Round Complexity Versus Randomness
Complexity in Interactive Proofs

Maya Leshkowitz
Weizmann Institute of Science, Rehovot, Israel
mleshkowitz@gmail.com

—— Abstract

Consider an interactive proof system for some set S that has randomness complexity r(n) for
instances of length n, and arbitrary round complexity. We show a public-coin interactive proof
system for S of round complexity O(r(n)/logn). Furthermore, the randomness complexity is
preserved up to a constant factor, and the resulting interactive proof system has perfect com-
pleteness.

2012 ACM Subject Classification Theory of computation — Interactive proof systems
Keywords and phrases Interactive Proofs
Digital Object Identifier 10.4230/LIPIcs. APPROX-RANDOM.2018.49

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/
report/2017/055/.

Acknowledgements I would like to thank my advisor, Prof. Oded Goldreich, for his encourage-
ment to approach the problem studied in this paper, and for his guidance and support in the
research and the writing process. I also thank Dr. Guy Rothblum for useful discussions.

1 Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Rackoft [8],
and the demonstration of their power by Lund, Fortnow, Karloff, Nisan [12] and Shamir [14]
are among the most celebrated achievements of complexity theory.

Loosely speaking, interactive proof systems capture the most general way in which one
party can efficiently verify claims made by another, more powerful, party. The definition of
interactive proof systems generalizes the traditional notion of a proof system (indeed, an
NP-proof system), by allowing both interaction and randomness.

It is well known that both interaction and randomness are inherent to the power of
interactive proof systems, where here we mean the extra power above that of NP-proof
systems. Interactive proofs with no randomness can be easily transformed into NP-proof
systems, whereas randomized non-interactive proofs, captured by the class M.A (defined by
Babai [1]), are essentially the randomized version of NP (e.g., loosely speaking, if BPP = P,
then MA = N'P).

Both interaction and randommness are quantitative notions; that is, one talks of the
“amount of interaction”, which is commonly associated with the (total) number of messages
exchanged (a.k.a number of rounds), and of the amount of randomness (a.k.a randomness
complexity). While the previous paragraph refers to the qualitative question and asserts that
both interaction and randomness are essential, a finer study of the quantitative question
is called for; that is, it is natural to ask about the necessary amount of interaction and
randomness in various interactive proof systems.

© Maya Leshkowitz;
oY licensed under Creative Commons License CC-BY
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 49; pp.49:1-49:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:mleshkowitz@gmail.com
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.49
https://eccc.weizmann.ac.il/report/2017/055/
https://eccc.weizmann.ac.il/report/2017/055/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2

Round Complexity Versus Randomness Complexity in Interactive Proofs

The study of round-complexity in interactive proof systems has some well known results:
Babai and Moran showed that the round complexity of any public-coin interactive proof
system (a.k.a Arthur-Merlin proofs) can be reduced by a constant factor [2], whereas the
public-coin transformation of Goldwasser and Sipser [9] (which essentially preserves the
number of rounds) extends this result to general interactive proof systems. It is also known
that a stronger round reduction is quite unlikely, since it would place SAT in co—AM-time(Qo(”)),
whereas AM-time(T') may equal Ntime(poly(7')). (This is the case due to a combination of
results reviewed below in the paragraph titled “conditional tightness”.)

In contrast, we are only aware of one study that focuses on the randomness complexity of
interactive proof systems 1. Specifically, Bellare et al. [3] studied the randomness complexity of
error reduction in the context of interactive proof systems. (We mention that the randomness
complexity is also of interest in [5], which provides an alternative transformation of general
interactive proof systems to public-coin ones.)

Regarding the completeness in interactive proofs, the fact that every interactive proof
system can be transformed into one with perfect completeness was shown in [4].

1.1 Round complexity versus randomness complexity

A natural question, which to the best of our knowledge was not considered before, is
what is the relation between the two foregoing complexity measures. We do suspect that
there are cases when the randomness complexity cannot be made smaller than the round
complexity without trivially increasing the number of rounds. This is because constant-round
interactive proof systems seem more powerful than NP-proof systems (see, e.g., the Graph
Non-Isomorphism proof of [6]), whereas a logarithmic amount of randomness is clearly useless.
But can the randomness complexity be smaller than the round complexity?

The answer is definitely negative if we consider public-coin interactive proof systems.
Recall that in these proof systems, in each round, the verifier sends the outcome of fresh
coins that it has tossed at the beginning of the current round, and so by definition the
number of coin tosses is at least as large as the number of rounds.? However, it is not clear
what happens in case of general interactive proofs. (In particular, the transformation of [9]
significantly increases the randomness complexity by a factor depending on the number of
rounds.)

Recall that in a general interactive proof system, the verifier may toss all coins at the
very beginning, but its message in each round may be a complex function of the outcome of
these coins (and the messages it has received from the prover). In particular, the verifier’s
messages may have very little information contents (from the prover’s point of view), and
so we may have many more rounds than the number of coins tossed. Furthermore, it is not
clear how to collapse rounds that yield verifier messages of low information contents. These
are the issues we deal with when showing that also in general interactive proof systems,
randomness complexity r(n) yields round complexity O(r(n)/logn), and hence in interactive
proof systems the round complexity is smaller than the randomness complexity.

» Theorem 1 (Main Theorem). Suppose that S has an interactive proof system of randomness
complexity r(n) for instances of length n. Then, S has a public-coin interactive proof system

1 We refer to unconditional results and not to the long line of research of randomness versus hardness
trade-off that rely on uniform or non-uniform assumptions, see, e.g. [10, 13].

