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Abstract
Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complexity
measures of Boolean functions that arise in learning theory, communication complexity, and
circuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all
polynomial size Boolean circuits of depth two have polynomial complexity under the measure,
but there may exist Boolean circuits of depth three that have essentially maximal complexity
exp(Θ(n)). However, existing techniques are far from showing this: for all three measures, the
best lower bound for depth three circuits is exp(Ω̃(n2/5)). Moreover, prior methods exclusively
study block-composed functions. Such methods appear intrinsically unable to prove lower bounds
better than exp(Ω(

√
n)) even for depth four circuits, and have yet to prove lower bounds better

than exp(Ω̃(
√
n)) for circuits of any constant depth.

We take a step toward showing that all of these complexity measures indeed exhibit a chasm
at depth three. Specifically, for any arbitrarily small constant δ > 0, we exhibit a depth three
circuit of polynomial size (in fact, an O(logn)-decision list) of complexity exp(Ω(n1/2−δ)) under
each of these measures.

Our methods go beyond the block-composed functions studied in prior work, and hence may
not be subject to the same barriers. Accordingly, we suggest natural candidate functions that
may exhibit stronger bounds.
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1 Introduction

Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let C : 2{−1,1}n → N denote a measure
of the complexity of f . We say that C exhibits a chasm at depth three if all Boolean circuits3
of depth two have polynomial complexity under the measure, but there exist circuits of depth

1 This work was done while the author was at Harvard University and visiting Yale University, supported
by an NDSEG Fellowship and NSF grant CNS-1237235.

2 Parts of this work were performed while the author was at Yahoo Research.
3 Throughout this paper, unless otherwise noted, all circuits under consideration are assumed to have

polynomial size, and to be over the basis AND, OR and NOT.
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35:2 Approximate Degree and the Complexity of Depth Three Circuits

three that have essentially maximal complexity exp(Θ(n)). Examples of measures that may
satisfy a chasm at depth three include:

Threshold Weight. A polynomial p : {−1, 1}n → R with integer coefficients is said to
sign-represent f if p(x) · f(x) > 0 for all x ∈ {−1, 1}n. The weight of p, denoted W (p), is
the sum of the absolute value of its coefficients. The threshold weight of f is the least
weight of a sign-representing polynomial for f .
It is easy to see that all DNF and CNF formulae of size s have threshold weight O(ns).
The best known upper bound on the threshold weight of depth three circuits is the trivial
2O(n) bound. Hence, threshold weight may exhibit a chasm at depth three.
Discrepancy and Margin Complexity. Discrepancy, defined formally in Appendix
A.4, is a central quantity in communication complexity and circuit complexity.4 For
example, discrepancy is known to characterize the communication complexity class
PP [13], and small discrepancy implies large communication complexity in nearly every
communication model. The multiplicative inverse of discrepancy is also known to be
equivalent to margin complexity, a central quantity in learning theory [20].
All DNF and CNF formulae have at least inverse-polynomial discrepancy. However, the
best known lower bound on the discrepancy of depth three circuits is the trivial 2−O(n)

bound. Hence, margin complexity and (the inverse of) discrepancy may exhibit a chasm
at depth three.
Majority-of-Threshold Circuit Size. Since OR and AND can each be computed by a
single Majority gate, all DNF and CNF formulae are computed by Majority-of-Threshold
(in fact, Majority-of-Majority) circuits of polynomial size. Meanwhile, the best known
upper bound on the size of Majority-of-Threshold circuits computing depth three Boolean
circuits is the trivial 2O(n) bound. Hence, Majority-of-Threshold circuit size may exhibit
a chasm at depth three.

We discuss each of these measures, together with applications in communication complexity
and learning theory, in more detail in Appendix A.

Unfortunately, we are currently quite far from proving that any of the above complexity
measures actually exhibit such a chasm. For each measure, the best known lower bound for
depth three circuits is exp(Ω̃(n2/5)) [8]. Moreover, as we explain in Section 1.2.4, existing
techniques appear intrinsically unable to prove a lower bound better than exp(Ω(n1/2))
even for circuits of depth four. This barrier stems from the fact that previous work has
focused exclusively on analyzing block-composed functions. Here, a function f : {−1, 1}N ·M →
{−1, 1} is said to be block-composed if there are two functions h : {−1, 1}N → {−1, 1} and
g : {−1, 1}M → {−1, 1} such that f = h ◦ g := h(g, . . . , g). That is, a function is block-
composed if it interprets its input as a sequence of N blocks x1, . . . , xN ∈ {−1, 1}M , applies
a Boolean function g independently to each block xi, and then feeds the N outputs into a
different function h.

In this paper, we take a step toward showing that all three of these complexity measures
indeed exhibit a chasm at depth three. Specifically, for any constant δ > 0, we exhibit
a depth three circuit of polynomial size (in fact, an O(logn)-decision list) of complexity
exp(Ω(n1/2−δ)) under each of these measures. Our improvement over prior work stems from
the fact that we move beyond block-composed functions, and hence our methods may not
be subject to the same barriers. In particular, we suggest natural candidate functions that

4 Discrepancy is often thought of as a matrix-analytic quantity, rather than as a Boolean function
complexity measure. For a function f : {−1, 1}n×{−1, 1}n → {−1, 1}, when we refer to the discrepancy
of f , we mean the discrepancy of the matrix [f(x, y)]x,y∈{−1,1}n .
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may exhibit stronger bounds, of the form exp(Ω̃(n)), where the Ω̃ notation hides factors
polylogarithmic in n (cf. Section 3.3).

The functions that underly our analysis are rather complicated to define, but here we
briefly highlight their novel features. Inspired by prior work of Podolskii [24] (see Section 1.2.2
for further discussion), we define our functions to be “almost” block-composed, but to have
mild dependencies between blocks. Just like a block-composed function, each of our functions
interprets its input as a sequence of N blocks x1, . . . , xN ∈ {−1, 1}M , and applies a Boolean
function g to each block, before feeding the N outputs into a different function h. However,
for i ≥ 2, before applying g to xi we first pass xi through a “pre-processing function” that
depends on the preceding blocks x1, x2, . . . , xi−1. This dependency is simple enough that the
final function is computed by a circuit of depth three, but complicated enough that the
function has much higher complexity than the block-composed functions considered in prior
work.

1.1 Our Contributions: Details
The three complexity measures C described above are intimately related to uniform ap-
proximability by low-degree polynomials, as we now explain. Roughly speaking, for each
of the three measures, in order to construct a function of complexity at least 2d under C,
it suffices to identify a function f : {−1, 1}n → {−1, 1} such that f cannot be uniformly
approximated to error 1−2−d by polynomials of degree at most d. One can then apply known
transformations [17, 30, 16] to transform f into a related function F : {−1, 1}n → {−1, 1}
such that C(F ) ≥ 2Ω(d). Moreover, these transformations are simple in the following sense: if
f is computed by a (polynomial size) depth d circuit with logarithmic bottom fan-in, so is F .

