g],

APPROX/RANDOM 2018
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which is in contradiction with (2) if k is large enough.

It remains to prove good. Consider a good assignment α of weight at most k/2. Let S be
the domain of α. We say that a pair x < y from S cuts an index j ∈ [k] iff their first j bits
agree, and they disagree in the j-th bit. In other words, there exists a ∈ Z such that

2a · 2k−j−1 ≤ x < (2a+ 1) · 2k−j−1 ≤ y < (2a+ 2) · 2k−j−1.

The assignment α cuts all the indices cut by the pairs in S. good follows from the following
two lemmata.

I Lemma 5. If a good assignment α does not cut an index j, then

Pr
f∼µ

[f ⇁ α] = Pr
g∼νj

[g ⇁ α].

Proof. By induction on i in the definition (1) of µi. Let for brevity j′ = k − j − 1. If j′ < i,
we define νji as the distribution over the functions g(x) = f(x⊕ 2j′) when f is sampled from
µi. If j′ ≥ i, we define νji = µi. We prove that

Pr
f∼µi

[f ⇁ α] = Pr
g∼νj

i

[g ⇁ α] (3)

for every good assignment α from [2i] to [mi] that does not cut the index j.
The base case i = 0 is trivial. (Actually, the statement is trivial for all i ≤ j′.) Assume (3)

is proven for i, and let us prove it for i+ 1. Let S be the domain of α. There are two cases.
First, assume both S ∩ [2i] and S ∩ [2i..2i+1] are non-empty. This means that α cuts

k − i − 1, hence, i 6= j′. Also, we may assume there exists 1 ≤ a ≤ m − 3 such that
α([2i]) ⊆ [ami..(a+ 1)mi] and α([2i..2i+1]) ⊆ [(a+ 1)mi..(a+ 2)mi], since otherwise both
sides of (3) are 0. Under these assumptions,

Pr
f∼µi+1

[f ⇁ α] = 1
m− 1 Pr

f0∼µi

[f0 ⇁ α0] Pr
f1∼µi

[f1 ⇁ α1],

where f0 and f1 are obtained reversely from (1), and α0 and α1 are defined similarly:
α0(i) = α(i) mod mi and α1(i) = α(i + 2i) mod mi for all i ∈ [2i]. Both assignments are
good, and they do not cut the index j. Similarly, since i 6= j′:

Pr
g∼νj

i+1

[g ⇁ α] = 1
m− 1 Pr

g0∼νj
i

[g0 ⇁ α0] Pr
g1∼νj

i

[g1 ⇁ α1].

By the inductive assumption, we have the required equality.
Now assume one of S ∩ [2i] and S ∩ [2i..2i+1] is empty. We consider the case S ⊆ [2i],

the second one being similar. Again, we can assume there exists 1 ≤ a ≤ m− 2 such that
α([2i]) ⊆ [ami..(a+ 1)mi]. Then,

Pr
f∼µi+1

[f ⇁ α] = 1
m− 1 Pr

f0∼µi

[f0 ⇁ α0]

and, no matter whether i = j′ or not,

Pr
g∼νj

i+1

[g ⇁ α] = 1
m− 1 Pr

g0∼νj
i

[g0 ⇁ α0],

and again we have the required equality by the inductive assumption. J
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I Lemma 6. An assignment α of weight t cuts at most t− 1 indices in [k].

Proof. Let S be the domain of α, and let J ⊆ [k] be the set of indices that α cuts.
Let us construct a graph G as follows. Its vertex set is S. For every index j ∈ J take one

arbitrary pair of elements x, y ∈ S that cuts j and connect x and y by an edge. We say that
the edge xy cuts j.

We claim that the graph G is acyclic, from which the statement of the lemma follows.
Assume that G contains a simple cycle. Consider an edge xy that cuts the minimal index j
on this cycle. Then x and y disagree in the j-th bit. On the other hand, considering the
remaining part of the cycle, we see that x and y agree in the j-th bit. A contradiction, hence,
G is acyclic. J

By cut, there are at least k/2 indices not cut by α, and using goodalpha, we have

2 · Pr
g∼ν

[g ⇁ α] ≥ 2
k

∑
j:α does not cut j

Pr
g∼νj

[g ⇁ α] ≥ 2
k
· k2 · Pr

f∼µ
[f ⇁ α] = Pr

f∼µ
[f ⇁ α],

proving good.

