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Abstract
We consider the problem of sampling a proper k-coloring of a graph of maximal degree ∆ uni-
formly at random. We describe a new Markov chain for sampling colorings, and show that it
mixes rapidly on graphs of logarithmically bounded pathwidth if k ≥ (1 + ε)∆, for any ε > 0,
using a hybrid paths argument.
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1 Introduction

A (proper) k-coloring of a graph G = (V,E) is an assignment σ : V → {1, . . . , k} such that
neighboring vertices have different colors. We consider the problem of sampling (almost)
uniformly at random from the space of all k-colorings of a graph.2 The problem has received
considerable attention from the computer science community in recent years, e.g., [12, 17,
24,26,34, 45, 46]. It also has applications in Combinatorics (e.g., [5]) and Statistical Physics
(e.g., [43]).

Sampling colorings (as well as other combinatorial objects, e.g., [6, 27,38]) is commonly
done using Markov Chain Monte Carlo (MCMC) methods. A large body of work on sampling
colorings is devoted to analyzing a particular Markov chain, known as Glauber dynamics:
Choose a vertex v uniformly at random; choose a color c uniformly at random from the
set of available colors (the complement of the set of colors of the neighbors of v); recolor v
with c. Jerrum [26] showed that the Glauber dynamics mix in time O(n logn) when k > 2∆,
where ∆ is the maximal degree of the graph. Vigoda [46] improved the bound on the number
of colors to k > 11∆/6 using a different Markov chain, and showed that it mixes in time
O(nk logn). This remains the best known bound on k for general graphs. A major open
question is for what values of k can we sample colors efficiently (i.e., in polynomial time)? It
is conjectured (e.g., [16]) that k = ∆ + 2 colors suffice, and furthermore, that the Glauber
dynamics mix rapidly for any k ≥ ∆ + 2.

1 Supported in part by the Linde Foundation and NSF grants CNS-1254169 and CNS-1518941.
2 We define precisely what we mean by “almost” in Section 2.2.
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57:2 Hybrid Paths

Table 1 Comparison of results on sampling k-colorings using MCMC.

Degree Girth Graph family∗ k > Dynamics Mixing time Ref.
any any any 2∆ Glauber O(n logn) [26]
any any any (1.833 . . .)∆ Flip O(n logn) [46]
Ω(logn) Ω(log logn) any (1.763 . . .)∆ Glauber O(n logn) [11]
Ω(logn) ≥ 9 any (1 + ε)∆ Glauber O(n logn) [24]
≥ ∆0

† ≥ 5 any (1.763 . . .)∆ Glauber O(n logn) [13]
≥ ∆0

† ≥ 6 any (1.489 . . .)∆ Glauber O(n logn) [13]
O(1) ∞ Trees 4 Glauber poly(n) [35]
any any tw = O(1) ∆ +O

(√
∆
)

Glauber poly(n) [21]
O(1) any cw = O(logn) ∆ + 2 Glauber poly(n) [2]
any any pw = O(logn) (1 + ε)∆ Single-Flaw poly(n) Here

† ∆0 is some absolute constant. ∗ tw, cw and pw are short for treewidth, cutwidth and pathwidth
resepctively.

A lot of work has focused on improving the bounds of Vigoda on restricted families of
graphs. Dyer and Frieze [11] showed that if the maximal degree and girth are Ω(logn), the
Glauber dynamics mix in O(n logn) for k > α∆, where α ≈ 1.763. The degree and girth
requirements and the value of α were improved in a line of works [13,20,24,25,37]; see Table 1
for a comparison and summary of some milestones. The current state of the art results
exhibit a tradeoff between the value of α and the degree and girth requirements. Hayes and
Vigoda [24] showed that on graphs with ∆ = Ω(logn) and girth at least 9, (1 + ε)∆ colors
suffice to ensure fast mixing. On the other hand, the Glauber dynamics have been shown to
mix rapidly on graphs with girth at least 5 (resp. 6) and ∆ > ∆0 (where ∆0 is some absolute
constant) using roughly 1.763∆ (resp. 1.489∆) colors [13]. Stronger bounds have only been
shown on highly specialized families of graphs, such as trees [36], planar graphs [22] and
Erdös-Rényi graphs [12].

The two results that are closest to ours are the following: Hayes [21] showed that for
graphs with maximum eigenvalue ρ, the mixing time of the Glauber dynamics is O(n logn),
when k > ∆ + cρ, where c is slightly greater than 1. Planar graphs, trees and graphs of
bounded treewidth have a maximum eigenvalue of O(

√
∆), implying fast mixing for these

graphs. Berger et al. [2] showed that for graph with bounded degree and logarithmically
bounded cutwidth, the Glauber dynamics mix in polynomial time. We formally define
pathwidth later on, but we note that the cutwidth of any graph G is at least as large as its
pathwidth, which is at least as large as its treewidth; in addition, the pathwidth is at most
O(logn) times the treewidth [30].

1.1 Results and Techniques
Our main result is an algorithm that efficiently samples a ((1 + ε)∆)-coloring (almost)
uniformly at random if the input graph has logarithmically bounded pathwidth, for any
ε > 0.3

I Theorem 1 (Informal). Let ε > 0 and G be a graph with n vertices and maximal degree ∆.
There exists an algorithm for sampling a ((1 + ε)∆)-proper coloring of G (almost) uniformly

3 Assuming (1 + ε)∆ ≥ ∆ + 1.
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at random, whose running time is polynomial in n, ∆, and ε−O(pw(G)), where pw(G) is the
pathwidth of G. In particular, when pw(G) = O(logn), the algorithm runs in polynomial
time.

The two main methods of bounding the mixing time of random walks are coupling and
bounding the spectral gap of the transition matrix [19]; methods of bounding the conductance
or congestion (which are used to bound the spectral gap) are generally considered to be
stronger than coupling methods [19,31]. Despite this, most of the work on sampling colorings
uses various coupling methods [10–13,20,22–26,37,46]; the Glauber dynamics do not lend
themselves easily to the techniques that are usually used for bounding the spectral gap.
In particular, bounding the congestion of the underlying graph of the transition matrix4
typically involves defining flows between states in the underlying graph. If one can describe a
flow in the underlying graph such that the congestion of each edge is not too large, it implies
that the spectral gap is large and the Markov chain mixes rapidly [9, 44]. It is not clear how
to construct such flows for the Glauber dynamics, as a transition involves changing a vertex’s
color to one of its available colors: if all of the neighbors of a vertex v that is colored blue
are colored red, how do we go about changing v’s color to red?

