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Abstract
The minrank over a field F of a graph G on the vertex set {1, 2, . . . , n} is the minimum possible
rank of a matrix M ∈ Fn×n such that Mi,i 6= 0 for every i, and Mi,j = 0 for every distinct non-
adjacent vertices i and j in G. For an integer n, a graph H, and a field F, let g(n,H,F) denote
the maximum possible minrank over F of an n-vertex graph whose complement contains no copy
of H. In this paper we study this quantity for various graphs H and fields F. For finite fields,
we prove by a probabilistic argument a general lower bound on g(n,H,F), which yields a nearly
tight bound of Ω(

√
n/ logn) for the triangle H = K3. For the real field, we prove by an explicit

construction that for every non-bipartite graph H, g(n,H,R) ≥ nδ for some δ = δ(H) > 0. As a
by-product of this construction, we disprove a conjecture of Codenotti, Pudlák, and Resta. The
results are motivated by questions in information theory, circuit complexity, and geometry.
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1 Introduction

An n × n matrix M over a field F is said to represent a digraph G = (V,E) with vertex
set V = {1, 2, . . . , n} if Mi,i 6= 0 for every i, and Mi,j = 0 for every distinct i, j such
that (i, j) /∈ E. The minrank of G over F, denoted minrkF(G), is the minimum possible
rank of a matrix M ∈ Fn×n representing G. The definition is naturally extended to
(undirected) graphs by replacing every edge with two oppositely directed edges. It is easy to
see that for every graph G the minrank parameter is sandwiched between the independence
number and the clique cover number, that is, α(G) ≤ minrkF(G) ≤ χ(G). For example,
minrkF(Kn) = 1 and minrkF(Kn) = n for every field F. The minrank parameter was
introduced by Haemers in 1979 [16], and since then has attracted a significant attention
motivated by its various applications in information theory and in theoretical computer
science (see, e.g., [17, 7, 32, 26, 25, 19, 10]).

In this work we address the extremal behavior of the minrank parameter of n-vertex
graphs whose complements are free of a fixed forbidden subgraph. For two graphs G and H,
we say that G is H-free if G contains no subgraph, induced or not, isomorphic to H. For
an integer n, a graph H, and a field F, let g(n,H,F) denote the maximum of minrkF(G)
taken over all n-vertex graphs G whose complement G is H-free. Our purpose is to study
the quantity g(n,H,F) where H and F are fixed and n is growing.

1.1 Our Contribution
We provide bounds on g(n,H,F) for various graph families and fields. We start with a simple
upper bound for a forest H.
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42:2 On Minrank and Forbidden Subgraphs

I Proposition 1. For every integer n, a field F, and a nontrivial forest H on h vertices,

g(n,H,F) ≤ h− 1.

Equality holds whenever H is a tree and n ≥ h− 1.

We next provide a general lower bound on g(n,H,F) for a graph H and a finite field F.
To state it, we need the following notation. For a graph H with h ≥ 3 vertices and f ≥ 3
edges define γ(H) = h−2

f−1 and γ0(H) = minH′ γ(H ′), where the minimum is taken over all
subgraphs H ′ of H with at least 3 edges.

I Theorem 2. For every graph H with at least 3 edges there exists c = c(H) > 0 such that
for every integer n and a finite field F,

g(n,H,F) ≥ c · n
1−γ0(H)

log(n · |F|) .

Note that for every finite field F, the quantity g(n,H,F) grows with n if and only ifH is not
a forest. Indeed, if H is a forest then g(n,H,F) is bounded by some constant by Proposition 1,
whereas otherwise H satisfies γ0(H) < 1 and thus, by Theorem 2, g(n,H,F) ≥ Ω(nδ) for
some δ = δ(H) > 0. Note further that for the case H = K3, which is motivated by a question
in information theory (see Section 1.2), Theorem 2 implies that

g(n,K3,F) ≥ Ω
( √n

logn

)
(1)

for every fixed finite field F. This is tight up to a
√

logn multiplicative term (see Proposi-
tion 13).

Theorem 2 is proved by a probabilistic argument based on the Lovász Local Lemma [13].
The proof involves an approach of Spencer [29] to lower bounds on off-diagonal Ramsey
numbers and a technique of Golovnev, Regev, and Weinstein [15] for estimating the minrank
of random graphs.

As our final result, we show that for every non-bipartite graph H there are H-free graphs
with low minrank over the real field R.

I Theorem 3. For every non-bipartite graph H there exists δ = δ(H) > 0 such that
for every sufficiently large integer n, there exists an n-vertex H-free graph G such that
minrkR(G) ≤ n1−δ.

