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Abstract
Satisfiability of Boolean circuits is NP-complete in general but becomes polynomial time when
restricted for example either to monotone gates or linear gates. We go outside Boolean realm
and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From
the complexity point of view this is connected with solving equations over finite algebras. This
in turn is one of the oldest and well-known mathematical problems which for centuries was the
driving force of research in algebra. Let us only mention Galois theory, Gaussian elimination or
Diophantine Equations. The last problem has been shown to be undecidable, however in finite
realms such problems are obviously decidable in nondeterministic polynomial time.

A project of characterizing finite algebras A with polynomial time algorithms deciding satis-
fiability of circuits over A has been undertaken in [12]. Unfortunately that paper leaves a gap
for nilpotent but not supernilpotent algebras. In this paper we discuss possible attacks on filling
this gap.
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1 Introduction

Solving equations (or systems of equations) over an algebra A is one of the oldest and well-
known mathematical problems which for centuries was the driving force of research in algebra.
Let us only mention Galois theory, Gaussian elimination or Diophantine Equations. In fact,
for A being the ring of integers this is the famous 10th Hilbert Problem on Diophantine
Equations, which has been shown to be undecidable [17]. In finite realms such problems are
obviously decidable in nondeterministic polynomial time.

The decision version of solving systems of equations is strictly connected with Constraint
Satisfaction Problem for relational structures. A bisimulation between these two problems
has been presented in [15] and [5]. Due to this bisimulation and the recent dichotomy results
for CSP [2, 20] one can translate the beautiful splitting conditions into the language of
satisfiability of systems of equations. Unfortunately such a bisimulation between satisfiability
of a single equation (denoted by PolSat) and CSP is not known. Therefore the search for a
characterization of finite algebras with tractable PolSat seems to be challenging. There were
isolated results for particular algebraic structures like groups [7, 10, 9], rings [8] or lattices
[19]. However, already a study of PolSat for groups has shown [11] that for the alternating
group A4 the problem has a polynomial time solution in the pure group language, while it
is NP-complete after endowing A4 with binary commutator operation (which is obviously
definable by group multiplication). Here the polynomial time complexity is a result of
artificial inflation of the size of input – indeed the terms used in proving NP-completeness are
exponentially longer in pure group language than in the language allowing group commutator.
This unwanted phenomena should be eliminated when one wants to get a characterization
of abstract algebras with polynomial time procedures for satisfiability of single equations.
This project has been taken over in [12] where a measure of the size of input is based on
circuits representing terms/polynomials. This eliminates the mentioned exponential inflation
of the size of terms by replacing all terms by circuits that computes them. For a detailed
discussion of this we refer to [12]. Here we only recall definitions (in this new setting) of two
problems based on PolSat and its dual.

Csat(A)
given a circuit over the algebra A with two output gates g1,g2 is there a valuation of input
gates x = (x1, . . . , xn) that gives the same output on both g1 and g2, i.e. g1(x) = g2(x)
for some x ∈ An.
Ceqv(A)
given a circuit over the algebra A is it true that for all inputs x we have the same values
on given two output gates g1,g2, i.e. g1(x) = g2(x).

This new approach proved itself to be very useful as the mentioned results for groups, rings
and lattices have been extended in [12] to much more general setting. Actually the main
result of [12] shows that both nilpotent groups and distributive lattices (isolated in [7] and
[19] as those with Ptime algorithm for PolSat) form a paradigm for algebras with Csat
solvable in polynomial time. Unfortunately nilpotent groups hide an extremely interesting
phenomena, namely every finite nilpotent group is a direct product of groups of prime power
order. In universal algebraic terms this means that nilpotent groups are supernilpotent. In
fact, one of the the results contained in [12] (independently also shown in [14]) generalizes
polynomial time algorithms from nilpotent groups to supernilpotent algebras. On the other
hand, the results of [12] leave a gap: solvable algebras considered in [12] that are not nilpotent
have NP-complete Csat and co-NP-complete Ceqv, while the complexity of Csat and Ceqv
for nilpotent but not supernilpotent algebras is not known. Unfortunately to fill this gap the
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Ptime algorithms presented in [1, 12, 14] are useless – they do not work in general nilpotent
setting. They rely on the fact that if an equation has a solution then it must have one among
relatively small set S of tuples (although there may exist some other solutions outside the
set S). More precisely: if A is a supernilpotent algebra (or a distributive lattice) then there
is a constant d so that for each natural number n there is Sn ⊆ An such that
|Sn| is O(nd),
for two n-ary polynomials s and t the equation s(x) = t(x) has a solution x ∈ An iff it
has a solution in Sn.

Also showing that two n-ary polynomials over an algebra determine the same n-ary function
is reduced to checking this on a relatively small set Sn.

In this paper we show two things:
1. For nilpotent but not supernilpotent finite algebras one cannot expect polynomial time

algorithms for Csat or Ceqv based on small search spaces Sn described above, (unless
P = NP).

