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Abstract
We initiate the study of Boolean function analysis on high-dimensional expanders. We describe an
analog of the Fourier expansion and of the Fourier levels on simplicial complexes, and generalize
the FKN theorem to high-dimensional expanders.

Our results demonstrate that a high-dimensional expanding complex X can sometimes serve
as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from
Boolean function analysis can be carried over to this sparse model. Therefore, this model can be
viewed as a derandomization of the Boolean slice, containing |X(k)| = O(n) points in comparison
to
(
n
k+1
)
points in the (k + 1)-slice (which consists of all n-bit strings with exactly k + 1 ones).
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1 Introduction

Boolean function analysis is an essential tool in theory of computation. Traditionally, it
studies functions on the Boolean cube {−1, 1}n. Recently, the scope of Boolean function
analysis has extended further, encompassing groups [10, 9, 29, 11], association schemes [27,
13, 14, 16, 15, 6, 23], error-correcting codes [1], and quantum Boolean functions [26]. Boolean
function analysis on extended domains has led to progress in learning theory [27] and on the
unique games conjecture [7, 22, 2, 23].
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38:2 Boolean Function Analysis on High-Dimensional Expanders

Another essential tool in theory of computation is expander graphs. Recently, high-
dimensional expanders (HDXs), originally constructed by Lubotzky et al. [25, 24], have
been introduced into theory of computation, with applications to property testing [5] and
lattices [20]. Just as expander graphs are sparse models of the complete graph, so are
high-dimensional expanders sparse models of the complete hypergraph, and hence can be
used both for derandomization and to improve constructions of objects such as PCPs. The
goal of this work is to connect these two threads of research, introducing Boolean function
analysis on high-dimensional expanders.

We study Boolean functions on simplicial complexes. A pure d-dimensional simplicial
complex X is a set system consisting of an arbitrary collection of sets of size d+ 1 together
with all their subsets. The sets in a simplicial complex are called faces, and it is standard
to denote by X(i) the faces of X whose cardinality is i+ 1. Our simplicial complexes are
weighted by a probability distribution Πd on the top-level faces, which induces in a natural
way probability distributions Πi on X(i) for all i. Our main object of study is the space
of functions f : X(d)→ R (which are often called R-cochains), and in particular, Boolean
functions f : X(d)→ {0, 1}.

While much of our work applies to arbitrary complexes, our goal is to study complexes
which are high-dimensional expanders. There are several different non-equivalent ways to
define high-dimensional expanders, generalizing various properties of expander graphs. The
notion most appropriate to us is the two-sided4 spectral definition of high-dimensional
expanders, due to Dinur and Kaufman [5], who also show how to construct such complexes
using the Ramanujan complexes of Lubotzky, Samuels and Vishne [25, 24].

There are several works on random walks on high dimensional expanders which naturally
lead to analyzing both real-valued and Boolean valued functions on X(d), for example see
[20, 5, 21]. The most related work is by Kaufman and Oppenheim [21], which we discuss in
Section 4.3.

Every function on the Boolean cube {−1, 1}n has a unique representation as a multilinear
polynomial, known as its Fourier expansion. The multilinear monomials can be partitioned
into “levels” according to their degree, and this corresponds to an orthogonal decomposition
of a function into a sum of its homogeneous parts, f =

∑deg f
i=0 f=i, a decomposition which is

a basic concept in Boolean function analysis.
These concepts have known counterparts for the complete complex, which consists of all

subsets of [n] size at most d + 1, where d + 1 ≤ n/2. The facets (top-level faces) of this
complex comprise the slice (as it is known for computer scientists) or the Johnson scheme
(as it is known for coding theorists), whose spectral theory has been elucidated by Dunkl [8].
For |t| ≤ d+ 1, let yt(s) = 1 iff t ⊆ s (these are the analogs of monomials). Every function
on the complete complex has a unique representation as a linear combination of monomials∑
t f̃(t)yt (of various degrees) satisfying the harmonicity condition: for all i ≤ d and all

t ∈ X(i),∑
a∈[n]\t

f̃(t ∪ {a}) = 0.

(If we identify yt with the product
∏
i∈t xi of “variables” xi, then harmonicity of a multilinear

polynomial P translates to the condition
∑n
i=1

∂P
∂xi

= 0.) As in the case of the Boolean

4 A related and slightly weaker notion of one-sided spectral expansion has already appeared earlier in
[19, 12].
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cube, this unique representation allows us to orthogonally decompose a function into its
homogeneous parts (corresponding to the contribution of monomials yt with fixed |t|), which
plays the same essential part in the complete complex as its counterpart does in the Boolean
cube. Moreover, this unique representation allows extending a function from the “slice” to
the Boolean cube (which can be viewed as a superset of the “slice”), thus implying further
results such as invariance principle [15, 16].

We generalize these concepts for complexes satisfying a technical condition we call
properness, which is satisfied by both the complete complex as well as high-dimensional
expanders. We show that the results on unique decomposition for the complete complex
hold for arbitrary proper complexes, with a generalized definition of harmonicity which
incorporates the distributions Πi. In contrast to the case of the complete complex (and the
Boolean cube), the homogeneous parts are only approximately orthogonal.

The homogeneous components in our decomposition are “approximate eigenfunctions” of
the Laplacian, and this allows us to derive an approximate identity relating the total influence
(defined through the Laplacian) to the norms of the components in our decomposition, in
complete analogy to the same identity in the Boolean cube (expressing the total influence in
terms of the Fourier expansion). All of this is summarized in Theorem 4.1.

As a demonstration of the power of this setup, we generalize the fundamental result of
Friedgut, Kalai, and Naor [17] on Boolean functions almost of degree 1. We view this as a
first step toward developing a full-fledged theory of Boolean functions on high-dimensional
expanders. An easy exercise shows that a Boolean degree 1 function on the Boolean cube is
a dictator, that is, depends on at most one coordinate; we call this the exact FKN theorem.
The FKN theorem states that a Boolean function on the Boolean cube which is close to a
degree 1 function is in fact close to a dictator, where closeness is measured in L2.

The exact FKN theorem holds for the complete complex as well. Recently, the second
author [13] extended the FKN result to the complete complex. Surprisingly, the class of
approximating functions has to be extended beyond just dictators.

We prove an exact FKN theorem for arbitrary proper complexes, and an FKN theorem
for high-dimensional expanders. In contrast to the complete complex, Boolean degree 1
functions on arbitrary complexes correspond to independent sets rather than just single
points, and this makes the proof of the exact FKN theorem non-trivial. Our proof of the
FKN theorem for high-dimensional expanders is very different from existing proofs. It follows
the same general plan as our recent work on the biased Kindler–Safra theorem [4]. The idea
is to view a high-dimensional expander as a convex combination of small sub-complexes, each
of which is isomorphic to the complete k-dimensional complex on O(k) vertices. We can
apply the known FKN theorem separately on each of these, and deduce that our function
is approximately well structured on each sub-complex. Finally, we apply the agreement
theorem of Dinur and Kaufman [5] to show that the same thing is true on a global level.