Accordingly, the main technical contribution of this paper is to prove a new lower bound
on the approximability of suitable constant-depth circuits by low-degree polynomials.
I Theorem 1. For any arbitrarily small constant δ > 0 and any arbitrarily large constant
Γ > 1, there is an (explicitly given) function f : {−1, 1}n → {−1, 1} that is computed by
Boolean circuit of depth three, with logarithmic bottom fan-in, that satisfies the following
property. For any polynomial p : {−1, 1}n → R of total degree at most n1/2−δ, there exists
some x ∈ {−1, 1}n such that |p(x)− f(x)| > 1− 2−nΓ .

In fact, the function f in Theorem 1 is much simpler than an arbitrary depth three circuit
with logarithmic bottom fan-in; it is an O(logn)-decision list of polynomial length. An
O(logn)-decision list is a function whose output is determined by a very simple sequential
decision process (essentially, a chain of “if-then-else” statements, where each “if” statement
is a conjunction on O(logn) variables—we give a precise definition in Section 2). Decision
lists have been studied intensely in learning theory and complexity theory (see, e.g., [26, 15,
3, 35, 27, 16, 5, 11]).

By combining Theorem 1 with known transformations [17, 30], we obtain a depth three
circuit F with very large complexity under the three measures described above. In fact, F
itself is computed by an O(logn)-decision list.
I Corollary 2. For any constant δ > 0, there is an (explicitly given) function F : {−1, 1}n →
{−1, 1} computed by an O(logn)-decision list of polynomial length (and hence also a depth-3
circuit with logarithmic bottom fan-in) such that:

The threshold weight of F is exp(Ω(n1/2−δ)).
The discrepancy of F is exp(−Ω(n1/2−δ)).
Any Majority-of-Threshold circuit computing F has size exp(Ω(n1/2−δ)).
Table 1 succinctly compares our results to prior work.

APPROX/RANDOM 2018



35:4 Approximate Degree and the Complexity of Depth Three Circuits

Table 1 Comparison of our new bounds for AC0 to prior work. The circuit depth column lists the
depth of the Boolean circuit used to exhibit the bound, and δ denotes an arbitrarily small positive
constant. All Boolean circuits are polynomial size.

Reference Threshold Weight Discrepancy Majority-of-Threshold Circuit
Bound Bound Circuit Size Bound Depth

[17] exp(Ω(n1/3)) N/A N/A 3
[29] N/A exp(−Ω(n1/5)) exp(Ω(n1/5)) 3

[5, 30] N/A exp(−Ω(n1/3)) exp(Ω(n1/3)) 3
[8] exp

(
Ω(n2/5)

)
exp
(
−Ω(n2/5)

)
exp
(
Ω(n2/5)

)
3

[33] exp
(

Ω(n
k−1
2k−1 )

)
exp
(
−Ω(n

k−1
2k−1 )

)
exp
(

Ω(n
k−1
2k−1 )

)
k + 1 (for k ≥ 2)

[28] exp
(
Ω(n1/2)

)
exp
(
−Ω(n1/2)

)
exp
(
Ω(n1/2)

)
4

This work exp
(
Ω(n1/2−δ)

)
exp
(
−Ω(n1/2−δ)

)
exp
(
Ω(n1/2−δ)

)
3

1.2 Prior Work

In order to discuss prior work, it is helpful to introduce the notions of approximate degree and
threshold degree, which both capture the difficulty of pointwise approximation by low-degree
polynomials. The ε-approximate degree of a function f , denoted d̃egε(f), is the least degree
of a real polynomial that pointwise approximates f to error ε. By convention, d̃eg1/3(f) is
denoted simply as d̃eg(f) and referred to without qualification as the approximate degree of
f (the constant 1/3 is chosen for aesthetic reasons, and could be replaced with any other
constant in (0, 1) without affecting the theory in any way). The threshold degree of f ,
denoted deg±(f), is the least degree of a real polynomial that sign-represents f at all points
(such a polynomial is called a polynomial threshold function (PTF) for f). When appropriate,
we also use subscripts to indicate the number of variables over which the function is defined.
For example, ORM denotes the OR function on M inputs.

1.2.1 Early Work on Approximating AC0 Functions by Polynomials

Minsky and Papert [22] famously proved an Ω(n1/3) lower bound on the threshold degree of
the DNF formula ORn1/3 ◦ANDn2/3 , now known as the Minsky-Papert DNF. Klivans and
Servedio [14] proved an essentially matching upper bound of Õ(n1/3) on the threshold degree
of any polynomial size DNF.

Beigel identified a DNF (in fact, a 1-decision list) known as OMB (short for
ODD-MAX-BIT) that has threshold degree 1, but requires large degree to approximate
to error bounded away from 1 [3]. OMB will play a central role in this paper, and we define
it formally in Section 2. Quantitatively, Beigel showed5 that for any d > 0, there is an
ε = 1− 2−Ω(n/d2) such that d̃egε(OMBn) ≥ d. For any ε > 0, Klivans and Servedio [15] gave
an optimal ε-approximating polynomial for any 1-decision list, showing that Beigel’s lower
bound is asymptotically tight for all d > 0.6

5 Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn, which refers to
the least weight of a sign-representing polynomial p for f satisfying deg(p) ≤ d. However, his argument
is easily seen to establish the claimed approximate degree lower bound.

6 Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However,
their construction is easily seen to imply the claimed upper bound on the approximate degree of OMBn.
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1.2.2 Prior Work of Podolskii
Podolskii pioneered a line of work devoted to proving approximate degree lower bounds that
hold even when the error parameter ε is allowed to be super-exponentially close to 1 [24, 25].7
In [25], he showed that for any constant d ≥ 2, there exists a function of threshold degree d
that cannot be uniformly approximated to error ε by polynomials of degree at most d, unless
ε = 1−n−Ω(nd). This result is tight, matching an upper bound proved by Buhrman et al. [5].

Our construction and analysis are inspired by another related result of Podolskii [24]. For
any constant d > 0, Podolskii identified a function f of threshold degree d such that, even for
D � d, the following holds: f cannot be uniformly approximated by degree D polynomials
to error ε, unless ε is superexponentially close to 1. Quantitatively, he showed that for any
constant d > 0, there exists a DNF (in fact, a d-decision list) f with threshold degree d, yet
for any D < O(n1/5/ logn), there exists an ε ∈ 1− exp

(
Ω((n/D4)d)

)
for which d̃egε(f) ≥ D.

Unfortunately, Podolskii’s construction does not yield any new bounds on the complexity
measures we are interested in. By introducing new ideas, we are able to prove such improved
bounds for depth three circuits.

