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Abstract
We study high order random walks on high dimensional expanders on simplicial complexes (i.e.,
hypergraphs). These walks walk from a k-face (i.e., a k-hyperedge) to a k-face if they are both
contained in a k+1-face (i.e, a k+1 hyperedge). This naturally generalizes the random walks on
graphs that walk from a vertex (0-face) to a vertex if they are both contained in an edge (1-face).

Recent works have studied the spectrum of high order walks operators and deduced fast
mixing. However, the spectral gap of high order walks operators is inherently small, due to
natural obstructions (called coboundaries) that do not happen for walks on expander graphs.

In this work we go beyond spectral gap, and relate the expansion of a function on k-faces
(called k-cochain, for k = 0, this is a function on vertices) to its structure.

We show a Decomposition Theorem: For every k-cochain defined on high dimensional ex-
pander, there exists a decomposition of the cochain into i-cochains such that the square norm
of the k-cochain is a sum of the square norms of the i-chains and such that the more weight the
k-cochain has on higher levels of the decomposition the better is its expansion, or equivalently,
the better is its shrinkage by the high order random walk operator.

The following corollaries are implied by the Decomposition Theorem:
We characterize highly expanding k-cochains as those whose mass is concentrated on the
highest levels of the decomposition that we construct. For example, a function on edges (i.e.
a 1-cochain) which is locally thin (i.e. it contains few edges through every vertex) is highly
expanding, while a function on edges that contains all edges through a single vertex is not
highly expanding.
We get optimal mixing for high order random walks on Ramanujan complexes. Ramanu-
jan complexes are recently discovered bounded degree high dimensional expanders. The
optimality in their mixing that we prove here, enable us to get from them more efficient
Two-Layer-Samplers than those presented by the previous work of Dinur and Kaufman.
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1 Introduction

In this work we study high order random walks on bounded degree simplicial complexes
(i.e., hypergraphs). These walks walk from a k-face (i.e., a k-hyperedge) to a k-face if they
are both contained in a (k + 1)-face (i.e, a k + 1 hyperedge). This naturally generalizes
the random walks on graphs that walk from a vertex (0-face) to a vertex if they are both
contained in an edge (1-face). Roughly speaking, we are interested in walks that converge
fast to a uniform distribution on the k-faces. For obtaining such fast convergence, a necessary
condition is that the k-faces are connected. Namely, every pair of k-faces is connected by
a path that is composed of (k + 1)-faces (e.g., in graph every pair of vertices is connected
by a path composed of edges). This high order connectivity is a necessary condition for the
high order walk to converge. High order connectivity is hard to achieve in bounded degree
complexes (or hypergraphs). For example, a random bounded degree simplicial complex
(i.e., a complex chosen with uniform distribution from the set of all complexes with the
same number of vertices and the same bound on the degree) does not have the high order
connectivity property. In fact, there are only few currently known bounded degree complexes
which do have this high order connectivity property. However, high order connectivity only
ensures the convergence of high order random walk to a uniform distribution. For fast
convergence, we need to require some form of high dimensional expansion. It turns out, that
fast mixing of its high order random walk on a simplicial complex can be deduced its links
structure. Links are local neighborhoods of faces in the complex (e.g. local neighborhoods
of vertices, edges etc). A conclusion of this work, as well as previous works on high order
random walks, is that requiring that ALL links (i.e. the local neighborhoods) are expanding
implies fast mixing of high order random walks (we will discuss links and their expanding
properties in detail momentarily). As said, random bounded degree complexes are not even
connected, let alone their links are not good expanders.

In this paper we study high order random walks of simplicial complexes whose links are
expanding (we call them local spectral expanders). High order random walks are strongly
related to PCP agreement tests; direct product testing and direct sum testing [3]. This
relation influenced, in part, the study of high order random walks.

The focus of previous works [8, 3] was to bound the second largest eigenvalue (in an
absolute value) of the high order walk operator in complexes whose links are good spectral
expanders. Namely, previous works have shown that in complexes with links that are good
spectral expanders, every k-cochain that is orthogonal to the constant functions is shrinked by
the k-order random walk operator M+

k . I.e., by the walk that walk from a k-face to a k-face
through (k+ 1)-face. The shrinkage rate is immediately determined by the second eigenvalue
of the walk operator. However, there are natural obstructions (such as coboundaries) that
prevents very large spectral gap of the walk operator.

It could well be the case that k-cochains with some specific structures are shrinked much
better (or equivalently expand much better) than the bound obtained by spectral gap. This
is similar in spirit to the small set expansion question in, say, the noisy hypercube [2], where
the noisy hypercube is not a good expander so we can not say that general sets expand
well; However, methods beyond spectral gap enabled showing that small sets of the noisy
hypercube expand very well; this is similar to our goal here.

The focus of this work is to relate the structure of a k-cochain φ to its expansion,
or equivalently, to the amount of its shrinkage by the random walk operator M+

k , in
complexes that are local spectral expanders. We provide a decomposition theorem that
relates the amount of shrinkage of a k-cochain to the structure of the i-cochains to which it
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decomposes 0 ≤ i ≤ k. Specifically, we decompose φ into i-cochains, 0 ≤ i ≤ k, such that
||φ||2 =

∑k
i=1 ||φi||2 and show that the more weight φ has on the top levels the better is its

shrinkage by the k-order random walk operator.