2 This presumes that the definition requires the verifier to send a non-empty message in each round. But
otherwise (i.e., if the definition allows empty messages), rounds in which the verifier sends nothing can
be collapsed.

M. Leshkowitz

of round complezity O(r(n)/logn) and randomness complexity O(r(n)). Furthermore, the
resulting interactive proof system has perfect completeness.

Note that, in addition to obtaining the public-coin feature, we obtain perfect completeness
for free. That is, even if the original system does not have perfect completeness, the new one
has this feature.

We note that it is easier to prove a weaker version of the main theorem, which does not
obtain the public-coin and perfect completeness features. The proof of this weaker result,
outlined in Section 1.2, and given in detail in the full vesion of this paper [11, Apdx C],
illustrates one of the ideas that underlie the proof of Theorem 1.

Conditional tightness

The round-complexity obtained by Theorem 1 is the best one may hope for at this time,
since a result asserting round complexity o(r(n)/logn) for any set that has an interactive
proof system of randomness complexity r(n) would yield an unexpected result that conflicts
with common beliefs and seems currently out of reach. Specifically, it would place SAT in
co-AM-time(2(’(")), which does contradict common beliefs. The full reasoning is as follows:

1. A variant of the celebrated interactive proof system for SAT yields an interactive proof
system of randomness complexity O(n) for unsatisfiable CNFs with n variables. (This
interactive proof consists of n/logn rounds such that in each round we strip a single
variable in the sum-check that sums over n/logn variables with values in [n], while using
a finite field of size poly(n). See [7, Sec §]).3

2. On the other hand, any set having an m-round interactive proof system is in AM-
time(n®(™), see [7, Apdx B]. Hence, if unsatisfiable CNFs have an interactive proof
of round complexity o(n/logn), then such instances can be refuted in AM-time(2°(™)),
whereas AM-time(7") may equal Ntime(poly(T)).

A different perspective

Theorem 1 may be viewed as an alternative transformation of general interactive proof
systems into public-coin ones. Recall that the transformation of Goldwasser and Sipser [9]
preserves the round-complexity of the original system (up to an additive constant), but
increases the randomness complexity (i.e., raising it to a constant power). The same holds
in the variant of that transformation presented in [5]. In contrast, Theorem 1 preserves
the randomness complexity of the original system (up to a constant factor), but does not
necessarily preserve the round-complexity. Taking this perspective, the fact that the round-
complexity is bounded in terms of the randomness complexity is a consequence of the fact
that the resulting scheme is of the public-coin type.

3 This is done by packing a sequence of logn bits of the boolean variables into a symbol of H = [n] CF
where F is some field. For i € £, where ¢ = logn, denote by f;(z) : F — F the polynomial of degree
n — 1 that maps each element in H to the value of its ith boolean variable. Now, take the standard
arithmetization of the CNF and replace each occurrence of the variable indexed j-£+1 by the polynomial
fi(z;), where x; is the F' variable that represents the jth block of boolean variables. The resulting
polynomial is a n/¢ variable polynomial of total degree O(m - n), where m is the number of clauses.
Finally, the number of satisfying assignments is given by the sum over all (y1,....,yn) € H™* of the
polynomial derived above. Furthermore, we do not execute the sum-check protocol over an exponentially
large finite field but rather over a finite field of prime cardinality p = poly(n), where p is selected by the
verifier at random among such primes.

49:3

APPROX/RANDOM 2018

49:4

Round Complexity Versus Randomness Complexity in Interactive Proofs

1.2 On the proof of Theorem 1

We start by giving an overview of a proof of a weaker result, in which we show how to
transform any interactive proof, of randomness complexity r(n), to a private-coin interactive
proof for the same set that uses O(r(n)/logn) rounds, while maintaining the randomness
complexity of r(n). This proof gives a flavor of the proof of the main theorem, but is
significantly simpler.

1.2.1 Private-coin emulation protocol

The idea of the emulation protocol is that, in every iteration, we would like the prover to send
possible continuations of the current transcript (describing execution segments of possibly
different number of rounds) that reveal much information about the verifier’s random coins.
Hence, the prover sends partial transcripts of mazimal length such that each account for
a large fraction of the residual probability mass*. The verifier then checks if one of these
transcripts is consistent with the strategy determined by the values of its random coins,
which were tossed upfront. If so, the verifier picks the maximal transcript consistent with its
strategy and the verifier and prover proceed their interaction from that point. Otherwise,
the verifier sends its next message (based on the aforementioned coins) without using the
continuations suggested by the prover. We stress that the only source of the verifier’s
randomness is its private coins tossed upfront, which are used to determine the continuation
of the transcript in each subsequent iteration.

We wish to elaborate on how the prover determines the continuations of the transcripts.
Fixing an iteration, we denote the current transcript by + and its residual probability mass
by p(vy). Each transcript the prover sends on this iteration is a possible continuation of ~
of mazimal length that is a “heavy continuation”. By a heavy continuation ~/, we mean
that 4/ has probability mass greater than p(vy)/n, when subtracting from it the probability
mass of the continuations of v that were either sent by the prover in previous iterations, or
determined in this one.

This conditioning allows the prover to send several continuations of the transcript that
are also continuations of each other. Consider for example the case that the prover sends
~vya1PrasfBs and yayB1. In this case if the verifier chooses ya; 51 it means that in the next
iteration the continuation of this transcript cannot begin with as 5.