1.1 Results
Given a positive integer n and d < n/2, let X be the d-dimensional simplex consisting of all
subsets of {1, . . . , n} of size at most d+1. For ` ≤ d, let X(`) denote the set of subsets of size
exactly `+ 1. In the following, we will view any function f : X(`)→ R as a function mapping
n-bit strings (y1, . . . , yn) ∈ {0, 1}n satisfying y1 + · · ·+ yn = `+ 1 to the reals. A classical
result (see for example [16]) states that every such function has a unique representation
f = f−1 + · · ·+ f` satisfying the following properties:

fi is a homogeneous multilinear polynomial of degree i+ 1.

APPROX/RANDOM 2018



38:4 Boolean Function Analysis on High-Dimensional Expanders

Each fi is in the kernel of
∑n
j=1

∂
∂yj

.
‖f‖2 = ‖f−1‖2 + · · ·+ ‖f`‖2.
〈DUf, f〉 =

∑`
i=−1

(
1− i+1

d−`

)
`−i+1
`+2 ‖fi‖

2.

Here DU : RX(`) → RX(`) is the (upper) Laplacian, given by the formula

(DUf)(s) = E
j /∈s

E
k∈s∪{j}

f
(
(s ∪ {j}) \ {k}

)
.

Our first result is an analogous decomposition for functions on any high-dimensional
expander (not necessarily the complete complex):

I Theorem 1.1 (Decomposition theorem for functions on HDX). Let X be a d-dimensional
expander. Every function f : X(`)→ R for ` ≤ d, can be written uniquely as f = f−1+· · ·+f`
such that:

fi is a linear combination of the functions ys(t) = [t ⊇ s] for s ∈ X(i).
Interpreted as a function on X(i), fi lies in the kernel of the “Down” operator.
‖f‖2 ≈ ‖f−1‖2 + · · ·+ ‖f`‖2.
If ` < k then 〈DUf, f〉 ≈

∑`
i=−1

`−i+1
`+2 ‖fi‖

2.

The “Down” operator and the Laplacian are defined formally in Section 2. They differ
from their counterparts in the complete complex by taking into account the measure Πd.

Equipped with this decomposition, we prove the following exact and approximate FKN
theorem on high dimensional expanders.

I Theorem 1.2 (exact FKN theorem on HDX). Let X be a d-dimensional expander. If
f : X(d)→ {0, 1} has degree 1, then f is the indicator of either intersecting or not intersecting
an independent set of X.

I Theorem 1.3 (FKN theorem on HDX). Let X be a d-dimensional expander. If F : X(d)→
{0, 1} is ε-close (in L2

2) to a degree-1 function then there exists a degree-1 function g on
X(d) such that Pr[F 6= g] = O(ε).

Paper organization
We describe our general setup in Section 2. We describe the property of properness and
its implications – a unique representation theorem and decomposition of functions into
homogeneous parts – in Section 3, discussing the issue of orthogonality of the homogeneous
parts in Section 4. Theorem 4.1 summarizes these results. We discuss high-dimensional
expanders from our perspective in Section 5. We prove our exact FKN theorem in Section 6,
and our FKN theorem in Section 7.

Theorem 1.1 is a combination of Theorem 3.2 (first two items), Theorem 4.1 (other
two items), Lemma 4.7 (calculation of the coefficients in the last item) and Theorem 5.1
(showing that high-dimensional expanders satisfy the prerequisites of the preceding results).
Theorem 1.2 is a restatement of Theorem 6.1. Theorem 1.3 is a restatement of Theorem 7.2.

2 Basic setup

A d-dimensional complex X is a non-empty collection of sets of size at most d+ 1. We call a
set of size i+ 1 an i-dimensional face (or i-face for short), and denote the collection of all
i-faces by X(i). A d-dimensional complex X is pure if every i-face is a subset of some d-face.
We will only be interested in pure complexes.
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Let X be a pure d-dimensional complex. Given a probability distribution Πd on its
top-dimensional faces X(d), for each i < d we define a distribution Πi on the i-faces using the
following experiment: choose a top-dimensional face according to Πd, and remove d− i points
at random. We can couple all of these distributions to a random vector ~Π = (Πd, . . . ,Π−1)
of which the individual distributions are marginals.

Let Ci = {f : X(i) → R} be the space of functions on X(i). It is convenient to define
X(−1) := {∅}, and we also let C−1 = R. We turn Ci to an inner product space by defining
〈f, g〉 := EΠi [fg] and the associated norm ‖f‖2 := EΠd

[f2].
For −1 ≤ i < d, we define the Up operator Ui : Ci → Ci+1 as follows:5

Uig(s) := 1
i+ 2

∑
x∈s

g(s \ {x}) = E
t⊂s

[g(t)] ,

where t is obtained from s by removing a random element. Note that if s ∼ Πi+1 then t ∼ Πi.
Similarly, we define the Down operator Di+1 : Ci+1 → Ci for −1 ≤ i < d as follows:

Di+1f(t) := 1
(i+ 2) ·Πi(t)

∑
x/∈t : t∪{x}∈X(i+1)

Πi+1(t ∪ {x}) · f(t ∪ {x}) = E
s⊃t

[f(s)] ,

where s is obtained from t by conditioning the vector ~Π on Πi = t and taking the (i+ 1)th
component.

The operators Ui, Di+1 are adjoint to each other. Indeed, if f ∈ Ci+1 and g ∈ Ci then

〈g,Di+1f〉 = E
(t,s)∼(Πi,Πi+1)

[g(t)f(s)] = 〈Uig, f〉 .

When the domain is understood, we will use U,D instead of Ui, Di+1. This will be especially
useful when considering powers of U,D. For example, if f : X(i)→ R then

U tf ≡ Ui+t−1 . . . Ui+1Uif.

The function ys is the indicator function of containing s. Our definition of the Up operator
guarantees the correctness of the following lemma.

I Lemma 2.1. Let s ∈ X(i). We can think of ys as a function in Cj for all j ≥ i. Using
this convention, Ujys = (1− i+1

j+2 )ys.

Proof. Direct calculation shows that

(Ujys)(t) = 1
j + 2

∑
x∈t

ys(t \ {x}) = |t| − |s|
j + 2 ys(t) ,

and so Ujys = (1− i+1
j+2 )ys. J

For 0 ≤ i ≤ k, the space of harmonic functions on X(i) is

Hi := kerDi = {f ∈ Ci : Dif = 0} .

We also define H−1 = C−1. We are interested in decomposing Ck, so let us define for each
−1 ≤ i ≤ k,

V i := Uk−iHi = {Uk−if : f ∈ Hi} .

We can describe V i, a sub-class of functions of ck, in more concrete terms.

5 The Up and Down operators differ from the boundary and coboundary operators of algebraic topology,
which operate on linear combinations of oriented faces.