1.2.3 Translating Approximate Degree Bounds to Complexity Bounds
Several works have focused on transforming approximate degree and threshold degree lower
bounds into bounds on the complexity measures that we focus on in this paper (threshold
weight, discrepancy/margin complexity, and Majority-of-Threshold circuit size). Krause and
Pudlák [17] showed how to take a function f of threshold degree at least d, and turn f into
a related function F of threshold weight8 at least 2d. By applying this transformation to
the Minsky-Papert DNF, Krause and Pudlák obtained a depth three circuit (with constant
bottom fan-in) with threshold weight exp(Ω(n1/3)).

Subsequent work by Krause [16] showed that for F to have threshold weight 2Ω(d), it is
enough for f to satisfy d̃eg1−2−d(f) ≥ d.9 Krause applied his result to the function f = OMB,
to obtain an exp(Ω(n1/3)) lower bound on the threshold weight of a specific 2-decision list.

Sherstov’s pattern-matrix method [30] showed how to take a function f satisfying the
same condition required by Krause (i.e., d̃eg1−2−d(f) ≥ d), and turn it into a function F
with discrepancy 2−Ω(d). By applying this transformation to the Minsky-Papert DNF or to
OMB, Sherstov obtained a depth three circuit with discrepancy exp(−Ω(n1/3)). Buhrman,
Vereshchagin, and de Wolf independently proved an identical discrepancy bound via very
different techniques [5]. These discrepancy bounds also implied corresponding lower bounds
on Majority-of-Threshold Circuit Size, through standard transformations [23].

1.2.4 Recent Work on Approximating AC0 Functions by Polynomials
A handful of recent works have established various forms of “hardness amplification” for
approximate degree [28, 7, 8, 33, 28, 32, 19, 31]. Roughly speaking, these results show how
to take a function g which is hard to approximate by degree d polynomials to error 1/3, and

7 Again, Podolskii describes his work in terms of degree-d threshold weight, but his results hold for
approximate degree as well.

8 In fact, Krause and Pudlák showed that F has threshold length 2d, where threshold length is the least
number of non-zero Fourier coefficients of any sign-representation for f . The threshold weight of f is
always at least as large as its threshold length.

9 Again, Krause phrased his lower bound in terms of the degree-d threshold weight of OMB, but his
result is easily seen to imply the statement here.

APPROX/RANDOM 2018



35:6 Approximate Degree and the Complexity of Depth Three Circuits

turn g into a related function f that is hard to approximate by degree d polynomials to error
exponentially close to 1. Specifically, in these works, f is obtained from g by block-composing
g with another function h.

Let EDM denote the well-known Element Distinctness function and EDM its negation.
EDM played a central role in recent works on hardness amplification for approximate degree
[8, 33, 28] because, at the time these works were written, it exhibited the largest known
approximate degree lower bound for any function in AC0: d̃eg(EDM ) = Ω̃(M2/3) [1].10

Our prior work [8] showed that the function f = ORN ◦EDM satisfies d̃egε(f) ≥ Ω̃(M2/3)
for ε = 1 − 2−N , and used this result to obtain a depth three circuit such that C(F ) =
exp(Ω̃(n2/5)) for the three complexity measures C that we focus on in this work. Thaler [34]
then showed that the function f = OMBN ◦EDM satisfies an identical lower bound, yielding
another depth three circuit F (in fact, an O(logn)-decision list) with C(F ) = exp(Ω̃(n2/5)).

Sherstov [33] significantly strengthened the approach of [8] to obtain new threshold degree
lower bounds for functions in AC0. Specifically, in [33], for any k ≥ 2, Sherstov exhibited
a read-once formula of depth k (with polynomial bottom fan-in) that has threshold degree
Ω(n

k−1
2k−1 ). Applying the transformations of [17, 30, 16] to these circuits increases their depth

by 1. In [28], Sherstov exhibited a depth four circuit of logarithmic bottom fan-in and
threshold degree Ω(n1/2)—applying the transformation of [17, 30, 16] to this circuit does not
increase its depth, yielding a depth four circuit F satisfying C(F ) = exp(Ω(n1/2)).

The exp(Θ(
√

n)) Barrier For Circuits of Depth Four. Recall that for each of the three
complexity measures C in which we are interested, to construct a function of complexity at
least 2d under C, it suffices to identify a function f : {−1, 1}n → {−1, 1} such that

f cannot be approximated to error 1− 2−d by polynomials of degree at most d. (1)

We now argue that for circuits of depth 4, prior techniques cannot accomplish this for
d �

√
n, even if they assume the existence of a DNF g : {−1, 1}M → {−1, 1} with (one-

sided) approximate degree Ω(M).11
The methods of [8, 34] start with a function g : {−1, 1}M → {−1, 1}, and assume nothing

about g other than that g has (one-sided) approximate degree at least d. They show how
to turn g into a “harder” function f = h ◦ g by block-composing g with another function
h ∈ {ORN ,OMBN}. Quantitatively, the resulting bound is of the form d̃eg1−2−N (f) ≥ d.
Clearly, one must set N ≥ d to obtain a bound of the form Eq. (1). Hence, even if g has
the largest possible (one-sided) approximate degree, d = M , the best bound that can be
obtained from the methods of [8, 34] is of the form d̃eg1−2−N (f) ≥ N , obtained by setting
M = N . In this case, f is a function over n = N2 variables, so these methods can only yield
complexity bounds of the form exp(Ω(N)) = exp(Ω(

√
n)).

Both [8, 34] showed that their respective analyses are tight for many functions g. Hence,
the exp(

√
n) barrier is not merely an artifact of the analysis in these works.

10 In very recent work [9], which was performed after the work described in the present manuscript, we
have proved a nearly optimal lower bound on the approximate degree of AC0: for any constant depth d,
it exhibited a depth-d AC0 circuit of approximate degree Ω(n1−2−Ω(d)

)). See Section 1.3 for details.
11One-sided approximate degree is a measure that is intermediate between approximate degree and

threshold degree. One-sided approximate degree lower bounds is crucial to the analyses in [8, 33, 28].
However, we will not explicitly utilize one-sided approximate degree in our own results, so we do not
formally define it here. While our work subsequent to this manuscript [9] has proved a nearly-linear
lower bound on the approximate degree of AC0 functions, the best known one-sided approximate degree
lower bound for an AC0 function currently remains Ω̃(M2/3), exhibited by EDM [8].
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Indeed, at least in the case of h = ORN , the barrier is inherent to any method that
attempts to construct an f satisfying Eq. (1) by assuming nothing about a function
g : {−1, 1}M → {−1, 1} other than that g has (one-sided) approximate degree at least
d, and then block-composing g with h. To see this, first observe that if M ≤ N , then for any
function g : {−1, 1}M → {−1, 1}, (1/N)

∑N
i=1 g(xi) + (N − 1)/N is a polynomial of degree

at most M ≤ n1/2 that approximates f = ORN ◦g to error 1− 1/N .
Even ifM ≥ N , it is often the case that ORN ◦g can be approximated to error 1−2−Õ(n1/2)

by a polynomial of degree O(n1/2). Indeed, many functions g with large approximate degree
(such as EDM for example) can be approximated to error 1/3N2 by a ratio q1(x)/q2(x) of
two polynomials of logarithmic degree and weight quasi-polynomial inM and N . One can use
q1, q2 to obtain a polynomial approximator p for f = h◦g such that deg(p) = O(N log(M ·N)),
and p uniformly approximates f to error 1 − 2−O(N ·polylog(M)). We omit the details for
brevity, but the construction can be found in [4] (see also [28, Theorem 6.10]).