The benefit of this method of determining transcript-continuations is that we guarantee
that in the next iteration the probability mass of the new transcript is lower than p(y)/n.
The reasoning is as follows. If the verifier chooses one of the transcripts suggested by the
prover, then on the next iteration the residual probability mass of each of its continuations is
lower than p(y)/n, otherwise this continuation should have been suggested by the prover
on the previous iteration. If the verifier did not choose any of the transcripts, and instead
continued the transcript with its own message a7y, then it follows that the residual probability
mass of the transcript ya; (under the conditioning of the appropriate events) is also lower
than p(vy)/n, otherwise the continuation vy should have been suggested by the prover.

It follows that after O(r(n)/logn) rounds of interaction the probability of the transcript
generated is at most (1/n)"™/'°8™ = 1/27(") which means that there is a unique value of
the coin tosses consistent with the transcript. Hence, a complete transcript is generated and

1 Note that in the eyes of an observer, a verifier that samples its random coins at the beginning of the
interaction and proceeds accordingly, is equivalent to a verifier that on each round samples a message
with probability proportional to its residual probability mass.

M. Leshkowitz

the verifier can reject or accept at this point. It is easy to show that if the prover follows the
prescribed emulation, then the verifier accepts with the same probability as in the original
interactive proof system, and hence completeness is maintained.

Note that the above emulation per se does not suffice. It is essential to include validation
checks that guarantee that the transcripts provided by the prover are consistent with some
prover strategy for the original protocol. This means that if the prover provides two transcripts
that share a prefix, this common prefix must end with a prover’s message. This implies
that the prover answers in the same way to the same verifier messages, which means that
the prover’s strategy is consistent with some prover of the original emulation, and so the
soundness of the original proof system is maintained.

1.2.2 Public-coin emulation protocol

The simplified private-coin emulation protocol captures one of the key ideas of our public-coin
emulation protocol. The difficulty that we face when seeking a public-coin emulation is
that we cannot rely on hidden coins tossed upfront by the verifier. Thus, when presented
with a list of heavy continuations, it is unclear how the verifier should select one at random,
since the selection probability should be determined by the residual probability masses that
are unknown to it. Our solution is to have the prover provide these probabilities, but this
raises the need to verify these claimed values. (Needless to say, the verifier rejects upfront if
the sum of these probabilities does not match the claimed probability of the transcript as
determined before the current round.) In the last iteration, a complete transcript is sampled,
containing the verifier’s private coins, hence the validity of the transcript and the claim can
be checked.

The foregoing description raises a few issues. Firstly, the prover should find a way to
communicate all the transcripts to the verifier, and not only the ones with high residual
probability mass as before. Second, it is not clear what happens when the prover provides
wrong values for the residual probabilities. As for the second issue, note that maliciously
raising the probability of a transcript does contribute towards having the sum of probabilities
meet the prior claim, but it makes the probability that this transcript is selected higher,
and so puts the prover in greater problem in the next round. Indeed, a careful analysis
shows that actually the prover gains nothing by such behaviour, since when the transcript is
complete, false claims about its residual probability are easily detected.

Turning back to the first issue, we note that the issue is that there may be too many
short transcripts that each account for a small fraction of the residual probability mass. To
deal with this case, we pack many transcripts into a single auxiliary message, which means
that we use a succinct representation of a sequence that contains many of the transcripts but
not all of them (since otherwise we would have made no progress at the current round). The
succinct representation should support the verification that the corresponding sequences are
disjoint. Now, each such “pack” of transcripts will be assigned the corresponding probability
mass, and be treated as if it were an actual transcript.

Needless to say, the foregoing is but a very rough sketch of the structure of the derived
proof system. The actual proof system uses a carefully designed verification procedure that
ensures that its executions can be mapped to executions in the original proof system.

We note that while the above description of the public-coin emulation refers to the
probability that various transcripts appear in the original proof system (when the prover
uses an optimal strategy), our actual construction refers only to accepting transcripts (i.e.,
transcripts that lead the original verifier to accept). Consequently, we obtain a proof system
of perfect completeness, even if the original proof system had two-sided error probability.

49:5

APPROX/RANDOM 2018

49:6

Round Complexity Versus Randomness Complexity in Interactive Proofs

1.3 Organization

Towards proving the main theorem we shall show how to emulate an existing interactive
proof system with a public coin emulation protocol that has O(r(n)/logn) rounds. We begin
by introducing the notion of “protocol trees” in Section 3, which we use to describe the
interaction of the verifier and prover of the original interactive proof system. In Section 4,
we shall show how to transform the protocol tree into an “emulation tree”, that contains
the continuations of the transcripts that the prover sends on each iteration along with their
probability masses. Using this emulation tree, we then turn to describing the public-coin
emulation protocol for the new prover and verifier in Section 5. The analysis of the emulation,
which is partitioned into completeness and soundness, is given in the full version of the
paper [11, Sec 6]. Also given in the full version [11, Apdx C] is a private-coin emulation
protocol for emulating the interactive proof system and its analysis, which is less involved
than the public-coin emulation.

2 Preliminaries

Let us start by formally defining interactive proof systems, where the completeness and
soundness bounds are parameters.

» Definition 2 (Interactive Proof Systems). Let ¢, s : N — [0,1] such that c¢(|z|) > s(|z|) +
m. An interactive proof system for a set S is a two party game, between a verifier
executing a probabilistic polynomial time strategy, denoted V', and a prover executing a
(computationally unbounded) strategy, denoted P, satisfying the following two conditions:
Completeness with bound ¢: For every x € S, the verifier V' accepts after interacting
with the prover P on common input = with probability at least ¢(|z|).
Soundness with bound s: For every x ¢ S and every prover strategy]3, the verifier V/
accepts after interacting with P on common input 2 with probability at most s(|x).
When ¢ and s are not specified, we mean ¢ = 2/3 and s = 1/3. We denote by ZP the class
of sets having interactive proof systems. When ¢ = 1, we say that the system has perfect
completeness.