We introduce a new Markov chain, which we call Single-Flaw dynamics. The difference
between the Single-Flaw and Glauber dynamics is that the Single-Flaw dynamics also allow
colorings that have a “single flaw” – there is at least one monochromatic edge, and all
monochromatic edges share a vertex. In other words, the coloring is not proper, but there is
a single vertex v such that we can reach a proper coloring by changing v’s color only. We
call such colorings singly-flawed. Concretely, the Single-Flaw dynamics Markov chain is the
following: choose a vertex v and a color c at random. If changing v’s color to c results in a
coloring that is either proper or singly-flawed, change v’s color to c. Otherwise do not.

The main advantage afforded by this Markov chain is that it allows us to define paths
between two states (colorings) α and β: select some order on the vertices, v1, . . . , vn. Starting
from v1, for each vertex vi, change its color to β(vi). If the transition leads to a proper
coloring, continue to vi+1. Otherwise, “fix” the monochromatic edges by recoloring the
neighbors of vi that are also colored β(vi) (as k ≥ ∆ + 1 there is always at least one available
color). When there are no monochromatic edges remaining, continue to vertex vi+1. We note
that it is possible to first “fix” the neighbors of v and only then change the color of v, and
this corresponds to the Glauber dynamics; we only lose a single color choice per neighbor (in
the Single-Flaw dynamics we can recolor with the original color of v, whereas in the Glauber
dynamics we cannot). Therefore, our analysis can be easily modified to apply to the Glauber
dynamics. We chose to analyze the Single-Flaw dynamics for two reasons (in addition to
using one fewer color): 1) The analysis is cleaner this way, and 2) It is straightforward to
extend the analysis techniques to “Multi-Flaw” dynamics, which we believe could prove
useful in other sampling and counting settings as well.

We first describe a simple attempt to adapt the canonical paths argument of Jerrum and
Sinclair [27, 28] to our setting, using the canonical paths described above. Although it fails
in all non-trivial cases, it is instructive as it exemplifies an important part of our method.
For every edge in the underlying graph, (try to) describe an injective function from paths
going through the edge to the state space of the chain. If we can describe such a function, it
would mean that at most |Ω| paths use each edge. If there were no “fixing phase” (i.e., the
graph was disconnected), this would be easy: Let t be the transition from the state σ such

4 In the underlying graph of the transition matrix A of a Markov chain, the states are represented by
vertices, there is an edge (u, v) between two states u, v ∈ Ω with weight we = Au,v if Au,v 6= 0.

APPROX/RANDOM 2018



57:4 Hybrid Paths

that the color of the jth vertex is changed to c. The injective function would map the path
from α to β to the following coloring σ∗: for vertices vi : i = 1, 2, . . . j, σ∗ = α(vi), for all
other vertices vi : i = j + 1, . . . , n, σ∗(vi) = β(vi). The mapping is injective because (i) σ∗ a
proper coloring and (ii) knowing t and σ∗ allows us to recover α and β, as

σ(vi) =
{
β(vi) i = 1, 2, . . . , j
α(vi) otherwise.

This would imply that at most |Ω| paths would use each transition. We note that it is not
necessary to show that at most |Ω| paths use each transition to show polynomial time mixing;
it suffices to show that |Ω| · poly(n) paths use each transition [27]. If we are guaranteed that
at every round, at most r vertices will be colored differently from α and β, this means that
at most

(k − 1)r|Ω| (1)

paths use each transition. This observation was used by Berger et al. [2], who used the
cutwidth to bound r. (The cutwidth of a graph G is the smallest integer r such that there
exists a labeling v1, . . . , vn of the vertices such that for all 1 ≤ k ≤ n, the number of edges
from {v1, . . . , vk} to {vk+1, . . . , vn} is at most r.) We use a similar argument, but are able
to leverage the pathwidth of the graph, which gives a stronger result, as the cutwidth of any
graph is at least as large as its pathwidth. In essence, a small pathwidth implies that there
is some order on the vertices, such that if our canonical paths obey this order, not too many
vertices will need to be fixed at any time. We note that finding such an order is NP -hard [4],
however we only need that such an order exists for the canonical paths argument.

The main contribution in this paper is removing the requirement that the maximal degree
is bounded by a constant; in other words, removing the number of colors from the base in
Expression (1). In order to do this, we use a multicommodity flow argument [9, 44]. Instead
of specifying a single path for each pair of states, we describe a flow between them in the
underlying graph. Whenever we fix a vertex’s color, we split the flow evenly among all
available options. This is similar to the argument of Morris and Sinclair [38], in which flow is
also split up among different paths; it helps route the flow more evenly, thereby avoiding the
case where one edge is heavily congested while other “available” edges are not. In contrast
to [38], we only split the flow in the fixing stages; in fact, whenever a vertex vi is colored
β(vi), this consolidates the flow! Our technique can be thought of as a hybrid argument
between the canonical paths proof technique of [27] and the multicommodity flow argument
of [38]. We call these paths hybrid paths and believe they could be useful in other scenarios
as well.

Finally, recall that the state space of the Single-Flaw dynamics includes flawed colorings.
We show that there are not too many singly-flawed colorings relative to proper colorings,
hence executing the chain polynomially many times will guarantee that we output a proper
coloring w.h.p.