APPROX/RANDOM 2018



38:6 Boolean Function Analysis on High-Dimensional Expanders

I Lemma 2.2. Every function h ∈ V i has a unique representation of the form

h =
∑

s∈X(i)

h̃(s)ys ,

where the coefficients h̃(s) satisfy the following harmonicity condition: for all t ∈ X(i− 1),∑
s⊃t

Πi(s)h̃(s) = 0 .

Proof. First, let us show that every function of the form given above is in V i. Lemma 2.1
shows that a function h is of the form

∑
s∈X(i) h̃(s)ys where h̃ satisfies the harmonicity

condition if and only if h = Uk−ir, where r ∈ Ci is of similar form r =
∑
s∈X(i) r̃(s)ys, where

r̃ satisfies the harmonicity condition. In fact, it is easy to see that r = r̃, and so the fact
that r ∈ Hi follows directly from the definition of the Down operator.

We have shown above that if h = Uk−ir then the coefficients h̃ are a constant multiple of
the values of r, hence this representation is also unique. J

3 Decomposition of the space Ck and a convenient basis

Our decomposition theorem relies on a crucial property of complexes, properness.

I Definition 3.1. A k-dimensional complex is proper if it is pure and kerUi is trivial for
−1 ≤ i ≤ k − 1.

The complete k-dimensional complex on n points is proper iff k + 1 ≤ n/2. A pure
one-dimensional complex (i.e., a graph) is proper iff it is not bipartite. Unfortunately, we are
not aware of a similar characterization for higher dimensions. However, in Section 5 we show
that high-dimensional expanders are proper.

We can now state our decomposition theorem.

I Theorem 3.2. If X is a proper k-dimensional complex then we have the following decom-
position of Ck:

Ck = V k + V k−1 + · · ·+ V −1 .

In other words, for every function f ∈ Ck there is a unique choice of hi ∈ Hi such that the
functions fi = Uk−ihi satisfy f = f−1 + f0 + . . .+ fk.

Proof. We first prove by induction that every function f ∈ C` has a representation f =∑`
i=−1 U

`−ihi, where hi ∈ Hi. This trivially holds when ` = −1. Suppose now that the claim
holds for some ` < k, and let f ∈ C`+1. Since D`+1 : C`+1 → C` is a linear operator, we have
C`+1 = kerD`+1 + imD∗`+1 = kerD`+1 + imU`, and therefore we can write f = h`+1 + Ug,
where h`+1 ∈ H`+1 and g ∈ C`. Applying induction, we get that g =

∑`
i=−1 U

`−ihi, where
hi ∈ Hi. Substituting this in f = h`+1 + Ug completes the proof.

It remains to show that the representation is unique. Since kerUi−1 = kerD∗i is trivial,
dimHi = dimCi− dimCi−1 for i ≥ 0. This shows that

∑k
i=−1 dimHi = dimCk. Therefore

the operator ϕ : H−1 × · · · ×Hk → Ck given by ϕ(h−1, . . . , hk) =
∑k
i=−1 U

k−ihi is not only
surjective but also injective. In other words, the representation of f is unique. J

I Corollary 3.3. If X is a proper k-dimensional complex then every function f ∈ Ck has a
unique representation of the form

f =
∑
s∈X

f̃(s)ys ,
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where the coefficients f̃(s) satisfy the following harmonicity conditions: for all 0 ≤ i ≤ k and
all t ∈ X(i− 1):∑

s∈X(i)
s⊃t

Πi(s)f̃(s) = 0 .

Proof. Follows directly from Lemma 2.2. J

We can now define the degree of a function.

I Definition 3.4. The degree of a function f is the maximal cardinality of a face s such that
f̃(s) 6= 0 in the unique decomposition given by Corollary 3.3.

Thus a function has degree d if its decomposition only involves faces whose dimension is
less than d. The following lemma shows that the functions ys, for all (d− 1)-dimensional
faces s, span the space of all functions of degree at most d.

I Lemma 3.5. If X is a proper k-dimensional complex then the space of functions on X(k)
of degree at most d+ 1 has the functions {ys : s ∈ X(d)} as a basis.

Proof. The space of functions on X(k) of degree at most d+1 is spanned, by definition, by the
functions yt for t ∈ X(−1)∪X(0)∪· · ·∪X(d). This space has dimension

∑d
i=−1 dimHi. Since

X is proper, dimHi = dimCi−dimCi−1 for i > 0, and so
∑d
i=1 dimHi = dimCd = |X(d)|.

Given the above in order to complete the proof it suffices to show that every yt, t ∈
X(i), i ≤ d, can be written as a linear combination of ys for s ∈ X(d). This will show that
{ys : s ∈ X(d)} spans the space of functions of degree at most d+ 1. Since this set contains
|X(d)| functions, it forms a basis.

Recall that yt(r) = 1r⊃t, where r ∈ X(k). If r contains t then it contains exactly
(
k+1−|t|
d+1−|t|

)
many d-faces containing r, and so

yt = 1(
k+1−|t|
d+1−|t|

) ∑
s⊃t

s∈X(d)

ys.

This completes the proof. J

We call fi the “level i” part of f , and denote the weight of f above level i by

wt>i(f) :=
∑
j>i

‖fj‖22.

4 Orthogonality of decomposition

When X is the complete k-dimensional complex, the decomposition in Theorem 3.2 is
orthogonal. For a general complex, this no longer need be the case. However, under certain
conditions, the decomposition is almost orthogonal, as we show in this subsection, proving
the following result:

I Theorem 4.1. Let ~r, ~δ be vectors such that pointwise ~r > ~0 and ~δ < ~1.
Let X be a proper k-dimensional complex, and define

γ := max
0≤i≤k−1

‖Di+1Ui − (1− δi)Ui−1Di − ri‖.

For every function f on C` for ` ≤ k, the decomposition f = f−1 + · · ·+ f` of Theorem 3.2
satisfies the following properties:

APPROX/RANDOM 2018



38:8 Boolean Function Analysis on High-Dimensional Expanders

For i 6= j, |〈fi, fj〉| = O(γ)‖fi‖‖fj‖.
‖f‖2 = (1±O(γ))(‖f−1‖2 +· · ·+‖f`‖2), and for all i, ‖f‖2 = (1±O(γ))(‖f≤i‖2 +‖f>i‖2).
If ` < k then 〈DUf, f〉 = (1±O(γ))

∑`
i=−1 λi‖fi‖2, where ~λ depends only on `, ~r, ~δ.

In other words, the decomposition of Theorem 3.2 is almost orthogonal, and its parts
are almost eigenfunctions of the Laplacian operator DU . The (unnormalized) Laplacian
operator is used in classical Boolean function analysis to define both the total influence
Inf[f ] = 〈DUf, f〉 and the noise operator (in the semigroup formulation, Tt = e−tDU ).

As we show in Section 4.4 and Section 5, for both the complete complex and high-
dimensional expanders we can take ri = δi = 1

i+2 , and given ` < k, we get λi = 1− i+1
`+2 .