3 The protocol tree of the original proof system

Fixing an interactive proof and an instance x of length n, we describe the possible prover-
verifier interactions of the system on common input = using a tree whose height corresponds
to the number of rounds of interaction. For some ¢ = ¢(n), we assume without loss of
generality that in each round the verifier sends a message o € {0, l}g, and the prover’s
responds with a message 8 € {0, 1}5. We can also assume, without loss of generality, that
the prover’s strategy is deterministic and fixed. Each node v in level j represents a possible
prover-verifier transcript for the first j rounds of the interaction. The branching of the tree
represents the possible ways to extend the transcript to the next round. The number of ways
to extend the transcript depends only on the verifier’s message, since we fixed the prover’s
strategy. Hence, each node has at most d := 2¢ children, corresponding to the 2¢ possible
verifier messages for the next round. The prover’s response to each such message is included
in the description of the corresponding node.

The description of a node w on level j contains the partial transcript v(u) =
a1/, ...,;0; of the interaction up to the j’th round. The root (at level zero) has an
empty transcript, whereas a leaf of the tree represents a complete prover-verifier interaction.

M. Leshkowitz

We can assume, without loss of generality, that the verifier sends its private coins on the last

round, and hence every leaf is associated with a sequence of coin tosses which either leads the

verifier to accept or to reject. Hence, we can represent the possible interactions generated by

the interactive proof system using a tree of height m which has 27(") leaves, where m is the

number of rounds and r(n) is the number of coin tosses. Using a constant number of parallel

repetitions, we can assume that the interactive proof system has completeness parameter %
1

and soundness parameter 75. Note that this blows up the randomness complexity only by

a constant factor (as compared to our interactive proof for the standard %, % parameters).

Therefore, if = is a yes-instance then at least 1—90 -27(") of its leaves represent accepting runs,
and if z is a no-instance then at most 1—10 -27(") of its leaves represent accepting runs.

The description of a node also contains its weight, denoted w(u). The weight of the
node is the number of coin sequences that are consistent with the node and lead the verifier
to accept at the end of the interaction. That is,

» Definition 3 (Weight of a leaf). Let u be a leaf with transcript «(«) which corresponds to
the full transcript of the interaction of P and V on input x, when V uses coins p; that is,

V(U) = (0513617"'705maﬂm,7(p’0)) (]—)

where 0 = V(z,p, 81, ..., m) € {0,1} is Vs final verdict and for every ¢ = 1,...,m it holds
that o; = V(x,p, B1,...,0i—1) and B; = P(x,aq, ..., ;). We define the weight w(u) of u to
be V’s final verdict o.

» Definition 4 (Weight of a node). The weight w(u) of a node u in the protocol tree is the
sum of the weights of the leaves that are descendants of u.

Note that w(u) is proportional the probability that «(u) is generated and the verifier
accepts at the end of the interaction.

4 The emulation tree

4.1 Overview

So far we explained how to represent the possible executions of a m-round interactive
proof system on some instance x, where the protocol utilizes r(n) coins. This resulted in
a protocol tree of height m with 2"(®) leaves. Our goal is to transform this protocol tree
to an emulation tree that defines a prover strategy for a O(r(n)/logn)-round public-coin
emulation protocol. This transformation is done using the Build_ Tree procedure. First we
describe a very restricted case where the protocol tree is already suitable for our proposed
public-coin emulation and the Build_ Tree procedure is not required. Next, we explain how
the transformation works in a restricted case when the degree of the protocol tree is bounded
by poly(n), and finally in the case of a general protocol tree.

The protocol tree is of height O(r(n)/logn) and degree poly(n)

In order to convince the verifier that x is a yes-instance the prover makes an initial claim that
the weight of the root of the protocol tree is at least ¢ - 27" (where c is the completeness
bound). The emulation is initiated at the root of the protocol tree and on each round of
the emulation the prover assists the verifier at progressing one step down the protocol tree.
(This assistance is required because the verifier does not have access to the protocol tree.)
Each round consists of the prover providing the verifier with the descriptions of the children
of the current node u that was sampled on the previous round, where these descriptions

49:7

APPROX/RANDOM 2018

49:8

Round Complexity Versus Randomness Complexity in Interactive Proofs

contain the weights of the various children. The verifier performs validations to check that
according to the descriptions these are legal children of u, and that their claimed weights
sum up to w(u). Then, the verifier samples a child with probability that is approximately
proportional to its weight, up to a multiplicative factor of 1 + %, using O(logn) public coins.
On the last round, a leaf is sampled, whose description contains the complete prover-verifier
interaction along with the coins tossed by the verifier. The new verifier accepts if and only if
the transcript sampled is consistent with the original verifier’s strategy according to the coin
tosses revealed, and leads the original verifier to accept.

To see why this is indeed an interactive proof system for the original language, note that
an honest prover can always convince the verifier of the correctness of a true claim using this
emulation. Hence the interactive proof system we described has perfect completeness. On
the other hand, for no-instances, a prover that wants to make the verifier accept must make
an initial claim that the weight of the empty transcript is much larger than its real weight.
Namely, the real weight of the empty transcript is at most s - 2"("), whereas the prover claims
that the weight is at least ¢ - 2"(") where ¢ > s are the completeness and soundness bounds
of the original interactive proof system. Thus, there is a multiplicative gap of 2 between the
real weight and the one claimed. We can show that, in expectation, this gap is maintained
throughout the emulation, up to a factor of (1 + %)" that comes from the approximation
factor. Therefore, the probability that a leaf that corresponds to an accepting run is sampled
on the last round (and hence the verifier accepts) is at most £(1+)", which is smaller than
é for a suitable choice of s and c.

