
Survivable Network Design for Group Connectivity
in Low-Treewidth Graphs
Parinya Chalermsook
Department of Computer Science, Aalto University, Espoo, Finland
parinya.chalermsook@aalto.fi

Syamantak Das
Indraprastha Institute of Information Technology Delhi, Delhi, India
syamantak@iiitd.ac.in

https://orcid.org/0000-0002-4393-8678

Guy Even
Tel-Aviv University, Tel-Aviv, Israel
guy@eng.tau.ac.il

Bundit Laekhanukit1

Max-Planck-Institut für Informatik, Saarücken, Germany and
Institute for Theoretical Computer Science, Shanghai University of Finance and Economics,
Shanghai, China
blaekhan@mpi-inf.mpg.de

https://orcid.org/0000-0002-4476-8914

Daniel Vaz
Max-Planck-Institut für Informatik, Germany & Graduate School of Computer Science,
Saarland University, Saarücken, Germany
ramosvaz@mpi-inf.mpg.de

https://orcid.org/0000-0003-2224-2185

Abstract
In the Group Steiner Tree problem (GST), we are given a (edge or vertex)-weighted graph
G = (V,E) on n vertices, together with a root vertex r and a collection of groups {Si}i∈[h] : Si ⊆
V (G). The goal is to find a minimum-cost subgraph H that connects the root to every group.
We consider a fault-tolerant variant of GST, which we call Restricted (Rooted) Group SNDP. In
this setting, each group Si has a demand ki ∈ [k], k ∈ N, and we wish to find a minimum-cost
subgraph H ⊆ G such that, for each group Si, there is a vertex in the group that is connected
to the root via ki (vertex or edge) disjoint paths.

While GST admits O(log2 n log h) approximation, its higher connectivity variants are known
to be Label-Cover hard, and for the vertex-weighted version, the hardness holds even when k = 2
(it is widely believed that there is no subpolynomial approximation for the Label-Cover problem
[Bellare et al., STOC 1993]). More precisely, the problem admits no 2log1−ε n-approximation
unless NP ⊆ DTIME(npolylog(n)). Previously, positive results were known only for the edge-
weighted version when k = 2 [Gupta et al., SODA 2010; Khandekar et al., Theor. Comput. Sci.,
2012] and for a relaxed variant where ki disjoint paths from r may end at different vertices in a
group [Chalermsook et al., SODA 2015], for which the authors gave a bicriteria approximation.
For k ≥ 3, there is no non-trivial approximation algorithm known for edge-weighted Restricted
Group SNDP, except for the special case of the relaxed variant on trees (folklore).

Our main result is an O(logn log h) approximation algorithm for Restricted Group SNDP that
runs in time nf(k,w), where w is the treewidth of the input graph. Our algorithm works for
both edge and vertex weighted variants, and the approximation ratio nearly matches the lower

1 ISF grant # 621/12, I-CORE grant # 4/11, NSF grant #CCF-1740425

© Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and Daniel Vaz;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:parinya.chalermsook@aalto.fi
mailto:syamantak@iiitd.ac.in
https://orcid.org/0000-0002-4393-8678
mailto:guy@eng.tau.ac.il
mailto:blaekhan@mpi-inf.mpg.de
https://orcid.org/0000-0002-4476-8914
mailto:ramosvaz@mpi-inf.mpg.de
https://orcid.org/0000-0003-2224-2185
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

bound when k and w are constants. The key to achieving this result is a non-trivial extension
of a framework introduced in [Chalermsook et al., SODA 2017]. This framework first embeds
all feasible solutions to the problem into a dynamic program (DP) table. However, finding the
optimal solution in the DP table remains intractable. We formulate a linear program relaxation
for the DP and obtain an approximate solution via randomized rounding. This framework also
allows us to systematically construct DP tables for high-connectivity problems. As a result,
we present new exact algorithms for several variants of survivable network design problems in
low-treewidth graphs.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems

Keywords and phrases Approximation Algorithms, Hardness of Approximation, Survivable Net-
work Design, Group Steiner Tree

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.8

Related Version A full version appears at https://arxiv.org/abs/1802.10403.

Acknowledgements Parts of this work were done while Parinya Chalermsook, Bundit Laekha-
nukit and Daniel Vaz were visiting the Simons Institute for the Theory of Computing. It was
partially supported by the DIMACS/Simons Collaboration on Bridging Continuous and Dis-
crete Optimization through NSF grant #CCF-1740425. Parinya Chalermsook is supported by
European Research Council (ERC) under the European Union’s Horizon 2020 research and innov-
ation programme (grant agreement No 759557) and the Academy of Finland Research Fellows
Grant #310415. Parts of this work were done while Guy Even was visiting the Max-Planck-
Institut für Informatik. Parts of this work were done while Syamantak Das was at Universität
Bremen.

1 Introduction

Network design is an important subject in computer science and combinatorial optimization.
The goal in network design is to build a network that meets some prescribed properties while
minimizing the construction cost. Survivable network design problems (SNDP) are a class of
problems where we wish to design a network that is resilient against link or node failures.

These problems have been phrased as optimization problems on graphs, where we are
given an n-vertex (undirected or directed) graph G = (V,E) with costs on edges or vertices
together with a connectivity requirement k : V ×V → N. The goal is to find a minimum-cost
subgraph H ⊆ G, such that every pair u, v ∈ V of vertices are connected by k(u, v) edge-
disjoint (resp., openly vertex-disjoint) paths. In other words, we wish to design a network
in which every pair of vertices remains connected (unless k(u, v) = 0), even after removing
k(u, v)− 1 edges (or vertices). The edge-connectivity version of SNDP (EC-SNDP) models
the existence of link failures and the vertex-connectivity (VC-SNDP) models the existence
of both link and node failures. These two problems were known to be NP-hard and have
received a lot of attention in the past decades (see, e.g., [26, 16, 31, 33]).

While VC-SNDP and EC-SNDP address the questions that arise from designing telecom-
munication networks, another direction of research focuses on the questions that arise from
media broadcasting as in cable television or streaming services. In this case, we may wish to
connect the global server to a single local server in each community, who will forward the

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.8
https://arxiv.org/abs/1802.10403

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:3

stream to all the clients in the area through their own local network. The goal here is slightly
different from the usual SNDP, as it is not required to construct a network that spans every
client; instead, we simply need to choose a local server (or representative), which will take
care of connecting to other clients in the same group. This scenario motivates the Group
Steiner Tree problem (GST) and its fault-tolerant variant, the Rooted Group SNDP.

In Rooted Group SNDP, we are given a graph G = (V,E) with costs on edges or vertices,
a root vertex r, and a collection of subsets of vertices called groups, S1, . . . , Sh, together
with connectivity demands k1, . . . , kh ∈ [k], k ∈ N. The goal in this problem is to find a
minimum cost subgraph H ⊆ G such that H has ki edge-disjoint (or openly vertex-disjoint)
paths connecting the root vertex r to some vertex vi ∈ Si, for all i ∈ [h]. In other words, we
wish to choose one representative from each group and find a subgraph of G such that each
representative is k-edge-(or vertex)-connected to the root.

When k = 1, the problem becomes the well-known Group Steiner Tree (GST) problem.
Here, we are given a graph G = (V,E) with edge or vertex costs, a root r and a collection
of subsets of vertices called groups, S1, . . . , Sh ⊆ V , and the goal is to find a minimum-cost
subgraph H ⊆ G that has a path to some vertex in each Si, for i ∈ [h]. The GST problem is
known to admit an O(log3 n)-approximation algorithm [22] and cannot be approximated to
a factor of log2−ε n unless NP ⊆ ZPTIME(npolylog(n)) [25].

The Rooted Group SNDP generalizes GST to handle fault tolerance. The case where k = 2
is studied in [27, 23], culminating in the Õ(log4 n)-approximation algorithm for the problem.
For k ≥ 3, there is no known non-trivial approximation algorithm. It is known among the
experts that this problem is at least as hard as the Label-Cover problem2.