2. On the other hand there are finite nilpotent but not supernilpotent algebras with tractable
Csat and Ceqv problems.

The examples mentioned in the second item are expanded abelian groups (Zpq; +, f) where
p, q are different primes, + is the addition modulo pq and f(x) is a unary function that
returns x modulo p. Algorithms solving Ceqv and Csat for those algebras in polynomial
time are described in sections 4 and 5, respectively. Those algorithms are based on a precise
analysis of some kind of normal form of polynomials. The existence of such nice normal form
is shown in section 3.

The evidence for the first item is provided by algebras with the very same clone of all
polynomials as (Zpq; +, f) but given by a different and infinite set of precisely chosen basic
operations. In fact we show in section 6 that such algebras have co-NP-complete Ceqv
problem and NP-complete Csat.

The reader should be warned here that leaving the safe realm, in which only finitely many
basic operations are allowed, results in several fundamental problems. To start with, note that
presenting an equation s(x) = t(x) we need to identify the basic operations that occur in s or
t. In fact, even the decidability of such redefined Csat is not clear. One way to overcome this
is to have an algebra A = (A; f0, f1, . . .) encoded by a Turing machine TMA which given the
(k-ary) operation fm and a1, . . . , ak ∈ A returns TMA(m, a1, . . . , ak) = fm(a1, . . . , ak). Such
approach puts extended Csat(A) into NP whenever TMA works in polynomial time. But it
can be applied only to algebras with recursively enumerable set of fundamental operations.

The other way is to present an instance s(x) = t(x) of the problem together with the
descriptions of all fundamental operations that occur in s or t. Again such description may
be done twofold:

(CsatT) by presenting the tables of the occurring basic operations, or
(CsatTM) by (polynomial time) algorithms TMf computing the values f(a1, . . . , ak).

It may seem that presenting operations by tables is more natural, as in many cases the
complexity of such extended CsatT coincides with the complexity of its original (finite)
version Csat whenever the clone of an algebra is finitely generated (cf. Theorems 4.2, 5.2 and
6.2). On the other hand presenting the tables can again be treated as an artificial inflation
of the input size. Indeed, Theorems 6.1 and 6.2 provide examples of nilpotent algebras with
polynomial time CsatT and NP-complete CsatTM. In fact item (1) above relies on such
examples.

MFCS 2018
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2 Background material

We use standard notation of universal algebra and computational complexity theory which
can be found for example in [4], [18]. In particular, by an algebra we mean a pair A = (A;F ),
where A is a nonempty set and F is a family of finitary operations on A. Together with
basic operations of A, i.e. the operations from the set F , we often consider the derived
operations – terms and polynomials of A. By a polynomial of A we mean its term with some
variables substituted by constants from A. We often refer to the syntactical side of the set
F of operations as the type of A. If F = {f1, . . . , fs} we simply write (A; f1, . . . , fs) rather
than (A;F ) and say that A is of finite type. We restrict ourselves to finite algebras, i.e.
algebras with finite universe A but we do allow infinite sets F of basic operations. The set of
all terms (or polynomials) of A is to be denoted by Clo A (or Pol A). Two algebras A and
B are said to be polynomially equivalent if they have the same universes and Pol A = Pol B.

This paper is also restricted to algebras that belong to congruence modular varieties, i.e.
to algebras A that together with all subalgebras D of the powers An having modular lattices
Con D of their congruences. Congruence modular varieties include most known and well-
studied algebras such as groups, rings, modules (and their generalizations like quasigroups,
loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like
Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics
including MV-algebras).

One reason of our restriction to algebras from congruence modular varieties is that the
paper [12] deals with such algebras. The other one is that in congruence modular setting
there is a pretty well working notion of commutator of congruences that nicely generalizes
commutator of normal subgroups (in group theory) and multiplication of ideals (in ring
theory). A deep study of this commutator is described in [6]. Here we only recall a couple of
definitions needed later. For congruences α, β, γ ∈ Con A we say that α centralizes β modulo
γ (and denote this by C(α, β; γ)) if for every n > 1, every (n + 1)-ary term t of A, every
(a, b) ∈ α, and every (c1, d1), . . . , (cn, dn) ∈ β we have

t(a, c)
γ
≡ t(a, d) iff t(b, c)

γ
≡ t(b, d).

Now the commutator [α, β] of the congruences α, β ∈ Con A is the smallest congruence
γ ∈ Con A for which C(α, β; γ). With the help of the commutator one can define solvable,
nilpotent and Abelian congruences. In this paper we are interested only in the two last
concepts. To define nilpotency we first iterate the commutator by putting θ(0) = θ and
θ(i+1) = [θ, θ(i)], whenever θ ∈ Con A. Now we say that θ is k-nilpotent if θk is the identity
relation 0A on A and the algebra A is nilpotent if the largest congruence 1A of A is k-
nilpotent for some positive integer k. As in group theory, A is called Abelian if 1A is
1-nilpotent. Abelian algebras from congruence modular varieties have been shown in [6]
to have particularly nice structure. In fact they are affine, i.e. polynomially equivalent to
unitary modules (over a ring with unit).