In particular, we derive the following conclusions from our decomposition theorem:
We characterize k-cochains which do not expand a lot as those whose mass is concentrated
on the lower levels of the decomposition that we construct. In particular, we show that
"locally thin" binary cochains shrink dramatically by the high order random walk operator
on a local spectral high dimensional expander. A binary k-cochain is “locally thin” if the
degree of the cochain in each (k − 1)-face is small. For example, a function on edges (i.e.
a 1-cochain) which contains few edges through every vertex is locally thin, and hence
highly expanding, while a function on edges that contains all edges through a single
vertex is not highly expanding.
We derive an optimal bound on the second eigenvalue (in an absolute value) of the high
order random walk operator M+

k of complexes whose links are good one sided spectral
expanders. Recent work of [3] have shown optimal bound on the second eigenvalue (in an
absolute value) of M+

k for complexes whose links are good two sided spectral expanders.
Thus, we get optimal bound on high order walks on Ramanujan complexes [9] which are
one-sided local-spectral expanders, but NOT two sided spectral expanders. Ramanujan
complexes are one of the few currently known examples of bounded degree complexes
which are one-sided local-spectral expanders.
Since the links of the well studies Ramanujan complexes are one-sided spectral expanders
(but NOT two sided spectral expanders), the result of [3] does not apply to the Ramanujan
complexes but only for complexes obtained from Ramanujan complexes (e.g. a k-skeleton
of k2 Ramanujan complex). Our result is the first result obtaining optimal bounds of
the spectrum of high order random walks on the Ramanujan complexes themselves. The
optimality in the mixing of the Ramanujan complexes that we prove here, enable us to
get from them more efficient Two-Layer-Samplers than those presented by [3]. In
the following we discuss the notion of two layers sampler (that was introduced by [3]),
and discuss the more efficient two-layers-samplers that we get in this work.

1.1 More efficient Two-Layer-Samplers implied by this work
The work of [3] that studied agreement expansion and agreement tests introduced to following
generalization of a sampler that is called a two-layer-sampler

I Definition 1. An infinite family of tripartite incidence graphs {G(L ∪R ∪W,E1 ∪E2)}l
is called a family of two-layer-samplers if there are constants 1 ≤ k ≤ n, γ > 0 such that the
following conditions hold:

L = [l], R ⊆
([l]
k

)
, W ⊆

([l]
n

)
such that there is an edge between r ∈ R and x ∈ L if x ⊂ r

and such that there is an edge between w ∈W and r ∈ R if r ⊂ w.
|R|+ |W | = O(l) where the constants depend only on k, n, γ.
G has the following double expansion property:

(λ(G(L,R)))2 ≤ 1
k

+ γ and (λ(G(R,W )))2 ≤ k

n
+ γ,

where G(L,R), G(R,W ) are the respective bipartite graphs and λ is the second largest
normalized singular value of the appropriate transition matrix.

APPROX/RANDOM 2018
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The work of [3] has shown that a family of two-layer-samplers as above with sets of size
1, k, n could be derived from the 0,k − 1,n− 1 faces of a simplicial complexes in which the
n− 1-order random walk has optimal mixing. For obtaining complexes with such optimal
mixing of (n − 1)-order walks [3] used the Ramanujan complexes of dimension (n − 1)2.
Thus, the 1, k, n-sets that appear in the two-layer samplers that they construct correspond
to 0,k − 1,n − 1 faces in a Ramanujan complexes of dimension (n − 1)2. Our result here
implies optimal mixing of (n− 1)-random walks in Ramanujan complexes of dimension n− 1
themselves (i.e., we do not need to take Ramanujan complexes of dimension (n− 1)2 in order
to argue about optimality of d− 1-random walks.). Thus, we get a two-layer sampler whose
1, k, n sets correspond to 0,k − 1,n− 1 faces in a Ramanujan complex of dimension (n− 1)
(and not dim (n− 1)2). The fact that we use Ramanujan complexes of smaller dimension
implies that our sampler uses sets L,R,W which are smaller than those obtained by [3] and
hence our two-layer-samplers are more efficient.

1.2 On simplicial complexes and localization
A pure n-dimensional simplicial complex X is a simplicial complex in which every simplex
is contained in an n-dimensional simplex. In other words, it is an (n + 1)-hypergraph
with a closure property: for every hyperedge in the hypergraph, all of its subsets are also
hyperedges in the hypergraph. The sets with i + 1 elements are denoted X(i), 0 ≤ i ≤ n.
The one-skeleton of the complex X is its underlying graph obtained by X(0) ∪ X(1). A
set τ ∈ X(i) is called a face. The link of τ denoted Xτ is the complex obtained by taking
all faces in X that contain τ and removing τ from them. Thus, if τ is of dimension i (i.e.
τ ∈ X(i) ) then Xτ is of dimension n− i− 1.

For every −1 ≤ i ≤ n− 2, the one skeleton of Xτ is a graph. Its second largest eigenvalue
is µτ ; its smallest eigenvalue is ντ .

I Definition 2 (One sided local spectral expander). A pure n-dimensional complex X is a
one-sided λ-local-spectral expander if for every −1 ≤ i ≤ n − 2, and for every τ ∈ X(i),
µτ ≤ λ.

I Definition 3 (Two sided local spectral expander). A pure n-dimensional complex X is a
two-sided λ-local-spectral expander if for every −1 ≤ i ≤ n − 2, and for every τ ∈ X(i),
−λ ≤ ντ and µτ ≤ λ.

1.3 A decomposition theorem for high order random walks and its
implications

We study the random walk operators: M+
k , corresponding to the walk from a k-face to a

k-face through k + 1 face. (For exact definition see Section 2). We normalize the operator so
that the largest eigenvalue is 1.

In this paper we show the following decomposition theorem that for one-sided λ-local-
spectral expanders:

I Theorem 4 (decomposition Theorem, informal, for formal see Theorem 18). Given a pure n-
dimensional one-sided λ-local-spectral expander X. For a k-cochain φ (k ≤ n− 1) orthogonal
to the constant functions there exist i-cochains φi for every 0 ≤ i ≤ k such that ||φ||2 =∑k

i=0 ||φi||2 such that

〈M+
k φ, φ〉 ≤

k∑
i=0

k + 1− i
k + 2 ||φi||2 + (k + 1)λ||φ||2.
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As a corollary of the decomposition theorem we derive optimal bounds on the second
largest eigenvalue (in an absolute value) of M+

k for X which is one-sided λ-local-spectral
expander. This result is stronger than [3] that applies only for two-sided λ-local-spectral
expander.