This theorem is proved by an explicit construction from the family of generalized Kneser
graphs, whose minrank was recently studied in [18]. It is known that every n-vertex graph G
satisfies

minrkF(G) ·minrkF(G) ≥ n (2)

for every field F (see, e.g., [23, Remark 2.2]). This combined with the graphs given in
Theorem 3 implies the following (explicit) lower bound on g(n,H,R) for non-bipartite graphs
H.

I Corollary 4. For every non-bipartite graph H there exists δ = δ(H) > 0 such that for
every sufficiently large integer n, g(n,H,R) ≥ nδ.

As another application of Theorem 3, we disprove a conjecture of Codenotti, Pudlák, and
Resta [11] motivated by Valiant’s approach to circuit lower bounds [31] (see Section 1.2).
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1.2 Applications

The study of the quantity g(n,H,F) is motivated by questions in information theory, circuit
complexity, and geometry. We gather here several applications of our results.

Shannon Capacity

For an integer k and a graph G on the vertex set V , let Gk denote the graph on the
vertex set V k in which two distinct vertices (u1, . . . , uk) and (v1, . . . , vk) are adjacent if
for every 1 ≤ i ≤ k it holds that ui and vi are either equal or adjacent in G. The
Shannon capacity of a graph G, introduced by Shannon in 1956 [28], is defined as the limit
c(G) = limk→∞ (α(Gk))1/k. This graph parameter is motivated by information theory, as it
measures the zero-error capacity of a noisy communication channel represented by G. An
upper bound on c(G), known as the Lovász ϑ-function, was introduced in [22], where it
was used to show that the Shannon capacity of the cycle on 5 vertices satisfies c(C5) =

√
5,

whereas its independence number is 2. Haemers introduced the minrank parameter in [16, 17]
and showed that it forms another upper bound on c(G) and that for certain graphs it is
tighter than the ϑ-function. In general, computing the Shannon capacity of a graph seems to
be a very difficult task, and its exact value is not known even for small graphs such as the
cycle on 7 vertices.

The question of determining the largest possible Shannon capacity of a graph with a given
independence number is widely open. In fact, it is not even known if the Shannon capacity
of a graph with independence number 2 can be arbitrarily large [3]. Interestingly, Erdös,
McEliece, and Taylor [14] have shown that this question is closely related to determining an
appropriate multicolored Ramsey number, whose study in [33] implies that there exists a
graph G with α(G) = 2 and c(G) > 3.199. A related question, originally asked by Lovász, is
that of determining the maximum possible ϑ-function of an n-vertex graph with independence
number 2. This maximum is known to be Θ(n1/3), where the upper bound was proved by
Kashin and Konyagin [20, 21], and the lower bound was proved by Alon [2] via an explicit
construction. Here we consider the analogue question of determining the maximum possible
minrank, over any fixed finite field F, of an n-vertex graph with independence number 2.
Since the latter is precisely g(n,K3,F), our bound in (1) implies that the minrank parameter
is weaker than the ϑ-function with respect to the general upper bounds that they provide on
the Shannon capacity of n-vertex graphs with independence number 2.

The Odd Alternating Cycle Conjecture

In 1977, Valiant [31] proposed the matrix rigidity approach for proving superlinear circuit
lower bounds, a major challenge in the area of circuit complexity. Roughly speaking, the
rigidity of a matrix M ∈ Fn×n for a constant ε > 0 is the minimum number of entries
that one has to change in M in order to reduce its rank over F to at most ε · n. Valiant
showed in [31] that matrices with large rigidity can be used to obtain superlinear lower
bounds on the size of logarithmic depth arithmetic circuits computing linear transformations.
With this motivation, Codenotti, Pudlák, and Resta [11] raised in the late nineties the Odd
Alternating Cycle Conjecture stated below, and proved that it implies, if true, that certain
explicit circulant matrices have superlinear rigidity. By an alternating odd cycle we refer to
a digraph which forms a cycle when the orientation of the edges is ignored, and such that
the orientation of the edges alternates with one exception.

APPROX/RANDOM 2018



42:4 On Minrank and Forbidden Subgraphs

I Conjecture 5 (The Odd Alternating Cycle Conjecture [11]). For every field F there exist
ε > 0 and an odd integer ` such that every n-vertex digraph G with minrkF(G) ≤ ε ·n contains
an alternating cycle of length `.