1.2 Paper organization

The proofs of Corollary 3, Corollary 4, Lemma 6, Lemma 10, Lemma 11, Lemma 14,
Lemma 15 and Theorem 16 can be found in the appendix.
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1.3 Related work

Most of the work on sampling colorings has focused on the Glauber dynamics (e.g., [12,13,17,
23,26,34,35,37,39,45]). Other Markov chains have been analyzed, notably the Flip dynamics
of Vigoda [46], which is closely related to the chain proposed by Wang, Swendsen, and
Kotecký [47]: when a vertex v is required to change color from c to c′, the colors of the entire
neighborhood that is colored with c and c′ are flipped (the chain of Vigoda only performs
some flips with some probability). It is also possible to sample colorings using approaches
that do not use MCMC methods; for example, Efthymiou [14] proposed a combinatorial
method for sampling colors that does not use a Markov chain, and used it to show that it is
possible to sample colorings on G(n, d/n) using k > (1 + ε)d colors. A caveat is that the run
time is only polynomial w.p. 1− 2n−2/3. The main difference between Single-Flaw dynamics
and other work on sampling colors is that we allow improper states. There are other Markov
chains that also consist of “flawed” states that are not part of the space we wish to sample
from. An example is the Markov chain for sampling perfect matchings in bipartite graphs,
proposed by Broder [7] and analyzed by Jerrum and Sinclair [27] and Jerrum, Sinclair and
Vigoda [28]: the chain consists of perfect matchings (of size n), and imperfect matchings of
size n− 1. An interesting distinction is that Broder’s chain needs the imperfect matchings to
transition between perfect matchings (otherwise, it is unclear how to transition). We do not
need the imperfect states to show convergence: the Glauber dynamics are known to converge
to the uniform distribution for k ≥ ∆ + 2; we only use the imperfect colorings to bound the
mixing time. We do get the additional benefit that the Single-Flaw dynamics are guaranteed
to converge for k ≥ ∆ + 1 (in contrast to the Glauber dynamics, which are not—a simple
counterexample is a triangle graph); we do not leverage this in this work.

The method of bounding the conductance or congestion of the transition matrix of a
Markov chain has been used to great success in sampling and counting of various problems
e.g., [18, 28, 38]. To our knowledge, the only places that these types of arguments have been
successfully applied to sampling colorings is in bounding the mixing time of the Glauber
dynamics on trees with bounded degree [35] and hyperbolic graphs [2].

Sampling colorings corresponds to sampling configurations of the zero temperature k-state
anti-ferromagnetic Potts model [40]. One can draw an analogy between our technique and
temperature-tuned walks that also include higher energy levels (see e.g., [33]), though instead
of walking at a fixed temperature, which would allow some Poisson-like distribution of the
number of flaws, we allow exactly one flaw, and correct it before allowing the next flaw.

The terms treewidth and pathwidth were introduced by Robertson and Seymour [41,42];
the concept of treewidth was discovered independently several times, and was originally
introduced under a different name by Bertelè and Brioschi [3]. Of particular interest is a
work by Chekuri, Khanna and Shepherd [8] that consider multicommodity flows on graphs
of bounded treewidth. Their techniques and results are incomparable to ours; they study the
flow on graphs, while we use a flow to bound the congestion on the underlying graph of the
Single-Flaw dynamics.

2 Preliminaries

We denote the set {1, 2, . . . ,m} by [m]. Let G = (V,E) be a graph, and denote |V | = n. We
assume that the vertices of G are uniquely identified by {1, 2, . . . , n}. For any (not necessarily
simple) path p in G, let |p| denote the length of p (i.e., the number of edges in p, where if an
edge appears k times in p, it is counted k times).

APPROX/RANDOM 2018



57:6 Hybrid Paths

2.1 Colorings
For any k-coloring of G, σ : V → [k], let MCE(G) = {(u, v) : σ(u) = σ(v)} denote the
set of monochromatic edges. σ is a proper coloring if MCE(G) = ∅. σ is a singly-flawed
coloring if MCE(G) 6= ∅ and there is a vertex that is common to all edges in MCE(G), i.e.,
∃v : ∀e ∈MCE(G), v ∈ e. We say that such a vertex v is a flawed vertex of σ. Note that a
singly-flawed coloring has exactly two flawed vertices if |MCE(G)| = 1 and one flawed vertex
otherwise. We denote the set of proper k-colorings of G colors by Cp(G, k) and the set of all
singly-flawed colorings by Csf (G, k). We drop G and k when they are clear from context. Let
σ be a coloring. If, after recoloring some v ∈ V with a color c, there is no monochromatic
edge (u, v), we say that c is available to v in σ. Note that a color’s availability does not
depend on whether σ or the coloring obtained by recoloring v with c is proper, singly-flawed
or otherwise.

We first show two results that will be useful later on, regarding proper and singly-
flawed colorings: (1) the ratio of singly-flawed colorings to proper colorings is “not too large”
(Corollary 3), and (2) there is a mapping from singly-flawed colorings to proper colorings, such
that “not too many” singly-flawed colorings are mapped to any proper coloring (Corollary 4).
Both results are corollaries of the following simple lemma.

I Lemma 2. For any G = (V,E) such that |V | = n and k ≥ ∆ + 2, there exists a surjective
function

g : Cp(G, k)× [k]× [n]→ Csf (G, k).

Proof. For every coloring σ ∈ Cp(G, k), every vertex v ∈ V and every color c ∈ [k], let

σ′c,v =
{
σ(u) if u 6= v

c if u = v

If σ′c,v ∈ Csf (G, k), let g(σ, c, v) = σ′c,v, otherwise let g(σ, c, v) be some arbitrary coloring
in Csf (G, k). It is easy to see that every σ′ ∈ Csf (G, k) is in the range of g: the reverse
operation of changing the color of a flawed vertex v in σ′ to some available color gives a
proper coloring. J

The two corollaries that we require are the following.

I Corollary 3. For any G = (V,E) such that |V | = n and k ≥ ∆ + 2, |Csf (G, k)| ≤
kn|Cp(G, k)|.

I Corollary 4. For any G = (V,E) such that |V | = n and k ≥ ∆ + 2, there exists a function
g′ : Csf (G, k)→ Cp(G, k), for which each element in the co-domain has at most kn pre-images
in the domain.

2.2 Markov chains and rapid mixing
In this section we review some of the results on the mixing time of Markov chains that we
will require. The reader is referred to [32] for an excellent introduction to Markov chains and
modern techniques on bounding their mixing time.