Chalermsook, Grandoni and Laekhanukit [13] studied a relaxed version of the problem in
which we are not restricted to connect to a single vertex in each group and thus need only
ki edge-disjoint paths connecting the root vertex to the whole group Si. Despite being a
relaxed condition, the problem remains as hard as the Label-Cover problem, and they only
managed to design a bicriteria approximation algorithm.

To date, there is no known bicriteria or even sub-exponential-time poly-logarithmic
approximation for Rooted Group SNDP when k ≥ 3. The following is an intriguing open
question:

What are the settings (i.e., ranges of k or graph classes) in which Rooted Group SNDP
admits a poly-logarithmic approximation?

In this paper, we focus on developing algorithmic techniques to approach the above
question. We design poly-logarithmic algorithms for a special class of graphs – graphs with
bounded treewidth – in the hope that it will shed some light towards solving the problem
on a more general class of graphs, for instance, planar graphs (this is the case for the
Steiner tree problem, where a sub-exponential-time algorithm for planar graphs is derived
via decomposition into low-tree width instances [32]).

Our main technical building block is a dynamic program (DP) that solves rooted versions
of EC-SNDP and VC-SNDP in bounded-treewidth graphs. However, a straightforward DP
computation is not applicable for Restricted Rooted Group SNDP, simply because the problem
is NP-hard on trees (so it is unlikely to admit a polynomial-size DP-table). Hence, we
“embed” the DP table into a tree and apply a polylogarithmic approximation algorithm using
randomized rounding of a suitable LP-formulation by Chalermsook et al. [12]. We remark
that when the cost is polynomially bounded (e.g., in the Word RAM model with words of size

2 The hardness for the case of directed graph was shown in [27], but it is not hard to show the same
result for undirected graphs.

APPROX/RANDOM 2018

8:4 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

O(logn)), polynomial-time algorithms for EC-SNDP and VC-SNDP follows from Courcelle’s
Theorem [17, 6] (albeit, with much larger running time). However, employing the theorem
as a black-box does not allow us to design approximation algorithms for Restricted Rooted
Group SNDP.

To avoid confusion between the relaxed and restricted version of Rooted Group SNDP
(usually having the same name in literature), we refer to our problem as Restricted Group
SNDP. (For convenience, we also omit the word "rooted".)

1.1 Related Work
SNDP problems on restricted graph classes have also been studied extensively. When k = 1,
the problems are relatively well understood. Approximation algorithms and PTAS have
been developed for many graph classes: low-treewidth graphs [1, 18], metric-cost graphs [14],
Euclidean graphs [9], planar graphs [8], and graphs of bounded genus [7]. However, when
k ≥ 2, the complexity of these problems remains wide open. Borradaile et al. [7, 10] showed
an algorithm for k = 1, 2, 3 on planar graphs, but under the assumption that one can buy
multiple copies of edges (which they called relaxed connectivity setting). Without allowing
multiplicity, very little is known when k ≥ 2: Czumaj et al. [19] showed a PTAS for k = 2 in
unweighted planar graphs, and Berger et al. [3] showed an exact algorithm running in time
2O(w2)n for the uniform demand case (i.e., k(u, v) = 2 for all pairs (u, v)). Thus, without the
relaxed assumption, with non-uniform demands or k > 2, the complexity of SNDP problems
on bounded-treewidth graphs and planar graphs is not adequately understood.

The technique of formulating an LP from a DP table has been used in literature. It
is known that any (discrete) DP can be formulated as an LP, which is integral [30]. (For
Stochastic DP, please see, e.g., [29, 21, 11, 20].) However, the technique of producing a tree
structure out of a DP table is quite rare. Prior to this paper the technique of rounding LP
via a tree structure was used in [24] to approximate the Sparsest-Cut problem. The latter
algorithm is very similar to us. However, while we embed a graph into a tree via a DP table,
their algorithm works directly on the tree decomposition. We remark that our technique is
based on the previous work in [12] with almost the same set of authors.

1.2 Hardness of Approximating Restricted Group SNDP
As mentioned, it is known among the experts that vertex-cost variant of the Restricted
Group SNDP has a simple reduction for the Label-Cover problem and more generally, the k-
Constraint Satisfaction problem (k-CSP). The original construction was given by Khandekar,
Kortsarz and Nutov [27] for the Restricted Group SNDP on directed graphs. However,
the same construction applies for the Vertex-Weighted Restricted Group SNDP. The k-CSP
hardness implies that even for ki ∈ {0, 2}, Vertex-Weighted Restricted Group SNDP cannot be
approximated to within a factor of 2log1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylog(n)),
and the approximation hardness is conjectured to be polynomial on n, say nδ for some
0 < δ < 1, under the Sliding Scale Conjecture [2]. So far, we do not know of any non-trivial
approximation for this problem for k ≥ 2.

To be formal, the approximation hardness of Vertex-Weighted Restricted Group SNDP is
stated below. While the hardness result is considered a folklore, we are aware that this fact
might not be clear for the readers. We provide the proof sketch in the full version of the
paper.

I Theorem 1 (Folklore). Consider the Vertex-Weighted Restricted Group SNDP problem
when ki are bounded for all i. The problem admits no 2log1−ε n-approximation algorithm,
for any constant ε > 0, unless NP ⊆ DTIME(npolylog(n)). Moreover, assuming the Sliding

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:5

Scale Conjecture, there exists a constant 0 < δ < 1 such that the problem admits no nδ-
approximation algorithm.

The edge-cost variant has been studied in [27, 23], and a polylogarithmic approximation
is known for the case k = 2 [27]. For k > 3, there is no known non-trivial approximation
algorithm. The relaxed variant where the k disjoint paths from the root may end at different
vertices in each group Si has also been studied in [27, 23]. Chalermsook, Grandoni and
Laekhanukit proposed a bicriteria approximation algorithm for the Relaxed Restricted Group
SNDP [13]; however, their technique is not applicable for the restricted version. Note that
the hardness of the edge-cost variant of Relaxed Restricted Group SNDP is k1/6−ε, for any
ε > 0 [13]. It is not hard to construct the same hardness result for Restricted Group SNDP.
We believe that Restricted Group SNDP is strictly harder than the relaxed variant.

1.3 Our Results & Techniques

Our main result is the following approximation result for Restricted Group SNDP.

I Theorem 2. There is a randomized algorithm that runs in time nf(w,k), for some function
f , and returns, with high probability, a feasible solution to Restricted Group SNDP that has
expected cost at the most O(logn log h) times the cost of an optimal solution. Moreover, the
algorithm works for both edge and vertex weighted variants.

The proof of this theorem relies on the technique introduced in [12]. We give an overview
of this technique and highlight how this paper departs from it.

In short, this technique “bridges” the ideas of dynamic program (DP) and randomized
LP rounding in two steps3. Let us say that we would like to approximate optimization
problem. In the first step, a “nice” DP table that captures the computation of the optimal
solution is created, and there is a 1-to-1 correspondence between the DP solution and the
solution to the problem. However, since the problem is NP-hard (in our case, even hard
to approximate to within some poly-logarithmic factor), we could not follow the standard
bottom-up computation of DP solutions. The idea of the second step is to instead write an
LP relaxation that captures the computation of the optimal DP solution, and then use a
randomized dependent rounding to get an approximate solution instead; the randomized
rounding scheme is simply the well-known GKR rounding [22]. Roughly speaking, the size of
the DP table is n · wO(w), while the LP relaxation has nO(w logw) variables and constraints,
so we could get an O(logn log h) approximation in time nO(w logw).

The main technical hurdle that prevents us from using this technique to Restricted Group
SNDP directly is that there was no systematic way to generate a “good” DP table for arbitrary
connectivity demand k. (The previous result was already complicated even for k = 1.) This
is where we need to depart from the previous work. We devise a new concept that allows
us to systematically create such a DP table for any connectivity demand k. Our DP table
has size n · f(k,w) for some function k and w, and it admits the same randomized rounding
scheme in time ng(k,w), therefore yielding the main result.

As by-products, we obtain new DP algorithms for some well-studied variants of SNDP,
whose running time depends on the treewidth of the input graph (in particular, n · f(k,w)).

3 One may view our result as a “tree-embedding” type result. Please see [12] for more discussion along
this line. Here we choose to present our result in the viewpoint of DP & LP.