Since the first two properties for arbitrary ` follow from the case ` = k by truncating the
complex, we concentrate below on proving this special case.

4.1 Sequentially differential posets
Let us first discuss sequentially differential posets [30, 31], using the example of the unnor-
malized complete complex whose top-level faces consists of all subsets of [n] of size k + 1,
weighted according to the counting measure. The top-level faces of this complex form the
“slice”

( [n]
k+1
)
(as it is known by computer scientists) of the Johnson scheme J(n, k + 1) (as it

is known by coding theorists). The Up operator Ũi : Ci → Ci+1 is given by

Ũig(s) :=
∑
x∈s

g(s \ {x}),

and the Down operator D̃i+1 : Ci+1 → Ci is given by

D̃i+1f(t) :=
∑
y/∈t

f(t ∪ {y}).

A simple calculation shows that

D̃i+1Ũig(t) =
∑
y/∈t

∑
x∈t∪{y}

g(t ∪ {y} \ {x}) = (n− i− 1)g(t) +
∑

r : |r\t|=|t\r|=1

g(r),

Ũi−1D̃ig(t) =
∑
x∈t

∑
y/∈t\{x}

g(t \ {x} ∪ {y}) = (i+ 1)g(t) +
∑

r : |r\t|=|t\r|=1

g(r).

Comparing the two expressions, we see that

D̃i+1Ũi − Ũi−1D̃i = riI, where ri = n− 2(i+ 1),

where I is the identity operator. Posets satisfying this property, for an arbitrary vector
~r = r0, . . . , rk−1, are known as sequentially differential posets. An important example is the
Grassmann lattice of all subspaces of a finite-dimensional vector space over a finite field.

In the setup considered in this paper, the top-level faces are weighted by a distribution
rather than an arbitrary measure. We therefore consider the (normalized) complete complex,
in which the top-level faces are weighted by the uniform distribution. It is easy to check that
all distributions Πi are uniform, and therefore

Uig(s) = 1
i+ 2

∑
x∈s

g(s \ {x}),

Di+1f(t) = 1
n− i− 1

∑
y/∈t

f(t ∪ {y}).
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As before, we can calculate

Di+1Uig(t) = 1
(n− i− 1)(i+ 2)

∑
y/∈t

∑
x∈t∪{y}

g(t ∪ {y} \ {x})

= 1
i+ 2g(t) + 1

(n− i− 1)(i+ 2)
∑

r : |r\t|=|t\r|=1

g(r),

Ui−1Dig(t) = 1
(i+ 1)(n− i)

∑
x∈t

∑
y/∈t\{x}

g(t \ {x} ∪ {y})

= 1
n− i

g(t) + 1
(i+ 1)(n− i)

∑
r : |r\t|=|t\r|=1

g(r).

Comparing the two expressions, we see that

Di+1Ui − (1− δi)Ui−1Di = riI, where ri = δi = 1
i+ 2 −

i+ 1
i+ 2 ·

1
n− i− 1 . (1)

Since Ui−1 and Di are adjoint, Ui−1Di is positive semidefinite. When 2(i + 1) < n, the
constant ri is positive, and so Di+1Ui is positive definite, which in particular implies that Ui
has trivial kernel. This shows that the complete complex is proper when k < n/2.

4.2 Almost sequentially differential posets
High-dimensional expanders do not satisfy an identity of the form (1). However, they satisfy
an approximate version for of this identity, as we show in Section 5. The classical theory of
sequentially differential posets shows that the decomposition of Theorem 3.2 is orthogonal.
We will now show that an approximate version of (1) suffices for approximate orthogonality.

Given a positive vector ~r, a vector ~δ with coordinates less than 1, and a parameter
γ, let us say that a k-dimensional complex is (~r, ~δ, γ)-almost sequentially differential, or
(~r, ~δ, γ)-ASD for short, if for 0 ≤ i ≤ k − 1,

‖Di+1Ui − (1− δi)Ui−1Di − ri‖ ≤ γ,

where the norm is the spectral norm.
We start by showing that in such a complex, any two distinct parts in the decomposition

of Theorem 3.2 are approximately orthogonal, in some sense.

I Lemma 4.2. Suppose that X is a proper k-dimensional complex which is (~r, ~δ, γ)-ASD,
and let f ∈ Ck have the decomposition f = f−1 + · · ·+fk for fi = Uk−ihi, as in Theorem 3.2.
For i 6= j,

〈fi, fj〉 = O(γ)‖hi‖‖hj‖.

where the hidden constant depends only on k,~r, ~δ but not on n = |X(0)|.

Proof. Recall that hi ∈ Hi = kerDi. Given this, it is easy to see that fk is orthogonal to
fk−1, indeed 〈fk, fk−1〉 = 〈hk, Uhk−1〉 = 〈Dhk, hk−1〉 = 0 because Dhk = 0. To warm up let
us first prove the claim for fk−1 = Uhk−1 and fk−2 = U2hk−2. In this case 〈fk−1, fk−2〉 =
〈Uhk−1, U

2hk−2〉 = 〈D2Uhk−1, hk−2〉. If we could replaceD2Uhk−1 by (1−δk−1)DUDhk−1+
rk−1Dhk−1 = 0 as in a sequentially differential poset, we would be done. However, this is not
necessarily true. We instead use the property of being (~r, ~δ, γ)-ASD and replace DDUhk−1
with (1− δk−1)DUDhk−1 + rk−1Dhk−1 = 0, incurring an error of O(γ) and completing the
argument in this case.
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Now move to general i, j and suppose without loss of generality that j < i, and so
k−j > k−i. We have 〈fi, fj〉 = 〈Dk−jUk−ihi, hj〉. Let us denote Ei = Di+1Ui−Ui−1Di−ri.
We expand Dk−jUk−i into a sum of terms, using the following algorithm. We start with the
sum containing one term, Dk−jUk−i. At each step, we pick a term not containing E and not
of the form UaDb, and isolate one of the occurrences of DU , say the term is cαDUβ (here c
is a real number and α, β are products of operators). We replace this term with the terms
c(1− δd)αUDβ, crdαβ (for the appropriate d), and cαEβ (this corresponds to the identity
Di+1Ui = (1 − δi)Ui−1Di + ri + Ei). This process clearly terminates eventually, with an
expression that depends on k,~r, ~δ but not on n.

Since k − j > k − i, all terms either contain E or end with D. The terms ending with D
vanish since hi ∈ Hi. All other terms are of the form c〈αEβhi, hj〉 = c〈Eβhi, α∗hj〉, where
β, α∗ are products of Ds and Us. Since D and U are contractions, we can estimate

|〈Eβhi, α∗hj〉| ≤ ‖Eβhi‖‖α∗hj‖ ≤ γ‖hi‖‖hj‖.

The lemma immediately follows. J

The preceding lemma gives an error estimate in terms of the norms ‖hi‖. The following
lemma will enable us to express the error in terms of the norms ‖fi‖.