We will also need the following strengthening of the nilpotency. First, for a bunch of
congruences α1, . . . , αk, β, γ ∈ Con A we say that α1, . . . , αk centralize β modulo γ, and write
C(α1, . . . , αk, β; γ), if for all polynomials p ∈ Pol A and all tuples a1

α1≡ b1, . . . , ak
αk≡ bk and

u
β
≡ v such that

p(x1, . . . , xk, u)
γ
≡ p(x1, . . . , xk, v)

for all possible choices of (x1, . . . , xk) in
{
a1, b1

}
× . . . ×

{
ak, bk

}
but (b1, . . . .bk), we also

have

p(b1, . . . , bk, u)
γ
≡ p(b1, . . . , bk, v).
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This notion was introduced by A. Bulatov [3] and further developed by E. Aichinger and
N. Mudrinski [1]. In particular they have shown that for all α1, . . . , αk ∈ Con A there is the
smallest congruence γ with C(α1, . . . , αk; γ) called the k-ary commutator and denoted by
[α1, . . . , αk]. Such generalized commutator behaves especially well in algebras from congruence
modular varieties. In particular this commutator is monotone, join-distributive and we have
[α1, [α2, . . . , αk]] 6 [α1, . . . , αk] . Thus every k-supernilpotent algebra, i.e. algebra satisfying
[ 1, . . . , 1︸ ︷︷ ︸
k+1 times

] = 0, is k-nilpotent. The following properties, that can be easily inferred from the

deep work of R. Freese and R. McKenzie [6] and K. Kearnes [13], have been summarized in
[1].

I Theorem 2.1. For a finite algebra A from a congruence modular variety the following
conditions are equivalent:
1. A is k-supernilpotent,
2. A is k-nilpotent, decomposes into a direct product of algebras of prime power order and

the clone Clo A is generated by finitely many operations,
3. A is k-nilpotent and all commutator polynomials have rank at most k.
Commutator polynomials mentioned in condition (3) of Theorem 2.1 are the paradigms for
the failure of supernilpotency and are easily seen to be useful in coding a k-ary conjunction.
We say that t(x1, . . . , xk−1, z) ∈ PolkA is a commutator polynomial of rank k if

t(a1, . . . , ak−1, b) = b whenever b ∈ {a1, . . . , ak−1} ⊆ A,
t(a1, . . . , ak−1, b) 6= b for some a1, . . . , ak−1, b ∈ A.

As we have mentioned in the Introduction this paper is intended to give a better
understanding of the problems Csat and Ceqv for nilpotent but not supernilpotent algebras.
Like in the groups, in nilpotent setting the inputs g1(x) = g2(x) of Csat or Ceqv can
be restricted to the ones in which one of the polynomials is constant, i.e. of the form
g(x) = c. Indeed, with the help of Corollary 7.4 in [6] it suffices to choose any c ∈ A and put
g(x) = m(g1(x),g2(x), c), where m(x, y, z) is a Mal’cev term for A, i.e. a term satisfying
m(x, x, y) = y = m(y, x, x) for all x, y ∈ A.

3 The structure of 2-nilpotent algebras

To fill the nilpotent versus supernilpotent gap mentioned in the Introduction we need to
understand the structure of nilpotent algebras. Since all algebras considered in this paper
are 2-nilpotent we will use the description of their structure presented in Chapter VII of [6].
It reduces to an action of one abelian algebra over the other abelian one. Thus, after fixing
the set F of operations we need two affine algebras:

an upper one, say U, which is polynomially equivalent to a module (U ;⊕) over a ring
RU , and
a lower one, say L, which is polynomially equivalent to a module (L; +) over a ring RL,

and for each basic operation f ∈ F , say k-ary, we need a function f̂ : Uk −→ L. This allows
us to construct an algebra L⊗F U of type F on the set L× U by putting

fL⊗FU((l1, u1), . . . , (lk, uk)) = (fL(l1, . . . , lk) + f̂(u1, . . . , uk), fU(u1, . . . , uk)). (1)

The usefulness of this construction is described in Corollary 7.2 in [6], where every 2-nilpotent
algebra of type F is shown to be of the form L⊗F U for some triple U,L,

{
f̂ : f ∈ F

}
. The

rest of this section is devoted to presenting a nice normal form of arbitrary polynomial p of
A that will be useful to construct polynomial time algorithms for Ceqv(A) and Csat(A).

MFCS 2018
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To start with, note that the equation (1) remains valid for f being not just a basic
operation but an arbitrary polynomial of A, where f̂ is appropriately chosen. Moreover
having in mind that both L and U are affine we know that fL(l1, . . . , lk) and fU(u1, . . . , uk)
are affine combinations

∑k
i=1 λili + l0 and

⊕k
i=1 αiui⊕ u0. Thus for a polynomial p we have

pL⊗FU((l1, u1), . . . , (lk, uk)) =
(

k∑
i=1

λili + p̂(u1, . . . , uk),
k⊕
i=1

αiui + u0

)
,

where l0 is absorbed by p̂. Moreover, p̂(u1, . . . , uk) can be presented as a sum of elements of
the form

µ · ĝ

(
k⊕
i=1

β
(1)
i ui ⊕ u(1)

0 , . . . ,

k⊕
i=1

β
(s)
i ui ⊕ u(s)

0

)
,

with ĝ ranging over basic operations (and its occurrences) used to build p.
The normal form, we have just started to build, has particularly nice shape in the cases

where the ĝ’s can be presented as affine combinations of unary f̂ ’s. One of such case is
presented in the following Lemma.