APPROX/RANDOM 2018

8:6 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

Subset connectivity problems: Subset k-Connectivity is a well-studied SNDP problem
(Subset k-EC and Subset k-VC for edge and vertex connectivity, respectively). In this
setting, all pairs of terminals have the same demands, i.e., k(u, v) = k for all u, v ∈ T . This
is a natural generalization of Steiner tree that has received attention [14, 31, 28].

I Theorem 3. There are exact algorithms for Subset k-EC and Subset k-VC that run in time
f1(k,w)n for some function f1. This result holds for vertex- or edge-costs.

Rooted SNDP: Another setting that has been studied in the context of vertex connectivity
requirements is the Rooted SNDP [15, 31]. In this problem, there is a designated terminal
vertex r ∈ T , and all positive connectivity requirements are enforced only between r and
other terminals, i.e. k(u, v) > 0 only if u = r or v = r. For the edge connectivity setting,
Rooted SNDP captures Subset k-EC4.

I Theorem 4. There are exact algorithms for Rooted EC-SNDP and Rooted VC-SNDP that
run in time f2(k,w)n for some function f2. This result holds for costs on vertices or edges.

Further technical overview: Let us illustrate how our approach is used to generate the
DP table, amenable for randomized rounding. The following discussion assumes a certain
familiarity with the notion of treewidth and DP algorithms in low-treewidth graphs.

Given graph G = (V,E), let T be a tree decomposition of G having width w, i.e. each
node t ∈ V (T) corresponds to a bag Xt ⊆ V (G) : |Xt| ≤ w. Let Tt denote the subtree of T
rooted at t. For each t ∈ V (T), let Gt denote the subgraph induced on all bags belonging to
the subtree of T rooted at t, i.e. Gt = G[

⋃
t∈Tt Xt]. At a high level, DPs for minimization

problems in low-treewidth graphs proceed as follows. Let Π denote the set of all possible
profiles defined on the basis of some relevant property of the graph. For each node t ∈ V (T),
there is a profile πt ∈ Π, and we define a DP cell c[t, πt] for each possible such profile, which
stores the minimum-cost of a solution (a subgraph of Gt) that is consistent with the profile πt.
Then, a recursive rule is applied: Let t′, t′′ be the left and right children of t in T respectively.
The DP makes a choice to “buy” a subset of edges Y ⊆ E(G[Xt]) (that appear in bag Xt)
and derives the cost by minimizing over all profiles πt′ , πt′′ that are “consistent” with πt:

c[t, πt] = min
πt′ ,πt′′ ,Y :(πt′ ,πt′′ ,Y)./πt

(cost(Y) + c[t′, πt′] + c[t′′, πt′′])

where the sign (πt′ , πt′′ , Y) ./ πt represents the notion of consistency between the profiles.
Different optimization problems have different profiles and consistency rules. Often, consist-
ency rules that are designed for connectivity-1 problems (such as Steiner tree) are not easily
generalizable to higher connectivity problems (such as SNDP).

In this paper, we devise a new consistency rule (abbreviated by m) for checking “reach-
ability” (or connectivity 1) in a graph, which allows for easy generalization to handle high
connectivity problems.

Roughly speaking, our consistency rule m solves the Steiner tree problem (connectivity-1
problem). To solve a connectivity-k problem, we have a DP cell c[t, ~π] for each ~π ∈ Πk. Then
the consistency check is a “direct product” test for all coordinates, i.e.,

(~πt′ , ~πt′′ , ~Y)mk~πt ⇐⇒ (∀j ∈ [k])(πt′,j , πt′′,j , Yj)mπt,j

4 This is due to the transitivity of edge-connectivity. Specifically, any vertices u, w that have k edge-disjoint
paths connecting to the root r also have k edge-disjoint paths between themselves.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:7

In this way, our new concept makes it a relatively simple task to generalize a DP for
connectivity-1 problems to a DP for connectivity-k problems (and facilitate the proof of
correctness). There is a slight change in the way DPs are designed for each problem, but
they follow the same principle.

Organization: We develop our techniques over several sections, and along the way, show
non-trivial applications for various SNDP problems. Section 2 provides some notation and
important definitions. Section 3 presents the new viewpoint for designing DP and presents a
simple showcase by deriving (known) results. Section 4 presents algorithms for EC-SNDP.
Lastly, Section 5 presents an approximation algorithm for group connectivity problems.

2 Preliminaries

Tree decomposition: Let G be any graph. A tree decomposition of G is a tree T with a
collection of bags {Xt}t∈V (T) ⊆ 2V (G) (i.e., each node of T is associated with a subset of
nodes of V (G)) that satisfies the following properties:

V (G) =
⋃
t∈V (T)Xt

For any edge uv ∈ E(G), there is a bag Xt such that u, v ∈ Xt.
For each vertex v ∈ V (G), the collection of nodes t whose bags Xt contain v induces a
connected subgraph of T . That is, T [{t ∈ V (T) : v ∈ Xt}] is a subtree of T .

The treewidth of G, denoted tw(G), is the minimum integer k for which there exists a
tree decomposition (T , {Xt}t∈V (T)) such that max |Xt| ≤ k + 1 (max |Xt| − 1 is the width
of T).

Fix a tree decomposition (T , {Xt}) with the stated properties. For each node t ∈ V (T),
denote by Tt the subtree of T rooted at t and by p(t) the parent node of t in V (T). We also
define Gt as the subgraph induced by Tt; that is, Gt = G

[⋃
t′∈Tt Xt′

]
.

For each v ∈ V , let tv denote the topmost node for which v ∈ Xtv . For each t ∈ V (T), we
say that an edge uv ∈ E(G) appears in the bag Xt if u, v ∈ Xt, and only if t is the topmost
node in which this happens. We denote the edges inside the bag Xt by Et. For a subset
S ⊆ V (T), we define XS :=

⋃
t∈S Xt.

We will use the following result, which shows that a tree decomposition of G of width
O(tw(G)) is computable in time O(2O(tw(G))n).

I Theorem 5 ([5]). There is an algorithm that, given a graph G, runs in time O(2O(tw(G))n)
and finds the tree decomposition (T , {Xt}t∈V (T)) such that |Xt| ≤ 5tw(G) for all t.

In order to simplify notation, we assume that T is a binary tree. Furthermore, we require
the height of T to be O(logn) in Section 5. The following lemma, based on the results of
Bodlaender [4], summarizes the properties we assume.

I Lemma 6 (in [12], based on [4]). Given a tree decomposition (T ′, {X ′t}t∈V (T ′)), we can
transform it into a tree decomposition (T , {Xt}t∈V (T)) with the following properties:
(i) the height of T is at most O(logn);
(ii) each bag Xt satisfies |Xt| ≤ O(w);
(iii) every leaf bag has no edges (Et = ∅ for leaf t ∈ T);
(iv) every non-leaf has exactly 2 children.
Furthermore, this transformation runs in linear time.

APPROX/RANDOM 2018

8:8 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

Connection sets and operators: Let S ⊆ V . A connection set Λ over S is a subset of S×S
which will be used to list pairs that are connected via a path, i.e., (u, v) ∈ Λ if there is a
path connecting u to v.

Let Λ be a connection set over S. The transitive closure operator, denoted by tc(·), is
defined naturally such that tc(Λ) contains all pairs (w,w′) for which there is a sequence
(w = w0, w1, . . . , wq = w′) and (wi, wi+1) ∈ Λ for all i < q. Let S′ ⊆ S. The projection
operator “|” is defined such that Λ

∣∣
S′

= Λ ∩ (S′ × S′).
Given two connection sets Λ1 of S1 and Λ2 of S2, the union Λ1 ∪ Λ2 is a connection set

over S1 ∪ S2.

3 New Key Concept: Global ⇔ Local Checking for DP

This section introduces the key concept devised for handling all our problems systematically.

High-level intuition: Our DP will try to maintain a pair of local and global information
about connectivity in the graph. Roughly speaking, a local connection set Γt for t (more
precisely, for Xt) gives information about connectivity of the solution inside the subgraph Gt
(the subgraph induced in subtree Tt), while the other connection ∆t for t gives information
about connectivity of the global solution (i.e., the solution for the whole graph G).