I Theorem 5 (Bounding the second eigenvalue of the k-walk Theorem, informal, for formal
see Theorem 20). Given a pure n-dimensional one-sided λ-local-spectral expander X. For a
k-cochain φ (k ≤ n− 1) orthogonal to the constant functions:

‖M+
k φ‖ ≤

(
(1− 1

k + 2) + (k + 1)λ
)
||φ||.

This result improves on previous results: in [8] a similar result is given, but the bound on
‖M+

k φ‖ is less tight (the bound is ((1− 1
(k+2)2 ) +O((k+ 1)λ)||φ||). In [3], a similar bound is

given, but under the stronger assumption that X is a two-sided λ-local-spectral expander.
The seemingly mild improvement that [3] achieves over [8] is crucial for their application.
However, as the Ramanujan complexes are only one-sided λ-local-spectral expanders, the
result of [3] does not apply to the Ramanujan complexes themselves but only to other
complexes that could be built based on them.

All of the results discussed before are proven with respect to the lazy random walk
operator M+

k . The operator is called lazy since when the walk is located on a certain k-face
is has non-zero probability that the next step will stay on the same k-face and will not move.
Similarly one can define a a non-lazy random walk operator (see Definition 8). We show that
for complexes that are two-sided λ-local-spectral expanders, similar results that we obtained
for the lazy ransom walks could be obtained also for the non-lazy random walk.

1.4 On small set expansion phenomenon, the Grassmann complex and
our work

As we have explained above, we study the amount of shrinkage of a k-cochain by the random
walk operator M+

k . Our motivation is to go beyond spectral gap and to related the shrinkage
of a k-cochain by the operator, to its structure. Similar questions are asked in the study
of small set expansion in the noisy hypercube [2]. Recently it was shown that studying
the structure of non expanding k-cochains of the Grassmann complex is strongly related to
the "2-to-1 games Conjecture" [4, 5], which is a weaker form of the famous Unique Game
Conjecture. Our work here, is of the same flavor. However, instead of working with a
specific complex (e.g the Grassmann) we work with simplicial complexes, whose links are
good spectral expanders. We characterise non expanding k-cochains as those whose mass is
concentrated on the lower levels of the decomposition that we construct.

2 Definitions and notations

Let X be a pure n-dimensional finite simplicial complex. For −1 ≤ k ≤ n, we denote X(k)
to be the set of all k-simplices in X (X(−1) = {∅}). A weight function m on X is a function:
m :

⋃
−1≤k≤nX(k) → R+, such that for every −1 ≤ k ≤ n− 1 and for every τ ∈ X(k) we

have that m(τ) =
∑
σ∈X(k+1) m(σ). By this definition, it is clear the m is determined by

the values in takes in X(n). A simplicial complex with a weight function will be called a
weighted simplcial complex. For a pure n-dimensional simplicial complex there is a natural
weight function mh which we call the homogeneous weight function (since it give the value 1

APPROX/RANDOM 2018
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to each n-dimensional simplex) defined as follows:

∀τ ∈ X(k),mh(τ) = (n− k)!|{η ∈ X(n) : τ ⊆ η}|.

We leave it for the reader to verify that mh is indeed a weight function.
Throughout this article, X is a pure n-dimensional finite weighted simplicial complex

with a weight function m.
For −1 ≤ k ≤ n − 1, we denote Ck(X,R) to be the set of all functions φ : X(k) → R.

Abusing the terminology, we will call the space Ck(X,R) the space of non-oriented cochains.
On Ck(X,R) define the following inner-product:

∀φ, ψ ∈ Ck(X,R), 〈φ, ψ〉 =
∑

σ∈X(k)

m(σ)φ(σ)ψ(σ).

Denote by ‖.‖ the norm induced by this inner-product.

3 Upper and lower random walks

Let X be a pure n-dimensional finite weighted simplicial complex with a weight function m.
We will define the following random walks on simplices of X:

I Definition 6. For 0 ≤ k ≤ n− 1, the upper random walk on k-simplices is defined by the
transition probability matrix M+

k : X(k)×X(k)→ R:

M+
k (τ, τ ′) =


1
k+2 τ = τ ′

m(τ∪τ ′)
(k+2)m(τ) τ ∪ τ ′ ∈ X(k + 1)
0 otherwise

.

I Definition 7. For 0 ≤ k ≤ n, the lower random walk on k-simplices is defined by the
transition probability matrix M−k : X(k)×X(k)→ R:

M−k (τ, τ ′) =


∑
η∈X(k−1)

m(τ)
(k+1)m(η) τ = τ ′

m(τ ′)
(k+1)m(τ∩τ ′) τ ∩ τ ′ ∈ X(k − 1)
0 otherwise

.

We leave it to the reader to check that those are in fact transition probability matrix, i.e.,
that for every τ ,

∑
τ ′M

±
k (τ, τ ′) = 1. We note that both the random walks defined above are

lazy in the sense that M±(τ, τ) 6= 0. In the case of the upper random walk, one can easily
define a non lazy random walk as follows:

I Definition 8. For 0 ≤ k ≤ n−1, the non-lazy upper random walk on k-simplices is defined
by the transition probability matrix (M ′)+

k : X(k)×X(k)→ R:

(M ′)+
k = k + 2

k + 1

(
M+
k −

1
k + 2I

)
= k + 2
k + 1M

+
k −

1
k + 1I.

It is standard to view M±k , (M ′)
+
k as averaging operators on Ck(X,R) and we will not

make the distinction between the transition probability matrix and the averaging operator it
induces.

It is worth noting thatM−0 and (M ′)+
0 are familiar operators/matrices: M−0 is a projection

on the space of the constant functions (on vertices) with respect to the inner-product defined
above, and (M ′)+

0 is the weighted (normalized) adjacency matrix of the 1-skeleton of X.
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4 The signless differential

I Definition 9. For −1 ≤ k ≤ n−1, the signless k-differential is an operator dk : Ck(X,R)→
Ck+1(X,R) defined as:

∀φ ∈ Ck(X,R),∀σ ∈ X(k + 1), dkφ(σ) =
∑

τ⊂σ,τ∈X(k)

φ(τ).