I Lemma 3.1. Let U and L be algebras polynomially equivalent to 1-dimentional vector
spaces over prime fields of different characteristics. Moreover let f : U −→ L be such that
f(0U) = 0L and

∑
u∈U f(u) 6= 0L. Then, every function g : Uk −→ L can be expressed by

g(x1, . . . , xk) =
∑

(β,u)∈Fk
U
×U

µβ,u · f

(
k⊕
i=1

βixi ⊕ u

)
. (2)

Proof. Let hka1,...,ak,a
: Uk −→ L be constantly 0L except hka1,...,ak,a

(a1, . . . , ak) = a. Observe
that for every function g : Uk −→ L we have

g(x1, . . . , xk) =
∑

(a1,...,ak)∈Uk
hka1,...,ak,g(a1,...,ak)(x1, . . . , xk).

Moreover we can express one spike function by any other one by putting

hka1,...,ak,a
(x1, . . . , xk) = a · b−1 · hkb1,...,bk,b

(x1 − a1 + b1, . . . , xk − ak + bk).

In the above we use 1-dimensionality so that the universes of L and FL coincide, so that the
vectors a, b ∈ L can be also treated as scalars from FL.

The last two displays yield that to finish the proof of the Lemma it suffices to represent,
for each k, one spike function in the form described in (2). The rest of the proof shows how
this can be done in the presence of a unary function f described in the Lemma, which is to
be called (U,L)-normal in the rest of the paper. Our construction of such spike functions is
based on counting partitions (into special sums) of elements in vector spaces over finite fields.

Being left with representing one spike function of arbitrary large arity by an expression
of the form (2) we start with letting p and q to be characteristics of the fields FU and FL,
respectively. Moreover let f : U −→ L be (U,L)-normal . Put

ts(x1, . . . , xs) =
∑

∅6=I⊆{1,...,s}

(−1)|I|f
(⊕
i∈I

xi

)
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and note that ts(x1, . . . , xs) = 0L whenever 0U ∈ {x1, . . . , xs}. We fix an enumeration of the
set U = {0U, u1, . . . , up−1} and define

wk(x1, . . . , xk)= tk(p−1)(x1−u1, . . . , xk−u1, x1−u2, . . . , xk−u2, . . . , x1−up−1, . . . , xk−up−1).

Observe that wk(x) = 0L whenever at least one of the xi’s is non-zero. To prove that wk is a
spike function it remains to show wk(0U, . . . , 0U) 6= 0L. Our first claim is

wk(0U, . . . , 0U) = tp−1(u1, . . . , up−1). (3)

Since ts is fully symetric, we have

wk(0U, . . . , 0U) = tk(p−1)(
k times︷ ︸︸ ︷

u1, . . . , u1,

k times︷ ︸︸ ︷
u2, . . . , u2, . . . ,

k times︷ ︸︸ ︷
up−1, . . . , up−1).

Without loss of generality we may assume that k = qa, as for any other k′ to get a k′-ary
spike we choose the smallest power qa > k′ and replace qa − k′ arguments with 0U. From
the definition of tk(p−1) we get

tk(p−1)(u1, . . . , u1, u2, . . . , u2, . . . , up−1, . . . , up−1) =

=
(p−1)·qa∑
k=1

(−1)k
∑

k1+...+kp−1=k
ki6q

a

(
qa

k1

)
· . . . ·

(
qa

kp−1

)
f

 k1⊕
i=1

u1 ⊕ . . .⊕
kp−1⊕
i=1

up−1

 .

Observe that
(
qa

ki

)
is divisible by q whenever ki 6∈ {0, qa}. Thus the only summands that

do not vanish are those with ki ∈ {0, qa} for all i so that
(
qa

k1

)
· . . . ·

(
qa

kp−1

)
= 1. Thus, by

changing notation, we have

tk(p−1)(u1, . . . , u1, u2, . . . , u2, . . . , up−1, . . . , up−1) =

=
p−1∑
k′=1

(−1)k
′·qa

∑
k′1+...+k′

p−1=k′

k′
i
∈{0,1}

f

k′1·q
a⊕

i=1
u1 ⊕ . . .⊕

k′p−1·q
a⊕

i=1
up−1

 =

=
p−1∑
k′=1

(−1)k
′·qa

∑
S⊆{1,...,p−1}
|S|=k′

f

(⊕
i∈S

ui

)
,

where the last equality follows from the fact that the multisets

k′1·q

a⊕
i=1

u1 ⊕ . . .⊕
k′p−1·q

a⊕
i=1

up−1 : k′1 + . . .+ k′p−1 = k′, k′i ∈ {0, 1}




and{{⊕
i∈S

ui : S ⊆ {1, . . . , p− 1}, |S| = k′

}}
.

are equal. To complete the proof of (3) observe that (−1)k′·qa = (−1)k′ . This is obvious for
q being odd, while otherwise it follows from the fact that x = −x.