For instance, if we have a tentative solution Y ⊆ E(G), we would like to have the
information about the reachability of Y inside each bag, i.e., ∆t = tc(Y)

∣∣
t
, so we could check

the reachability between u and v simply by looking at whether (u, v) ∈ ∆t. However, a DP
that is executing at node t may not have this global information, and this often leads to
complicated rules to handle this situation.

We observe that global information can be passed along to all cells in the DP with simple
local rules so that checking whether the connectivity requirements are satisfied can be done
locally inside each DP cell. In the next section, we elaborate on this more formally.

Equivalence: One could imagine having a DP cell c[t,Γt,∆t] for all possible connection sets
Γt,∆t, which makes a decision on Yt, the set of edges bought by the solution when executing
the DP. The roles of Γt and ∆t are to give information about local and global reachability,
respectively. We are seeking a solution Y that is “consistent” with these profiles, where Y
can be partitioned based on the tree T as Yt = Y ∩ Et.

Given Y , we say that the pairs {(Γt,∆t)}t∈V (T) satisfy the local (resp., global) connectivity
definition if, for every node t ∈ V (T) (having left and right children as t′ and t′′, respectively),

Local

Γt :=
{
∅ if t is a leaf of T
tc (Γt′ ∪ Γt′′ ∪ Yt)

∣∣
t

otherwise

∆t :=
{

Γt if t = root(T)
tc(∆p(t) ∪ Γt)

∣∣
t

otherwise

Global
Γt := tc (Y ∩ E(Gt))

∣∣
t

∆t := tc (Y)
∣∣
t

where the projection operator on Xt is simplified as |t.
The main idea is that the local connectivity definition gives us “local” rules that enforce

consistency of consecutive bags, and this would be suitable for being embedded into a DP.
The global connectivity rules, however, are not easily encoded into DP, but it is easy to argue
intuitively and formally about their properties. The following lemma (proof in Appendix A)
shows that the local and global connectivity definitions are, in fact, equivalent.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:9

I Lemma 7. Let Yt ⊆ Et be a subset of edges and (Γt,∆t) a pair of connectivity sets for
every t ∈ V (T). Then, the pairs (Γt,∆t) satisfy the local connectivity definition iff they
satisfy the global connectivity definition.

The notions of local and global connectivity, as well as the equivalence between them
can be generalized both for the edge-connectivity version with vertex-costs as well as vertex-
connectivity with vertex-costs. We defer the details of this generalization to the full version
of the paper.

A warmup application: Steiner trees. We now show an approach that allows us to solve
the Steiner Tree problem exactly in nwO(w) time, given a tree decomposition of width w. We
remark that the best known algorithm due to Cygan et al. [18] runs in time 2O(w)n. In this
problem, we are given graph G = (V,E) with edge-costs and terminals T = {v1, . . . , vh}, and
the goal is to find a min-cost subset E∗ ⊆ E that connects all the terminals. For simplicity,
we denote v1 by “root” r, and add r to every bag. The goal is now to connect the root to all
other terminals in T \ r.

Our DP table has a cell c[t,Γ,∆] for every node t ∈ V (T) and every pair of connection
sets (Γ,∆) for t. We initialize the DP table by setting c[t,Γ,∆] for all the leaf nodes, and
setting certain cells as invalid (by setting c[t,Γ,∆] =∞):

For every leaf node t and every pair (Γ,∆), we set c[t,Γ,∆] = 0 if Γ = ∅ and c[t,Γ,∆] =∞
otherwise.
We mark the cells (root(T),Γ,∆) as invalid if Γ 6= ∆.
Let vi ∈ T be one of the terminals, and t ∈ V (T) a node. We mark a cell (t,Γ,∆) as
invalid if vi ∈ Xt but (r, vi) 6∈ ∆.

For all other cells, we compute the result from their children. Let t be a node with
left-child t′ and right-child t′′. Let (Γ,∆), (Γ′,∆′), (Γ′′,∆′′) be pairs of connection sets for
t, t′, t′′, respectively, and Yt ⊆ Et. We say that (Γ,∆) is consistent with ((Γ′,∆′), (Γ′′,∆′′))
via Yt (abbreviated by the notation (Γ,∆) Yt←→ ((Γ′,∆′), (Γ′′,∆′′))) if

Γ = tc(Γ′ ∪ Γ′′ ∪ Yt)
∣∣
t

∆′ = tc(∆ ∪ Γ′)
∣∣
t′

∆′′ = tc(∆ ∪ Γ′′)
∣∣
t′′

Now, for any choice of valid DP cells (t,Γt,∆t) and edge subsets Yt ⊆ Et for every t ∈ V (T)
(notice that a DP solution uses precisely one cell per node t), we apply Lemma 7 to conclude
that since the local connectivity definition is satisfied for (Γt,∆t) pairs, so does the global
connectivity definition. Since, for every valid DP cell (t,Γ,∆) such that t contains a terminal
vi, (r, vi) ∈ ∆, we conclude that every terminal is connected to the root in the solution
Y =

⋃
t∈V (T) Yt. Thus, the cost of the optimum solution can be found at one of the cells

c[root(T),Γ,∆] (with Γ = ∆).
Conversely, given a solution F ⊆ E(G), we can define Ft := F ∩Et, and a pair (Γt,∆t)

for every t ∈ V (T), using the global connectivity definition. Lemma 7 implies that the pairs
(Γt,∆t) satisfy the local connectivity definition, and therefore define valid DP cells (notice
that for every terminal vi , F connects vi to the root, so (r, vi) ∈ ∆t for every t ∈ V (T) such
that vi ∈ Xt). We thus establish that for every valid DP solution there is a corresponding
feasible solution F ⊆ E(G), and vice-versa.

4 Extension to High Connectivity

This section shows how to apply our framework to problems with high connectivity require-
ments. We focus on edge-connectivity and leave the case of vertex-connectivity to the full
version.

APPROX/RANDOM 2018

8:10 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

When solving a problem in a high connectivity setting, there may be a requirement of
k disjoint paths. In particular, for each demand pair (u, v), there must be k(u, v) disjoint
paths in the solution. So we could start naturally with a profile of the form:

(Γt,1, . . . ,Γt,k)(∆t,1, . . . ,∆t,k)

for each node t ∈ V (T), and enforce the local consistency conditions for each coordinate.
Here, each pair (Γt,j ,∆t,j) would correspond to connectivity in some subgraph Hj ⊆ G,
where Hj serve the j-th path of the demand (u, v).

However, this idea does not work as a different demand pair, say (a, b), might use a
path that belongs to different subgraphs Hj as defined above. In other words, the disjoint
paths for the demand pair (a, b) might require a different partitioning of the solution set H.
Therefore, we need to enumerate all possible ways for the demands to “locally” partition the
graph and use them to support all k disjoint paths for each one of them. This requires a
more careful local consistency check between the DP cells.

We consider the Rooted EC-SNDP problem with edge-costs as an example to explain
how to apply our framework to high-connectivity settings, that is, we will prove Theorem 4.
For convenience, we add r to every bag. To avoid confusion, the root of the tree T will be
referred explicitly as root(T).

The organization of this section is as follows. In Section 4.1, we explain the setup of the
cells of the DP table and a high-level intuition about how the DP works. In Section 4.2 we
describe the algorithm, in particular, how to compute the values of the DP table. We leave
the discussion of its correctness and running time to Appendix B.2.

4.1 Profiles
As in any standard dynamic programming approach based on tree decomposition, we have a
profile for each node t, which tries to solve the subproblem restricted to Gt in some way.