Codenotti et al. [11] proved that the statement of Conjecture 5 does not hold for ` = 3
over any field F. Specifically, they provided an explicit construction of n-vertex digraphs G,
free of alternating triangles, with minrkF(G) ≤ O(n2/3) for every field F. For the undirected
case, which is of more interest to us, a construction of [11] implies that there are n-vertex
triangle-free graphs G such that minrkF(G) ≤ O(n3/4) for every field F (see [8, Section 4.2]
for a related construction over the binary field as well as for an application of such graphs
from the area of index coding). Note that this yields, by (2), that g(n,K3,F) ≥ Ω(n1/4). In
contrast, for the real field and the cycle on 4 vertices, it was shown in [11] that every n-vertex
C4-free graph G satisfies minrkR(G) > n

6 . Yet, the question whether every n-vertex digraph
with sublinear minrank contains an alternating cycle of odd length ` ≥ 5 was left open in [11]
for every field. Our Theorem 3 implies that for every odd ` there are (undirected) C`-free
graphs G with sublinear minrkR(G), and in particular disproves Conjecture 5 for the real
field R.

Nearly Orthogonal Systems of Vectors

A system of nonzero vectors in Rm is said to be nearly orthogonal if any set of three vectors
of the system contains an orthogonal pair. It was proved by Rosenfeld [27] that every
such system has size at most 2m. An equivalent way to state this, is that every n-vertex
graph represented by a real positive semidefinite matrix of rank smaller than n

2 contains a
triangle. Note that the positive semidefiniteness assumption is essential in this result, as
follows from the aforementioned construction of [11] of n-vertex triangle-free graphs G with
minrkR(G) ≤ O(n3/4).

A related question was posed by Pudlák in [24]. He proved there that for some ε > 0,
every n-vertex graph represented by a real positive semidefinite matrix of rank at most ε · n
contains a cycle of length 5. Pudlák asked whether the assumption that the matrix is positive
semidefinite can be omitted. Our Theorem 3 applied to H = C5 implies that there are
C5-free graphs G with sublinear minrkR(G), and thus answers this question in the negative.

1.3 Outline
The rest of the paper is organized as follows. In Section 2 we present the simple proof of
Proposition 1. In Section 3 we provide some background on sparse-base matrices from [15]
and then prove Theorem 2. In the final Section 4, we prove Theorem 3.

2 Forests

In this section we prove Proposition 1. We use an argument from one of the proofs in [5].

Proof of Proposition 1. Fix a nontrivial h-vertex forest H and a field F. It suffices to
consider the case where H is a tree, as otherwise H is a subgraph of some h-vertex tree H ′,
and since every H-free graph is also H ′-free, we have g(n,H,F) ≤ g(n,H ′,F).

Our goal is to show that every n-vertex graph G whose complement G is H-free satisfies
minrkF(G) ≤ h − 1. Let G be such a graph. We claim that G is (h − 2)-degenerate, that
is, every subgraph of G contains a vertex of degree at most h − 2. Indeed, otherwise G
has a subgraph G′ all of whose degrees are at least h− 1, and one can find a copy of H in
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G′ as follows: First identify an arbitrary vertex of G′ with an arbitrary vertex of H, and
then iteratively identify a vertex of G′ with a leaf added to the being constructed copy of
the tree H. The process succeeds since H has h vertices and every vertex of G′ has degree
at least h − 1. As is well known, the fact that G is (h − 2)-degenerate implies that G is
(h− 1)-colorable, so we get that minrkF(G) ≤ χ(G) ≤ h− 1, as required.

We finally observe that the bound is tight whenever H is a tree and n ≥ h−1. Indeed, let
G be the n-vertex complete d n

h−1e-partite graph, that has h− 1 vertices in each of its parts,
except possibly one of them. Its complement G is a disjoint union of cliques, each of size at
most h−1, and is thus H-free. Since α(G) = χ(G) = h−1, it follows that minrkF(G) = h−1
for every field F, completing the proof. J

3 A General Lower Bound on g(n, H, F)

In this section we prove Theorem 2 and discuss its tightness for H = K3. We start with
some needed preparations.

3.1 Lovász Local Lemma
The Lovász Local Lemma [13] stated below is a powerful probabilistic tool in Combinatorics
(see, e.g., [6, Chapter 5]). We denote by [N ] the set of integers from 1 to N .

I Lemma 6. [Lovász Local Lemma [13]] Let A1, . . . , AN be events in an arbitrary probability
space. A digraph D = (V,E) on the vertex set V = [N ] is called a dependency digraph for the
events A1, . . . , AN if for every i ∈ [N ], the event Ai is mutually independent of the events
Aj with j 6= i and (i, j) /∈ E. Suppose that D = (V,E) is a dependency digraph for the above
events and suppose that there are real numbers x1, . . . , xN ∈ [0, 1) such that

Pr [Ai] ≤ xi ·
∏

(i,j)∈E

(1− xj)

for all i ∈ [N ]. Then, with positive probability no event Ai holds.

3.2 Sparse-base Matrices
Here we review several notions and lemmas due to Golovnev, Regev, and Weinstein [15]. For
a matrix M over a field F, let s(M) denote its sparsity, that is, the number of its nonzero
entries. We say that a matrix M over F with rank k contains an `-sparse column (row) basis
if M contains k linearly independent columns (rows) with a total of at most ` nonzero entries.
We first state a lemma that provides an upper bound on the number of matrices with sparse
column and row bases.