We will conclude our proof by showing that

wk(0U, . . . , 0U) 6= 0L. (4)

MFCS 2018
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From the definition of ts we know that

tp−1(u1, . . . , up−1) =
p−1∑
k=1

(−1)k
∑

S⊆{1,...,p−1}
|S|=k

f

(⊕
i∈S

ui

)
.

Now, if `kui denotes a number of partition of the element ui into a sum of k non-zero pairwise
different elements from U then by appropriately grouping the f

(⊕
i∈S ui

)
’s and noting that

f(0U) = 0L we can replace the last sum by
p−1∑
k=1

(−1)k
p−1∑
i=1

`kuif(ui)

The numbers `kui were calculated in [16] to be `k = `kui = 1
p

((
p−1
k

)
+ (−1)k+1) independently

of ui 6= 0U. This gives that

tp−1(u1, . . . , up−1) =
p−1∑
k=1

(−1)k`k
p−1∑
i=1

f(ui) =
(
p−1∑
k=1

(−1)k`k
)(

p−1∑
i=1

f(ui)
)
.

Using the explicit formulas for the `k’s we get
p−1∑
k=1

(−1)k`k = 1
p

p−1∑
k=1

(−1)k
[(

p− 1
k

)
+ (−1)k+1

]

= 1
p

p−1∑
k=1

[
(−1)k

(
p− 1
k

)
+ (−1)2k+1

]

= 1
p

[
p−1∑
k=1

(−1)k
(
p− 1
k

)
+
p−1∑
k=1

(−1)
]

= 1
p

[−1− (p− 1)] = −1

This gives us that

wk(0U, . . . , 0U) = tp−1(u1, . . . , up−1) = −
p−1∑
i=1

f(ui)

is not equal to 0L as f is (U,L)-normal . Thus the claim (4) holds, proving that wk is a
spike function, as required. J

Lemma 3.1 yields that, in its setting, every polynomial p of A = L ⊗F U can be
represented as

p((l1, u1), . . . , (lk, uk)) =

 k∑
i=1

λili +
∑
β∈Rk

U
u∈U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
,

k⊕
i=1

αiui ⊕ u0

 (5)

where f is a (U,L)-normal function. Representations of the above form are to be called
f -normal. The size of such normal form is essentially the number of non-zero coefficients
among the λi’s, µβ,u’s and αi’s.

Most of our arguments in this paper refer to f -normal forms where the modules hidden in
U and L are actually 1-dimensional vector spaces over prime fields of different characteristics.
However f -normal forms could be useful in more general settings as shown in the following
Lemma as well as in Lemma 4.1.
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I Lemma 3.2. Let A = L⊗F U be a finite 2-nilpotent algebra. Then for each f : U −→ L

there exists a polynomial time procedure that returns f -normal form for a polynomial g of A
presented together with f -normal forms of all the basic operations occurring in g.

Proof. To prove the lemma we start with two polynomials h1,h2 of A presented in their
f -normal forms to carefully compute f -normal form of the superposition

g(x1, . . . , xk1+k2−1) = h2(h1(x1, . . . , xk1), xk1+1, . . . , xk1+k2−1)

in a polynomial time. Let

hj((l1, u1), . . . , (lkj , ukj )) =

 kj∑
i=1

λ
(j)
i li +

∑
(β,u)∈Γj

µ
(j)
β,c
· f

 kj⊕
i=1

βiui ⊕ u

 ,

kj⊕
i=1

α
(j)
i ui ⊕ u(j)

0


for appropriate Γj ⊆ Rkj

U × U .
Now the second and the first coordinates of g((l1, u1), . . . , (lk1+k2−1, uk1+k2−1)) are easily
seen to be

k1⊕
i=1

α
(2)
1 α

(1)
i ui ⊕

k2⊕
i=2

α
(2)
i ui+k1−1 ⊕ α(2)

1 u
(1)
0 ⊕ u

(2)
0 ,

and
k1∑
i=1

λ
(2)
1 λ

(1)
i li +

k2∑
i=2

λ
(2)
i li+k1−1 + λ

(2)
1 ·

∑
(β,u)∈Γ1

µ
(1)
β,u
· f

(
k1⊕
i=1

βiui ⊕ u

)
+ g′(u),

where g′(u1, . . . , uk1+k2−1) is obtained from
∑

(β,u)∈Γ2
µ

(2)
β,u
· f
(
β1u1 ⊕

⊕k2
i=2 βiuk1+i−1 ⊕ u

)
by substituting every occurrence of u1 by

⊕k1
i=1 α

(1)
i ui ⊕ u(1)

0 .