Define (dk)∗ : Ck+1(X,R) → Ck(X,R) to be the adjoint operator to dk, i.e., the operator
such that for every φ ∈ Ck(X,R), ψ ∈ Ck+1(X,R), 〈dkφ, ψ〉 = 〈φ, (dk)∗ψ〉.

I Remark. We note that the signless differential is not a differential in the usual sense, since
dk+1dk 6= 0. The name signless differential stems from the fact that this is the operator we
will use in lieu of the differential in our setting (note that since our non-oriented cochains
are defined without using orientation of simplices, we cannot use the usual differential).

Below, we will usually omit the index of signless differential and its adjoint and just
denote d, d∗ where k will be implicit.

I Lemma 10. For −1 ≤ k ≤ n− 1, d∗ : Ck+1(X,R)→ Ck(X,R) is the operator

∀ψ ∈ Ck+1(X,R),∀τ ∈ X(k), d∗ψ(τ) =
∑

σ∈X(k+1),τ⊂σ

m(σ)
m(τ)ψ(σ).

Proof. Let φ ∈ Ck(X,R) and ψ ∈ Ck+1(X,R). Then

〈dφ, ψ〉 =
∑

σ∈X(k+1)

m(σ)dφ(σ)ψ(σ) =
∑

σ∈X(k+1)

m(σ)
∑

τ∈X(k),τ⊂σ

φ(τ)ψ(σ) =

∑
τ∈X(k)

φ(τ)
∑

σ∈X(k+1),τ⊂σ

m(σ)ψ(σ) =

∑
τ∈X(k)

m(τ)φ(τ)

 ∑
σ∈X(k+1),τ⊂σ

m(σ)
m(τ)ψ(σ)

 = 〈φ, d∗ψ〉.

J

I Corollary 11. For 0 ≤ k ≤ n − 1 and φ ∈ Ck(X,R), d∗dφ = (k + 2)M+φ and dd∗φ =
(k + 1)M−φ.

Proof. Let φ ∈ Ck(X,R) and τ ∈ X(k), then

d∗dφ(τ) =
∑

σ∈X(k+1),τ⊂σ

m(σ)
m(τ)dφ(σ) =

∑
σ∈X(k+1),τ⊂σ

m(σ)
m(τ)

∑
τ ′∈X(k),τ ′⊂σ

φ(τ ′) =

∑
σ∈X(k+1),τ⊂σ

m(σ)
m(τ)

∑
τ ′∈X(k),τ ′⊂σ,τ ′ 6=τ

φ(τ ′) +
∑

σ∈X(k+1),τ⊂σ

m(σ)
m(τ)φ(τ).

Note that∑
σ∈X(k+1),τ⊂σ

m(σ)
m(τ)φ(τ) = m(τ)

m(τ)φ(τ) = φ(τ).

APPROX/RANDOM 2018
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Also note that ∑
σ∈X(k+1),τ⊂σ

m(σ)
m(τ)

∑
τ ′∈X(k),τ ′⊂σ,τ ′ 6=τ

φ(τ ′) =

∑
σ∈X(k+1),τ⊂σ

∑
τ ′∈X(k),τ ′⊂σ,τ ′ 6=τ

m(τ ′ ∪ τ)
m(τ) φ(τ ′) =

∑
τ ′∈X(k),τ∪τ ′∈X(k+1)

m(τ ∪ τ ′)
m(τ) φ(τ ′).

Therefore

d∗dφ(τ) = φ(τ) +
∑

τ ′∈X(k),τ∪τ ′∈X(k+1)

m(τ ∪ τ ′)
m(τ) φ(τ ′) = (k + 2)M+φ(τ).

Similarly,

dd∗φ(τ) =
∑

η∈X(k−1),η⊂τ

d∗φ(η) =
∑

η∈X(k−1),η⊂τ

∑
τ ′∈X(k),η⊂τ ′

m(τ ′)
m(η) φ(τ ′) =

∑
η∈X(k−1),η⊂τ

∑
τ ′∈X(k),τ ′ 6=τ,η⊂τ ′

m(τ ′)
m(η) φ(τ ′) +

∑
η∈X(k−1),η⊂τ

m(τ)
m(η)φ(τ) =

∑
η∈X(k−1),η⊂τ

∑
τ ′∈X(k),τ ′∩τ=η

m(τ ′)
m(τ ∩ τ ′)φ(τ ′) +

∑
η∈X(k−1),η⊂τ

m(τ)
m(η)φ(τ) =

∑
τ ′∈X(k),τ∩τ ′∈X(k−1)

m(τ ′)
m(τ ∩ τ ′)φ(τ ′) +

∑
η∈X(k−1),η⊂τ

m(τ)
m(η)φ(τ) = (k + 1)M−φ(τ).

J

5 Links and localization

Let X be a pure n-dimensional finite simplicial complex with a weight function m. Recall
that for −1 ≤ k ≤ n− 1, τ ∈ X(k), the link of τ , denoted Xτ , is a pure (n− k− 1)-simplicial
complex defined as:

η ∈ Xτ (l)⇔ η ∈ X(l) and τ ∪ η ∈ X(k + l + 1).

On Xτ we define the weight function mτ induced by m as

mτ (η) = m(τ ∪ η).

Using this weight function the inner-product and the norm on Cl(Xτ ,R) are defined as above.
The operators M±τ,l, (M ′)

+
τ,l and dτ , d∗τ are also defined on Cl(Xτ ,R) as above.

Given a cochain φ ∈ Cl(X,R) and a simplex τ ∈ X(k) with −1 ≤ k < l, we define the
localization of φ on Xτ , denoted φτ as a cochain φτ ∈ Cl−k−1(Xτ ,R) defined as

φτ (η) = φ(τ ∪ η).