Let t ∈ V (T). A connection profile for t is a k-tuple ~Γ = (Γ1,Γ2, . . . ,Γk) such that
Γi ⊆ Xt × Xt. Let Xt be the set of all connection profiles for t. A profile Ψ of node t
is a collection of pairs of connection profiles (~Γ, ~∆), i.e., Ψ ⊆ Xt × Xt. A partial solution
F ⊆ E(Gt) is said to be consistent with profile Ψ for t if, for all (~Γ, ~∆) ∈ Ψ,

For each (u, v) ∈ Γi and (a, b) ∈ Γj for i 6= j, there are paths Puv, Pab ⊆ F connecting
the respective vertices in Gt such that Puv and Pab are edge-disjoint.
There is a global solution F ′ ⊇ F such that, for each (u, v) ∈ ∆i and (a, b) ∈ ∆j for i 6= j,
there are paths Quv, Qab ⊆ F ′ connecting the respective vertices in G such that Puv and
Pab are edge-disjoint.

In other words, a solution consistent with a profile must “implement” all connectivity
requirements by ~Γ and must be extensible to satisfy ~∆.

Passing down both local and global requirements in the DP table leads to a clean and
simple DP algorithm. Our DP table has a cell c[t,Ψ] for each t ∈ V (T) and each profile Ψ
for t. This cell tentatively stores the optimal cost of a solution consistent with profile Ψ.

4.2 The DP
Valid cells: Some table entries do not correspond to valid solutions of the problem, so we
mark them as invalid and remove them from consideration (another way to think about this
is that we initialize c[t,Ψ] =∞ for all invalid cells), i.e., the following cells are invalid:

Any leaf that has non-empty connectivity requirements is invalid. That is, c[t,Ψ] = 0 if
Ψ ⊆ {(∅, . . . , ∅)} × Xt; otherwise, c[t,Ψ] =∞.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:11

Any cell that cannot be extended into a feasible solution is invalid. If there is no pair
(~Γ, ~∆) ∈ Ψ such that (r, γi) ∈ ∆j for all j ∈ [ki], then there are fewer than ki edge-disjoint
paths between r and γi, and therefore the cell is invalid, so c[tγi ,Ψ] =∞.
The node root(T) together with profile Ψ is an invalid cell if there is a pair (~Γ, ~∆) ∈ Ψ
such that Γj 6= ∆j for some j. In this case, we set c[root(T),Ψ] =∞.

I Lemma 8. For every t ∈ T , there are at most exp(wO(wk)) many valid cells (t,Ψ).

We remark that, though the solution can be partitioned differently for each demand, the
number of different partitions of a solution still depends on its size. Therefore, once we look
at the partitions for each bag Xt, the number of possibilities is bounded by a function of w
and k.

DP computation: For all other cells, we compute their values from the values of their
children. Let t be a node with left-child t′ and right-child t′′. Let Ψ,Ψ′,Ψ′′ be their profiles
respectively, and Yt ⊆ Et. We say that Ψ is consistent with (Ψ′,Ψ′′) via Yt (abbreviated by
Ψ Yt←→ (Ψ′,Ψ′′)) if the following conditions are satisfied. For each pair (~Γ, ~∆) ∈ Ψ, there are
(~Γ′, ~∆′) ∈ Ψ′ and (~Γ′′, ~∆′′) ∈ Ψ′′, together with a partition of Yt into Y1 ∪ Y2 ∪ . . . ∪ Yk such
that, for every j ∈ [k],

Γj = tc(Γ′j ∪ Γ′′j ∪ Yj)
∣∣
t

∆′j = tc(∆j ∪ Γ′j)
∣∣
t′

∆′′j = tc(∆j ∪ Γ′′j)
∣∣
t′′

Similarly, for any (~Γ′, ~∆′) ∈ Ψ′ (resp., (~Γ′′, ~∆′′) ∈ Ψ′′) there are (~Γ′′, ~∆′′) ∈ Ψ′′ (resp.,
(~Γ′, ~∆′) ∈ Ψ′) plus (~Γ, ~∆) ∈ Ψ and some partition of Yt, satisfying similar conditions as
above.

Then the value of c[t,Ψ] can be defined recursively among valid cells:

c[t,Ψ] = min
Ψ

Yt←→(Ψ′,Ψ′′)
(c[t′,Ψ′] + c[t′′,Ψ′′] + c(Yt))

The final solution can be computed as min
{
c[root(T),Ψ] | (∀(~Γ, ~∆) ∈ Ψ)(∀j ∈ [k])Γj = ∆j

}
.

The correctness of this DP is deferred to Appendix B.1.

5 Algorithms for Restricted Group SNDP

In Section 4, we showed how to find the optimum solution to the EC-SNDP by solving a DP.
This is only possible because we know the exact demands that correspond to a subproblem,
and we mark cells as invalid if these demands are not met. In the Restricted Group SNDP,
each group can be connected in subproblems corresponding to different part of the trees, and
hence it is no longer possible to solve the DP in a standard way.

We do, however, have sufficient technical tools to prove Theorem 2. Instead of simply
solving the DP, we turn the DP table into a tree instance of a variant of GST and, in a
second step, apply randomized rounding to obtain a polylogarithmic approximation to the
problem. This corresponds to the process of finding a solution in the DP, with the additional
constraint that all the demands are met.

Tree Instance: We start by showing how to transform the DP table into a tree T̃ , where
we can solve a variant of the group Steiner tree problem. The following theorem formalizes
this transformation, and we dedicate the rest of this section to proving the theorem. For
convenience, we add a dummy node tS with XtS = ∅ as the parent of the root node.

APPROX/RANDOM 2018

8:12 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

I Theorem 9. Given a graph G rooted at r with treewidth w and groups Si ⊆ V , there is a
tree T̃ with groups S̃i and a set of accepted solutions X̃ such that:
(i) the size of T̃ is nwO(wk) ;
(ii) for every F ⊆ E(G), there is X ∈ X̃ (and vice-versa) such that c(F) = c(X) and, for

every i ∈ [h], F ki-connects r to v ∈ Si iff X connects root(T̃) to t̃ ∈ S̃i.
For each cell of the DP table introduced in Section 4.2, we create a node in T̃ . Namely, we
create a vertex t̃[t,Ψ] for every node t ∈ V (T) and Ψ ⊆ Xt × Xt. The root of the tree is
t̃[tS , {(∅k, ∅k)}] (this is the only connection profile for tS). For a node t ∈ T with children
t′, t′′, we add connecting nodes t̃c[t,Ψ,Ψ′,Ψ′′, Yt] connected to the nodes t̃[t,Ψ], t̃[t′,Ψ′],
t̃[t′′,Ψ′′], for every Yt ⊆ Et, if Ψ Yt←→ (Ψ′,Ψ′′). If there is only one child, the connecting
node has degree 2, and we consider that Ψ′′ = {(∅k, ∅k)} for the purpose of describing the
algorithm. An edge from t̃[t,Ψ] to t̃c[t,Ψ,Ψ′,Ψ′′, Yt] is labeled with the set of edges Yt and
is assigned cost c(Yt). All other edges in the instance have cost 0.

Notice that, at this point, T̃ is not a tree, but we can turn it into one by making copies
of the nodes as required. Specifically, we process the tree in a bottom-up fashion: for each
node t̃, we make the same number of copies of t̃ and its descendants as there are incoming
edges of t̃ such that each edge is incident to a different copy. In this manner, all the copies
of t̃ are now the roots of subtrees, which are disjoint.

For convenience, we denote by t̃[t,Ψ] (resp., t̃c[t,Ψ,Ψ′,Ψ′′, Yt]) any copy of the original
node; when we need to distinguish copies, we denote by copies(t̃) the set of all copies of a
node t̃.

The final step in our construction is to prune the tree by removing nodes that cannot be
reached or that represent choices that cannot be part of a feasible solution. To do that, it is
sufficient to apply the following rules to exhaustion:
(i) remove t̃ ∈ T̃ if it is not connected to the root;
(ii) remove a connecting node if one of its children was removed;
(iii) remove t̃[t,Ψ] if it is a leaf node but Ψ 6⊆ {(∅, . . . , ∅)} × Xt (i.e. ~Γ 6= (∅, . . . , ∅) for some

(~Γ, ~∆) ∈ Ψ).

We can now restate the goal of the problem in terms of T̃ : we want to find nodes t̃[t,Ψt]
and edge sets Yt ⊆ Et for every node t ∈ V (T), such that (Ψt′ ,Ψt′′)

Yt←→ Ψt for all non-leaf
node t with children t′, t′′. Further, for every group Si, there must be a vertex γi ∈ Si and a
partition of Y :=

⋃
t∈V (T) Yt into ki sets, such that each contains a path from r to γi.