Sherstov [33, 28] introduced sophisticated and demanding methods that can prove stronger
lower bounds for constant-depth circuits than [8, 34]. However, his methods apply block-
composition multiple times, and crucially exploit alternation in the circuits computing the
functions being composed; hence, in the context of Eq. (1), his analysis improves over
[8, 34] only for circuits of greater depth or bottom fan-in than considered in those works.
Furthermore, in [28, Section 9.4] Sherstov provides a detailed discussion on barriers facing
his methods. In particular, he shows that the exp(Ω(n1/2)) barrier is inherent to the class of
functions he considers in [28], and is not an artifact of the analysis. He does indicate that his
methods might be extendable to break the exp(Ω(n1/2)) barrier by using circuits of depth 5
or greater.

1.3 Subsequent Work
Our recent works [9, 6], which were performed subsequent to the work described in this
manuscript, introduced a very different method for performing hardness amplification in
a manner that moves beyond block-composed functions. These works amplify the degree
of the polynomials to which the lower bounds apply, thereby obtaining optimal or nearly
optimal lower bounds for many functions in AC0. In contrast, the techniques we introduce
in the present manuscript amplify the error parameter for which the lower bounds apply.
Combining the two methods to strengthen our lower bounds for depth three circuits, or
circuits of larger (constant) depth, is an important direction for future work (see Section 3.3).

2 Preliminaries

Notation. We work with Boolean functions f : {−1, 1}n → {−1, 1}, where −1 corresponds
to logical TRUE and +1 corresponds to logical FALSE. For a given Boolean function f , the
function f̄ := −f denotes its negation. The notation [n] refers to the set {0, 1, . . . , n}. For
any n ∈ N, fix a canonical injection [n] → {−1, 1}dlog(n+1)e; we refer to the image of any
i ∈ [n] under this injection as the binary representation of i. All logarithms in this work are
assumed to be taken in base 2.

Decision Lists and OMB. A k-decision list D of length L over the Boolean variables
x1, . . . , xn is represented by a list of L pairs (C0, b0), (C1, b1), . . . , (CL−1, bL−1) and a bit
bL where each Ci is a conjunction of at most k (possibly negated) variables, and each bi is
either −1 or 1. Given any x ∈ {−1, 1}n, the value of D(x) is bi if i is the smallest index such
that Ci is made true by x; if no Ci is is true then D(x) = bL.

APPROX/RANDOM 2018



35:8 Approximate Degree and the Complexity of Depth Three Circuits

Any k-decision list of length L is computed by a depth three circuit of size O(L) and
bottom fan-in O(k). Indeed, letting S = {i ≤ L : bi = −1}, the circuit is

(bL ∧ C̄0(x) ∧ · · · ∧ C̄L−1(x)) ∨
∨
i∈S

(
Ci(x) ∧ C̄0(x) ∧ · · · ∧ C̄i−1(x)

)
.

To see that this is indeed a circuit of depth three with bottom fan-in O(k), observe that for
any conjunction Ci of width k, C̄i is computed by a disjunction of width k.

Let OMB : {−1, 1}N → {−1, 1} denote a specific 1-decision list known as ODD-MAX-BIT,
defined as follows. For i = 1, 2, . . . , N , the conjunction Ci(x) = xN−i and bi = (−1)N−i.
Finally, define bN = 1. OMB can be equivalently defined in the following manner. On input
x = (x1, . . . , xN ), let β(x) denote the largest index i such that xi = −1, and let β(x) = 0 if
no such index exists. Then

OMB(x1, . . . , xN ) =
{
−1 if β(x) is odd
1 otherwise.

Beigel [3] showed that OMB has high approximate degree, even when the error parameter
is exponentially close to 1. Specifically:

I Theorem 3 (Beigel [3]). There exists a constant c > 0 for which the following holds.
Let p(x) be a polynomial of degree at most d such that p(x) · OMBN (x) > 0 for all x ∈
{−1, 1}N . Then there exists an x ∈ {−1, 1}N such that |p(x)| ≥ 2cN/d2 ·|p(1N )|. In particular,
d̃egε(OMBN ) ≥ d for some ε = 1− 2−Ω(N/d2).

To prove Theorem 3, Beigel iteratively constructs a sequence of inputs x0, x1, . . . , xcN/d
2 for

which |p(xt+1)| ≥ 2 · |p(xt)|. He obtains these inputs by repeatedly applying the following
lemma, which we will also make use of directly.

I Lemma 4 (Beigel [3]). Let d,N ∈ N and let ` ≥ 10d2 such that N/` is an integer. Consider
the increasing family of sets S1 ⊂ S2 ⊂ · · · ⊂ SN/` ⊆ {−1, 1}n defined by

S0 = {1N}, S1 = {x : xi = 1 ∀i > `}, . . . , St = {x : xi = 1 ∀i > t`}, . . . , SN/` = {−1, 1}N .

Let p(x) be a polynomial of degree at most d such that p(x)·OMBN (x) > 0 for all x ∈ St+1\St.
Let z ∈ St. Then there exists a z′ ∈ St+1 \ St such that |p(z′)| ≥ 2 · |p(z)|.

3 Intuition and Discussion of Theorem 1

3.1 Overview of Our Function
As mentioned in Section 1, the function f that we exhibit in Theorem 1 is complicated to
define. Hence, before formally defining f , we provide here some motivation for our definition.
While the function we describe in this section differs from the f exhibited in Theorem 1, our
description here highlights the main ideas underlying the construction of f itself.

Specifically, the function that we describe in this informal overview is a modification
of the block-composed function OMBN ◦ORM . This is easily seen to be a sub-function of
OMB2NM , and in the formal statement and proof of Theorem 1, our construction relies on
the function OMB2NM directly. This is only for the sake of simplicity, and we remark that
the proof of Theorem 1 carries over when one uses the function OMBN ◦ORM instead. We
choose to present this overview using the function OMBN ◦ORM for two reasons. First,
reasoning about this function gives the right intuition for both our lower bound and for the
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approximating polynomial which it matches. Second, as discussed in Section 3.3, replacing
the inner function ORM with other functions of larger approximate degree yields natural
candidates for improved lower bounds.