I Lemma 7 ([15]). The number of rank k matrices in Fn×n that contain `-sparse column
and row bases is at most (n · |F|)6`.

The following lemma relates the sparsity of a matrix with nonzero entries on the main
diagonal to its rank.

I Lemma 8 ([15]). For every rank k matrix M ∈ Fn×n with nonzero entries on the main
diagonal,

s(M) ≥ n2

4k .

APPROX/RANDOM 2018
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We also need the following notion. An (n, k, s, `)-matrix over a field F is a matrix in
Fn×n of rank k and sparsity s that contains `-sparse column and row bases and has nonzero
entries on the main diagonal. Note that by Lemma 8, an (n, k, s, `)-matrix exists only if
s ≥ n2

4k . For integers n, k, s
′ and a field F (which will always be clear from the context), let

M(s′)
n,k be the collection that consists of all (n′, k′, s′, 2s′k′

n′ )-matrices over F for all n′ ∈ [n]
and k′ ∈ [k] such that k′

n′ ≤
k
n . This collection is motivated by the following lemma.

I Lemma 9 ([15]). Every matrix in Fn×n with rank at most k and nonzero entries on the
main diagonal has a principal sub-matrix that lies inM(s′)

n,k for some s′.

Now, for integers n, k, s′, let P(s′)
n,k be the collection that consists of all pairs (M,R) such

that, for some n′ ∈ [n], M is an n′×n′ matrix inM(s′)
n,k and R is an n′-subset of [n]. Observe

that Lemma 9 implies that for every digraph G on the vertex set [n] with minrkF(G) ≤ k

there exist s′ and a pair (M,R) in P(s′)
n,k such that M represents the induced subgraph G[R]

of G on R, with respect to the natural order of the vertices in R (from smallest to largest).
The following lemma provides an upper bound on the size of P(s′)

n,k .

I Lemma 10. For every integers n, k, s′, |P(s′)
n,k | ≤ (n · |F|)24s′k/n.

Proof. To bound the size of P(s′)
n,k , we consider for every n′ ∈ [n] and k′ ∈ [k] such that

k′

n′ ≤
k
n the pairs (M,R) where M is an (n′, k′, s′, 2s′k′

n′ )-matrix and R is an n′-subset of [n].
By Lemma 7 there are at most (n′ · |F|)12s′k′/n′ such matrices M , each of which occurs in(
n
n′

)
pairs of P(s′)

n,k . It follows that

|P(s′)
n,k | ≤

∑
n′,k′

(
n

n′

)
· (n′ · |F|)12s′k′/n′ ≤ n2 ·max

n′,k′

(
nn
′
· (n′ · |F|)12s′k′/n′)

≤ max
n′,k′

(
n3n′ · (n′ · |F|)12s′k′/n′) ≤ max

n′,k′

(
(n · |F|)3n′+12s′k′/n′)

≤ max
n′,k′

(
(n · |F|)12s′k′/n′+12s′k′/n′) ≤ (n · |F|)24s′k/n,

where in the fifth inequality we have used the relation s′ ≥ n′2

4k′ from Lemma 8, and in the
sixth we have used k′

n′ ≤
k
n . J

3.3 Proof of Theorem 2
We prove the following theorem and then derive Theorem 2. Recall that for a graph H with
h ≥ 3 vertices and f ≥ 3 edges, we denote γ(H) = h−2

f−1 . We also let exp(x) stand for ex.

I Theorem 11. For every graph H with at least 3 edges there exists c = c(H) > 0 such that
for every integer n and a finite field F,

g(n,H,F) ≥ c · n1−γ(H)

log(n · |F|) .

Proof. Fix a graph H with h ≥ 3 vertices and f ≥ 3 edges and denote γ = γ(H) = h−2
f−1 > 0.

The proof is via the probabilistic method. Let ~G ∼ ~G(n, p) be a random digraph on the
vertex set [n] where each directed edge is taken randomly and independently with probability
p. Set q = 1− p. Let G be the (undirected) graph on [n] in which two distinct vertices i, j
are adjacent if both the directed edges (i, j) and (j, i) are included in ~G. Notice that every
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two distinct vertices are adjacent in G with probability p2 independently of the adjacencies
between other vertex pairs.

To prove the theorem, we will show that for a certain choice of p the random graph G
satisfies with positive probability that its complement G is H-free and that minrkF(G) > k,
where

k = c1 ·
n1−γ

ln (n · |F|) (3)

for a constant c1 > 0 that depends only on H. To do so, we define two families of events as
follows.