It should be obvious that both these coordinates give f -normal form of g and that they
can be computed in a polynomial time in size of f -normal forms of h1 and h2. Actually a
careful inspection of our argument allows us to bound the number of non-zero summands so
that the f -normal forms of more complicated superpositions of polynomials of A can be also
computed efficiently. J

Combining Lemmas 3.1 and 3.2 we get

I Corollary 3.3. Let L and U be algebras polynomially equivalent to one dimensional vectors
spaces over prime fields of different characteristics and f : U −→ L be (U,L)-normal . Then
every polynomial operation of A = L⊗F U has f-normal forms and, if the type F of A is
finite then one of these f -normal forms can be computed in polynomial time.

4 Equivalence

The last paragraph of Section 2 shows that in the nilpotent setting in Ceqv it suffices to
consider equivalence of two polynomials one of which is constant.

I Lemma 4.1. Let A = L ⊗F U with L and U being polynomially equivalent to one-
dimensional vector spaces over finite fields of different characteristics. Then there exists
a polynomial time algorithm which for polynomials p of A given in some f-normal form
decides if p is a constant function.

MFCS 2018
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Proof. Let

p((l1, u1), . . . , (lk, uk)) =

pL(l1, . . . , lk) +
∑
β∈Fk

U
u∈U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
,pU(u1, . . . , uk)


be an f -normal form of p. Obviously such polynomial p is constant iff both coordinates of
the right-hand side above are constant. This can be efficiently checked for pU(u1, . . . , uk) as
it is simply a polynomial of a vector space. Since both summands of the first coordinate on
the right-hand side depend on disjoint sets of variables (the li’s and the ui’s) to keep their
sum constant we need to keep both summands constant. Again, checking that for pL (in a
vector space) is fast so that we are left with the expression of the form

p̂(u1, . . . , uk) =
∑

(β,u)∈FkU×U
β 6=0

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
. (6)

This in turn can be done with the help of the following claim.
(?) p̂ is constant iff for each β ∈ FkU\

{
0
}
the function Sβ(x) =

∑
(κ,u)∈F∗

U
×U µκ·β,u ·f(κx⊕u)

is constant on U .
Indeed, having (?) we argue as follows. If for a particular β all the µκ·β,u’s are zero then
Sβ(x) = 0 for all x ∈ U . For any other β we simply check if Sβ is constant by computing all
of the |U | values for the x’s. This is fast as we have at most |U |2 summands. Finally, the
number of the β’s of the second kind is linear in the number of non-zero coefficients µβ,u.
This in turn is bounded by the length of the expression (6) which is the part of the input.

Thus we are left with the proof of (?). To see the ‘only if’ direction for β ∈ FkU \
{

0
}

and a ∈ U define Oa,β = {u ∈ Uk :
⊕k

i=1 βiui = a}. Observe that the size of the solution
set Oa,β of a nontrivial linear equation is always |U |k−1 independently of the choice of (a, β).
Now, since p̂ is constant, for each β ∈ F kU \ {0}

k and a, b ∈ L we have

0 =
∑

u∈O
a,β

p̂(u)−
∑

u∈O
b,β

p̂(u)

=
∑

u∈O
a,β

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u · f

(
k⊕
i=1

γiui ⊕ u

)
−
∑

u∈O
b,β

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u · f

(
k⊕
i=1

γiui ⊕ u

)

=
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u ·

 ∑
u∈O

a,β

f

(
k⊕
i=1

γiui ⊕ u

)
−

∑
u∈O

b,β

f

(
k⊕
i=1

γiui ⊕ u

)
=

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u ·
(
t(a, β, γ, u)− t(b, β, γ, u)

)
,

where t(x, β, γ, u) =
∑
u∈O

x,β
f
(⊕k

i=1 γiui ⊕ u
)
. Now, if the vectors β, γ ∈ FkU are linearly

dependent, i.e. γ = κ · β we have t(x, β, γ, u) = |U |k−1 · f(κ · x⊕ u). Otherwise, if β and γ
are linearly independent then t(x, β, γ, u) = |U |k−2∑

d∈U f(d), as the system of the following
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two equations{⊕k
i=1 βiui = x⊕k
i=1 γiui ⊕ u = d

has exactly |U |k−2 solutions. Summing up in the big display above the summands with γ’s
that are linearly independent with β diminishes so that this display reduces to

0 =
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u ·
(
t(a, β, γ, u)− t(b, β, γ, u)

)

= |U |k−1 ·

 ∑
(κ,u)∈F∗U×U

µκ·β,uf (κ · a⊕ u)−
∑

(κ,u)∈F∗U×U

µκ·β,uf (κ · b⊕ u)

 .

Since |U | and |L| are coprime, the difference in the parenthesis is zero which shows the ‘only
if’ direction of (?).

To prove the ‘if’ direction observe that R =
{

(β, κβ) : β ∈ F kU \
{

0
}
, κ ∈ F∗U

}
is an

equivalence relation. Let β(1)
, β

(2)
, . . . , β

(m) be the transversal of R. Then for x ∈ Uk we
have

p̂(x1, . . . , xk) =
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u · f

(
k⊕
i=1

γi · xi ⊕ u

)

=
∑

j∈{1,...,m}

∑
(κ,u)∈F∗U×U

µ
κ·β(j)

,u
· f

(
κ ·

k⊕
i=1

β
(j)
i xi ⊕ u

)

=
∑

j∈{1,...,m}

S
β

(j)

(
k⊕
i=1

β
(j)
i xi

)
.