I Lemma 4.3. Suppose that X is a proper k-dimensional complex which is (~r, ~δ, γ)-ASD,
and let f ∈ Ck have the decomposition f = f−1 + · · ·+fk for fi = Uk−ihi, as in Theorem 3.2.
For every i there exists a constant ρi, depending only on ~r, ~δ, such that

‖fi‖ = (1±O(γ))ρi‖hi‖,

where the hidden constant depends only on k, ~r, ~δ.

Proof. The argument is very similar to that of Lemma 4.2. This time we are computing
‖fi‖2 = 〈Dk−iUk−ihi, hi〉. Executing the same algorithm as before, we will be left with many
terms of the form 〈hi, hi〉, with various coefficients depending only on ~r, ~δ. The end result
will be that ‖fi‖2 = ρ2

i ‖hi‖2 ± O(γ)‖hi‖2 for some ρi (note that the coefficient is positive
since ~r is positive and all entries of ~δ are less than 1). The lemma follows. J

Combining both lemmata, we obtain the following corollary.

I Corollary 4.4. Suppose that X is a proper k-dimensional complex which is (~r, ~δ, γ)-ASD,
and let f ∈ Ck have the decomposition f = f−1 + · · ·+ fk, as in Theorem 3.2. If γ is small
enough (as a function of k,~r, ~δ) then for i 6= j,

〈fi, fj〉 = O(γ)‖fi‖‖fj‖,

where the hidden constant depends only on k,~r, ~δ.

As a consequence, we obtain an approximate L2 mass formula:

I Corollary 4.5. Under the conditions of Corollary 4.4, for every i ≤ j we have

‖fi + · · ·+ fj‖2 = (1±O(γ))(‖fi‖2 + · · ·+ ‖fj‖2),

where the hidden constant depends only on k,~r, ~δ.
In particular,

‖f‖2 = (1±O(γ))(wt≤i(f) + wt>i(f)) = (1±O(γ))(‖f≤i‖2 + ‖f>i‖2).
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Proof. Expanding ‖fi + · · ·+ fj‖2, we obtain

‖fi + · · ·+ fj‖2 − ‖fi‖2 − · · · − ‖fj‖2 = 2
∑

i≤a<b≤j

〈fa, fb〉 = O(γ)
∑

i≤a<b≤j

‖fa‖‖fb‖ ≤

O(γ) (‖fi‖+ · · ·+ ‖fj‖)2 ≤ O(γ)(‖fi‖2 + · · · + ‖fj‖2),

swallowing a factor of k in the last inequality. J

4.3 Laplacian
The (upper) Laplacian is the operator DU , used to define a random walk on a specific level
` < k of the complex (the lower Laplacian UD defines another random walk). In the complete
complex, indeed in arbitrary complexes satisfying (1), the functions in the decomposition
f = f−1 + · · ·+ f` are eigenfunctions of the Laplacian. The same holds approximately for
almost sequentially differential posets, using arguments very similar to the foregoing.

An analog of Lemma 4.2 shows that for i 6= j,

〈Ufi, Ufj〉 = O(γ)‖hi‖‖hj‖,

which as in Corollary 4.4 shows that

〈Ufi, Ufj〉 = O(γ)‖fi‖‖fj‖.

The argument of Corollary 4.5 shows that

〈DUf, f〉 = ‖Uf‖2 = (1±O(γ))(‖Uf−1‖2 + · · ·+ ‖Uf`‖2).

Conversely, an analog of Lemma 4.3 shows that there are positive constants λi, depending
only on ~r, ~δ, such that for each i,

‖Ufi‖2 = (1±O(γ))λiρ2
i ‖hi‖2 = (1±O(γ))λi‖fi‖2,

using Lemma 4.3. Putting everything together, we get the following result:

I Lemma 4.6. Suppose that X is a proper k-dimensional complex which is (~r, ~δ, γ)-ASD,
let ` < k, and let f ∈ C` have the decomposition f = f−1 + · · ·+ f`, as in Theorem 3.2. For
every i there exists a constant λi, depending only on ~r, ~δ, such that

〈DUf, f〉 = (1±O(γ))
∑̀
i=−1

λi‖fi‖2,

where the hidden constant depends only on k,~r, ~δ.

This result is analogous to [21, Theorem 6.2], in which a similar decomposition is obtained.
However, whereas our decomposition is to functions f−1, . . . , f` in C`, the decomposition
of [21] is analogous to our functions h−1, . . . , h`, which live in different spaces.

4.4 Eigenvalues of the Laplacian
Section 4.1 shows that the complete d-dimensional complex is (~r, ~δ, γ)-ASD, where ri = δi =

1
i+2 and γ = O( 1

n−d−1 ), the same parameters as high-dimensional expanders, as we show in
Section 5. This allows us to compute the eigenvalues ~λ of the Laplacian in Lemma 4.6 for
both the complete complex and high-dimensional expanders.

The classical theory of the “slice” (see for example [14, 16]) shows that V i is spanned by
functions of the form

∏i+1
j=1(yaj − ybj ), where the 2i indices aj , bj are distinct. (Recall that

in the decomposition of f , the component fi belongs to V i.)
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I Lemma 4.7. Let ϕi ∈ C` be the function

ϕi = (y1 − y2)(y3 − y4) · · · (y2i+1 − y2i+2).

On the complete complex,

DUϕi =
(

1− i+ 1
n− `− 1

)(
1− i+ 1

`+ 2

)
ϕi.

Proof. Let s ∈ X(`), and recall that

DUϕi(s) = E
a/∈s

E
b∈s∪{a}

ϕi(s ∪ {a} \ {b}).

For brevity, we use ra,b := s ∪ {a} \ {b}.
We consider several cases. Suppose first that 2j − 1, 2j ∈ s for some j, so that ϕi(s) = 0.

If b 6= 2j − 1, 2j then ϕi(ra,b) = 0. Conversely, ϕi(ra,2j−1) = −ϕi(ra,2j) for any choice of a.
Since Pr[b = 2j − 1] = Pr[b = j], we see that DUϕi(s) = 0.

Suppose next that 2j − 1, 2j /∈ s for some j, so that again ϕi(s) = 0. If a /∈ 2j − 1, 2j
then ϕi(ra,b) = 0. Conversely, ϕi(r2j−1,b) = −ϕi(r2j,b) for any b ∈ s, and ϕi(r2j−1,2j−1) =
ϕi(r2j,2j) = 0. Once again, this shows that DUϕi(s) = 0.