Consider a discrete-time Markov chain MC with finite state space Ω and symmetric
transition probability matrix P (i.e., P (σ, σ′) = P (σ′, σ) for all σ, σ′ ∈ Ω). The chain is
said to be irreducible if for every pair of states σ, σ′ ∈ Ω, there exists some t such that
P t(σ, σ′) > 0; in other words, it is possible to get from any state to any state using a finite
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number of transitions. It is aperiodic if for any σ,∈ Ω, gcd{t : P t(σ, σ) > 0} = 1. It is lazy if
for all σ ∈ Ω, P (σ, σ) ≥ 1/2. A fundamental theorem of stochastic processes states that an
irreducible and aperiodic Markov chain converges to a unique stationary distribution π over
Ω, i.e., limt→∞ P t(σ, σ′) = π(σ′) for all σ, σ′ ∈ Ω. If in addition P is symmetric, then π is
uniform over Ω (e.g., [1]).

Our goal is to describe a fully-polynomial almost uniform sampler for proper colorings;
namely, a randomized algorithm that, given as inputs a graph G = (V,E) and a bias
parameter δ, outputs a random proper coloring of G from a distribution D that satisfies
dTV (D,U) ≤ δ, where U is the uniform distribution on the proper colorings of G and dTV is
the total variation distance, defined as follows:5 For any two distributions µ, ν on Ω,

dTV (µ, ν) = max
S⊆Ω
|µ(S)− ν(S)|. (2)

We are interested in the rate at which a Markov chain converges to its stationary
distribution π. We define the mixing time from a state σ to be

τσ(δ) = min{t̄ : dTV (P t(σ, ·), π) ≤ δ for all t ≥ t̄}, (3)

We further define the mixing time of the Markov chain to be τ(δ) = max
σ

τσ(δ). We say
that a Markov chain is rapidly mixing if τ(1/2e) is polynomial in n. The constant 1/2e is
arbitrary, as a bound on τ(1/2e) implies a bound on τ(δ) for any δ > 0 (e.g., [1]):

τ(δ) ≤ (1− log δ) · τ(1/2e).

In order to bound the mixing time, we describe a multicommodity flow on the underlying
graph H = (Ω, F ) of the Markov chain, where F = {(σ, σ′), P (σ, σ′) > 0} is the set of all
transitions that have positive probability.

We denote by

q(σ, σ′) = π(σ)P (σ, σ′), (4)

the ergodic flow through the edge (σ, σ′) of H (an intuitive way to think about q(σ, σ′) is
the probability of traversing edge (σ, σ′) at stationarity.)

For all ordered pairs (α, β) ∈ Ω2, let Pα,β denote a set of (not necessarily simple) directed
paths from α to β in H. A flow is a function f : P → R+ ∪ {0} where P =

⋃
α,β Pα,β that

satisfies

fα,β ≡
∑

p∈Pα,β

f(p) = π(α)π(β), (5)

for every α, β ∈ Ω.
We define the congestion on an edge (σ, σ′) with respect to a flow f by

ρf (σ, σ′) = 1
q(σ, σ′)

∑
α,β∈Ω

∑
p:(σ,σ′)∈p∈Pα,β

f(p)|p|, (6)

and the congestion of f by

ρf = max
(σ,σ′)∈F

ρf (σ, σ′).

5 Alternatively, we can define it as dTV (µ, ν) = 1
2
∑

σ∈Ω |µ(σ)− ν(σ)|. It is easy to verify that the two
definitions are equivalent.

APPROX/RANDOM 2018
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We use the following theorem, due to Sinclair [44] and Diaconis and Stroock [9], that
relates the mixing time to the congestion of a flow. Note that it holds for any flow; in order
to bound the mixing time, we need to find some flow that has low congestion.

I Theorem 5 ( [44]). For any irreducible, aperiodic, lazy and symmetric Markov chainMC
with transition matrix P on state space Ω, any flow f on the underlying graph ofMC, and
any state σ0 ∈ Ω,

τσ0(δ) ≤ ρf
(
ln π(σ0)−1 + ln δ−1) .

2.3 Pathwidth and vertex separation
A path decomposition of a graph G = (V,E) is a path P with m nodes, where each node of
P represents a subset of V : Xi ⊆ V, i ∈ [m] such that the following hold:
1.
⋃m
i=1Xi = V ,

2. For every (u, v) ∈ E, u, v ∈ Xi for some i ∈ [m].
3. For all i, j, k ∈ [m], if Xj is on the (unique) path between Xi and Xk, then Xi ∩Xk ⊆ Xj .
The first requirement guarantees that every vertex of G is in at least one node of P , the
second that every two neighboring vertices in G share at least one node in P , and the third
that if some vertex v ∈ V is in both Xi and Xk, it is in every node of the path between Xi

and Xk in P . The width of P is defined as maxi∈[m]{|Xi| − 1}. The pathwidth of G, denoted
pw(G), is the minimal ω such that there exists some path-decomposition of G with width ω.
The treewidth is similarly defined, when P is a tree.

A linear ordering of a graph G = (V,E) is a bijective mapping of vertices to integers;
L : V → {1, 2, . . . , n}. Given a graph G, a linear ordering L, and an integer j ∈ {1, . . . , n}, let
Aj be the set of vertices mapped to the integers 1, . . . , j by L; i.e., Aj = {v : L(v) ≤ j}. Let
Bj denote the set of vertices that are mapped to integers greater than j by L: Bj = V \Aj .
A minimal vertex separator for an index j ∈ {1, . . . n} (denoted MVS(G,L, j)) is a minimal
set of vertices Sj ⊂ V such that the following hold:6
1. For all u ∈ Sj , L(u) > j.
2. Aj and Bj \Sj are disconnected; that is, there is no edge (u, v) ∈ E such that u ∈ Aj , v ∈

Bj \ Sj .

W.l.o.g., we henceforth assume for simplicity that L is the identity ordering; i.e., ∀j ∈
{1, . . . , n}, L(j) = j.

The vertex separator number for a graph G, denoted VSN(G) is the minimal size of the
largest minimal vertex separator over all possible linear orderings L of G.