The degree of the protocol tree is bounded by poly(n)

In this case the height of the protocol tree may be asymptotically larger than 17(; (ggl. We
create a new tree of height O(r(n)/logn) to guide the prover’s strategy, which we use in a
way similar to how we used the protocol tree in the previous paragraph. We call this tree the
emulation tree. The nodes in the emulation tree are nodes from the protocol tree, however
the children of a node u in the emulation tree may be non-immediate descendants of u in
the protocol tree.

We start with a protocol tree T' rooted at r whose weight is w(r), and on each step we
modify this tree towards creating an emulation tree. We define a heavy descendant of r to

be a node in T whose weight is at least @, and the weight of each of its children is smaller

than @ Note that there are at most n such nodes.

We modify T so that the children of r in the emulation tree are its original children as
well as the heavy descendants that we lift upwards to make them new children of r. This
modification is performed using the Build_Tree(r) procedure, which when invoked on a node
r identifies the nodes that will be children of r in the new tree, sets them as children of r,
and then initiates recursive invocations on the (original and new) children of r, creating the
new emulation tree rooted at r. Details follow.

Let T, denote the temporary tree after the stage that we identify and set the children of
r. We start by identifying the heavy descendants of r (they can also be children of r in T'),
which will become heavy children of r in 7;.. We then proceed to the non-heavy children
of r in T, which will also be children of r in T,.. After we identified the children of r in the
new emulation tree, we call the Build_Tree procedure on each child of r in T, which creates
an emulation tree rooted at that node.

Observe that in the final emulation tree, for each node u, the weight of each grandchild of
w. This is because if v is an heavy child of u in the emulation tree, then the
weight of the descendants of v in T, is at most @) " Since the children of v in the emulation

n
tree are descendants of v in T, the claim holds. Otherwise, v is non-heavy child of u, so its

u is at most

M. Leshkowitz

w(u)
n

weight is smaller than
w(u)

It follows that the height of the final emulation tree is O(r(n)/logn). The number of
children of each node is at most poly(n), because we add at most n heavy children to the

and hence the weight of the children of v is also smaller than

original children of each node. Hence the emulation tree has properties similar to the protocol
tree in the previous paragraph, so it is suitable for our public-coin emulation described in
the previous subsection.

The general case

In general, the degree of the protocol tree is unbounded, and hence it may be exponential in
n. Lifting the heavy children as we did in the case of unbounded height guarantees that the
height of the new emulation tree is O(r(n)/logn), but its degree may be super-polynomial in
n (due to the original children). Hence, we will not be able to perform the emulation. Thus,
we also need to make sure the degree of the new tree is poly(n).

In order to reduce the degree when it is too large, we group the non-heavy children of r
under new children, which we call interval children. This is done in addition to handling
the heavy children of r as before. In general, children of r in T" may become non-immediate
descendants in 75, and non-immediate descendants of r may become immediate children of r
in T, (due to lifting).

Determining the children of r in T, is done in two steps, as part of the Build_Tree(r)
procedure. The first step is identifying the heavy descendants of r and lifting them to be
children of r, creating heavy children in 7,.. Next, we unite the non-heavy children of r into
groups. We unite the children by lexicographic order of their transcript field, such that the
weight of each group is larger than # QWT(T) (except for, possibly, the last

2w(r)

group which is only required to have weight smaller than = =*). We create a new interval

child v for each such group, where the children of v are the nodes in the group.

and at most

After this step, the children of » in the final emulation tree are exactly the children of r
in T;.. The number of children r has is at most n, since the weight of each child of r (except
for possibly the last interval child) is at least # Next, the procedure is called recursively
on the children of r in T, in order to create the final emulation tree.

The description of a node u in the emulation tree is composed of the transcript field
y(u) = @161 ... ;8; and a weight field w(u) as in the original protocol tree, with an
additional range field R(u). The range of a node represents the possible range of its
children’s transcripts. After determining the heavy children of u, and before grouping the
non-heavy children under interval children, the non-heavy children of u are all children of «
in the original tree. Hence, the transcripts of the children of each interval child are the same
up to the last verifier’s message on which they differ, which corresponds to the branching
of the protocol tree for the next round. Thus, we can label the range R(u) = [s, €] where
s<eed0, 1}£ according to the range of the last verifier message in the transcript field of the
children of u. Heavy children have full range [OZ , 15], whereas the range of interval children
is a subinterval of [Oé, 15] such that this subinterval corresponds to the transcripts of the
descendants that are grouped under this node.

We show in the analysis that the height of the final emulation tree is O(r(n)/logn). The
degree of nodes in the final emulation tree is at most n, hence it is suitable for public-coin
emulation like in the previous subsection.

(The running time of this algorithm is at least the size of the protocol tree, which is
exponential in r(n), and thus it may be exponential in |z|. However, the prover is the one
that runs this algorithm and the prover is computationally unbounded. Therefore the running
time is not an issue.)