Now our assumption that all the S
β

(j) are constant shows that p̂ is constant, as well. J

Corollary 3.3 together with Lemma 4.1 immediately give the following theorem.

I Theorem 4.2. Let A = L⊗F U with L and U being polynomially equivalent to 1-dimen-
sional vector spaces over prime fields of different characteristics. Then Ceqv(A) is in P.

5 Satisfiability

Again, in nilpotent realm the last paragraph of Section 2 allows us to fix one side of the
equations considered in Csat to be a constant polynomial.

I Lemma 5.1. Let A = L ⊗F U with L and U being polynomially equivalent to one-
dimensional vector spaces over finite fields of different characteristics. Then there exists a
polynomial time algorithm which for a constant c ∈ A and polynomials p of A given in some
f -normal form decides if the equation p(x) = c has a solution.

Proof. Since our polynomial is given in f -normal form we start with the following equationpL(l1, . . . , lk) +
∑

(β,u)∈Fk
U
×U

µβ,u · f

(
k⊕
i=1

βi · ui ⊕ u

)
, pU(u1, . . . , uk)

 = (cL, cU ). (7)
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We start with observing that since L and U are polynomially equivalent to one-dimensional
vector spaces the range of pL (and pU) is either one element or the entire L (or U). Now, if
pL is not constant then it suffices to check whether pU(u1, . . . , uk) = cU has a solution in U ,
as the solution in first coordinate always exists. Thus we assume that pL is constant and put
d = cL − pL(0L, . . . , 0L). Moreover we may assume that pU is not constant or equal to cU ,
as otherwise our equation has no solution.

We want to reduce our equation in A to an equivalent equation of the form∑
(β,u)∈Fk

U
×U

νβ,u · f

(
k⊕
i=1

βi · ui ⊕ u

)
= d (8)

in L, but with the ui’s taking values in U . Now, if pU is constant (and therefore equal to cU )
then we are done with νβ,u = µβ,u for all β’s and u’s. Otherwise pU(u1, . . . , uk) = cU reduces
to something of the form uj =

⊕
i 6=j δiui ⊕ cU . This allows us to replace all occurrences of

the uj by the sum
⊕

i 6=j δiui ⊕ cU and after recalculating the coefficients µβ,u we get the
desired νβ,u’s as required in (8).

Denote the left-hand side of (8) by p′(u1, . . . , uk) and note that since the set L carries the
multiplication inherited from the field FL the equation p′(u1, . . . , uk) = d has a solution iff∏

d′∈L−{d}

(p′(u1, . . . , uk)− d′) = 0L

is not an identity. Note however that the product above is not directly expressible as a
polynomial of A. Nevertheless distributing over the factors we can replace the product by
the sum

∑
(β(1)

,u(1))

∑
(β(2)

,u(2))

. . .
∑

(β(m)
,u(m))

νI · f

(
k⊕
i=1

β
(1)
i ui ⊕ u(1)

)
· . . . · f

(
k⊕
i=1

β
(m)
i ui ⊕ u(m)

)
,

where I =
(
β

(1)
, u(1), . . . , β

(m)
, u(m)

)
and m = |U | − 1. Lemma 3.1 supplies us with a

representation of the product f(x1) · . . . · f(xm) sending Um into L by an expression of the
right-hand side of (2). This leads to the representation of the form

∏
d′∈L−{d}

(p′(u1, . . . , uk)− d′) =
∑

(β,u)∈Fn
U
×U

µ′
β,u
· f

(
k⊕
i=1

βi · ui ⊕ u

)

which, with the help of Lemma 4.1, can be efficiently checked not to be constantly 0L. This
in turn is equivalent for the starting equation to have a solution. J

Corollary 3.3 and Lemma 5.1 yield the following result.

I Theorem 5.2. Let A = L ⊗F U with L and U being polynomially equivalent to one
dimensional vectors spaces over prime fields of different characteristics. Then Csat(A) is in
P.

6 Algebras with infinitely many operations

The reasons we consider infinite languages in this paper are twofold. One motivation comes
from the fact that a desire for a simple extension of our polynomial time algorithms from
supernilpotent algebras to nilpotent ones is hopeless. Indeed, as it has been already mentioned
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in the Introduction, those algorithms are based on a reduction to a small search space. Its
size and shape is bounded as a result of the bound for the essential arity of commutator
terms (they serve as multi-ary internal conjunctions replacing lack of an external one). At
first glance the existence of polynomial time algorithms for nilpotent but not supernilpotent
algebras is not so obvious as they do have commutator terms of arbitrary large arity so
that one can try to interpret NP-complete problems like in solvable but nonnilpotent case.
However all known commutator terms have exponential size with respect to the number of
variables whenever they are produced from finitely many operations. In fact the circuits
representing those known commutator polynomials are also of exponential size. However,
allowing infinitely many operations, we do have the possibility to express arbitrary large
conjunctions by short polynomials. This phenomena is presented in the next Theorem.