First, for every set I ⊆ [n] of size |I| = h, let AI be the event that the induced subgraph
of G on I contains a copy of H. Observe that

Pr [AI ] ≤ h! · (1− p2)f = h! · (1− (1− q)2)f ≤ h! · (2q)f .

Second, consider the collection P = ∪s′∈[n2]P
(s′)
n,k (see Section 3.2). Recall that every

element of P is a pair (M,R) such that, for some n′ ∈ [n], M is an n′×n′ matrix over F and
R is an n′-subset of [n]. Denote Ns′ = |P(s′)

n,k |. By Lemma 10, combined with (3), we have

Ns′ ≤ (n · |F|)24s′k/n = exp(24c1 · s′ · n−γ). (4)

Let S = {s′ ∈ [n2] | Ns′ ≥ 1}. By Lemma 8, for every s′ ∈ S and an n′ × n′ matrix of rank
k′ inM(s′)

n,k where n′ ∈ [n], k′ ∈ [k], and k′

n′ ≤
k
n , we have that

s′ ≥ n′

4 ·
n′

k′
≥ n′

4 ·
n

k
= n′ · n

γ · ln(n · |F|)
4c1

. (5)

Now, for every pair (M,R) ∈ P , let BM,R be the event that the matrix M represents over F
the induced subgraph ~G[R] of ~G on R with respect to the natural order of the vertices in R.
For M to represent ~G[R] we require that for every distinct i, j such that Mi,j 6= 0, there is
an edge in ~G from the ith to the jth vertex of R. Hence, for M ∈ Fn′×n′ of sparsity s′ and
an n′-subset R of [n],

Pr [BM,R] = ps
′−n′ ≤ ps

′/2 = (1− q)s
′/2 ≤ exp(−qs′/2),

where for the first inequality we have used the inequality s′ ≥ 2n′ which follows from (5) for
every sufficiently large n.

We claim that it suffices to prove that with positive probability none of the events AI
and BM,R holds. Indeed, this implies that there exists an n-vertex digraph ~G that does
not satisfy any of these events. Since the AI ’s are not satisfied it immediately follows that
the complement G of the (undirected) graph G associated with ~G is H-free. We further
claim that minrkF(G) > k. To see this, assume by contradiction that there exists a matrix
M ∈ Fn×n of rank at most k that represents G, and thus, in particular, represents ~G. By
Lemma 9, such an M has a principal n′ × n′ sub-matrix M ′ ∈ M(s′)

n,k for some n′ and s′.
Hence, for some n′-subset R of [n], the matrixM ′ represents ~G[R] with respect to the natural
order of the vertices in R, in contradiction to the fact that the event BM ′,R with (M ′, R) ∈ P
does not hold.

To prove that with positive probability none of the events AI and BM,R holds, we apply
the Lovász Local Lemma (Lemma 6). To this end, construct a (symmetric) dependency
digraph D = (V,E) whose vertices represent all the events AI and BM,R, and whose edges
are defined as follows.

APPROX/RANDOM 2018



42:8 On Minrank and Forbidden Subgraphs

An AI -vertex and an AI′-vertex are joined by edges (in both directions) if |I ∩ I ′| ≥ 2.
Notice that the events AI and AI′ are independent when |I ∩ I ′| < 2.
An AI -vertex and a BM,R-vertex are joined by edges if there are distinct i, j ∈ I ∩ R
for which the entry of M that corresponds to the edge (i, j) is nonzero. Notice that the
events AI and BM,R are independent when such i and j do not exist.
Every two distinct BM,R-vertices are joined by edges.

Clearly, each event is mutually independent of all other events besides those adjacent to it
in D, and thus D is a dependency digraph for our events. Observe that every AI -vertex is
adjacent to at most

(
h
2
)
·
(
n
h−2
)
≤
(
h
2
)
· nh−2 AI′-vertices. Additionally, every BM,R-vertex,

where M is an n′×n′ matrix of sparsity s′, is adjacent to at most (s′−n′) ·
(
n
h−2
)
< s′ ·nh−2

AI -vertices. Finally, every vertex of D is adjacent to at most Ns′ BM,R-vertices with
M ∈M(s′)

n,k (that is, s(M) = s′).
To apply Lemma 6 we assign a number in [0, 1) to each vertex of D. Define

q = c2 · n−γ , x = c3 · n−γ·f , and xs′ = exp(−c4 · s′ · n−γ) for every s′ ∈ S,

where c2, c3, c4 > 0 are constants, depending only on H, to be determined. We assign the
number x to every AI -vertex, and the number xs′ to every BM,R-vertex with s(M) = s′. We
present now the conditions of Lemma 6. For every AI -vertex, recalling that Pr [AI ] ≤ h!·(2q)f ,
we require

h! · (2q)f ≤ x · (1− x)(
h
2)·nh−2

·
∏
s′∈S

(1− xs′)Ns′ . (6)