VSN(G) = min
L

max
j∈{1,...,n}

{|MVS(G,L, j)|}.

We call an order L for which VSN(G) is minimized a minimal order for G.
We require the following lemma and theorem.

I Lemma 6. Let G and L be a graph and a linear order thereof. For j = 1, . . . , n, set
Sj = MVS(G,L, j). For all j ∈ {2, . . . , n}, Sj−1 ⊆ Sj ∪ {j}.

The proof of Lemma 6 can be found in the appendix.

I Theorem 7 ( [29]). For any graph G, VSN(G) = pw(G).

6 Traditionally, a vertex separator for j is defined such that the separating subset appears before j in the
ordering [15]. This is identical to our definition with the order inverted.
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3 Single-Flaw dynamics

Let G = (V,E) be a graph with maximal degree ∆ and ε > 0 such that (1 + ε)∆ ≥ ∆ + 2.
The state space Ω of Markov chainMC(G, ε) (or simplyMC) is the set of all proper and
singly-flawed k-colorings of G, for k = d(1 + ε)∆e: Ω = Cp(G, k) ∪ Csf (G, k). For simplicity,
we henceforth assume that ε∆, (1 + ε)∆ and (1 + ε)ε−1 are integers. It is easy to generalize
the results to real values thereof. For σ ∈ Ω, the transitions σ → σ′ ofMC are the following

Let σ′ = σ.
With probability 1/2, do nothing (laziness).
Otherwise, choose a vertex v and color c uniformly at random from V and [k] respectively.
Tentatively, set σ′(v) = c.
If σ′ /∈ Ω, set σ′(v) = σ(v).

It is easy to verify that the chain is irreducible, aperiodic, lazy and symmetric; hence the
conditions of Theorem 5 hold, and it remains to describe a flow with low congestion of the
underlying graph ofMC. Our main result describes such a flow.

I Lemma 8. Let ε > 0 and G be a graph with maximal degree ∆. Then there exists a flow f

on the underlying graph of the Markov chainMC(G, ε) such that

ρf ≤ 8 pw(G)(1 + ε)3∆3n5 ((1 + ε)ε−1)2 pw(G)
.

There are at most kn possible colorings of G. Because the stationary distribution is
uniform, for all σ ∈ Ω, π(σ) ≥ 1

kn , hence ln π(σ)−1 = O(n logn).
Theorem 5 and Lemma 8 imply the following theorem, which is our main result.

I Theorem 9. Let ε > 0 and G be a graph with maximal degree ∆. The mixing time of
MC(G, ε) satisfies

τ(δ) = O
(

pw(G)(1 + ε)3∆3n5 ((1 + ε)ε−1)2 pw(G) (
n logn+ ln δ−1)) .

In particular, if pw(G) = O(logn), the chain mixes in polynomial time.

In order to prove Lemma 8, we design a flow forMC. To do so, we first describe the set
of paths that we will route the flow through.

3.1 Hybrid paths
Let L be some minimal order of G. For simplicity and w.l.o.g. we assume that L is the
identity order, i.e., L(i) = i for all i ∈ [n]. We remark that we do not need to explicitly
find L; we only require its existence for the hybrid paths argument. Let λ = VSN(G)

logn . If
pw(G) = O(logn), as is assumed here, λ is a constant.

For each j ∈ [n], let Sj = MVS(G,L, j) be a minimal vertex separator. A hybrid path is
an ordered set of colorings. We denote the set of hybrid paths from α to β by γα,β . For the
rest of this subsection and the next, we assume that α and β are both proper colorings; we
will extend the sets of paths to include ones that start and/or end at singly-flawed colorings
in Section 3.3. Each hybrid path consists of n phases, where phase j consists of |Sj | + 1
steps, for a total of ` = n+

∑n
j=1 |Sj | ≤ (λ+ 1)(n logn) steps. Each step is a recoloring of

some vertex; it is possible that a vertex is “recolored” with the same color. In that case, the
state (coloring) does not change, but we still count this redundant recoloring as a step, as it
guarantees that all paths are of the same length; this will help to make the analysis more
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concise. A state that appears at the start of the `th step of the jth phase of a hybrid path
in γα,β is said to be at distance (j, `) from α; alternatively, we say that it happens at time
(j, `).7 We denote the states of γα,β that are at distance (j, `) from α by Φα,β(j, `). The set
of hybrid paths γα,β can be thought of as a layered graph, where all states of Φα,β(j, `) are
placed in the same layer.

3.1.1 A phase of the hybrid paths
We describe a single phase of γα,β . For any j ∈ [n], all states in Φα,β(j, 1) are proper colorings.
Note that Φα,β(1, 1) = {α}. For the first step of the jth phase, for every σi ∈ Φα,β(j, 1),
set

σ′i(v) =
{
σi(v) if v 6= j

β(j) if v = j
.

We therefore have that Φα,β(j, 2) =
⋃
i σ
′
i. It is clear that there is only one way to

route the flow entering σi: it is all routed to σ′i on (σi, σ′i). It is possible that flow becomes
consolidated in this step: the flow from all states σi ∈ Φα,β(j, 1) that differ only in the jth
coordinate is routed to the same σ′i. Note that every σ′ ∈ Φα,β(j, 2) is either a proper or a
singly-flawed coloring.

The `th step in the jth phase, ` ∈ {2, 3, . . . |Sj |+1} is a splitting step, and is the following:
Let u` be the (lexicographically) (`− 1)th vertex of Sj . For every σi ∈ Φα,β(j, `), let Ci(u`)
be the set of colors available to u` under σi. For each σi ∈ Φα,β(j, `) and color c ∈ Ci(u`), let

σ′i,c(v) =
{
σi(v) if v 6= u`

c if v = u`
.

We have that Φα,β(j, `+ 1) =
⋃
i σ
′
i,c. From each state σi ∈ Φα,β(j, `), the flow is split

evenly among the transitions (i.e., a 1/|Ci(u`)| fraction of the flow entering σi is routed on
each (σi, σ′i,c)). Note that all states in Φα,β(j, |Sj | + 2) are proper colorings, as any edge
that may have been monochromatic in any σ ∈ Φα,β(j, 2) will have been recolored. For all
1 ≤ j < n, set Φα,β(j + 1, 1) = Φα,β(j, |Sj |+ 2). Note that Sn = ∅ and Φα,β(n, 2) = {β}.