The key observation (which was initially due to Garland [6], but is now considered standard
– see [1], [7]) is that the norm of φ, d∗φ, and dφ can be calculated via their localizations. Also,
the work of the second named author implies that the local spectral information needed to
bound dφ can be deduced from the spectral information of the 1-dimensional links. The
proof are somewhat technical and therefore below we will just state the results and give the
proofs in the appendix.
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I Proposition 12. Let −1 ≤ k < l ≤ n and let φ ∈ Cl(X,R), then(
l + 1
k + 1

)
‖φ‖2 =

∑
τ∈X(k)

‖φτ‖2 and
(

l

k + 1

)
‖d∗φ‖2 =

∑
τ∈X(k)

‖d∗τφτ‖2.

Also, if l < n, then

‖dφ‖2 =
∑

τ∈X(l−1)

(
‖dτφτ‖2 − l

l + 1‖φτ‖
2
)
.

As a result of Proposition 12 we deduce the following:

I Proposition 13. Let −1 ≤ k ≤ n− 1 and let φ ∈ Ck(X,R), then

‖dφ‖2 = ‖d∗φ‖2 + ‖φ‖2 +
∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉.

In light of the above Proposition, we will want to bound the expression∑
τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉,

using spectral information about X. To make this precise, we will recall/define the following.
For 0 ≤ k ≤ n− 1 and τ ∈ X(k − 1), recall that by Corollary 11, (M ′)+

τ,0 = d∗τdτ − I and
therefore the eigenvalues of (M ′)+

τ,0 are real. Denote µτ to be the second largest eigenvalue
of (M ′)+

τ,0 and ντ to be the smallest eigenvalue of (M ′)+
τ,0. Note that if 1-skeleton of Xτ is

connected, then for every eigenfunction ψ ∈ C0(Xτ ,R), if ψ ⊥ ImM−τ,0, then (M ′)+
τ,0ψ = µψ

with ντ ≤ µ ≤ µτ < 1. Denote

µk = max
τ∈X(k−1)

µτ , νk = min
τ∈X(k−1)

ντ .

I Lemma 14. For every 0 ≤ k ≤ n− 1 and every φ ∈ Ck(X,R) we have that∑
τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 ≤ (k + 1)µk‖φ‖2,

and ∑
τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 ≥ (k + 1)νk‖φ‖2

We recall the following definition from the introduction:

I Definition 15 (Local spectral expander). A n-dimensional complex X is a one-sided λ-
local-spectral expander if for every 0 ≤ k ≤ n− 1, µk ≤ λ. A n-dimensional complex X is a
two-sided λ-local-spectral expander if for every 0 ≤ k ≤ n− 1, −λ ≤ νk and µk ≤ λ.

Therefore for one-sided λ-local-spectral expanders, λ can be used to bound∑
τ∈X(k−1)〈(M ′)

+
τ,0(I −M−τ,0)φτ , φτ 〉 from above (and from below in the case of two-sided

λ-local-spectral expanders).
We recall the following result appearing in [11][Lemma 5.1] (see also [10][Proposition

3.7]):

I Lemma 16. Let X be a weighted pure n-dimensional simplicial complex, such that all the
links of X of dimension ≥ 1 (including X itself) are connected, then for every 0 ≤ k ≤ n− 2,

µk ≤
µk+1

1− µk+1
and νk ≥

νk+1

1− νk+1
.
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6 Decomposition theorem for upper random walks

For every 0 ≤ k ≤ n− 1, we denote Ck0 (X,R) to be

Ck0 (X,R) = {φ ∈ Ck(X,R) :
∑

σ∈X(k)

m(σ)φ(σ) = 0}.

Let 1k to be the constant 1 function in Ck(X,R), then by definition for every φ ∈ Ck0 (X,R), we
have that 〈φ,1k〉 =

∑
σ∈X(k) m(σ)φ(σ) = 0, and one can see that Ck(X,R) has the orthogonal

decomposition Ck(X,R) = span{1k} ⊕ Ck0 (X,R). It is easy to see that M±k 1k = 1k and
since, by Corollary 11, M+

k ,M
−
k are self-adjoint operators, is follows that M±k (Ck0 (X,R)) ⊆

Ck0 (X,R).

I Lemma 17. For 0 ≤ k ≤ n− 1, ker((dk−1)∗) ⊆ Ck0 (X,R) and

∀ψ ∈ Ck−1(X,R), dk−1ψ ∈ Ck0 (X,R)⇒ ψ ∈ Ck−1
0 (X,R).

Proof. We note that by definition dk−11k−1 = (k + 1)1k, and, by Lemma 10, (dk−1)∗1k =
1k−1. Therefore for every φ ∈ ker((dk−1)∗), we have that

0 = 〈(dk−1)∗φ,1k−1〉 = 〈φ, (dk−1)1k−1〉 = (k + 1)〈φ, (dk−1)1k〉 ⇒ φ ∈ Ck0 (X,R).

Also, for every ψ ∈ Ck−1(X,R) such that dk−1ψ ∈ Ck0 (X,R), we have that

0 = 〈dk−1ψ,1k〉 = 〈ψ, (dk−1)∗1k〉 = 〈ψ,1k−1〉 ⇒ ψ ∈ Ck−1
0 (X,R). J

I Theorem 18 (Decomposition Theorem). For every 0 ≤ k ≤ n− 1 and every φ ∈ Ck0 (X,R),
there are φk ∈ Ck0 (X,R), φk−1, (φk−1)′ ∈ Ck−1

0 (X,R), ..., φ0, (φ0)′ ∈ C0
0 (X,R) such that if

we denote (φk)′ = φ, then the following holds:
1. For every 0 ≤ i ≤ k, ‖(φi)′‖2 = ‖φi‖2 + ‖φi−1‖2 + ...+ ‖φ0‖2.

2. ‖dφ‖2 =
∑k
i=0(k + 1− i)‖φi‖2 +

∑k
i=0
∑
τ∈X(i−1)〈(M ′)

+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉.

Proof. We will prove the theorem by induction on k. For k = 0 and φ ∈ C0
0 (X,R), we take

φ0 = φ and check that the theorem holds for this choice.
1. This condition holds trivially.
2. We note that φ ∈ C0

0 (X,R) implies that d∗φ = 0 and therefore this condition follows
from Proposition 13.