4 The Case of Small ε

In this section, we briefly describe how the result of Theorem 1 can be extended to arbitrary
values of ε, and give an improved version of the algorithm by Ergün et al. [12].

I Theorem 7. If ε ≤ 1/2, the complexity of ε-testing a function f : [n]→ [r] for monotonicity
is

Ω
(

min
{ log(εn)

ε
,

log(εr)
ε log log(εr)

})
.

Proof. The proof closely follows that of Theorem 1. We will briefly describe the construction
and the proof using the notation of Section 3.

Let ` be a positive integer and assume ε = 1/(2`). We will construct probability
distributions µ̃ and ν̃ on functions f : [`2k]→ [`k3k] such that all functions in the support of
µ̃ are monotone, functions in the support of ν̃ are ε-far from monotone, and it takes Ω(`k)
queries to distinguish µ̃ and ν̃. Expressing `k in terms of ε and n or in terms of ε and r gives
the required bound.

Let µ and ν be as in Section 3. For s ∈ [`], independently sample fs from µ. Define
f ∼ µ̃ as

f(s · 2k + x) = s · k3k + fs(x) (4)

for all s ∈ [`] and x ∈ [2k]. The distribution ν̃ is defined as the uniform mixture of ν̃t,j as t
ranges over [`] and j over [k]. The corresponding function f ∼ ν̃t,j is defined as in (4) with
exception that ft is sampled from νj instead of µ. It is easy to see that functions in the
support of µ̃ are monotone, and, using non-monotone, that functions in the support of ν̃ are
ε-far from monotone.

Informally, it takes Ω(`k) queries to distinguish µ̃ and ν̃ because we are searching for one
non-monotone distribution νj among ` independent distributions. Formally, we may proceed
as follows. Assume towards contradiction that there exists a deterministic query algorithm
A that makes less than `k/4 queries, accepts µ̃ with probability at least 3/4 and accepts ν̃
with probability at most 1/4.

APPROX/RANDOM 2018
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Using the same reasoning as in bad, the expected number of bad elements found by A
when run on µ̃ is O(`k2/m) = o(`). We call an assignment α on [`2k] bad if it has more
than `/4 bad elements in its image. Otherwise, we call α good. By Markov’s inequality, the
probability A terminates in a bad assignment when executed on µ̃ is o(1).

Now consider a good assignment α of weight at most `k/4. It corresponds to ` sub-
assignments αs on [2k] defined by αs(x) = α(s · 2k + x) mod k3k. Using good, we get
that

Pr
f∼µ̃

[f ⇁ α] = Pr
g∼ν̃t,j

[g ⇁ α] (5)

if the sub-assignment αt is good and does not cut j. Using that there are at most `/4 bad
αs and cut, we have that there are at least `k/2 pairs (t, j) satisfying (5). Hence,

Pr
f∼µ̃

[f ⇁ α] ≤ 2 · Pr
g∼ν̃

[g ⇁ α].

Now we finish the proof as in Section 3. J

I Theorem 8. Assume εn ≥ 2. Then, there exists a non-adaptive 1-sided algorithm that
tests a function f : [n]→ [r] for monotonicity using O

( log(εn)
ε

)
queries.

Combined with the result of Theorem 7, we get that complexity of this problem is
Θ
( log(εn)

ε

)
if εn ≥ 2, and Θ(n) otherwise.

Proof. The algorithm is inspired by that of Ergün et al. [12]. The main difference is that
the i in the loop in line 1c only goes to log(εn) instead of logn.

1. Repeat Θ(1/ε) times:
a. Choose x ∈ [n] uniformly at random.
b. Query f(x).
c. For i = 0, . . . , dlog(εn)e:

Let w be the largest multiple of 2i strictly smaller than x, and y be the
smallest multiple of 2i strictly larger than x. (If any of them is outside [n],
do not use it on the next steps.)
Query f(w) and f(y).
If f(w) > f(x) or f(x) > f(y), reject the function f .