49:9

APPROX/RANDOM 2018

49:10

Round Complexity Versus Randomness Complexity in Interactive Proofs

4.2 The Build Tree procedure

Denote the designated prover and verifier of the original interactive proof system by P, and
Vo respectively, and the protocol tree of Py and V; for a yes-instance x by Tp, ;. The
Build_ Tree procedure is a recursive procedure that reads and updates a global tree T,
which is initially set to equal the protocol tree Tp, v, until obtaining the final emulation tree,
denoted by Ep, v,. When invoked on a node v in T, the procedure determines the children
of u, updates the global tree and invokes the procedure recursively on the children of w.
We denote by T'(u) the subtree of T rooted at u.

Initialization

The tree T is initialized to be the original protocol tree, where each node has a description
that contains the weight and transcript like in the original tree, and an additional range
field which is initially left empty. We set the range of the root, denoted r, to be full range
R(r) = [0%,1°]. If the weight of 7 is zero we terminate the process. Otherwise, we invoke the
Build_ Tree procedure on r.

The main procedure: Build_Tree

If w is a leaf, the procedure returns without updating the global tree T. Otherwise, the
Build_Tree procedure invokes two sub-procedures, Build_Heavy(u) and Build_ Interval(u),
in order to identify and update the children of u in T'. Finally, the Build_ Tree procedure is
invoked recursively on all the children of u in T'.

Build_Heavy

The Build_Heavy procedure identifies the heavy descendants of v in T'(u), which are
descendants of large weight that have no children of large weight, and modifies the tree by
lifting them to become heavy children of .

» Definition 5 (Heavy descendants). We call v a heavy descendant of u if v is a descendant
of u in T and the following conditions hold:
1. w(v) > #
2. Either v is a leaf, or for each child z of v it holds that w(z) < #
For each heavy descendant, v, of u we perform the following process:
1. Update v’s description: Set the range field of v to be full range R(v) = [0¢,17].
2. Modify the protocol tree if v is not already a child of w:
a. Subtract w(v) from the weight of the ancestors of v in T'(u), except for u whose weight
stays the same.
b. Move v (along with the subtree rooted at v) to be directly under w.
See Figure 1.
After we finish identifying and moving the heavy children of u we perform a clean up stage
where we erase all the nodes in 7" with weight zero.

Build_Interval(u)

This procedure groups the non-heavy children of u under interval children. Denote the
range field of u by R(u) = [s(u),e(u)]. (Note that s(u) = 0° and e(u) = 1 unless u is an
interval node, in which case its range is partial.) We partition the range of u into a sequence

M. Leshkowitz

i Sk

Figure 1 Build_Heavy: In the first step, v is identified as a heavy descendant of u and moved to
be a heavy child of u. In the second step, z is identified and moved to be a heavy child of u. The
triangles represent subtrees of the original tree.

Figure 2 Build_ Interval: The left diagram represents the tree before the Build_ Interval procedure.
The nodes to the left of the dashed line are heavy children of u. The group of nodes inside each
dashed circle are united under an interval node. The tree on the right is the result of applying the
Build_ Interval procedure.

of consecutive intervals, each one representing the range of a new child of u. As long as we

have not partitioned all of the range [s(u), e(u)] we perform the following procedure.

1. Determine s’, the starting point of the interval child’s range: Initially, for the first interval
child of u we set s’ = s(u). For the next interval children, if the end of the range of the
previously created interval child is €, then we set ' = € + 1.

2. Determine ¢/, the ending point of the interval child’s range: For each e € {0,1}¢, denote

by non__heavy(s’, e) the set of children of u in T'(u) whose weights are smaller than %
and their last verifier message « (in the transcript field) is in the range [¢',¢e]. Note
that when [/, €] # [s(u), e(u)] the set non__heavy(s’,e) can be a proper subset of set of
non-heavy children of u. We define the weight of the set non__heavy(s’,e), which we
denote by W(s', e), as the sum of the weights of nodes in non__heavy(s', e).
We set €, to be the minimal e € {0, 1}* that satisfies W (s, e) > # If no such e exists
and W(s',e(u)) > 0, we set ¢/ = e(u). If W(s',e(u)) = 0 there is no need to create
another interval child so we return to the Build_Tree procedure. (This guarantees that
the weight of an interval child is at least 1).

3. Create a new node v: We set the transcript of v to be like the transcript of u, v(v) = y(u),
its range to be R(v) = [¢/,¢'] and its weight to be w(v) = W(s',).

4. Place v in the tree: disconnect u from the nodes in non__heavy(s’,e’). Set u as a parent
of v and let v be the parent of all nodes that are in non_ heavy(s’,¢e’).

See Figure 2. Note that the weight of an interval child of u is at most 22

n
w(u)
n)

and at least

except possibly for the last interval child, whose weight is at least 1.

4.3 Properties of the emulation tree

Recall that in the original protocol tree, v was a child of w if and only if v(v) = v(u)af where
a, 3 € {0,1}* denote the next verifier message and the prover’s response to it. However, in
the new emulation tree, Ep, v, , this is not the case. Namely, if v is a child of w in Ep, v,

49:11

APPROX/RANDOM 2018

49:12

Round Complexity Versus Randomness Complexity in Interactive Proofs

then it could be that v is an heavy child of v and hence y(v) = y(u)a1 81, . . ., apfi for some
a1, Bi, -, ak, Br € {0,1}¢, or v is an interval child hence v(v) = v(u) and R(v) C R(u).
Nevertheless, the following properties of the final emulation tree Ep, y, hold. The proofs
can be found in the full version of the paper [11].

» Claim 6 (Node degree). Each node u in the final emulation tree Ep, v, has at most n
children.

» Claim 7 (Weight reduction). For every node u in the final emulation tree Ep, v, the weight
of each grandchild of u in Ep, v, is at most 2wT(u)

» Corollary 8 (Corollary to Claim 7). The height of the final emulation tree Ep,y, is
O(r(n)/logn).