Finally, suppose that 1, 3, . . . , 2i + 1 ∈ s and 2, 4, . . . , 2i + 2 /∈ s, so that ϕi(s) = 1. If
a = 2j for some j then ϕi(ra,2j−1) = −1, ϕi(ra,2j) = 1, and ϕi(ra,b) = 0 for b 6= 2j − 1, 2j.
Thus ϕi(r2j,b) vanishes in expectation. When a 6= 2, 4, . . . , 2i + 2, we have ϕi(ra,b) = 1
if b 6= 1, 3, . . . , 2i + 1, and ϕi(ra,b) = 0 otherwise. Thus DUϕi(s) is the probability that
a 6= 2, 4, . . . , 2i+ 2 and that b 6= 1, 3, . . . , 2i+ 1, which is (1− i+1

n−`−1 )(1− i+1
`+2 ). J

When n→∞, both γ and i+1
n−`−1 tend to zero. Comparing Lemma 4.6 and Lemma 4.7,

we see that the value of λi in Lemma 4.6, which doesn’t depend on n, is

λi = 1− i+ 1
`+ 2 .

5 High-dimensional expanders

Let X be a d-dimensional complex with an associated probability distribution Πd on X(d),
which induces probability distributions on X(−1), . . . , X(d− 1) as we have described above.
For every i-dimensional face s ∈ X(i) for i < d− 1, the link of s is the weighted graph Xs

defined as follows:
The vertices are points x /∈ s such that s ∪ {x} ∈ X(i+ 1) is a face.
The edges are pairs of points {x, y} such that s ∪ {x, y} ∈ X(i+ 1) is a face. (Since the
complex is pure, x and y are vertices.)
The weight of the directed edge (x, y) is

ws(x, y) := 1
2 Pr
t∼Πi+1

[t = s ∪ {x, y} | t ⊃ s].

Note that the weights define a probability distribution ws on the (directed) edges. We denote
the marginal of ws on its first coordinate by

ws(x) :=
∑
y 6=x

ws(x, y) = Pr
t∼Πi+1

[t ⊃ s ∪ {x} | t ⊃ s] = Pr
(u,v)∼(Πi+1,Πi)

[u = s ∪ {x} | v = s].
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This is also the marginal of ws on its second coordinate. We turn the space of function on
vertices into an inner product space by defining

〈f, g〉 := E
x∼ws

[f(x)g(x)].

We define an operatorAs on functions on vertices by the matrixAs(x, y) := ws(x, y)/ws(x),
which corresponds to the quadratic form

〈f,Asg〉 =
∑
x,y

ws(x, y)f(x)g(y).

By definition, As fixes constant functions, and so it is a Markov operator. Since ws(x, y) =
ws(y, x), it is also self-adjoint with respect to the inner product above. Thus As has
eigenvalues λ1 = 1, λ2, . . . , λm, where m is the number of vertices. We define λ(As) =
max(|λ2|, |λm|). Orthogonality of eigenspaces guarantees that

|〈f,Asg〉 − E[f ]E[g]| ≤ λ(As)‖f‖‖g‖.

We say that X is a γ-two-sided high-dimensional expander (called γ-HD expander in [5])
if every link Xs of X satisfies λ(AS) ≤ γ.

Let f be a function on X(i), where i < d− 1. We have

〈DUf, f〉 = 〈Uf,Uf〉 = E
t∼Πi+1

E
x,y∈t

[f(t \ {x}) · f(t \ {y}].

The probability that x is equal to y is exactly 1/(i+ 2), and so

〈DUf, f〉 = 1
i+ 2 E

t∼Πi+1
E
x∈t

[f(t \ {x})2] + i+ 1
i+ 2 E

t∼Πi+1
E

x 6=y∈t
[f(t \ {x}) · f(t \ {y}].

If t ∼ Πi+1 and x ∈ t is chosen at random, then t\{x} ∼ Πi. Therefore the first term is equal
to 1

i+2‖f‖
2. To compute the second term, let s = t \ {x, y}. Since t ∼ Πi+1 and x 6= y ∈ t

are chosen at random, we have s ∼ Πi−1. Given such an s, the probability to get specific
(t, x, y) is exactly ws(x, y) (the factor 1/2 accounts for the relative order of x, y), and so

〈DUf, f〉 = 1
i+ 2‖f‖

2 + i+ 1
i+ 2 E

s∼Πi−1
E

(x,y)∼ws

[f(s ∪ {x})f(s ∪ {y})].

We now note that

E
x∼ws

[f(s ∪ {x})] = (Df)(s).

Therefore we have

| E
(x,y)∼ws

[f(s ∪ {x})f(s ∪ {y})]− (Df)(s)2| ≤ λ(As) E
x∼ws

[f(s ∪ {x})2].

If X is a γ-two-sided high-dimensional expander then λ(As) ≤ γ for all s, and so (using I
for the identity operator)

|〈(DU − 1
i+2I −

i+1
i+2UD)f, f〉| ≤ γ E

s∼Πi−1
E

x∼ws

[f(s ∪ {x})2] = γ‖f‖2.

We have proved the following result.

I Theorem 5.1. Suppose that X is a d-dimensional γ-two-sided high-dimensional expander.
Then its (d − 1)-skeleton Y (consisting of all faces of X of dimension at most d − 1) is
(~r, ~δ, γ)-ASD, where ri = δi = 1

i+2 . Moreover, if γ < 1
d then Y is proper.
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Proof. The first part follows from the foregoing. For the second part, note that Ui−1Di

is positive semidefinite, and so all eigenvalues of i+1
i+2Ui−1Di + 1

i+2 are at least 1
i+2 . This

implies that all eigenvalues Di+1Ui are at least 1
i+2 − γ > 0, and in particular Ui has trivial

kernel. J

Dinur and Kaufman [5] proved that such expanders do exist.

I Theorem 5.2 ([5, Lemma 1.5]). For every λ > 0 and every d ∈ N there exists an
explicit infinite family of bounded degree d-dimensional complexes which are λ-two-sided
high-dimensional expanders.

Theorem 5.1 shows that high-dimensional expanders are almost sequentially differential.
In the full version of the paper [3], we show that the converse also holds, given the additional
assumption that all links are connected. Our proof uses the local Garland method [18], as
substantiated by Oppenheim [28].

6 Boolean degree 1 functions

In this section we characterize all Boolean degree 1 functions in nice complexes.

I Theorem 6.1. Suppose that X is a proper k-dimensional complex, where k ≥ 2. A function
f ∈ Ck is a Boolean degree 1 function if and only if there exists an independent set I such
that f is the indicator of intersecting I or of not intersecting I.

Proof. If f is the indicator of intersecting an independent set I then f =
∑
v∈I yv, and

so deg f ≤ 1. If f is the indicator of not intersecting an independent set I then f =∑
v∈X(0) yv/(k + 1)−

∑
v∈I yv, and so again deg f ≤ 1.

Suppose now that f is a Boolean degree 1 function. If |X(0)| ≤ 2 then the theorem clearly
holds, so assume that |X(0)| > 2. Lemma 3.5 shows that f has a unique representation of
the form

f =
∑

v∈X(0)

cvyv.

Since f is Boolean, it satisfies f2 = f . Note that

f2 =
∑

{u,v}∈X(1)

2cucvy{u,v} +
∑

v∈X(0)

c2vyv.