Recall that [34] showed that d̃egε(OMBN ◦EDM ) = Ω̃(M2/3) for ε = 1− 2−N . Moreover,
this lower bound is essentially tight for OMBN ◦EDM : there is in fact a polynomial p
of degree O(logM) that approximates OMBN ◦EDM to error ε = 1 − 2−O(N logM). The
methods of [34] also show that d̃egε(OMBN ◦ORM ) = Ω(M1/2) for ε = 1−2−N , and there is
a polynomial of degree O(1) that approximates OMBN ◦ORM to error ε = 1− 2−O(N logM).

Our goal is to modify OMBN ◦ORM to obtain an f : {−1, 1}n → {−1, 1} that is much
harder to approximate by low-degree polynomials, while still ensuring that f is computed by
an O(logn) decision list. Specifically, we will require, for some large constant k and small
constant δ > 0, d̃egε(f) = Ω(M1/2−δ) for ε = 1− 2−Nk .

A natural first attempt to construct such an f is to block-compose OMBN ◦ORM with
the parity function on k variables. Specifically, let k be some constant, and consider the
following function on k ·N ·M variables: ⊕k ◦OMBN ◦ORM , where ⊕ denotes the parity
function. However, this function is still too easy to approximate: there is a polynomial of
degree O(k logM) that approximates ⊕k ◦OMBN ◦ORM to error 1− 2−O(kN logM). Indeed,
letting p be the polynomial approximation to OMBN ◦ORM described above, the polynomial
q(x1, . . . xk) := 2−k

∏k
i=1 p(xi) does the trick.

We instead define f to be “just different enough” from ⊕k ◦OMBN ◦ORM to foil this
construction of an approximating polynomial. Specifically, our f will first “pre-process” its
input (x1, . . . , xk), before feeding it into ⊕k ◦OMBN ◦ORM . The pre-processing step will
introduce dependencies between blocks, so that an approximating polynomial for f will be
unable to treat them independently in the manner of q.

In more detail, f will interpret its input x as k blocks, x1, . . . , xk (we will refer to
x1, . . . , xk as “super-blocks”, since each xi will itself be interpreted as consisting of N blocks,
which will themselves each be interpreted as consisting of M “sub-blocks”). For expository
purposes, we focus in the remainder of this section on the case k = 2, so that there are
only two super-blocks x1, x2 (The full construction is defined inductively, and described in
the full version of this work). Assume for simplicity that N + 1 is a power of 2. The two
super-blocks will not contain the same number of bits: x1 will contain N ·M bits, while x2
will contain N ·M · log(N +1) bits. We will ultimately treat x1 as an input to OMBN ◦ORM ;
accordingly, let us interpret x1 as consisting of N blocks, each containing M bits, so that
we can write x1 = (x1,1, . . . , x1,N ) ∈

(
{−1, 1}M

)N . Let γ(x1) ∈ {−1, 1}logN be the binary
representation of the largest integer j satisfying OR(x1,j) = −1, and let γ(x1) = 0 if no such
j exists. That is, γ(x1) is the index of the “leading TRUE bit” that gets fed into OMBN
when evaluating (OMBN ◦ORM )(x1).

Similarly, we interpret x2 as consisting of N blocks. However, each block now contains
M log(N + 1) bits, and is comprised of M sub-blocks, each consisting of log(N + 1) bits. Let
EQγ(x1) : {−1, 1}log(N+1) → {−1, 1} denote the function that outputs −1 if and only if its
input equals γ(x1). Finally, let u = (u1, . . . uN ) ∈ ({−1, 1}M )N denote the vector obtained
by applying EQγ(x1) to each sub-block of x2. That is, u is the vector obtained by first
“pre-processing” each sub-block of x2 with an “equality test” EQγ(x1) that is determined by
x1. Finally, we define

f = ((OMBN ◦ORM )(x1))⊕ ((OMBN ◦ORM )(u)) . (2)

Notice that the dependence of this pre-processing function on x1 is actually quite mild:
u only depends on the “leading TRUE bit” that gets fed into OMBN when evaluating
OMBN ◦ORM (x1). This mild dependence is what allows f to be computed by an O(logn)
decision list.

APPROX/RANDOM 2018
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It is not hard to see that an equivalent way to write f (that moreover helps reveal its
structure as an O(logn)-decision list) is:

f(x1, x2)=OMBN2+2N (OR(u1),OR(u2), . . . ,OR(uN ),
OR(x1,1),OR(x1,1) ∧OR(u1),OR(x1,1) ∧OR(u2), . . . ,OR(x1,1) ∧OR(uN ),
...
OR(x1,N ),OR(x1,N ) ∧OR(u1), . . . ,OR(x1,N ) ∧OR(uN )), (3)

where u is defined as above. It turns out that Representation (2) of f is useful for establishing
lower bounds on the approximate degree of f , while Representation (3) is more useful for
constructing approximating polynomials for f , and gaining intuition about f . In particular,
Representation (3) suggests a natural method for approximating f : treat it as a 1-decision
list over N2 + 2N “derived” variables (and then use an optimal method of approximating
1-decision lists, which are well-understood). The proof of our lower bound (Theorem 1)
implicitly shows that this simple approach is essentially optimal. The next subsection briefly
explains the details of this approximation method.

3.2 A Nearly Matching Upper Bound
We begin by giving the well-known sign-representing polynomial for OMBN itself. Define
p : {−1, 1}N → R via p(x1, . . . , xN ) := 1 +

∑N
i=1(−2)i · (1− xi)/2.

It is easy to see that OMBN (x) · p(x) > 0 for all x ∈ {−1, 1}N , and in fact 2−N−1 · p(x)
approximates OMBN to error ε = 1− 2−N−1. We now turn to constructing an approximant
for the function OMBN ◦ORM . Our starting point is a polynomial q of degree O(M1/2)
satisfying the following two properties (cf. [34]).

q(x) = 0 for all x ∈ OR−1
M (+1). (4)

1 ≤ q(x) ≤ 2 for all x ∈ OR−1
M (−1). (5)

Denoting an (N ·M)-bit input as (x1, . . . , xN ) ∈
(
{−1, 1}M

)N , it is easy to check that

OMBN ◦ORM (x1, . . . , xN ) = sgn(g(x1, . . . , xN )), where g(x1, . . . , xN ) = 1 +
N∑
i=1

(−3)i · q(xi).

In fact, 3−N−1 · g(x) approximates OMBN ◦ORM to error 1− 3−N−1, and has degree equal
to that of q. Recall (cf. Eq. (3)) that in the case k = 2, our function can be written as

OMBN2+2N (OR(u1),OR(u2), . . . ,OR(x1,N ) ∧OR(uN )).

Using techniques similar to the above, one can obtain a degree Õ(M1/2 logN) polynomial that
approximates this function to error 1− 2−O(N2). Our lower bound shows this approximation
is essentially optimal.

3.3 Prospects for Further Improved Lower Bounds
Fix a small constant δ > 0 and large constant Γ > 0. A remarkable feature of the function f
exhibited in Theorem 1 is that it simultaneously satisfies the following three properties:

It has threshold degree O(logn).
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It has approximate degree Θ̃(n1/2).
It has ε-approximate degree Ω(n1/2−δ) for ε = 1− 2−nΓ .