Assume next that k > 0 and that the theorem holds for k− 1. For φ ∈ Ck0 (X,R), we first
decompose φ as φ = φk + φ′, where φk ∈ ker((dk−1)∗) and φ′ ∈ (ker(dk−1)∗))⊥. This is an
orthogonal decomposition and therefore ‖φ‖2 = ‖φk‖2 + ‖φ′‖2. Also, by Proposition 13,

‖dkφ‖2 = ‖φ‖2 + ‖(dk−1)∗φ′‖2 +
∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉. (1)

We note that (ker(dk−1)∗))⊥ = Im(dk−1) and therefore, by using Lemma 17, there is
ψ ∈ Ck−1

0 (X,R) such that dk−1ψ = φ′. This yields that there is ψ ∈ Ck−1
0 (X,R), such that

‖dk−1ψ‖2 = ‖φ′‖2 and

‖dφ‖2 = ‖φ‖2 + ‖(dk−1)∗dk−1ψ‖2 +
∑

τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉.

We recall that since (dk−1)∗dk−1 is a self-adjoint operator, with non negative eigenvalues,√
(dk−1)∗dk−1 is the self-adjoint operator, with non negative eigenvalues defined as follows:
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for every eigenfunction ϕ of (dk−1)∗dk−1 with an eigenvalue µ, ϕ is an eigenfunction of√
(dk−1)∗dk−1 with the eigenvalue √µ.
We will take (φk−1)′ =

√
(dk−1)∗dk−1ψ and check that the theorem holds for this choice.

First, we note that, using corollary 11, (dk−1)∗dk−1(Ck−1
0 (X,R)) ⊆ Ck−1

0 (X,R), and
therefore

√
(dk−1)∗dk−1(Ck−1

0 (X,R)) ⊆ Ck−1
0 (X,R), which implies that

(φk−1)′ =
√

(dk−1)∗dk−1ψ ∈ Ck−1
0 (X,R).

Second, we note that

‖dk−1ψ‖2 = 〈(dk−1)∗dk−1ψ,ψ〉 =

〈
√

(dk−1)∗dk−1ψ,
√

(dk−1)∗dk−1ψ〉 = ‖
√

(dk−1)∗dk−1ψ‖2.

Therefore,
√

(dk−1)∗dk−1ψ ∈ Ck−1
0 (X,R) and ‖

√
(dk−1)∗dk−1ψ‖ = ‖φ′‖. This yields that

‖φ‖2 = ‖φk‖2 + ‖(φk−1)′‖2,

and by the induction assumption

‖φ‖2 = ‖φk‖2 + ‖φk−1‖2 + ...+ ‖φ0‖2. (2)

Last, we note that

‖(dk−1)∗φ′‖2 = ‖(dk−1)∗dk−1ψ‖2 = 〈(dk−1)∗dk−1ψ, (dk−1)∗dk−1ψ〉 =

〈(dk−1)∗dk−1
√

(dk−1)∗dk−1ψ,
√

(dk−1)∗dk−1ψ〉 = ‖dk−1
√

(dk−1)∗dk−1ψ‖2 =
‖dk−1(φk−1)′‖2.

Combining this with (1), we get that

‖dφ‖2 = ‖φ‖2 + ‖dk−1(φk−1)′‖2 +
∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉.

By the induction assumption,

‖dk−1(φk−1)′‖2 =
k−1∑
i=0

(k − i)‖φi‖2 +
k−1∑
i=0

∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉.

Therefore

‖dφ‖2 = ‖φ‖2 + ‖dk−1(φk−1)′‖2 +
∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 =

‖φ‖2 +
k−1∑
i=0

(k − i)‖φi‖2 +
k−1∑
i=0

∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉+∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 =

‖φ‖2 +
k−1∑
i=0

(k − i)‖φi‖2 +
k∑
i=0

∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉 =

k∑
i=0

(k + 1− i)‖φi‖2 +
k∑
i=0

∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉,

where the last equality is due to (2). J
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I Corollary 19. Let X be a pure n-dimensional weighted simplicial complex such that all the
links of X of dimension ≥ 1 are connected (including X itself) and let 0 ≤ k ≤ n− 1. Then
for every φ ∈ Ck0 (X,R), there are φk ∈ Ck0 (X,R), φk−1 ∈ Ck−1

0 (X,R), ..., φ0 ∈ C0
0 (X,R),

such that

‖φ‖2 = ‖φk‖2 + ...+ ‖φ0‖2,

and

‖dφ‖2 ≤
k∑
i=0

(k + 1− i+
k∑
j=i

(j + 1)µj)‖φi‖2,

‖dφ‖2 ≥
k∑
i=0

(k + 1− i+
k∑
j=i

(j + 1)νj)‖φi‖2.

Proof. Let φ ∈ Ck0 (X,R) and φk ∈ Ck0 (X,R), φk−1, (φk−1)′ ∈ Ck−1
0 (X,R), ..., φ0, (φ0)′ ∈

C0
0 (X,R) as in the Decomposition Theorem. Then ‖φ‖2 = ‖φk‖2 + ...+ ‖φ0‖2, and we will

prove that ‖dφ‖2 ≤
∑k
i=0(k+1− i+

∑k
j=i(j+1)µj)‖φi‖2, (the proof of the second inequality

is similar and therefore it is left to the reader).
Note that for every 0 ≤ i ≤ k, we have by Lemma 14 that∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉 ≤ (i+ 1)µi‖(φi)′‖2.

Therefore

k∑
i=0

∑
τ∈X(i−1)

〈(M ′)+
τ,0(I −M−τ,0)(φi)′τ , (φi)′τ 〉 ≤

k∑
i=0

(i+ 1)µi
i∑

j=0
‖φj‖2 =

k∑
j=0
‖φj‖2

k∑
i=j

(i+ 1)µi.