Moreover, since every input x to f which contains v contains exactly k other members of
X(0), and since X(1) contains all pairs of points from x, we have

yv =
∑

u∈X(0)\{v}

y{u,v}

k
.

This shows that

0 = f2 − f =
∑

{u,v}∈X(1)

2cucvy{u,v} + 1
k

∑
v∈X(0)

(c2v − cv)
∑

u∈X(0)\{v}

y{u,v} =

1
k

∑
{u,v}∈X(1)

(2kcucv + c2u − cu + c2v − cv)y{u,v}.
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Lemma 3.5 shows that the coefficients of all y{u,v} must vanish, that is, for all u 6= v we have

2kcucv = cu(1− cu) + cv(1− cv).

Consider now a triple of points u, v, w such that {u, v, w} ∈ X(2), and the corresponding
system of equations:

2kcucv = cu(1− cu) + cv(1− cv),
2kcucw = cu(1− cu) + cw(1− cw),
2kcvcw = cv(1− cv) + cw(1− cw).

Subtracting the second equation from the first, we obtain

2kcu(cv − cw) = cv(1− cv)− cw(1− cw) = (cv − cw)− (c2v − c2w) = (cv − cw)(1− cv − cw).

This shows that either cv = cw or 2kcu = 1− cv − cw.
If cu 6= cv, cw then 2kcw + cu+ cv = 2kcv + cu+ cw = 1, which implies that cv = cw. Thus

cu, cv, cw can consist of at most two values. If c := cu = cv = cw then 2kc2 = 2c(1− c), and
so c ∈ {0, 1/(k + 1)}. If c := cv = cw 6= cu then 2c2 = 2c(1− c), and so c ∈ {0, 1/(k + 1)} as
before. We also have 2kcuc = cu(1−cu)+c(1−c). If c = 0 then this shows that cu(1−cu) = 0,
and so cu = 1. If c = 1/(k + 1) then one can similarly check that cu = 1/(k + 1)− 1.

Summarizing, one of the following two cases must happen:
1. Two of cu, cv, cw are equal to 0, and the remaining one is either 0 or 1.
2. Two of cu, cv, cw are equal to 1/(k + 1), and the remaining one is either 1/(k + 1) or

1/(k + 1)− 1.

Let us say that a vertex v ∈ X(0) is of type A if cv ∈ {0, 1}, and of type B if cv ∈
{1/(k + 1), 1/(k + 1)− 1}. Since the complex is pure and at least two-dimensional, every
vertex must participate in a triangle (two-dimensional face), and so every vertex is of one of
the types. In fact, all vertices must be of the same type. Otherwise, there would be a vertex
v of type A incident to a vertex w of type B. However, since the complex is pure, {v, w}
must participate in a triangle, contradicting the classification above.

Suppose first that all vertices are type A, and let I = {v : cv = 1}. Note that f indicates
that the input face intersects I. Clearly I must be an independent set, since otherwise f would
not be Boolean. When all vertices are type B, the function 1−f =

∑
v∈X(0)(1/(k+1)−cv)yv

is of type A, and so f must indicate not intersecting an independent set. J

7 FKN-theorem on high dimensional expanders

In this section, we prove an analog of the classical result of Friedgut, Kalai and Naor [17] to
high dimensional expanders. The FKN theorem that states that any Boolean function F on
the hypercube that is close to a degree-1 function f (not necessarily Boolean) in the L2

2-sense
must agree with some Boolean degree-1 function (which must be a dictator) at most points.
This result for the Boolean hypercube can be easily extended to functions on k-slices of the
hypercube provided k = Θ(n).

I Theorem 7.1 (FKN theorem on the slice [13]). Let n, k ∈ Z≥0 and ε ∈ (0, 1) such that
n/4 ≤ k ≤ n/2. Let F :

([n]
k

)
→ {0, 1} be a Boolean function such that E[(F − f)2] < ε for

some degree-1 function f :
([n]
k

)
→ {0, 1}. Then there exists a degree-1 function g :

([n]
k

)
→ R

such that

Pr[F 6= g] = O(ε).
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Furthermore, g ∈ {0, 1, yi, 1− yi}, that is, g is a Boolean dictator (1-junta).

I Remark.
1. The function g promised by the theorem satisfies E[(g − F )2] = Pr[g 6= F ] = O(ε) and

hence, by the L2
2-triangle inequality we have E[(f − g)2] ≤ 2E[(f −F )2] + 2E[(g−F )2] =

O(ε). This is the way that the FKN theorem is traditionally stated, but we prefer the
above formulation as this is the one we are able to generalize to the high-dimensional
expander setting.

2. The function 1 can also be written as
∑
j(1/k)yj . The function 1− yi can also be written

as
∑
j 6=i(1/k)yj + (1/k − 1)yi.

3. The result of [13] is quite a bit stronger: for every k ≤ n/2, it promises the existence of a
function g :

([n]
k

)
→ R, not necessarilly Boolean, such that E[(f − g)2] = O(ε). Moreover,

either g or 1 − g is of the form
∑
i∈S yi for |S| ≤ max(1,

√
ε · n/k). The bound on the

size of S ensures that Pr[g ∈ {0, 1}] = 1−O(ε).

Our main theorem is an extension of the above theorem to k-faces of a high-dimensional
expander.

I Theorem 7.2 (FKN theorem for high dimensional expanders). Let X be a d-dimensional
λ-two-sided high-dimensional expander, and let 4k2 < d and λ < 1/d. Let F : X(k)→ {0, 1}
be a function such that E[(F − f)2] < ε for some degree-1 function f : X(k)→ R. Then there
exists a degree-1 function g : X(k)→ R such that

Pr[F 6= g] = Oλ(ε).

Furthermore, the degree-1 function g can be written as g(y) =
∑
i diyi, where di ∈ {0, 1,

1
k+1 ,

1
k+1 − 1}.

The high-dimensional analog of the FKN theorem is obtained from the FKN theorem for
the slice using the agreement theorem of Dinur and Kaufman [5].

7.1 Agreement theorem for high dimensional expanders
Dinur and Kaufman [5] prove an agreement theorem for high-dimensional expanders. The
setup is as follows. For each k-face s we are given a local function fs : s→ Σ that assigns
values from an alphabet Σ to each point in s. Two local functions fs, fs′ are said to agree
if fs(v) = fs′(v) for all v ∈ s ∩ s′. Let Dk,2k be the distribution on pairs (s1, s2) obtained
by choosing a random t ∼ Π2k and then independently choosing two k-faces s1, s2 ⊂ t.
The theorem says that if a random pair pair of faces (s, s′) ∼ Dk,2k satisfies with high
probability that fs agrees with fs′ on their intersection, then there must be a global function
g : X(0)→ Σ such that almost always g|s ≡ fs. Formally:

I Theorem 7.3 (Agreement theorem for high-dimensional expanders [5]). Let X be a d-
dimensional λ-two-sided high-dimensional expander, and let k2 < d and λ < 1/d and Σ some
fixed finite alphabet. Let {fs : s→ Σ}s∈X(k) be an ensemble of local functions on X(k), i.e.
fs ∈ Σs for each s ∈ X(k). If

Pr
(s1,s2)∼Dk,2k

[fs1 |s1∩s2 ≡ fs2 |s1∩s2 ] > 1− ε

then there is a g : X(0)→ Σ such that

Pr
s∼Πk

[fs ≡ g|s] ≥ 1−Oλ(ε).
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While Dinur and Kaufman state the theorem for a binary alphabet, the general version
follows in a black box fashion by applying the theorem for binary alphabets dlog2 |Σ|e many
times.