Similarly, for every BM,R-vertex with s(M) = s′, recalling that Pr [BM,R] ≤ exp(−qs′/2),
we require

exp(−qs′/2) ≤ xs′ · (1− x)s
′·nh−2

·
∏
s′∈S

(1− xs′)Ns′ . (7)

To complete the proof, it suffices to show that the constants c1, c2, c3, c4 > 0 can be
chosen in a way that satisfies the inequalities (6) and (7). Consider the following three
constraints:
1. c2 > 2 · (2c3 + c4),
2. c3 ≥ h! · (2c2)f · exp(3), and
3. c4 ≥ 32 · c1.
It is easy to see that it is possible to choose the constants under the above constraints.
Indeed, by f ≥ 3, for a sufficiently small choice of c2 > 0 one can take c3 with, say, an
equality in Item 2 so that some c4 > 0 satisfies Item 1. Then, c1 can be chosen as a positive
constant satisfying Item 3. We show now that such a choice satisfies (6) and (7) for every
sufficiently large n. Note that we use below several times the inequality 1− α ≥ exp(−2α),
which holds for any α ∈ [0, 1/2].

First, use (4) and the condition c4 ≥ 32 · c1 to obtain that∑
s′∈S

xs′ ·Ns′ ≤
∑
s′∈S

exp((24c1 − c4) · s′ · n−γ)

≤
∑
s′∈S

exp(−8c1 · s′ · n−γ) ≤
∑
s′∈S

exp(−2 lnn) ≤ 1,

where the third inequality follows by s′ ≥ nγ ·ln(n·|F|)
4c1

which we get from (5), and the fourth
by |S| ≤ n2. Considering the term

∏
s′∈S (1− xs′)Ns′ , which appears in both (6) and (7),
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we derive that∏
s′∈S

(1− xs′)Ns′ ≥
∏
s′∈S

exp(−2xs′ ·Ns′) = exp
(
− 2 ·

∑
s′∈S

xs′ ·Ns′
)
≥ exp(−2).

For inequality (6), observe that

x · (1− x)(
h
2)·nh−2

·
∏
s′∈S

(1− xs′)Ns′ ≥ x · exp
(
− 2x ·

(
h

2

)
· nh−2

)
· exp(−2)

= c3 · n−γ·f · exp
(
− 2c3 · n−γ·f ·

(
h

2

)
· nh−2 − 2

)
≥ h! · (2c2)f · n−γ·f · exp

(
1− 2c3 ·

(
h

2

)
· n−γ

)
≥ h! · (2q)f ,

where for the second inequality we use c3 ≥ h! · (2c2)f · exp(3) and γ = h−2
f−1 , and for the

third we use the assumption that n is sufficiently large. For inequality (7), observe that

xs′ · (1 − x)s
′·nh−2

·
∏
s′∈S

(1 − xs′)Ns′ ≥ xs′ · exp(−2x · s′ · nh−2) · exp(−2)

= exp(−c4 · s′ · n−γ) · exp(−2c3 · n−γ·f · s′ · nh−2) · exp(−2)
= exp(−(2c3 + c4) · s′ · n−γ − 2)
≥ exp(−(c2/2) · s′ · n−γ)
= exp(−qs′/2),

where for the second equality we again use the definition of γ, and for the second inequality
we use the condition c2 > 2 · (2c3 + c4), the fact that s′ · n−γ = ω(1) by (5), and the
assumption that n is sufficiently large. This completes the proof. J

We can derive now Theorem 2. Recall that γ0(H) = minH′ γ(H ′), where the minimum is
over all subgraphs H ′ of H with at least 3 edges.

Proof of Theorem 2. For a graph H with h ≥ 3 vertices and f ≥ 3 edges, let H ′ be a
subgraph of H with at least 3 edges such that γ0(H) = γ(H ′). By Theorem 11 there exists
c > 0 such that

g(n,H ′,F) ≥ c · n
1−γ0(H)

log(n · |F|)

for every integer n and a finite field F. Since every H ′-free graph is also H-free, it follows
that g(n,H,F) ≥ g(n,H ′,F) and we are done. J

3.4 The Minrank of Graphs with Small Independence Number
For an integer t ≥ 3, g(n,Kt,F) is the maximum possible minrank over F of an n-vertex
graph with independence number smaller than t. For this case we derive the following
corollary.

I Corollary 12. For every t ≥ 3 there exists c = c(t) > 0 such that for every integer n and a
finite field F,

g(n,Kt,F) ≥ c · n1− 2
t+1

log(n · |F|) .

APPROX/RANDOM 2018
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Proof. Apply Theorem 2 to the graph H = Kt, and notice that γ0(Kt) = γ(Kt) = t−2
(t2)−1

=
2
t+1 . J

For H = K3, we observe that our lower bound on g(n,K3,F) is nearly tight.