The set of nodes {t̃[t,Ψt]}t∈V (T) with the respective connecting nodes t̃[t,Ψt,Ψt′ ,Ψt′′ , Yt]
(for all non-leaf nodes t ∈ V (T)) induces a tree T̃ in T̃ . We say that such a tree T̃ is valid
if every node t̃[t,Ψ] ∈ V (T̃) has exactly one child in the graph (or none if t is a leaf), and
every connecting node t̃c[t,Ψ,Ψ′,Ψ′′, Yt] in T̃ has full-degree, i.e., all its neighbors are in the
solution as well.

For every group Si, we define S̃i as follows: for every v ∈ Si and every Ψ ∈ Xt×Xt, every
element of copies(t̃[tv,Ψ]) is in S̃i if there is (~Γ, ~∆) ∈ Ψ such that (r, v) ∈ ∆j for all j ∈ [ki].

The size of the instance follows by considering its height and maximum degree: the
maximum degree of T̃ is exp(wO(wk)) by Lemma 8, and there is a tree decomposition of
height O(logn) by Lemma 6, which implies that height(T̃) = O(logn). We conclude that
|T̃ | = nw

O(wk) .
The correctness of the reduction follows from the correctness of the DP for Rooted

EC-SNDP, and its proof is left to Appendix B.1.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:13

Algorithm: We now show how to obtain a valid tree T̃ , given T̃ . Let T ∗ be the min-cost
valid tree in T̃ that connects all the groups {S̃i}i∈[h]. Chalermsook et al. [12] showed that it
is possible to find a valid tree T̃ with expected cost c(T ∗), but whose probability of covering
a group is just O(1/height(T̃)).

Using this result, we can obtain valid trees T̃1, . . . , T̃`, where ` = O(logn log h). We can
then obtain solutions Fj that k-connect the same groups and have the same cost as T̃j , for
all j ∈ [`], and finally output the solution F :=

⋃
j∈[`] Fj . Since the expected cost of each T̃i

is c(T ∗), the expected cost of F is O(logn log h)c(T ∗).
By sampling c logn log h independent valid trees, for large enough c, we ensure that each

group is covered with probability (1/ logn)` = 1/hc, and thus all the groups are covered
with high probability (by union bound). For any group that is not covered, we can add
minimum-cost edge-disjoint paths from the root (by reduction to min-cost flow) and hence
ensure that every group is covered, without increasing the expected cost of the solution.
We conclude that the algorithm outputs a randomized O(logn log h)-approximation to the
problem, with high probability.

References

1 MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx. Approxima-
tion schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM,
58(5):21:1–21:37, 2011. doi:10.1145/2027216.2027219.

2 Mihir Bellare, Shafi Goldwasser, Carsten Lund, and A. Russeli. Efficient probabilistically
checkable proofs and applications to approximations. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA,
pages 294–304, 1993. doi:10.1145/167088.167174.

3 André Berger and Michelangelo Grigni. Minimum weight 2-edge-connected spanning sub-
graphs in planar graphs. In Automata, Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 90–101,
2007.

4 Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In Jan van Leeuwen,
editor, Graph-Theoretic Concepts in Computer Science, 14th International Workshop, WG
’88, Amsterdam, The Netherlands, June 15-17, 1988, Proceedings, volume 344 of Lecture
Notes in Computer Science, pages 1–10. Springer, 1988. doi:10.1007/3-540-50728-0.

5 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ck n 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016.

6 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica, 7(5&6):555–581, 1992. doi:10.1007/BF01758777.

7 Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-time approxim-
ation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica,
68(2):287–311, 2014.

8 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n) approximation
scheme for steiner tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1–31:31, 2009.
doi:10.1145/1541885.1541892.

9 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approxima-
tion scheme for euclidean steiner forest. ACM Trans. Algorithms, 11(3):19:1–19:20, 2015.

10 Glencora Borradaile and Baigong Zheng. A PTAS for three-edge-connected survivable
network design in planar graphs. In Approximation, Randomization, and Combinatorial

APPROX/RANDOM 2018

http://dx.doi.org/10.1145/2027216.2027219
http://dx.doi.org/10.1145/167088.167174
http://dx.doi.org/10.1007/3-540-50728-0
http://dx.doi.org/10.1007/BF01758777
http://dx.doi.org/10.1145/1541885.1541892

8:14 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, pages 3:1–3:13, 2017.

11 İSMET Esra Büyüktahtakin. Dynamic Programming Via Linear Programming. John Wiley
& Sons, Inc., 2010.

12 Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, and Daniel Vaz. Beyond
metric embedding: Approximating group steiner trees on bounded treewidth graphs. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 737–751, 2017.

13 Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. On survivable set con-
nectivity. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 25–36, 2015.

14 Joseph Cheriyan and Adrian Vetta. Approximation algorithms for network design with
metric costs. SIAM J. Discrete Math., 21(3):612–636, 2007. doi:10.1137/040621806.

15 Julia Chuzhoy and Sanjeev Khanna. Algorithms for single-source vertex connectivity. In
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 105–114, 2008.

16 Julia Chuzhoy and Sanjeev Khanna. An o(k3log n)-approximation algorithm for vertex-
connectivity survivable network design. Theory of Computing, 8(1):401–413, 2012. doi:
10.4086/toc.2012.v008a018.

17 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

18 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

19 Artur Czumaj, Michelangelo Grigni, Papa Sissokho, and Hairong Zhao. Approximation
schemes for minimum 2-edge-connected and biconnected subgraphs in planar graphs. In
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 496–505, 2004.

20 Daniela Pucci de Farias and Benjamin Van Roy. Approximate dynamic programming via
linear programming. In Advances in Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001,
Vancouver, British Columbia, Canada], pages 689–695, 2001. URL: http://papers.nips.
cc/paper/2129-approximate-dynamic-programming-via-linear-programming.

21 F d’Epenoux. A probabilistic production and inventory problem. Management Science,
10(1):98–108, 1963.

22 Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

23 Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Tree embeddings for two-edge-
connected network design. In Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 1521–1538, 2010. doi:10.1137/1.9781611973075.124.

24 Anupam Gupta, Kunal Talwar, and David Witmer. Sparsest cut on bounded treewidth
graphs: algorithms and hardness results. In Symposium on Theory of Computing Con-
ference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 281–290, 2013. doi:
10.1145/2488608.2488644.

25 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA, pages 585–594, 2003.

http://dx.doi.org/10.1137/040621806
http://dx.doi.org/10.4086/toc.2012.v008a018
http://dx.doi.org/10.4086/toc.2012.v008a018
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://papers.nips.cc/paper/2129-approximate-dynamic-programming-via-linear-programming
http://papers.nips.cc/paper/2129-approximate-dynamic-programming-via-linear-programming
http://dx.doi.org/10.1137/1.9781611973075.124
http://dx.doi.org/10.1145/2488608.2488644
http://dx.doi.org/10.1145/2488608.2488644

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:15

26 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network prob-
lem. Combinatorica, 21(1):39–60, 2001.

27 Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. Approximating fault-tolerant group-
steiner problems. Theor. Comput. Sci., 416:55–64, 2012. doi:10.1016/j.tcs.2011.08.
021.

28 Bundit Laekhanukit. An improved approximation algorithm for the minimum cost subset
k-connected subgraph problem. Algorithmica, 72(3):714–733, 2015.

29 Alan S Manne. Linear programming and sequential decisions. Management Science,
6(3):259–267, 1960.

30 R. Kipp Martin, Ronald L. Rardin, and Brian A. Campbell. Polyhedral characterization of
discrete dynamic programming. Operations Research, 38(1):127–138, 1990. doi:10.1287/
opre.38.1.127.

31 Zeev Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamil-
ies. ACM Trans. Algorithms, 9(1):1:1–1:16, 2012.

32 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-time parameterized algorithm for steiner tree on planar graphs. In 30th
International Symposium on Theoretical Aspects of Computer Science, STACS 2013, Feb-
ruary 27 - March 2, 2013, Kiel, Germany, pages 353–364, 2013.