Because for all j, |Sj | = O(logn), given α, β, j and `, the color of most vertices in
Φα,β(j, `) is uniquely determined. In particular, for ` > 1, denote Aj = {v : v ≤ j} and
Bj = V \ (Aj ∪ Sj).8 It must hold that for any σ ∈ Φα,β(j, `), va ∈ Aj , and vb ∈ Bj ,
σ(va) = β(va) and σ(vb) = α(vb). This is because all the vertices in Aj have been recolored
to β and will not be recolored again, while the vertices in Bj have no neighbors in Aj , hence
they have not been recolored yet.

We denote by QS(α, β, j, `) (QS stands for “quantum set”) the set of vertices whose
color is not uniquely defined by α, β, j, `. By Lemma 6, it holds that QS(α, β, j, `) ⊆ Sj , but
equality does not necessarily hold: assume that Sj−1 ⊂ Sj , and let u 6= j be some vertex in
Sj \ Sj−1. Then u’s color is still α(u) at time (j, 2), as it has not yet been recolored, even
though u ∈ Sj .

We note that QS(α, β, j, `) does not in fact depend on α or β. In fact,

7 Note that a state can be at several distances if it appears more than once on the path.
8 For ` = 1, we consider (j − 1, |Sj−1|+ 2) instead of (j, 1), unless j = 1, in which case the vertices are all
colored by α.
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I Lemma 10. QS(α, β, j, `) is uniquely determined by either
1. j and `, or
2. j and (σ, σ′).

The proof of Lemma 10 can be found in the appendix.
Due to Lemma 10, we sometimes refer to QS(α, β, j, `) by QS(j, (σ, σ′)) or QS(j, `).

3.2 Bounding the flow
Let α and β be proper colorings, t = (σ, σ′) ∈ F be some transition, and j ∈ [n] be an integer.
Denote the flow routed through t from α to β in phase j by fj,t,α,β . Note that we are only
considering the flow routed through t during phase j; it is possible that the hybrid path
passes through t in several phases, possibly carrying a different flow each time. Intuitively, it
seems natural that after the flow was split evenly several times, “not too much” flow is routed
through any state, as it has a specific combination of colors of the vertices of QS(j, t), and
many such combinations are possible. It is not straightforward to show this, however, as the
colors of different vertices in each state are not independent. The difficulty is compounded
by the fact that flow is consolidated at the first step of every phase. Nevertheless, we can
prove the following lemma, whose proof can be found in the full version of the paper, by
rearranging the vertices of QS(j, t) and using an inductive reasoning on this new order.

I Lemma 11. The flow routed from α to β through any t = (σ, σ′) ∈ F in any phase j ∈ [n]
is at most

fj,t,α,β ≤
π(α)π(β)

(ε∆)|QS(j,t)| .

The proof of Lemma 11 can be found in the appendix.
We want to bound the total flow through a transition in any single phase. The following

set of recoloring functions χ is useful. Let C be a set of (available) colors. χC is a function,
parameterized by C, that takes as an input a color c ∈ [k]. Its output is a color from
C, such that each color in C has the same number of pre-images, up to one. We do not
explicitly define χ, only note that such a set of functions exists. For example, if k = 13,
C = {1, 2, 3, 4, 5}, χC could allocate (c mod 5) + 1 to every c ∈ [k], giving each color in C
either two or three pre-images. We make the following observation (recall we assume ε∆,
(1 + ε)∆ and (1 + ε)ε−1 are integers).

I Lemma 12. For χC as defined above, if k = (1 + ε)∆ and |C| ≥ ε∆, each color in C has
at most (1 + ε)ε−1 pre-images in [k].

Armed with Lemma 11 and the functions χ, we are now ready to bound the total flow
through a transition in any single phase.

I Lemma 13. The flow fj,t routed through any t = (σ, σ′) ∈ F in any phase j ∈ [n] satisfies

fj,t ≤ π(·)2|Cp| ·
(
(1 + ε)ε−1)2|Sj | ,

where π(·) is the probability of any state at stationarity.

Proof. For each (j, t), where j ∈ [n] and t = (σ, σ′) ∈ F , denote by pairsj,t the set of pairs
of states α, β ∈ C2

p whose paths pass through t in phase j. We describe a function µj,t whose
domain is pairsj,t. We view the co-domain of µj,t as the Cartesian product of 3 sets X, Y
and Z: µj,t : pairsj,t → X × Y × Z; the output of µj,t(·) is a triple (x, y, z). The function
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will be injective, therefore the size of the co-domain of µj,t will serve as an upper bound to
|pairsj,t|.

The sets X,Y, Z are the following.
X is the set of all proper colorings. Assume that the input to µj,t is some pair (α, β). In
the coloring specified by x, all vertices in Aj9 are colored by α. All vertices in Bj are
colored by β. Before specifying the coloring of Sj under x, note that already, together
with j and t, this allows us to deduce α completely on all vertices in V \QS(j, t) and β
on all vertices V \ Sj . To determine the colors of Sj in x, we color them one at a time,
using χ. This information, while not characterizing β(v) completely for v ∈ Sj , allows
allows us to restrict the possible value of β(v) to a set of size at most (1 + ε)ε−1 possible
values.
Y is

[
(1 + ε)ε−1]|Sj |, allowing us to pinpoint β(v) for every v ∈ Sj .

Finally, Z is simply all possible colorings of the vertices of QS(j, t) under α.
Clearly x, y, z, j and t allow us to recover α and β. The size of the co-domain is at most

|Cp| ·
(
(1 + ε)ε−1)|Sj | · k|QS(j,t)|.