I Proposition 13. There exist constants c1, c2 > 0 such that for every integer n and a finite
field F,

c1 ·
√
n

log(n · |F|) ≤ g(n,K3,F) ≤ c2 ·
√

n

logn.

Proof. For the lower bound apply Corollary 12 with t = 3. To prove the upper bound we
need a result of Ajtai et al. [1] which says that every triangle-free n-vertex graph has an
independent set of size Ω(

√
n · logn). By repeatedly omitting such independent sets it follows

that the chromatic number of such a graph is O(
√
n/ logn). Now, let G be an n-vertex

graph whose complement G is triangle-free. We get that minrkF(G) ≤ χ(G) ≤ O(
√
n/ logn),

as required. J

4 Non-bipartite Graphs

In this section we show that for every non-bipartite graph H there are H-free graphs with
low minrank over R, confirming Theorem 3. We start with the case where H is an odd cycle,
and since every non-bipartite graph contains an odd cycle the general result follows easily.
The proof is by an explicit construction from the following family of graphs.

I Definition 14. For integers m ≤ s ≤ d, the graph K<(d, s,m) is defined as follows: the
vertices are all the s-subsets of [d], and two distinct sets A,B are adjacent if |A ∩B| < m.

The minrank of such graphs over finite fields was recently studied in [18] using tools
from [4]. The proof technique of [18] can be used for the real field as well, as shown below.

I Proposition 15. For every integers m ≤ s ≤ d,

minrkR(K<(d, s,m)) ≤
s−m∑
i=0

(
d

i

)
.

Proof. Let f : {0, 1}d × {0, 1}d → R be the function defined by

f(x, y) =
s−1∏
j=m

( d∑
i=1

xiyi − j
)

for every x, y ∈ {0, 1}d. Expanding f as a linear combination of monomials, the relation
z2 = z for z ∈ {0, 1} implies that one can reduce to 1 the exponent of each variable occuring
in a monomial. It follows that f can be represented as a multilinear polynomial in the 2d
variables of x and y. By combining terms involving the same monomial in the variables of x,
one can write f as

f(x, y) =
R∑
i=1

gi(x)hi(y)

for an integer R and functions gi, hi : {0, 1}d → R, i ∈ [R], such that the gi’s are distinct
multilinear monomials of total degree at most s −m in d variables. It follows that R ≤∑s−m
i=0

(
d
i

)
.
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Now, let M1 and M2 be the 2d × R matrices whose rows are indexed by {0, 1}d and
whose columns are indexed by [R], defined by (M1)x,i = gi(x) and (M2)x,i = hi(x). Then,
the matrix M = M1 ·MT

2 has rank at most R and for every x, y ∈ {0, 1}d it holds that
Mx,y = f(x, y).

Finally, let V be the vertex set of K<(d, s,m), that is, the collection of all s-subsets of
[d], and identify every vertex A ∈ V with an indicator vector cA ∈ {0, 1}d in the natural way.
We claim that the matrix M restricted to V × V represents the graph K<(d, s,m). Indeed,
for every A,B ∈ V we have

McA,cB = f(cA, cB) =
s−1∏
j=m

(
|A ∩B| − j

)
.

Hence, for every A ∈ V we have |A| = s and thus McA,cA 6= 0, whereas for every distinct
non-adjacent A,B ∈ V we have m ≤ |A ∩ B| ≤ s − 1 and thus McA,cB = 0. Since the
restriction of M to V × V has rank at most R it follows that minrkR(K<(d, s,m)) ≤ R, and
we are done. J

We turn to identify graphs K<(d, s,m) with no short odd cycles. For this purpose, take
an even integer d, s = d

2 , and m = ε ·d for a small constant ε > 0. Every path in these graphs
is a sequence of d2 -subsets of [d] such that the intersection size of every two consecutive sets
is small. This implies, for a sufficiently small ε, that the sets in the even positions of the
path are almost disjoint from the first set, whereas the sets in the odd positions of the path
share with it many elements, hence such a graph contains no short odd cycle. This is shown
formally in the following lemma.

I Lemma 16. Let ` ≥ 3 be an odd integer. For every even integer d and an integer m ≤ d
2` ,

the graph K<(d, d2 ,m) contains no odd cycle of length at most `.

Proof. Fix an odd integer ` ≥ 3, an even integer d, and an integer m ≤ d
2` . We prove that

for every odd integer `′, such that 3 ≤ `′ ≤ `, the graph K<(d, d2 ,m) contains no cycle of
length `′. For such an `′, let A1, A2, . . . , A`′ be a sequence of `′ vertices in the graph, i.e.,
d
2 -subsets of [d]. Assuming that for every i ≤ `′ − 1 the vertices Ai and Ai+1 are adjacent in
the graph, that is, |Ai ∩Ai+1| < m, our goal is to show that A1 and A`′ are not.