Hence, while f has very low threshold degree, it is essentially as hard to approximate
f to error super-exponentially close to 1 (i.e., error as large as 1 − 2−nΓ for any constant
Γ > 0), as it is to approximate to error 1/3. To the best of our knowledge, ours is the first
known function to exhibit these properties.

Clearly, improving the degree bound in Theorem 1 to be polynomially larger than Ω(n1/2)
will require considering functions of approximate degree larger than Ω(n1/2). A natural
approach is to simply replace the function ORM appearing in the construction of Section 3.1
with a function of approximate degree polynomially larger than Ω(M1/2).

For example, for any constant depth d > 0, our recent work [9] identifies a depth-d AC0

circuit Fd with approximate degree Ω(n1−2−Ω(d)). We conjecture that for any constant δ > 0,
replacing ORM with Fd (for sufficiently large d(δ)) in the construction of Section 3.1 yields
a function of complexity exp(Ω(n1−δ)). This would imply a nearly optimal lower bound on
the complexity of AC0 under each of the complexity measures considered in this work.

4 Proof of Theorem 1

The proof of Theorem 1 is lengthy and technical, and deferred to the full version of this
work. Here we consider an easier statement, the proof of which is much cleaner, while still
capturing the main ideas of the general case.

4.1 Simplified Statement and its Proof
The function f that we exhibit in Theorem 1 is defined over k “superblocks”, where k is an
arbitrarily large constant (see Section 3.1 for motivation for the superblock terminology).
Here, we consider the simpler case of exactly k = 2 superblocks.

Notation. Recall (cf. Section 2) that for x = (x1, . . . , xN ) ∈ {−1, 1}N , β(x) denotes
the largest index i = 1, . . . , N such that xi = −1 (or β(x) = 0 if none exists). Assume for
simplicity that N+1 is a power of two. Given an input (x, y) ∈ {−1, 1}N×({−1, 1}log(N+1))N ,
we interpret y as consisting of N blocks y1, . . . , yN , each consisting of log(N + 1) bits. Let
EQβ(x) : {−1, 1}log(N+1) → {−1, 1} denote the function that outputs −1 if and only if its
input equals the binary representation of β(x). Finally, let u = (u1, . . . uN ) ∈ {−1, 1}N
denote the vector obtained by applying EQβ(x) to each block of y. That is, u is the vector
obtained by first “pre-processing” each block of y with an “equality test” EQβ(x) that is
determined by x.

Function Definition. Define F via:

F (x, y) = OMBN (x1, . . . , xN )⊕OMBN (u1(x, y1), . . . , uN (x, yN )) (6)
= OMBN (x1, . . . , xN )⊕OMBN (EQβ(x)(y1), . . . ,EQβ(x)(yN )). (7)

I Proposition 5. There exists a constant c for which the following holds. Let d, n ∈ N where
n = N +N log(N + 1). Let p be a polynomial of degree at most d such that |p(x, y)| ≥ 1 and
p(x, y) · F (x, y) > 0 for all (x, y) ∈ {−1, 1}n. Then there exists an (x, y) ∈ {−1, 1}n such
that |p(x, y)| ≥ 2(cN/d2)2 .
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To ease notation below, we will identify each block yi ∈ {−1, 1}log(N+1) with the number
in [N ] for which yi is the binary representation. That is, while we will write each yi as
though it were a number 0, 1, . . . , N , it should always be thought of as the binary string
representing that number.

Proof Idea. Let p(x, y) be a polynomial of degree at most d that agrees with F in sign.
Building on Beigel’s proof of Theorem 3, we iteratively apply Lemma 4 to construct a
sequence of inputs to the polynomial p, such that evaluating p on each point yields a value of
(at least) twice the magnitude of the previous evaluation. By choosing these inputs carefully
(and crucially exploiting the “pre-processing” step in the definition of F2 that transforms
y into the vector u(x, y), before feeding it into OMBN ), we can apply Lemma 4 a total of
(cN/d2)2 times. This is a quadratic improvement over the number of times Beigel is able to
apply Lemma 4 to OMBN itself. Podolskii [24] used related ideas to obtain a lower bound
for a different function, but we are able to avoid the significant quantitative losses that are
inherent to his approach.

In more detail, recall that Beigel’s lower bound argument (cf. Theorem 3) for OMBN
started with the input x0 = 1N , and iteratively applied Lemma 4 to obtain inputs x1, . . . ,

xcN/d
2 such that |p(xt)| ≥ 2|p(xt−1)| for all t ≥ 1. Roughly speaking, the first input to

F that we construct is a point (x1, y0) such that u(x1, y0) = 1N and the last N − 10d2

bits of x1 are all set to 1. Since u(x1, y0) is fed into OMBN in the definition of F , we
are able to apply Beigel’s argument (Theorem 3) to obtain an input (x1, y1) such that
|p(x1, y1)| ≥ 2cn/d2 · |p(x1, y0)|. We then “use” the second block of 10d2 bits of the first
superblock to “clean up” u, in the following sense: we find an x2 whose last N − 20d2 bits
are all equal to 1, such that u(x2, y1) = 1N and |p(x2, y1)| ≥ |p(x1, y1)|. This enables us
to apply Beigel’s argument (Theorem 3) a second time, finding an input (x2, y2) such that
|p(x2, y2)| ≥ 2cn/d2 · |p(x1, y1)|. We then use the third 10d2 bits of the first superblock to
“clean up” u yet again, and repeat. We can continue the argument until we have “used up”
all the bits of the first superblock, at which point we have obtained the desired lower bound.

Proof of Proposition 5. Let ` = 10d2 and consider the increasing family of sets S0 ⊂ S1 ⊂
· · · ⊂ SN/` ⊆ {−1, 1}N defined as in Lemma 4. Let p be a polynomial of degree at most d
such that p(x, y) · F (x, y) > 0 for all (x, y) ∈ {−1, 1}n. We iteratively construct a sequence
of inputs (x0, y0), (x1, y1), . . . , (xN/`, yN/`) to p such that:

Each xt ∈ St and each yt ∈ [t`]N ,
|p(x0, y0)| ≥ 1, and
|p(xt+1, yt+1)| ≥ 2cN/d2 · |p(xt, yt)| for each t = 0, . . . , N/`− 1.

At the conclusion of this process, we obtain an input (xN/`, yN/`) such that |p(xN/`, yN/`)| ≥
2(cN/d2)2 .

We may take as the first input (x0, y0) the point (1N , 0N ). We construct the remaining
inputs (xt, yt) iteratively. The following claim formalizes this iterative process.