Combining with Lemma 11 we get that the total flow through any transition t at phase j is
at most

fj,t ≤ |Cp| ·
(
(1 + ε)ε−1)|Sj | · k|QS(j,t)| · π(·)π(·)

(ε∆)|QS(j,t)|

= π(·)2|Cp|
(
(1 + ε)ε−1)|Sj | · ((1 + ε)∆)|QS(j,t)|

(ε∆)|QS(j,t)|

≤ π(·)2|Cp| ·
(
(1 + ε)ε−1)2|Sj | ,

where the last inequality is because QS(j, t) ⊆ Sj for any t. J

3.2.1 The congestion of an edge
We are ready to prove our main result of the section, that the congestion of any edge
(σ, σ′) ∈ F under the flow defined by the hybrid paths from proper coloring to proper
colorings, is polynomial in the number of vertices.

I Lemma 14. The congestion of any transition t under f , when f is restricted to flows from
proper colorings to proper colorings, satisfies

ρf (t) ≤ 2k(λ+ 1)n3 logn
(
(1 + ε)ε−1)2 pw(G)

.

The proof of Lemma 14 can be found in the appendix.

3.3 Mixing time
Lemma 14 applies to the congestion from flow between proper colorings only. We extend
this result to all of f . We rephrase our main lemma:

I Lemma 15. The congestion of any transition t under f satisfies

ρf (t) ≤ 8k3(λ+ 1)n5 logn
(
(1 + ε)ε−1)2 pw(G)

.

The proof of Lemma 15 can be found in the appendix.

9 As before, Aj = {v : v ≤ j}, except for ` = 0, for which Aj = {v : v < j}.
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4 The sampling algorithm

In order to sample a proper coloring, we need to execute the Markov chain sufficiently many
times to guarantee that w.h.p. it outputs a proper coloring, and when it does, return that
coloring. The pseudo code is given as Algorithm 1 in Appendix A. For graphs of pathwidth
bounded by O(logn), the algorithm runs time polynomial in n and log δ, where δ is the
required bias parameter.

I Theorem 16. Algorithm 1 is a fully polynomial almost uniform sampler for proper colorings
with bias parameter δ.

The proof of Theorem 16 can be found in the appendix.
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A The sampling algorithm

Algorithm 1: An almost-uniform sampler for proper colorings.
Input :G = (V,E) with maximal degree ∆, a number of colors k ≥ ∆ + 2, a bias

parameter δ > 0
Output : a proper k-coloring of G

Set ε = d k∆e;
Set δ1 = δ/(kn+ 1)2;
Set T = dln(3/δ)(kn+ 2)2e;
for t = 1 to T do

SimulateMC(G, ε) for τ(δ1) steps, starting from an arbitrary proper coloring;
If the final state σ is a proper coloring, return σ;

Return an arbitrary proper coloring;
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B Missing proofs

Proof of Lemma 2

Proof. For every coloring σ ∈ Cp(G, k), every vertex v ∈ V and every color c ∈ [k], let

σ′c,v =
{
σ(u) if u 6= v

c if u = v

If σ′c,v ∈ Csf (G, k), let g(σ, c, v) = σ′c,v, otherwise let g(σ, c, v) be some arbitrary coloring
in Csf (G, k). It is easy to see that every σ′ ∈ Csf (G, k) is in the range of g: the reverse
operation of changing the color of a flawed vertex v in σ′ to some available color gives a
proper coloring. J

Proof of Corollary 3

Proof. Immediate from the surjectivity of the function g in Lemma 2. J

Proof of Corollary 4

Proof. For every σ′ ∈ Csf , arbitrarily select one pre-image (σ, v, c) w.r.t. g, and set σ as the
image for σ′ under g′. J

Proof of Lemma 6

Proof. For any j ∈ {1, . . . , n}, Sj is uniquely determined: it is exactly the neighbors of
the vertices of Aj in Bj . This is because for every v ∈ Aj , the set N(v) ∩ Bj must all be
in Sj , otherwise there is an edge between v and Bj . From the minimality of Sj , therefore,
Sj =

⋃
v∈Aj N(v) ∩Bj . Hence,

If j ∈ Sj−1 then Sj = Sj−1 \ {j} ∪ (N(j) ∩Bj).
If j /∈ Sj−1 then Sj = Sj−1 ∪ (N(j) ∩Bj).

This completes the proof of the lemma. J

Proof of Lemma 10

Proof. For any α, β, the same vertex is recolored at (j, `): at ` = 1, vertex j is recolored; in
all other instances, u` is recolored by at least ε∆ different colors, regardless of α, β. Further,
note that once a vertex u is in such a “quantum state”, it will remain in quantum state
until it is colored β(u) at distance (u, 1). Therefore, although we cannot recover the exact
transitions used without knowledge of α, β, the set of vertices whose color is unknown at
any given time is fixed. For the second observation, notice that (σ, σ′) recolors some specific
vertex u` (even if it is an idle recoloring), hence ` can be inferred. J

Proof of Lemma 11

Proof. From Lemma 10, (j, t) uniquely defines (j, `). If no flow is routed from α to β through
t in phase j, the lemma is trivially satisfied. Otherwise, we show that

fj,`,α,β ≤
π(α)π(β)

(ε∆)|QS(j,`)| ,

where fj,`,α,β is the maximal flow from α to β through any t at distance (j, `) from α.
Order the vertices of QS(j, `) in reverse order of the time since their last color change
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(possibly a null color change). That is, the vertex whose color changed most recently is
last in the order. Let M = |QS(j, `)| and relabel the vertices of QS(j, `) by 1, . . . ,M
according to their place in this order. Similarly, relabel Φα,β(j′, `′), by Φ1, . . . ,ΦM , where
Φi is the set of states at the time just after vertex i last changed its color. In other words,
ΦM = Φα,β(j, ` + 1),ΦM−1 = Φα,β(j, `), and so on. It is possible that for some m, Φm

corresponds to states in the previous phase, i.e., Φm = Φα,β(j − 1, `′). Note that we drop
the α, β from the notation for clarity, but we are still only considering the flow from α to β.

We now show by that for any set of m ≤ M colors c1, . . . , cm, at most π(α)π(β)
(ε∆)m flow is

routed into {σ ∈ Φm : σ(i) = ci, i ∈ [m]}. In other words, fix the colors c1, . . . , cm. We want
to bound the flow that passes through (into) the states of Φm, where vertices 1, . . . ,m are
colored with c1, . . . , cm respectively. We do this by induction on m.