I Theorem 6.1. For two different prime numbers p, q there exists a 2-nilpotent algebra
A = L⊗F U with U and L being polynomially equivalent to one dimensional vector spaces
over the fields GF (p) and GF (q) respectively, such that CeqvTM(A) is co-NP-complete and
CsatTM(A) is NP-complete.

Proof. We start with choosing a ∈ U −{0} and b ∈ L−{0} to define the following family of
functions:

fk((l11, u1
1), (l12, u1

2), (l13, u1
3), . . . , (lk1 , uk1), (lk2 , uk2), (lk3 , uk3)) = (f̂k(u1

1, u
1
2, u

1
3, . . . , u

k
1 , u

k
2 , u

k
3), 0),

where

f̂k(u1
1, u

1
2, u

1
3, . . . , u

k
1 , u

k
2 , u

k
3) =

{
b, if a ∈

{
ui1, u

i
2, u

i
3
}
for each i,

0, otherwise.

Obviously the values of the fk’s can be computed by a single Turing machine in O(k) time.
Now we define A to be (L× U ; +A, {fk}∞k=1), where (L; +) and (U ;⊕) are the groups of

order q and p, respectively, and (l1, u1) +A (l2, u2) = (l1 + l2, u1 ⊕ u2).
To see that CsatTM(A) is NP-complete observe that a 3-CNF formula

(`11 ∨ `12 ∨ `13) ∧ · · · ∧ (`k1 ∨ `k2 ∨ `k3) (9)

is satisfiable if and only if the following equation has a solution in A

fk(z1
1 , z

1
2 , z

1
3 , . . . , z

k
1 , z

k
2 , z

k
3 ) = (b, 0),

where zji = xji if `
j
i is a positive literal and zji = (0, a)− xji otherwise.

Similarly a formula (9) is not satisfiable iff the following equation holds in A.

fk(z1
1 , z

1
2 , z

1
3 , . . . , z

k
1 , z

k
2 , z

k
3 ) = (0, 0).

This shows co-NP-completeness of CeqvTM(A). J

Note here that the examples with co-NP-complete CeqvTM and NP-complete CsatTM
do exist even for p = q. Actually they are provided (but without detailed description of the
input size) in [14]. However, if p = q the resulting algebras must have infinitely many basic
operations (as otherwise they would be supernilpotent), while for p 6= q the algebras have
finitely generated clone of operations but are presented with infinitely many basic operations
only to (artificially) compress the size of the input.

Note also that in fact Theorem 6.1 actually establishes much more than just hardness of
CsatTM and CeqvTM. Indeed, these examples show that (unless P = NP) for nilpotent but
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not supernilpotent finite algebras one cannot expect polynomial time algorithms for Csat or
Ceqv based on small search spaces Sn described in the Introduction. This is because the
existence of such search spaces do not depend on the finiteness of the language.

Representing functions by Turing machines gives us a way to compress the input. However
one can consider this as a drawback. That is because in this approach we can no longer
treat basic operations occurring in the input as parameters in the way we do it for the
finite set of operations. This probably denies the intuition behind what should an algorithm
parameterized by an algebra mean. That is why CeqvT(A) and CsatT(A), as described
in the Introduction, appear to be more natural candidates for transferring these problems
to the realm with possibly infinitely many basic operations. In contrast to Theorem 6.1 we
have the following.

I Theorem 6.2. Let A = L ⊗F U with L and U being polynomially equivalent to one
dimensional vector spaces over prime fields of different characteristics. Then CeqvT(A) and
CsatT(A) are in P.

Proof. First note that from Corollary 3.3 every polynomial over A can be represented in
some f -normal form. In view of Lemmas 3.2, 4.1 and 5.1 it suffices to show that obtaining
f -normal forms of basic operations can be done in time polynomial in size of their tables.

To represent the basic operation g in the form of the right-hand side of (5) we need to
compute all the λi’s, µβ,u’s, αi’s and u0 from the table of g. For x ∈ L×U we will use ΠL(x)
and ΠU (x) to denote the first and second coordinate of x.

Now, to compute the αi’s and u0 it suffices to solve the following system of k + 1 linear
equations

k⊕
i=1

αiui ⊕ u0 = ΠU (g((0, u1), . . . , (0, uk))) ,

where (u1, . . . , uk) ranges over the set {(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)}
⊆ Uk and ΠU (g((0, u1), . . . , (0, uk))) can be read from the table of g. Similarly, the λi’s are
the solutions of the following system of k linear equations

k∑
i=1

λili + ΠL(g((0, 0), . . . , (0, 0))) = ΠL(g((l1, 0), . . . , (lk, 0))) ,

where again (l1, . . . , lk) ranges over the set {(1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)} ⊆ Lk.
Finally, the µβ,u’s can be recovered from the following system of linear equations

∑
(β,u)∈Fk

U
×U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
= ΠL(g((0, u1), . . . , (0, uk))) .

This time the system consists of |U |k equations (one for each (u1, . . . , uk) ∈ Uk) but this
number is linear in the size of the table of g, as g is k-ary. J
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