33 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-
dual approximation algorithm for generalized steiner network problems. Combinatorica,
15(3):435–454, 1995.

A Details of the Global ⇔ Local Checking for DP

In this section, we will prove a generalized version of Lemma 7, that works for edge-connectivity
and vertex-connectivity, both with edge and vertex costs. In vertex-connectivity problems,
we are interested in finding internally disjoint paths. In order to handle this setting, we
introduce a modified version of transitive closure.

For a set of vertices Z and a set of edges S, we denote by tc∗Z(S) the set of all pairs (u, v)
such that there is a u-v-path in the graph (Z ∪ {u, v}, S), that is, a path whose internal
vertices are in Z, and whose edges are in S. Formally,

tc∗Z(S) =
{

(u, v)
∣∣ ∃w1, . . . , w` ∈ Z,∀i ∈ [`− 1], (u,w1), (w`, v), (wi, wi+1) ∈ S

}
We then keep track, for every node, of which vertices in the bag are allowed to be used in
the solution, that is, we use triples (Z,Γ∗,∆∗), instead of the previously used pairs (Γ,∆).

Let Wt ⊆ Xt \Xp(t) for every t ∈ V (T), W =
⋃
t∈V (T)Wt, Yt ⊆ Et for every t ∈ V (T),

Y =
⋃
t∈V (T) Yt, and a triple (Zt,Γ∗t ,∆∗t) for every t ∈ V (T). For the purposes of this

section, we introduce the following definitions for local and global connectivity.
We say that the triples (Zt,Γ∗t ,∆∗t) satisfy the local (resp. global) connectivity definition

if, for every node t ∈ V (T),

Local

Zt :=
{
Wt if t = root(T)(
Zp(t) ∪Wt

)
∩ Vt otherwise

Γ∗t :=
{
∅ if t is a leaf node
tc∗Zt (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)

∣∣
t

otherwise

∆∗t :=

Γ∗t if t = root(T)
tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣
t

otherwise

APPROX/RANDOM 2018

http://dx.doi.org/10.1016/j.tcs.2011.08.021
http://dx.doi.org/10.1016/j.tcs.2011.08.021
http://dx.doi.org/10.1287/opre.38.1.127
http://dx.doi.org/10.1287/opre.38.1.127

8:16 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

Global
Zt := W ∩Xt

Γ∗t := tc∗W (Y ∩ E(Gt))
∣∣
t

∆∗t := tc∗W (Y)
∣∣
t

We then prove the following lemma, proving that the given local and global connectivity
definitions are equivalent.

I Lemma 10. Let Wt ⊆ Xt \Xp(t) be a subset of vertices, Yt ⊆ Et a subset of edges and
(Z,Γ∗t ,∆∗t) a triple of profiles for every t ∈ V (T).

Then, the triples (Zt,Γ∗t ,∆∗t) satisfy the local connectivity definition iff they satisfy the
global connectivity definition.

Before proving the lemma, we show how Lemma 7 follows. We will prove that, if we fix
Wt = Xt \Xp(t) and Zt = Xt, the definitions of Lemmas 7 and 10 are equivalent.

For this, it is sufficient to see that tc∗W (S) = tc∗V (G)(S) = tc(S), and that the common
vertices in Γ∗t′ , Γ∗t′′ , and Yt are all in Xt, thus

tc∗Zt (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)
∣∣
t

= tc (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)
∣∣
t

Similarly, since ∆∗p(t) and Γ∗t only intersect inside Xt ×Xt,

tc∗Zt
(

∆∗p(t) ∪ Γ∗t
)∣∣
t

= tc
(

∆∗p(t) ∪ Γ∗t
)∣∣
t

We conclude that when Zt = Xt, Γ∗t = Γt and ∆∗t = ∆t, the proof follows.
The following technical lemma will be useful when proving Lemma 10.

I Lemma 11 (Path Lemma). Let G be any graph and T be a tree decomposition of G. Let
t ∈ V (T) and P be a path of length at least 2 whose endpoints x, y are the only vertices of P
in t, that is, V (P) ∩Xt ⊆ {x, y}.

Then there is a connected (subtree) component T ′ in T \ t such that, for any edge
ab ∈ E(P), T ′ has a node t′ that contains ab, i.e., every edge ab ∈ Et′ for some node
t′ ∈ V (T ′).

Proof. We provide a simple proof by contradiction. Assume that there are two consecutive
edges, ab, bc ∈ E(P) that are in different connected components of T \ t (otherwise, all edges
must be in the same component). Since the set of nodes whose bags contain b must be
connected in T but is not connected in T \ {t}, b ∈ Xt, and we reach a contradiction. J

Proof of Lemma 10. We remark that the function tc∗ shares some properties with the usual
definition of transitive closure, which are used throughout the proof:

I Observation 12. The function tc∗ satisfies the following properties:
tc∗Z(tc∗Z(Y)) = tc∗Z(Y)
tc∗Z′(Y ′) ⊆ tc∗Z(Y) if Z ′ ⊆ Z, Y ′ ⊆ Y

Equivalence for Zt:

We prove that the two definitions for Z are equivalent by induction on the depth of the node.
At the root, we have that Wroot(T) = W ∩Xroot(T), so the equivalence holds.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:17

For the induction step, let t ∈ V (T) be a node other than the root. Then(
Zp(t) ∪Wt

)
∩Xt =

(
Zp(t) ∩Xt

)
∪ (Wt ∩Xt)

⊆ (W ∩Xt) ∪ (W ∩Xt)
= W ∩Xt

The second step follows from the induction hypothesis, as well as the definition of W . We
now prove the converse inclusion.

W ∩Xt =
(
W ∩Xp(t) ∩Xt

)
∪
(
W ∩

(
Xt \Xp(t)

))
⊆
(
Zp(t) ∩Xt

)
∪Wt

=
(
Zp(t) ∪Wt

)
∩Xt

We use the induction hypothesis, as well as the fact that Wt ⊆ Xt.

Equivalence for Γ∗
t :

We prove the statement by induction on the height of a node t. Since E(Gt) = ∅, both
definitions are equivalent for every leaf t.

Let t be any node. By the induction hypothesis, Γ∗t′ ,Γ∗t′′ ⊆ tc∗W (Y ∩ E(Gt)). Therefore,

tc∗Zt (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)
∣∣
t
⊆ tc∗W (Y ∩ E(Gt))

∣∣
t

Here, we use that Zt = W ∩Xt ⊆W .
To prove the converse inclusion, let (u, v) ∈ tc∗W (Y ∩ E(Gt))

∣∣
t
. By definition, there must

be a path p between u and v using internal vertices in W . Let u = w0, w1, . . . , w` = v be all
the vertices of p (in the correct order) that are also in Xt.

Each pair (wi, wi+1) is connected by a subpath of p. By Lemma 11, (wi, wi+1) is either an
edge in Yt, or the subpath is fully contained in Y ∩E(Gt′) or Y ∩E(Gt′′), and uses internal
vertices in W . In the first case, (wi, wi+1) ∈ Yt, while in the remaining cases, (wi, wi+1) is
in Γt′ or Γt′′ , by the induction hypothesis. We conclude that, since wi ∈ Zt = W ∩Xt, for
i ∈ [l − 1], then (u, v) is in

tc∗Zt (Γ∗t′ ∪ Γ∗t′′ ∪ Yt)
∣∣
t

Equivalence for ∆∗
t :

We now prove that both definitions for ∆∗ are equivalent, by using induction on the depth
of the nodes. For the node root(T), we have E(Groot(T)) = E(G), and thus the base case
follows.

For the induction step, we remark that ∆∗p(t),Γ∗t ⊆ tc∗W (Y) by the induction hypothesis
together with the statement of the lemma for Γ∗. Therefore,

tc∗Zt
(

∆∗p(t) ∪ Γ∗t
)∣∣
t
⊆ tc∗W (Y)

∣∣
t

For the reverse inclusion, we fix a pair (u, v) ∈ tc∗W (Y)
∣∣
t
, and a path p that connects u

to v in Y using internal vertices in W . Further, let u = w0, w1, . . . , w` = v be all the vertices
of p (in the correct order) that are also in Xt.