To this end, we argue that for every i, such that 0 ≤ i ≤ `′−1
2 , we have

|A1 ∩A2i+1| ≥
d

2 − 2i ·m. (8)

We prove this claim by induction on i. The case i = 0 follows immediately from |A1| = d
2 .

Assume that (8) holds for i− 1, that is, |A1 ∩A2i−1| ≥ d
2 − (2i− 2) ·m. Observe that this

implies that

|A1 ∩A2i| = |A1 ∩A2i ∩A2i−1|+ |A1 ∩A2i ∩A2i−1|
≤ |A2i−1 ∩A2i|+ |A1 ∩A2i−1|
≤ m+ |A1| − |A1 ∩A2i−1|

≤ m+ d

2 −
(d

2 − (2i− 2) ·m
)

= (2i− 1) ·m,

where in the second inequality we have used |A2i−1 ∩A2i| < m. We proceed by proving (8)

APPROX/RANDOM 2018
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for i. Observe that

|A1 ∩A2i+1| = |A2i+1| − |A1 ∩A2i+1|
= |A2i+1| − |A1 ∩A2i+1 ∩A2i| − |A1 ∩A2i+1 ∩A2i|

≥ d

2 −m− |A1 ∩A2i|,

where we have used |A2i ∩A2i+1| < m. Notice that

|A1 ∩A2i| = d− |A1 ∪A2i| = d− (|A1|+ |A2i| − |A1 ∩A2i|) = |A1 ∩A2i|.

It follows that

|A1 ∩A2i+1| ≥
d

2 −m− |A1 ∩A2i| ≥
d

2 −m− (2i− 1) ·m = d

2 − 2i ·m,

completing the proof of (8).
Finally, applying (8) to i = `′−1

2 , using the assumption m ≤ d
2` , we get that

|A1 ∩A`′ | ≥
d

2 − (`′ − 1) ·m = d

2 − `
′ ·m+m ≥ d

2 − ` ·m+m ≥ m,

hence A1 and A`′ are not adjacent in the graph K<(d, d2 ,m). It thus follows that the graph
contains no cycle of length `′, as desired. J

Equipped with Proposition 15 and Lemma 16, we obtain the following.

I Theorem 17. For every odd integer ` ≥ 3 there exists δ = δ(`) > 0 such that for every
sufficiently large integer n, there exists an n-vertex graph G with no odd cycle of length at
most ` such that

minrkR(G) ≤ n1−δ.

Proof. Fix an odd integer ` ≥ 3. For an integer d divisible by 2`, consider the graph
G = K<(d, d2 ,m) where m = d

2` . By Lemma 16, G contains no odd cycle of length at most `.
As for the minrank, Proposition 15 implies that

minrkR(G) ≤
d/2−m∑
i=0

(
d

i

)
≤ 2H( 1

2−
m
d )·d = 2H( 1

2−
1

2` )·d,

where H stands for the binary entropy function. Since G has |V | =
(
d
d/2
)

= 2(1−o(1))·d

vertices, for any δ > 0 such that H( 1
2 −

1
2` ) < 1− δ we have minrkR(G) ≤ |V |1−δ for every

sufficiently large integer d. The proof is completed by considering, for every sufficiently large
integer n, some n-vertex subgraph of the graph defined above, where d is the smallest integer
divisible by 2` such that n ≤

(
d
d/2
)
. J

Now, Theorem 3 follows easily from Theorem 17.

Proof of Theorem 3. Let H be a non-bipartite graph. Then, for some odd integer ` ≥ 3, the
cycle C` is a subgraph of H. By Theorem 17, there exists δ > 0 such that for every sufficiently
large integer n, there exists an n-vertex C`-free graph G satisfying minrkR(G) ≤ n1−δ. Since
every C`-free graph is also H-free, the result follows. J
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I Remark. As mentioned in the introduction, Theorem 3 implies a lower bound on g(n,H,R)
for every non-bipartite graph H (see Corollary 4). We note that upper bounds on certain
Ramsey numbers can be used to derive upper bounds on g(n,H,F) for a general field F.
For example, it was shown in [12] that for every ` ≥ 3, every n-vertex C`-free graph has
an independent set of size Ω(n1−1/k) for k = d `2e (see [9, 30] for slight improvements). By
repeatedly omitting such independent sets it follows that the chromatic number of such a
graph is O(n1/k). This implies that every n-vertex graph G whose complement is C`-free
satisfies minrkF(G) ≤ χ(G) ≤ O(n1/k), hence g(n,C`,F) ≤ O(n1/k).
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