I Claim 6. Let p be a polynomial of degree at most d and suppose p(x, y) · F (x, y) > 0 for
all (x, y) ∈ {−1, 1}n. Let (xt, yt) be an input with xt ∈ St and yt ∈ [t`]N . Then there exists
an input (xt+1, yt+1) such that |p(xt+1, yt+1)| ≥ 2cN/d2 · |p(xt, yt)|, where xt+1 ∈ St+1 and
yt+1 ∈ [(t+ 1)`]N .

Proof. We prove the claim in two steps. First, we show that there exists an xt+1 ∈ St+1
for which |p(xt+1, yt)| ≥ |p(xt, yt)|. Second, we show that there exists a yt+1 ∈ [(t +
1)`]N such that |p(xt+1, yt+1)| ≥ 2cN/d2 · |p(xt+1, yt)|. Putting these steps together yields
|p(xt+1, yt+1)| ≥ 2cN/d2 · |p(xt, yt)|.
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Step 1. We examine the function F (x, yt) (viewed as a function only of x). By construction,
each block yti ≤ t`. Thus, EQβ(x)(yti) = 1 for all x ∈ St+1 \ St, and hence

OMBN (EQβ(x)(yt1), . . . ,EQβ(x)(ytN )) = OMBN (1N ) = 1

for all such inputs. As a result, F (x, yt) = OMBN (x) whenever x ∈ St+1 \ St.
Now consider the polynomial q : {−1, 1}N → R defined by q(x) = p(x, yt). Then

q(x) ·OMBN (x) > 0 for all x ∈ St+1 \St. By assumption, xt ∈ St. Thus, by Lemma 4, there
exists an xt+1 ∈ St+1 such that |q(xt+1)| ≥ 2 · |q(xt)|. Unpacking the definition of q, we see
that in particular, |p(xt+1, yt)| ≥ |p(xt, yt)|.

Step 2. We now show that there exists a yt+1 ∈ [(t + 1)`]N , such that |p(xt+1, yt+1)| ≥
2cN/d2 · |p(xt+1, yt)|. For w ∈ {−1, 1}N , define the string yw by (yw)i = β(xt+1) if wi = −1
and (yw)i = yti if wi = 1. Note that since β(xt+1) ≤ (t + 1)` and each yti ∈ [t`], we have
that yw ∈ [(t+ 1)`]N for every w ∈ {−1, 1}N . Consider the function E : {−1, 1}N → {−1, 1}
defined by E(w) := F (xt+1, yw), and observe that

E(w) = OMBN (xt+1)⊕OMBN (w).

Now consider the polynomial r(w) := p(xt+1, yw). Observe that yw is an affine function of
w, i.e., we can write

r(w) = p
(
xt+1,

(1− w1

2

)
· β(xt+1) +

(1 + w1

2

)
· yt1, . . . ,

(1− wN
2

)
· β(xt+1) +

(1 + wN
2

)
· ytN

)
.

Thus r is a polynomial with deg r ≤ deg p ≤ d. Moreover, r(w) · E(w) > 0 for all
w ∈ {−1, 1}N . Since E is either the function OMBN or its negation, we conclude by
Theorem 3 that there exists a w∗ such that |r(w∗)| ≥ 2cN/d2 · |r(1N )|. Setting yt+1 := yw∗

thus yields

|p(xt+1, yt+1)| = |r(w∗)| ≥ 2cN/d
2
· |r(1N )| = 2cN/d

2
· |p(xt+1, yt)|,

as we wanted to show. J

With Claim 6 established, we conclude the proof of Proposition 5. J
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A Applications

A.1 An Application in Communication Complexity
We briefly describe an additional application of our results. By combining Theorem 1
with standard machinery, we obtain an improved separation between the analogues of the
complexity classes PP and PNP in communication and query complexity. Specifically,
for a function F : {−1, 1}n × {−1, 1}n → {−1, 1}, let PP(F ) and PNP(F ) respectively
denote the least cost of a PP and PNP communication protocol for F . In both the
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communication and query complexity settings, for any constant δ > 0, we exhibit an F

satisfying PP(F ) = Ω(n1/2−δ) and PNP(F ) = O(log2 n). This improves over prior work
that gave an F satisfying PP(F ) = Ω̃(n2/5) and PNP(F ) = O(logn) [34] and earlier work
of Buhrman et al. that gave an F satisfying PP(F ) = Ω(n1/3) and PNP(F ) = O(logn) [5].
We direct the interested reader to [34] for further details on this application.

A.2 An Application to Learning Theory
A notorious open question in learning theory, dating back to Valiant’s seminal paper in-
troducing the PAC model [35], is whether polynomial size DNF can be PAC learned in
polynomial time. The fastest known algorithm, due to Klivans and Servedio [14] runs in time
exp(Õ(n1/3)), and follows from their (tight) Õ(n1/3) upper bound on the threshold degree of
any polynomial size DNF. Klivans and Servedio’s threshold degree upper bound makes use
of polynomials with coefficients that are doubly-exponentially large (as large as 22Θ̃(n1/3)).
They pose the following open question:

Open Question (Klivans and Servedio [14]). Is every polynomial size DNF computed by
a polynomial threshold function with degree Õ(n1/3) and coefficients of magnitude at most
2Õ(n1/3)?

A positive resolution of this open question would imply much simpler (though not
necessarily faster) learning algorithms for DNFs. Our results can be viewed as a significant
step toward resolving Klivans and Servedio’s question in the negative (in fact, achieving
a full resolution of the open question was our original motivation for this work). This is
because Theorem 1 implies that for any constants Γ, δ > 0 there is an O(logn)-decision list
F of polynomial length, such that any polynomial of degree O(n1/2−δ) that sign-represents
F requires coefficients of magnitude 2nΓ . While O(logn)-decision lists are not necessarily
computed by DNFs, they seem to be only slightly more expressive than DNFs. In particular,
they are computed by depth 3 circuits of logarithmic bottom fan-in.

Furthermore, our result points out an inherent limitation of Klivans and Servedio’s
construction. Their threshold degree upper bound for DNFs works as follows. They first
transform the DNF into a (slight generalization of) a k-decision list, for some k = O(n1/3).
Second, they prove a Õ(k) upper bound on the threshold degree of any k-decision list. Our
result implies that the super-exponentially large coefficients arising in the second step of
Klivans and Servedio’s construction are necessary, even for k bounded by O(logn). Hence,
any affirmative resolution of Klivans and Servedio’s question cannot go through k-decision
lists, even for k = O(logn).

A.3 Threshold Weight of Depth Three Circuits
A polynomial threshold function (PTF) for a Boolean function f : {−1, 1}n → {−1, 1} is
a polynomial p : {−1, 1}n → R with integer coefficients that agrees in sign with f on all
Boolean inputs. The weight of an n-variate polynomial p is the sum of the absolute values of
its coefficients. The degree-d threshold weight of a Boolean function f : {−1, 1}n → {−1, 1},
denoted W (f, d), is defined to be the least weight of a degree-d PTF for f . We let W (f)
denote the quantity W (f, n), i.e., the least weight of any threshold function for f regardless
of its degree. Threshold weight upper bounds underly some of the most powerful techniques
in computational learning theory based on the classic Perceptron [22] and Winnow [21]
algorithms (see [8, Section 8.3] for a discussion). Thus, our threshold weight lower bounds
impose limitations on how efficiently such algorithms can learn depth three circuits.
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Degree-d threshold weight is closely related to ε-approximate degree when ε is very close
to 1:

I Lemma 7. Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let w > 0. If
d̃eg1− 1

w
(f) > d, then W (f, d) > w.