» Claim 9 (Leaves). The leaves of Ep, v, are exactly the leaves of protocol tree Tp, v, whose
weights are 1.

5 Public-coin emulation

Next, we describe the strategy of the designated prover P and verifier V' in the new
("emulation") protocol. The strategy of the designated prover P for a yes-instance x uses
the emulation tree Ep, y, of constructed in the previous section. The prover assists the
verifier V' in progressing down the emulation tree. On each iteration, the prover provides
the descriptions of the children vy, ..., vq of the current node u, which was sampled in the
previous iteration. The verifier preforms validations on the list supplied by the prover (to be
detailed below), and then samples one of the children for the next iteration according to its
weight. The verifier does not have access to the emulation tree, and its validations consist
of structural requirements on the part of the emulation tree seen so far. On the last round
the verifier checks that the full transcript, along with the sequence of coin tosses, leads the
original verifier Vj to accept.

One of the structural validations that the verifier makes is that the nodes provided by
the prover may be children of v in the emulation tree. For nodes in the original protocol tree,
v is a child of u if and only if the transcript of v extends the transcript of u by one pair of
messages, and thus v is a descendant of u if and only if the transcript of u is a proper prefix
of the transcript of v. For nodes in the emulation tree the situation is more complex. If v is
an interval child of u, then the transcript of v equals the transcript of u, and the range of v
is a partial range of the range of w. If v is a heavy child of u, then the transcript of u is a
proper prefix of the transcript of v. Furthermore, if y(u) = affY, ..., a8, then of, , (the
i + 1 verifier’s message in the transcript of v) should be in the range of w.

With these two cases in mind, we define the conditions required of the descriptions of two
nodes u and v in order for v to be a descendant (not necessarily a child) of u in the emulation
tree. We say that v is a transcript descendant of u if these required conditions hold.

» Definition 10 (Transcript Descendant). Denote by u and v nodes in the emulation tree
with transcripts v(u) = of By, ..., o} ;" and y(v) = af B} ...} B} and with range field R(u)
and R(v), respectively. We say that v is a transcript descendant of w if one of the following
conditions hold:

(i) 7(v) = 7(u) and R(v) € R(u)

(ii) ~(u) is a proper prefix of y(v) and o, ; € R(u)

M. Leshkowitz

Protocol Tree Emulation Tree

Figure 3 Truncation during Build_ Tree. The node v is identified as a heavy descendant of z, so
it is moved (along with the subtree that is rooted at it) to be a heavy child of z.

Figure 4 The nodes in the list of seen nodes, S, in the iteration that the input node is .

Note that it is possible that v is a descendant of w in the emulation tree and the description
of u is equal to the description of v. For example, this can happen when v is the only interval
child of u.

It is easy to show that for every node u in Fp, v, every descendant of u is a transcript
descendant of u. The proof is similar to the proof in the completeness part of the analysis [11,
Sec 6].

We state the following claim regarding the transitivity property of transcript descendancy,
which we use in the analysis of the emulation.

» Claim 11 (Transitivity). For nodes u, v and z in the emulation tree such that z is a
transcript descendant of v and v is a transcript descendant of w, z is a transcript descendant

of u.

The proof of the claim is given in [11, Apdx A]. It follows by case analysis of the different
transcript descendancy types between u, v and z.

The condition of v being a transcript descendant of u is not sufficient to guarantee that v
may be a descendant of u in the emulation tree Ep, y,. For example, suppose that v was a
child of u in T'p, v, and is a heavy descendant of a node z that is an ancestor of v in Ep, ;.
Then, v becomes a heavy child of z in Ep, y,, which means that the subtree rooted at v was
truncated and moved up to be a direct descendant of z. Therefore, in order to check if v
may be a legal descendant of u in the emulation tree, the verifier needs to check that v does
not belong to a part of the tree that was truncated and moved to a different part of the
emulation tree (such as nodes v and w in Figure 3). For this reason the verifier keeps a list
S of nodes that were seen during the emulation, and updates the list at every iteration with
the new nodes seen. Note that the nodes in S, which the verifier sees up to some iteration,
are a subtree of the emulation tree that is composed of a path from the root of the tree to
the current input node, augmented with the children of the nodes in the path. See Figure 4.

49:13

APPROX/RANDOM 2018

49:14

Round Complexity Versus Randomness Complexity in Interactive Proofs

Another structural validation requires the transcripts that the verifier sees during the
execution to be consistent with a deterministic prover strategy.

» Definition 12 (Prover consistent). We say that two transcripts v(u) and y(v) are prover
consistent if the maximal prefix they agree on is either empty or ends with a prover’s message.
That is, the prover should respond in the same way on the same prefix of the transcripts (i.e.,
for every j smaller than the length of the shorter transcript, if (a{Y, ..., a}) = (o157, ..., aj)

then g} = B7).

This condition will allow for extracting a prover’s strategy for the original protocol from
the transcripts in Ep, v, , and then to claim that since the original prover cannot fool the
verifier with high probability, the new prover cannot either.

Initially, for the first iteration, the transcript of the root r is the empty transcript and
the range is full range, [0, 1°]. The prover provides the weight of the root r and the verifier
checks that the claimed weight is at least 1—90 .27 The verifier adds the description of r
to the list of seen nodes S. The rest of the first iteration, as well as subsequent iterations,
proceed as follows.