7.2 Proof of Theorem 7.2
Let f, F ∈ Ck, where F is a Boolean function and f is a degree-1 function as in the hypothesis
of Theorem 7.2. Let

εf := E
s
[dist(f(s), {0, 1})2]. (2)

We have εf ≤ ε. Since f is a degree-1 function, Lemma 3.5 guarantees that there exist ai ∈ R
such that f(y) =

∑
i∈n aiyi. Note that here we view the inputs of f as n-bit strings with

exactly k + 1 ones, the rest being zero.
We begin by defining an ensemble of pairs of local functions {(f |t, F |t)}t∈X(2k),

{(f |u, F |u)}u∈X(4k) which are the restrictions of (f, F ) to the 2k-face t and 4k-face u.
Formally, for any t ∈ X(2k) and u ∈ X(4k), consider the restriction of f to t and u defined
as follows:

f |t, F |t :
(
t

k

)
→ R, f |t(y) = f(y) =

∑
i∈t

aiyi, F |t(y) = F (y),

f |u, F |u :
(
u

k

)
→ R, f |u(y) = f(y) =

∑
i∈u

aiyi, F |u(y) = F (y).

Observe that the f |t’s are degree-1 functions while the F |t’s are Boolean functions (similarly
for f |u’s and F |u’s).

Now, define the following quantities

εt := E
s : s⊂t

[dist(f |t(s), F |t(s))2], δu := E
s : s⊂u

[dist(f |u(s), F |u(s))2].

Clearly, Et[εt] = Eu[δu] = εf ≤ ε, where εf is as in (2).
Let αk = 1

k+1 . Applying Theorem 7.1 (along with Remark 7) to the functions (f |t, F |t)
for each t ∈ X(2k) we have the following claim:

I Claim 7.4. For every t ∈ X(2k), there exists a degree-1 dictator gt :
(
t
k

)
→ {0, 1} such that

E
s : s⊂t

[(f |t − gt)2] = O(εt).

Furthermore, there exists a function dt : t→ {0, 1, αk, αk − 1} such that gt(y) =
∑
i∈t dt(i)yi.

Similarly for each u ∈ X(4k) we have:

I Claim 7.5. For every u ∈ X(4k), there exists a degree-1 dictator hu :
(
u
k

)
→ {0, 1} such

that

E
s : s⊂u

[(f |u − hu)2] = O(δu).

Furthermore, there exists a function eu : u→ {0, 1, αk, αk−1} such that hu(y) =
∑
i∈u eu(i)yi.

We will now prove that the collection of local functions {dt}t typically agree with each
other. We will then be able to use the agreement theorem Theorem 7.3 to sew these different
local functions together to yield a single function d : X(0)→ {0, 1, αk, αk − 1}. This d will
determine a global degree-1 function g defined as follows: g(y) =

∑
i∈X(0) d(i)yi.
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I Claim 7.6. There exists a function d : X(0)→ {0, 1, αk, αk − 1} such that Prt[dt ≡ d|t] =
1−Oλ(ε).

Proof. To sew the various dt together via the agreement theorem, we would like to first
bound the probability

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] .

Recall the definition of the distribution D2k,4k: we first pick a set u ∈ X(4k) according
to Π4k and then two 2k-faces t1, t2 of u uniformly and independently. Consider the three
functions dt1 , dt2 and eu. Clearly, if dt1 |t1∩t2 6≡ dt2 |t1∩t2 then one of eu|t1 6≡ dt1 or eu|t2 6≡ dt2
must hold. Thus,

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] ≤ 2 · Pr
t,u

[eu|t 6≡ dt] . (3)

Thus, it suffices to bound the probability Prt,u[eu|t 6≡ dt] where u ∼ Π4k and t is a random
2k-face of u.

For any fixed t ⊂ u, the L2
2 triangle inequality shows that

E[(hu|t − gt)2] ≤ 2E[(hu|t − f |t)2] + 2E[(f |t − gt)2] = 2E[(hu|t − f |t)2] +O(εt).

Taking expectation over t ∈ X(2k) conditioned on t ⊂ u, we see that

E
t⊂u

E[(hu|t − gt)2] ≤ 2E[(hu − f |u)2] +O

(
E

t : t⊂u
εt

)
= O(δu) +O

(
E

t : t⊂u
εt

)
.

Taking expectation over u ∼ Π4k, we now have

E
u

E
t⊂u

E[(hu|t − gt)2] = O(ε).

For any fixed t ⊂ u, both hu|t and gt are Boolean degree-1 juntas. Hence either they agree,
or E[(hu|t − gt)2] = Ω(1). This shows that hu|t disagrees with gt with probability O(ε), and
so

Pr
t,u

[eu|t 6≡ dt] = O(ε).

We now return to (3), concluding that

E
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2)] = O(ε).

We have thus satisfied the hypothesis of the agreement theorem (Theorem 7.3). Invoking
the agreement theorem, we deduce that Prt∼Π2k

[dt ≡ d|t] = 1−Oλ(ε). J

The d’s guaranteed by Claim 7.6 naturally correspond to a degree-1 function g : X(k)→ R
as follows:

g(y) :=
∑

i∈X(0)

d(i)yi.

We now show that this g is mostly Boolean.

I Claim 7.7. Prs[g(s) ∈ {0, 1}] = 1−Oλ(ε).
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Proof. Since gt is Boolean valued,

Pr
s∼Πk

[g(s) ∈ {0, 1}] ≥ Pr
t

[g|t = gt] = Pr
t

[d|t ≡ dt] = 1−O(ε). J

We now show that g in fact agrees pointwise with F most of the time.

I Claim 7.8. Prs[g 6= F ] = O(ε).

Proof. Fix any t ∈ X(2k). We compute Prs : s⊂t[F |t 6= gt] as follows

Pr[F |t 6= gt] = ‖F |t − gt‖2 [ Since F |t and gt are both Boolean ]
≤ 2 · ‖F |t − f |t‖2 + 2 · ‖f |t − gt‖2

= O(εt) +O(εt) = O(εt).

We can now compute Prs[F 6= g] as follows:

Pr[F 6= g] = E
t

Pr[F |t 6= g|t] ≤ E
t

Pr[F |t 6= gt]+Pr
t

[g|t 6= gt] = O(ε)+Pr
t

[d|t 6≡ dt] = Oλ(ε).J

This completes the proof of Theorem 7.2.
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