Proof. We prove the contrapositive, i.e., that any PTF p for f having weight w and degree
d can be transformed into a uniform approximation to f with error 1− 1

w . Let p be such
a PTF. Since p has integer coefficients and is nonzero on Boolean inputs, |p(x)| ≥ 1 on
{−1, 1}n. Moreover, |p(x)| ≤ w by the weight bound, so the polynomial 1

w · p(x) satisfies
| 1w · p(x)− f(x)| ≤ 1− 1

w for every x ∈ {−1, 1}n. J

Thus, our main results yield new lower bounds on the degree-d threshold weight of circuits
of depth three.

I Corollary 8. For any arbitrarily small constant δ > 0 and any arbitrarily large constant
Γ > 1, there exists a depth three Boolean circuit f : {−1, 1}n → {−1, 1} (with logarithmic
bottom fan-in) such that W (f, n1/2−δ) > 2nΓ .

Moreover, a result of Krause [16] allows us to translate each of these lower bounds into a
degree independent threshold weight lower bound for a related function.

I Lemma 9 ([16], Lemma 3.4). Let f : {−1, 1}n → {−1, 1} be a Boolean function, and define
F : {−1, 1}3n → {−1, 1} by

F (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := f(. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then W (F ) ≥W (f, d) for all d for which 2d ≥W (f, d).

When this transformation is applied to a function f computed by a Boolean circuit of
depth d with logarithmic bottom fan-in, the resulting function F is also computed by a depth
d circuit with logarithmic bottom fan-in. To see this, note that if g is any function that
depends on O(logn) variables, then G(x, y, z) := g((z̄∧x)∨ (z∧ y)) also depends on O(logn)
variables. Hence, G is computed by either a DNF or CNF of size poly(n) and bottom fan-in
O(logn). So while F is naturally computed by a circuit of depth d+ 2, the bottom three
levels of gates can be replaced by such DNF or CNF formulae so as to merge a layer of gates
and obtain a depth d circuit with logarithmic bottom fan-in.

I Corollary 10. For any arbitrarily small constant δ > 0, there exists a depth three
Boolean circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that W (F ) >
exp(Ω(n1/2−δ)).

While the weight bounds of Corollaries 8 and 10 are stated for polynomial threshold
functions over {−1, 1}n (i.e., for polynomials that are integer linear combinations of parities),
a now standard transformation [18] shows that the same threshold weight lower bound also
holds for polynomials over {0, 1}n (i.e., for integer linear combinations of conjunctions) up
to polynomial factors.

A.4 Discrepancy of Depth Three Circuits
Discrepancy is a central quantity in communication complexity and circuit complexity. For
instance, an upper bound on the discrepancy of a Boolean function f : X × Y → {−1, 1}
yields lower bounds for computing f in essentially every model of communication complexity.
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In particular, the discrepancy of f essentially characterizes it’s small-bias communication
complexity in the PP model of Babai et al. [2]. Theorem 1 yields a new exponentially small
upper bound on the discrepancy of a depth three circuit.

For a Boolean function f : X × Y → {−1, 1}, let M (f) be its communication matrix
M (f) = [f(x, y)]x∈X,y∈Y . A combinatorial rectangle of X × Y is a set of the form A × B
with A ⊆ X and B ⊆ Y . For a distribution µ over X × Y , the discrepancy of f with respect
to µ is defined to be the maximum over all rectangles R of the bias of f on R. That is:

discµ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ .
The discrepancy of f , denoted disc(f), is defined to be minµ discµ(f).

Sherstov’s pattern matrix method [30] shows how to generically transform an AC0 function
with high threshold degree or high threshold weight into another AC0 function with low
discrepancy.

I Theorem 11 (cf. [30], adapted from Corollary 1.2 and Theorem 7.3). Let f : {−1, 1}n →
{−1, 1} be given, and define the communication problem F : {−1, 1}4n×{−1, 1}4n → {−1, 1}
by

F (x, y) = f(. . . ,∨4
j=1(xi,j ∧ yi,j), . . . ).

Then for every integer d ≥ 0, we have

disc(F )2 ≤ max
{

2n
W (f, d− 1) , 2

−d
}
.

Recall that W (f, d− 1) is the least weight of any degree d− 1 PTF for f . We apply the
pattern matrix method to the function f of Corollary 8. By the same argument as in Section
A.3, the pattern matrix method does not increase the depth of the circuits computing these
functions. We thus obtain a new discrepancy upper bound for circuits of depth three:

I Corollary 12. For any arbitrarily small constant δ > 0, there exists a depth three
Boolean circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that disc(F ) <
exp(−Ω(n1/2−δ)).

Application to Circuit Complexity. It is well-known that a discrepancy upper bound for a
function F yields a lower bound on the size of Majority-of-Threshold circuits computing F
[10, 12, 23, 29]. Indeed, the exponential Majority-of-Threshold circuit size lower bounds of
[29, 30, 5, 8, 33, 28] for AC0 are all proved using discrepancy. Our discrepancy upper bound
of Corollary 12 sharpens these previous lower bounds by yielding a depth three Boolean
circuit F of polynomial size such that any Majority-of-Threshold circuit computing F requires
size exp

(
Ω(n1/2−δ)

)
.

I Corollary 13. For any arbitrarily small constant δ > 0, there exists a depth three Boolean
circuit F : {−1, 1}n → {−1, 1} (with logarithmic bottom fan-in) such that any Majority-of-
Threshold circuit computing F has size at least exp(Ω(n1/2−δ)).

Combining Corollaries 10, 12, and 13 yields Corollary 2 from the introduction, noting
that the function exhibited in Corollary 10 appears as a subfunction of the one in Corollaries
12 and 13.


	Introduction
	Our Contributions: Details
	Prior Work
	Early Work on Approximating AC^0 Functions by Polynomials
	Prior Work of Podolskii
	Translating Approximate Degree Bounds to Complexity Bounds
	Recent Work on Approximating AC^0 Functions by Polynomials

	Subsequent Work

	Preliminaries
	Intuition and Discussion of Theorem 1
	Overview of Our Function
	A Nearly Matching Upper Bound
	Prospects for Further Improved Lower Bounds

	Proof of Theorem 1
	Simplified Statement and its Proof

	Applications
	An Application in Communication Complexity
	An Application to Learning Theory
	Threshold Weight of Depth Three Circuits
	Discrepancy of Depth Three Circuits