» Construction 13 (the ith iteration). On input a non-leaf node u and list S.5

1. The prover provides the descriptions of the children vq,...,vq of u:

(V(Ul)v R(vl)’ w/<v1))’ Tt (’Y(Ud)’ R(Ud)’ w/(vd))

2. The verifier preforms the following validations and rejects if any of them fails:
a. The verifier checks that all nodes are different (according to their descriptions) that is,
for each distinct 4, j € [d], if v(v;) = v(v;), then R(v;) # R(v;).
b. The verifier checks that the weights of the children of «w sum up to w’(u); that is,

d
w'(w) =) w'(vy) (2)
j=1

c. For each j € [d], the verifier checks that v; is a transcript descendant of wu.

d. For each interval child v;, the verifier checks that v(v;) = y(u); that is, if R(v;) #
[0¢,1¢], then y(v;) = v(u) must hold.

e. For each j € [d] the verifier checks that v; is not in a part of the emulation tree that
was truncated. (See discussion following Definition 10.) Specifically, for v € S(u) then
if v is a transcript descendant of u, then v; should not be a transcript descendant of v.
For illustration consider Figure 3, where u,t,z,v € S. In that case, the verifier checks
that v; is not a transcript descendant of v (where v is a transcript descendant of u
since it was a descendant of w in the original protocol tree).
(Note that it can be that v; is a transcript descendant of some node in S that is not a
transcript descendant of u, and this is not considered a violation. For example, all the
nodes are transcript descendants of the root r, which is in S.)

f. The verifier checks that the ranges of all the interval children are disjoint; that is, for
every two interval children v; and vy, the verifier checks that R(v;) N R(vg) = 0.

g. For each j € [d] the verifier checks that v(v;) is prover consistent (see Definition
12) with respect to the other transcripts of nodes in S and with regarding to the
transcripts of the other children v(vy), where k # j.

5 Because of Step 4, the input node u will always be a non-leaf node.

M. Leshkowitz

3. The verifier chooses a child according to the probability distribution J that assigns each
J € [d] probability approximately proportional to w’(v;) using O(logn) coin tosses. That
is, J is such that

w1
Pr[J j]gzj:1w/(m) (1+n> (5.1)

We can only afford to use O(logn) public-coins per round, and hence we compromise on
sampling each child with probability proportional to w’(v;), and instead sample with
approximate probability. See explanation for approximate sampling in [11, Apdx B].

4. The verifier adds all the children of w to the list S; that is S < S U {vy,...,v4}. Unless
v(v;) is the complete transcript (which includes the outcome of the coin tosses), the next
iteration will start with node v; and the set S. Otherwise, we proceed to the final checks.

By our conventions, the last message the verifier sends, denoted a.,,, contains the outcomes
p €0, l}r(n) of the r(n) coins tossed. Thus, if the last node chosen is v, then p can be easily
extracted from v(v) = @181, ..., @mfBm. After the last iteration the verifier performs final
checks and accepts if all of them hold:
(i) Check that p is accepting for v(v) and consistent with it: It checks that
Vo(z, p, 51, .., 8m) =1, and that for every ¢ = 1,...,m it holds that
a; = Vo(z,p,P1,...,Pi—1). Note that the verifier needs p in order to verify these
conditions, so this check can only be done after the last iteration. Also note that if
these checks pass then w(v) =1 (rather than w(v) = 0).
(ii) Check that w'(v) = 1; in other words the prover’s last claim should be that the weight
of the last node chosen is 1 (and not more than 1).
Clearly, the number of rounds of the emulation is O(r(n)/logn) because the height of the
emulation tree is O(r(n)/logn), and the prover and verifier proceed one step down the tree
on each round. Since the verifier uses O(logn) public coins on each round, the randomness
complexity of the emulation is O(r(n)).

—— References

1 Laszlo Babai. Trading group theory for randomness. In ACM Symposium on the Theory
of Computing, pages 421-429, 1985.

2 Laszlo Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system and
a hierarchy of complexity classes. Journal of Computer and System Science, 36:254-276,
1988.

3 Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in interactive proofs.

Computational Complexity, 3:319-354, 1993.

4 Martin Firer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. On
completeness and soundness in interactive proof systems. Advances in Computing Research,
5:429-442 1989.

5 Oded Goldreich and Maya Leshkowitz. On emulating interactive proofs with public coins.

Electronic Colloquium on Computational Complexity (ECCC), 23:66, 2016.

6 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(3):691-729, 1991. Preliminary version in 27th FOCS, 1986.

7 Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic
prover. Computational Complezity, 11(1-2):1-53, 2002.

49:15

APPROX/RANDOM 2018

49:16

Round Complexity Versus Randomness Complexity in Interactive Proofs

10

11

12

13

14

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proof systems. STAM Journal on Computing, 18(1):186-208, 1989. Preliminary version
in 17th STOC, 1985. Earlier versions date to 1982.

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. Advances in Computing Research, 5:73-90, 1989. Extended abstract in 18th STOC,
1986.

Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501-1526, 2002.

Maya Leshkowitz. Round complexity versus randomness complexity in interactive proofs.
Electronic Colloquium on Computational Complexity (ECCC), 24:55, 2017. Full version of
the paper.

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859-868, 1992. Extended abstract in
31st FOCS, 1990.

Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness
tradeoffs for AM. SIAM Journal on Computing, 39(3):1006-1037, 2009.

Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992. Preliminary version
in 81st FOCS, 1990.

	Introduction
	Round complexity versus randomness complexity
	On the proof
	Private-coin emulation protocol
	Public-coin emulation protocol

	Organization

	Preliminaries
	The protocol tree
	The emulation tree
	Overview
	The Build Tree procedure
	Properties of the emulation tree

	Public-coin emulation