The base case: The total flow from α to β through Φi, for any i, is exactly π(α)π(β). For
any c1 ∈ [k], at most π(α)π(β)

ε∆ flow is routed through {σ ∈ Φ1 : σ(1) = c1}. This is because
the last time vertex 1 changed color, at most 1/ε∆ of all the flow was routed to states where
v’s color is c1.

The inductive step: From the inductive hypothesis, at most π(α)π(β)
(ε∆)m−1 flow is routed through

{σ ∈ Φm−1 : σ(i) = ci, i ∈ [m− 1]}. From the construction of the hybrid paths, for each of
these states, at most 1/ε∆ of the flow entering it flows to a state where vertex m is colored
cm. J

Proof of Lemma 14

Proof. From the definition of the congestion on an edge (Equation (6)), we have

ρf (t) = 1
q(t)

∑
α,β∈Ω

∑
p:t∈p∈P(α,β)

f(p)|p|

≤ (λ+ 1)n logn
q(t)

∑
α,β∈Ω

∑
p:t∈p∈P(α,β)

f(p) (7a)

= 2|Ω|k(λ+ 1)n2 logn
∑
α,β∈Ω

∑
p:t∈p∈P(α,β)

f(p) (7b)

= 2|Ω|k(λ+ 1)n2 logn
n∑
j=1

∑
α,β∈Ω

fj,t,α,β (7c)

= 2|Ω|k(λ+ 1)n2 logn
n∑
j=1

fj,t

≤ 2|Ω|k(λ+ 1)n2 logn
n∑
j=1

π(·)2|Cp| ·
(
(1 + ε)ε−1)2|Sj | (7d)

= 2|Cp|k(λ+ 1)n2 logn
|Ω|

n∑
j=1

(
(1 + ε)ε−1)2|Sj |

≤ 2k(λ+ 1)n3 logn
(
(1 + ε)ε−1)2 pw(G)

.

Inequality (7a) is because the length of any hybrid path is at most (λ+1)n logn; Equality (7b)
is due to the definition of q: q(σ, σ′) = π(σ)P (σ, σ′), where π(σ) = |Ω|−1 and P (σ, σ′) =
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(2kn)−1; Equality (7c) is simply a rephrasing that holds because∑
α,β∈Ω

∑
p:t∈p∈P(α,β)

f(p)

is the flow through t under f ; Inequality (7d) is due to Lemma 13. The final inequality is
due to Theorem 7, as the pathwidth of a graph equals its vertex separation number. J

Proof of Lemma 15

Proof. We use the function g′ from singly-flawed to proper colorings described in Corollary 4
to define the flows that have a singly-flawed coloring as (at least) one of their endpoints. For
every α, β such that α ∈ Csf and β ∈ Cp, we route the entire flow on the transition (α, g′(α))
and then proceed using the canonical paths described above for routing the flow from g′(α) to
β. If α ∈ Cp, and β ∈ Csf , we route the flow from α to g′(β) using the canonical paths above
and then on the edge (g′(β), β). Finally, if α, β ∈ Csf , we route the entire flow on (α, g′(α)),
use the canonical paths above to route from g′(α) to g′(β) and finally route the entire flow
on (g′(β), β). For every state σ ∈ Cp, there are at most kn states σ′ ∈ Csf : g′(σ′) = σ.
Therefore, we have multiplied the flow on every edge by at most

k2n2 + 2kn+ 1 < 4k2n2, (8)

where the first term is for pairs α, β ∈ Csf , the third is for α, β ∈ Cp, and the second term on
the left hand side is for mixed pairs. We added a further

knπ(·)2|Ω| = 2kn
|Ω| < 1 (9)

to each edge (σ, g′(σ)) and (g′(σ), σ): there are at most |Ω| paths from a state σ ∈ Cp (to
any other state), hence at most kn|Ω| paths from any σ′ ∈ Csf . We absorb Inequality (9)
and the fact that pw(G) + logn = (λ+ 1) logn into Inequality (8). Multiplying the bound of
Lemma 14 by 4k2n2 gives the required bound. J

Proof of Theorem 16

Proof. We denote by π̂ the distribution reached byMC after τ(δ1) steps. By definition, the
total variation distance between and π and π̂ is at most δ1, hence for any S ⊂ Ω, it holds
that

|π(S)− π̂(S)| ≤ δ1. (10)

Choosing S = Cp and applying Corollary 3 gives that the probability of the final state being a
proper coloring is at least 1

kn+1 − δ1. Our choice of T is so that Hoeffding’s bound guarantees
that Algorithm 1 will output a proper coloring during the for loop (i.e., a final state of the
Markov chain and not an arbitrary coloring), with probability at least 1− δH , where δH ≤ δ

3 .
To show that Algorithm 1 is an almost uniform sampler for proper colorings, we need

to show that the sampled coloring is drawn from a distribution that is close to uniform. In
other words, if σ is the state output by Algorithm 1, then for any S ⊆ Cp

π(S)
π(Cp)

− δ ≤ Pr[σ ∈ S] ≤ π(S)
π(Cp)

+ δ.



S. Vardi 57:19

Pr[σ ∈ S] ≥ π̂(S)
π̂(Cp)

(1− δH) (11a)

≥ π̂(S)
π̂(Cp)

− δH

≥ π(S)− δ1
π(Cp) + δ1

− δH (11b)

≥ π(S)− 2δ1
π(Cp)

− δH (11c)

= π(S)
π(Cp)

− 2δ1
π(Cp)

− δH

≥ π(S)
π(Cp)

− 2δ
3 −

δ

3 ,

where (11a) is the probability that the Algorithm outputs a proper coloring and it is in S;
(11b) is due to Equation (10); (11c) is because a−1

b+1 ≥
a+2
b for b ≥ a.

The complementary Pr[σ ∈ S] ≤ π(S)
π(Cp) + δ is immediate by considering the set Cp \ S: if

this were not the case then it would hold that Pr[σ ∈ S] + Pr[σ ∈ Cp \ S] > 1. J
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