Replacing the roles of i and j in the above inequality and combining it with the equation if
the Decomposition Theorem for ‖dφ‖2 yields the needed inequality. J

A consequence of this corollary is the following mixing results for λ local spectral
expanders:

I Theorem 20 (Mixing of the random walks). Let X be a weighted pure n-dimensional
simplicial complex and let 0 ≤ λ ≤ 1 be some constant.
1. If X is a one-sided λ-local spectral expander, then for every 0 ≤ k ≤ n− 1,

∀φ ∈ Ck0 (X,R), ‖M+
k φ‖ ≤

(
k + 1
k + 2 + (k + 1)λ

)
‖φ‖.

2. If X is a two-sided λ-local spectral expander, then for every 0 ≤ k ≤ n− 1,

∀φ ∈ Ck0 (X,R), ‖(M ′)+
k φ‖ ≤

(
k

k + 1 + (k + 1)λ
)
‖φ‖.
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Proof.
1. Let 0 ≤ k ≤ n − 1 and φ ∈ Ck0 (X,R). Assume that X is a one-sided λ-local spectral

expander, then by Corollary 19 we get

‖dφ‖2 ≤
k∑
i=0

(k + 1− i+
k∑
j=i

(j + 1)µj)‖φi‖2 ≤
k∑
i=0

(k + 1 +
k∑
j=0

(k + 1)λ)‖φi‖2 = (3)

k∑
i=0

(k + 1 + (k + 1)2λ)‖φi‖2 = (k + 1 + (k + 1)2λ)‖φ‖2. (4)

Recall that by corollary 11 (dk)∗dk = (k + 2)M+
k and therefore

〈M+
k φ, φ〉 = 1

k + 2‖dφ‖
2 ≤ (k + 1

k + 2 + (k + 1)2

k + 2 λ)‖φ‖2 ≤ (k + 1
k + 2 + (k + 1)λ)‖φ‖2.

M+
k is a positive operator that maps Ck0 (X,R) into itself and therefore, by the above

inequality, any eigenvector of M+
k in Ck0 (X,R) has an eigenvalue ≤ k+1

k+2 + (k + 1)λ so we
are done.

2. Let 0 ≤ k ≤ n − 1 and φ ∈ Ck0 (X,R). Assume that X is a two-sided λ-local spectral
expander. By (3), we have that ‖dφ‖2 − ‖φ‖2 ≤ (k + (k + 1)2λ)‖φ‖2. Also, by Corollary
19, we have that

‖dφ‖2 ≥
k∑
i=0

(k + 1− i+
k∑
j=i

(j + 1)νj)‖φi‖2 ≥
k∑
i=0

(k + 1− k +
k∑
j=0

(k + 1)(−λ))‖φi‖2

≥
k∑
i=0

(1− (k + 1)2λ)‖φi‖2 = (1− (k + 1)2λ)‖φ‖2.

Thus, ‖dφ‖ − ‖φ‖2 ≥ −(k + 1)2λ‖φ‖2. Note that

‖dφ‖ − ‖φ‖2 = 〈((k + 2)Mk
+ − I)φ, φ〉 = (k + 1)〈(M ′)k+φ, φ〉.

Therefore, after dividing by (k + 1) we showed that

−(k + 1)λ‖φ‖2 ≤ 〈(M ′)k+φ, φ〉 ≤ ( k

k + 1 + (k + 1)λ)‖φ‖2.

(M ′)k+ is an operator with real eigenvalues that maps Ck0 (X,R) into itself and therefore,
by the above inequality, any eigenvector of M+

k in Ck0 (X,R) has an eigenvalue between
k
k+1 + (k + 1)λ and −(k + 1)λ so we are done. J

Another result of this flavour is mixing theorem for the non-lazy upper random walk in
which the condition of the two-sided spectral gap is replaced by the the condition of the
one-sided spectral gap and the condition n >> k:

I Theorem 21. Let X be a weighted pure n-dimensional simplicial complex and let 0 ≤ λ ≤ 1
be some constant. If X is a one-sided λ-local spectral expander, then for every 0 ≤ k ≤ n− 1,

∀φ ∈ Ck0 (X,R), ‖(M ′)+
k φ‖ ≤

(
max

{
k

k + 1 + (k + 1)λ, 2(k + 1)
2(n− k − 1)− 1

})
‖φ‖.

Proof. By Lemma 16, for every 0 ≤ i ≤ k, νi ≥ − 1
n−k and by repeating the same argument

as in the proof of the previous theorem completes the proof. J
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A Proofs of localization results

Proof of Proposition 12:

Proof. Let φ ∈ Cl(X,R), then∑
τ∈X(k)

‖φτ‖2 =
∑

τ∈X(k)

∑
η∈X(l−k−1)

τ

mτ (η)φτ (η)2 =

∑
τ∈X(k)

∑
η∈X(l−k−1)

τ

m(τ ∪ η)φ(τ ∪ η)2 =
∑

τ∈X(k)

∑
σ∈X(l),τ⊂σ

m(σ)φ(σ)2 =

∑
σ∈X(l)

∑
τ∈X(k),τ⊂σ

m(σ)φ(σ)2 =
(
l + 1
k + 1

) ∑
σ∈X(l)

m(σ)φ(σ)2 =
(
l + 1
k + 1

)
‖φ‖2.

In order to prove the second equality, we notice that for every τ ∈ X(k) and every η ∈
Xτ (l − k − 2), we have that

(d∗φ)τ (η) = d∗φ(τ ∪ η) =
∑

σ∈X(l),τ∪η⊂σ

m(σ)
m(τ ∪ η)φ(σ) =

∑
σ\τ∈X(l−k−1),η⊂σ\τ

mτ (σ \ τ)
mτ (η) φτ (σ \ τ) = d∗τφτ (η).
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Therefore, (d∗φ)τ = d∗τφτ and by the first equality of this proposition(
l

k + 1

)
‖d∗φ‖2 =

∑
τ∈X(k)

‖(d∗φ)τ‖2 =
∑

τ∈X(k)

‖d∗τφτ‖2.