By Lemma 11, (wi, wi+1) is either an edge in Y (b), or the subpath p′ of p connecting
wi and wi+1 is contained either in Y ∩ E(Gt′), Y ∩ E(Gt′′) or Y ∩ (E \ E(Gt)). For all but
the last case, (wi, wi+1) ∈ Γ∗t , by definition. In the remaining case, it must be that the

APPROX/RANDOM 2018

8:18 Survivable Network Design for Group Connectivity in Low-Treewidth Graphs

vertices of p′ are also contained in XT \Tb . Specifically, because the nodes whose bags contain
a given vertex must form a connected component of T , wi, wi+1 ∈ Xp(t), which implies
(wi, wi+1) ∈ tc∗W (Y)

∣∣
p(t) = ∆∗p(t).

In any case, since wi ∈ Zt = W ∩Xt, for i ∈ [l−1], we conclude that every pair (wi, wi+1)
and thus (u, v), are contained in tc∗Zt

(
∆∗p(t) ∪ Γ∗t

)∣∣
t
. J

B Details of the DP for EC-SNDP

B.1 Correctness
The following two lemmas imply the correctness of our DP.

I Lemma 13. Let F ⊆ E(G) be a feasible solution. Then, for every node t, there is a profile
Ψt for t such that (t,Ψt) is valid; for any node t with children t′, t′′, then Ψ Yt←→ (Ψ′,Ψ′′),
where Yt = F ∩ Et. Furthermore, c[root(T),Ψroot(T)] = c(F).

Proof. We first observe that for each demand (γi, ki), i ∈ [h] the solution F can be partitioned
into F =

⋃
j∈[k] F

i
j such that the partition F ij contains a path connecting γi to the root r.

Note that, if ki < k, there might not be any path in the partitions Fki+1, . . . , Fk.
Let t be a node in T . We define Ψt as follows. We define the pair (omitting the script of

t for convenience) (~Γi(t), ~∆i(t)) for all i ∈ [h] as follows.

Γij(t) = tc(F ij ∩ E(Tt))
∣∣
t

∆i
j(t) = tc(F ij)

∣∣
t

We now define Ψt = {(~Γi(t), ~∆i(t)) : i ∈ [h]}.
We first show that any cell (t,Ψt) is valid. For any leaf node t, Et = ∅ and hence Γij(t) = ∅,

i ∈ [h], j ∈ [k]. For the node root(T), E(Tt) = E and hence Γij(t) = ∆i
j(t), i ∈ [h], j ∈ [k].

Finally, since Pij connects r to γi for all i ∈ [h], j ∈ [ki], then (r, γi) ∈ ∆i
j(tγi). We conclude

that any cell (t,Ψt) defined as above is marked valid.
Finally we define, for any node t, a set of edges Y (t) ⊆ Et along with a suitable partition

of Y (t). Let Y (t) = F ∩ Et and Y ij (t) = F ij ∩ Et. The subsets Y ij (t) indeed form a partition
owing to the disjointness of the sets F ij , for all j ∈ [ki] and a fixed i ∈ [h].

It is clear from the above definitions of Γij and ∆i
j that they satisfy the global connectivity

conditions for Y ij . Applying Lemma 7, the local conditions must also be satisfied for the

node t along with its children t′, t′′ and Y (t). This gives us Ψ Y (t)←→ (Ψ′,Ψ′′) and we are done.
Notice that the c[root(T),Ψroot(T)] =

∑
t∈V (T) c(Y (t)) = c(F). J

We remark that the DP uses exactly one cell per node in any valid solution.

I Lemma 14. Let C = {(t,Ψt) : t ∈ V (T)} be the set of cells selected by the dynamic
programming solution. Then there exists a set of edges F ⊆ E such that for each demand
(γi, ki), i ∈ [h], there exist ki edge-disjoint paths connecting r to γi. Furthermore, c(F) =
c[root(T),Ψroot(T)].

Proof. First we define the set F . Consider the cells in C. Since each cell (t,Ψt) is picked
by the DP, there must exist a set of edges Yt ⊆ Et such that for some pair of children cells
{(t′,Ψt′), (t′′,Ψt′′)} ∈ C, Ψt

Yt←→ (Ψt′ ,Ψt′′). Define F =
⋃

(t,Ψt)∈C Yt. We prove that for any
demand (γi, ki), i ∈ [h], there exist edge-disjoint paths Pij , j ∈ [ki] in F that connect r to γi.

P. Chalermsook, S. Das, G. Even, B. Laekhanukit, and D. Vaz 8:19

For a demand vertex γi, i ∈ [h], consider the node t? = tγi and the cell (t?,Ψt?) ∈ C.
Since this cell is valid, there exists a connection profile (~Γ, ~∆) ∈ Ψt? such that (r, γi) ∈ ∆j

for all j ∈ [ki].
We now suitably define connection profiles (~Γt, ~∆t) and sets of edges Yt,j for every other

node t ∈ V (T), and prove that these elements satisfy the local connectivity property of
Lemma 7. We explicitly describe the definition for the children nodes t′ and t′′ of t?. The
definition for every other node in the subtree Tt can be carried out in a similar recursive
fashion.

By definition of consistent DP cells, there exists (~Γ′, ~∆′) ∈ Ψt′ , (~Γ′′, ~∆′′) ∈ Ψt′′ and a
partition Yt? =

⋃
j∈[k] Yt?,j such that, for all j ∈ [h], the triplet (Γj ,∆j), (Γ′j ,∆′j), (Γ′′j ,∆′′j)

satisfies the local connectivity conditions for Yt?,j . We take (~Γt′ , ~∆t′) = (~Γ′, ~∆′), (~Γt′′ , ~∆t′′) =
(~Γ′′, ~∆′′).

A similar recursive definition works for all nodes in T \ Tt, starting with (~Γ, ~∆) and
defining a suitable connection profile in p(t).

We now apply the equivalence from Lemma 7 to conclude that the global connectivity
definition is satisfied by (Γtj ,∆t

j) and edge set Yt,j for any node t ∈ V (T). As a consequence,
there exist paths connecting r to γi in

⋃
t∈V (T) Yt,j , for j ∈ [ki]. Since the sets Yt,j are disjoint

for j ∈ [ki], we obtain the required ki edge-disjoint paths in the sets Yj =
⋃
t∈V (T) Yt,j . J

B.2 Running Time Analysis
To bound the running time of the DP algorithm, we start by proving a bound on the number
of cells in the DP table (Lemma 8), and then show how this implies the running time of the
algorithm.

Proof of Lemma 8. The following observations are used to prove the lemma:

I Observation 15.
1. The number of possible subsets of edges between w elements is 2w2 .
2. The number of possible partitions of such a subset of edges is kw2 .
3. The number of possible equivalence relations in a set of w elements is ww.

Let t ∈ T . We know that Ψ ⊆ Xt × Xt, whose size can be up to 2kw2 . However, it is
sufficient to consider equivalence relations in the node t, as we always take the transitive closure
in definitions. Therefore, there are at most ww possibilities for each Γj ,∆j (Observation 15)
and at most 2w2wk possibilities for Ψ. J

Note that the algorithm itself does one of the two possible options for each cell: it either
initializes itself, for which it needs to check every element of Ψ, taking time O(w2wkkw); or
it computes the value based on children cells, for which it enumerates all sets Ψ′,Ψ′′ and
checks them for consistency. The number of such sets to check is again 2w2wk , and checking
each triple of sets takes time polynomial in wwk and kw2 . In sum, the algorithm takes time
O(n exp(wO(wk))).

APPROX/RANDOM 2018

	Introduction
	Related Work
	Hardness of Approximating Restricted Group SNDP
	Our Results & Techniques

	Preliminaries
	New Key Concept: Global <=> Local Checking for DP
	Extension to High Connectivity
	Profiles
	The DP

	Algorithms for Restricted Group SNDP
	Details of the Global <=> Local Checking for DP
	Details of the DP for EC-SNDP
	Correctness
	Running Time Analysis