2. If no contradiction to monotonicity was found, accept.

Clearly, the query complexity of the algorithm is O
( log(εn)

ε

)
, it is non-adaptive, and it

always accepts a monotone function f . Assume now that f is ε-far from monotone.

I Lemma 9. If f is ε-far from monotone, there exists a collection of pairwise disjoint
pairs (x1, y1), . . . , (xt, yt) for t = bεn/2c such that, for all i, xi < yi, f(xi) > f(yi), and
yi − xi ≤ εn.

Proof. The pairs can be constructed using the following algorithmic procedure. Start with
S ← [n] and i ← 1. We treat S as a sorted list. While i ≤ t, choose two neighbouring
elements xi < yi in S such that f(xi) > f(yi), remove xi and yi from S, and increment i.

It remains to prove that (a) such a pair (xi, yi) will always exist and (b) that yi−xi ≤ εn.
For (a), observe that i ≤ t implies that we have removed strictly less than εn elements from
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S so far. Since f is ε-far from monotone, we have that f restricted to S is not monotone
(otherwise, it would be possible to extend f |S to a monotone function on all [n]). The
existence of the pair (xi, yi) is now obvious.

For (b), again, observe that we have removed less than εn − 1 elements from S so far.
The elements xi and yi are neighbouring in S, which means they are at distance at most εn
in the original list [n]. J

I Lemma 10. Assume x and y satisfy x < y, f(x) > f(y) and y − x ≤ εn. Then one
element z ∈ {x, y} of these two is such that the algorithm will reject if it chooses z on step
1(a).

Proof. If y = x + 1, the algorithm will reject if it chooses either of x or y. So, assume
y ≥ x+ 2.

We claim that there exists an integer 0 ≤ i ≤ dlog(εn)e such that there is unique multiple
of 2i strictly between x and y. Indeed, there is at least one for i = 0 and at most one for
i = dlog(εn)e. Also, it is not possible that there is more than one for some value of i and
zero for i+ 1.

Let w be this unique multiple of 2i. If f(w) < f(x), then it will be detected if the
algorithm chooses x on step 1(a). If f(w) ≥ f(x), then f(w) > f(y), and it will be detected
if the algorithm chooses y on step 1(a). J

By the previous two lemmata, there exist bεn/2c values of x on which the algorithm
rejects should it choose any of them on step 1(a). The probability of choosing one of them
on one iteration of the loop is Ω(ε). The probability to choose any of them on one of the
Θ(1/ε) iterations of the loop is Ω(1). J

5 The Case of Hypergrids

In this section, we show how our results can be transformed into a lower bound for testing
monotonicity on the hypergrid.

I Theorem 11. If ε ≤ 1/2, the complexity of ε-testing a function f : [n]d → [r] for mono-
tonicity is

Ω
(

min
{ log(εnd)

ε
,

log(εr)
ε log log(εr)

})
.

In terms of n, the lower bound can be expressed as Ω(ε−1d logn− ε−1 log ε−1).

Proof. Consider the functions defined in the proof of Theorem 7. Assume that ` = 2a for
some integer a, and choose k so that a+ k = db for some integer b. We consider the domain
of the input functions [`2k] = [2a+k] as [2b]d, where we break the binary representation of
x ∈ [2a+k] into d groups of b bits.

If a function is monotone on [2a+k], it is still monotone when considered on [2b]d. Also,
the analysis of the algorithm does not involve the order relation defined on the domain of
the input functions. The only thing that might go wrong is that the functions in the support
of ν̃ are no longer ε-far from monotone when considered on [2b]d. But this does not happen.
Indeed, in the proof of non-monotone, the monotonicity-violating pairs (x, y) differ in exactly
one bit. So if x < y in [2a+k], this is still true in [2b]d, hence the proof of non-monotone
carries over. Thus, all the functions in the support of ν̃ are ε-far from monotone. The
statement of the theorem now follows from the proof of Theorem 7. J
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