Assume now that l < n, then for every σ ∈ X(l + 1), the following holds:

(dφ(σ))2 = (
∑

η∈X(l),η⊂σ

φ(η))2 =
∑

η∈X(l),η⊂σ

φ(η)2 +
∑

η,η′∈X(l),η 6=η′,η,η′⊂σ

2φ(η)φ(η′) =

∑
η,η′∈X(l),η 6=η′,η,η′⊂σ

(φ(η) + φ(η′))2 − l
∑

η∈X(l),η⊂σ

φ(η)2 =

∑
τ∈X(l−1),τ⊂σ

(dτφτ (σ \ τ))2 − l
∑

η∈X(l),η⊂σ

φ(η)2.

Therefore

‖dφ‖2 =
∑

σ∈X(l+1)

m(σ)(dφ(σ))2 =

∑
σ∈X(l+1)

m(σ)
∑

τ∈X(l−1),τ⊂σ

(dτφτ (σ \ τ))2 − l
∑

σ∈X(l+1)

m(σ)
∑

η∈X(l),η⊂σ

φ(η)2 =

∑
τ∈X(l−1)

∑
σ∈X(l+1),τ⊂σ

m(σ)(dτφτ (σ \ τ))2 − l
∑

η∈X(l)

φ(η)2
∑

σ∈X(l+1),η⊂σ

m(σ) =

∑
τ∈X(l−1)

∑
γ∈X(1)

τ

mτ (γ)(dτφτ (γ))2 − l
∑

η∈X(l)

m(η)φ(η)2 =
∑

τ∈X(l−1)

‖dτφτ‖2 − l‖φ‖2 =

∑
τ∈X(l−1)

(
‖dτφτ‖2 − l

l + 1‖φτ‖
2
)
,

where the last equality is due to the equality

‖φ‖2 = 1
l + 1

∑
τ∈X(l−1)

‖φτ‖2,

proven above. J

Proof of Proposition 13:

Proof. Let φ ∈ Ck(X,R). Note that for every τ ∈ X(k−1),M−τ,0 is the orthogonal projection
on the space of constant functions in C0(Xτ ,R) and therefore (M ′)+

τ,0M
−
τ,0 = M−τ,0.

Further note that by Corollary 11

‖dτφτ‖2 = 〈2M+
τ,0φτ , φτ 〉 = 〈((M ′)+

τ,0 + I)φτ , φτ 〉 =
〈(M ′)+

τ,0φτ , φτ 〉+ ‖φτ‖2 = 〈(M ′)+
τ,0M

−
τ,0φτ , φτ 〉+ 〈(M ′)+

τ,0(I −M−τ,0)φτ , φτ 〉+ ‖φτ‖2 =
‖M−τ,0φτ‖2 + 〈(M ′)+

τ,0(I −M−τ,0)φτ , φτ 〉+ ‖φτ‖2.

Therefore, for every τ ∈ X(k − 1),

‖dτφτ‖2 − k

k + 1‖φτ‖
2 = ‖dτφτ‖2 − ‖φτ‖2 + 1

k + 1‖φτ‖
2 =

‖M−τ,0φτ‖2 + 〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉+ 1

k + 1‖φτ‖
2.
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Also,

‖M−τ,0φτ‖2 =
∑

v∈X(0)
τ

mτ ({v})

 ∑
u∈X(0)

τ

mτ ({u})
mτ (∅) φτ ({u})

2

=

mτ (∅)

 ∑
u∈X(0)

τ

mτ ({u})
mτ (∅) φτ ({u})

2

= ‖d∗τφτ‖2.

Combining this with the previous inequality yields that

‖dτφτ‖2 − k

k + 1‖φτ‖
2 = ‖d∗τφτ‖2 + 〈(M ′)+

τ,0(I −M−τ,0)φτ , φτ 〉+ 1
k + 1‖φτ‖

2.

By Proposition 12

‖dφ‖2 =
∑

τ∈X(k−1)

(
‖dτφτ‖2 − k

k + 1‖φτ‖
2
)
,

therefore

‖dφ‖2 =
∑

τ∈X(k−1)

(
‖d∗τφτ‖2 + 〈(M ′)+

τ,0(I −M−τ,0)φτ , φτ 〉+ 1
k + 1‖φτ‖

2
)
.

Using the equalities proven in Proposition 12, we deduce that

‖dφ‖2 = ‖d∗φ‖2 + ‖φ‖2 +
∑

τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉,

as needed. J

Proof of Lemma 14:

Proof. Let φ be as above. Recall that for every τ ∈ X(k − 1), φτ decomposes orthogonally
as

φτ = (I −M−τ,0)φτ +M−τ,0φτ ,

Therefore

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 =

〈(M ′)+
τ,0(I −M−τ,0)φτ , (I −M−τ,0)φτ 〉+ 〈(M ′)+

τ,0(I −M−τ,0)φτ ,M−τ,0φτ 〉.

As explained above, (M ′)+
τ,0(I −M−τ,0)φτ ∈ Im(I −M−τ,0) and therefore

〈(M ′)+
τ,0(I −M−τ,0)φτ ,M−τ,0φτ 〉 = 0.

This yields that

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 = 〈(M ′)+

τ,0(I −M−τ,0)φτ , (I −M−τ,0)φτ 〉.

Note that by definitions of µk, νk

〈(M ′)+
τ,0(I −M−τ,0)φτ , (I −M−τ,0)φτ 〉 ≤ µk‖(I −M−τ,0)φτ‖2 ≤ µk‖φτ‖2,
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and

〈(M ′)+
τ,0(I −M−τ,0)φτ , (I −M−τ,0)φτ 〉 ≥ νk‖(I −M−τ,0)φτ‖2 ≥ νk‖φτ‖2.

Summing over all τ ∈ X(k − 1) and applying Proposition 12 yields the needed results, i.e.,∑
τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , φτ 〉 =

∑
τ∈X(k−1)

〈(M ′)+
τ,0(I −M−τ,0)φτ , (I −M−τ,0)φτ 〉 ≤

∑
τ∈X(k−1)

µk‖φτ‖2 = (k + 1)µk‖φ‖2,

and a similar computation yields the second inequality of the Lemma. J
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