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Abstract
In this paper we analyze the notion of “stopping time complexity”, the amount of information
needed to specify when to stop while reading an infinite sequence. This notion was introduced
by Vovk and Pavlovic [9]. It turns out that plain stopping time complexity of a binary string
x could be equivalently defined as (a) the minimal plain complexity of a Turing machine that
stops after reading x on a one-directional input tape; (b) the minimal plain complexity of an
algorithm that enumerates a prefix-free set containing x; (c) the conditional complexity C(x |x∗)
where x in the condition is understood as a prefix of an infinite binary sequence while the first x
is understood as a terminated binary string; (d) as a minimal upper semicomputable function K
such that each binary sequence has at most 2n prefixes z such that K(z) < n; (e) as max CX(x)
where CX(z) is plain Kolmogorov complexity of z relative to oracle X and the maximum is taken
over all extensions X of x.

We also show that some of these equivalent definitions become non-equivalent in the more
general setting where the condition y and the object x may differ, and answer an open question
from Chernov, Hutter and Schmidhuber [3].
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2:2 Plain Stopping Time and Conditional Complexities Revisited

1 Introduction: stopping time complexity

Imagine that you explain to someone which exit on a long road she should take. You can
just say “Nth exit”; for that you need logN bits. You may also say something like “the first
exit after the first bridge”, and this message has bounded length even if the bridge is very
far away.3

More formally, consider a machine with one-directional read-only input tape that contains
bits x0, x1, . . . xn, . . .. We want to program the machine in such a way that it stops after
reading bits x0, . . . , xn−1 (and never sees xn and the subsequent bits). Obviously, the
complexity of this task does not depend on the values of xn, xn+1, . . ., because the machine
never sees them, so this complexity should be a function of a bit string x = x0x1 . . . xn−1. It
can be called the “stopping time complexity” of x.

Such a notion was introduced recently by Vovk and Pavlovic [9]. In their paper an
“interactive” version of stopping time complexity is considered where even (x2n) and odd
(x2n+1) terms are considered differently, but this is just a special case, so we do not consider
this setting. It turns out that the stopping time complexity is a special case of conditional
Kolmogorov complexity with structured conditions. (In this paper we consider the plain
version of stopping time complexity and postpone similar questions for prefix versions.)

The Kolmogorov complexity was introduced independently by Solomonoff, Kolmogorov,
and Chaitin to measure the “amount of information” in a finite object (say, in a binary
string). One can also consider the conditional version of complexity where some other object
(a condition) is given “for free”. Later different versions of Kolmogorov complexity appeared
(plain, prefix, a priori, monotone complexities). We assume that the reader is familiar with
basic notions of algorithmic information theory, see, for example, [6] for a short introduction
and [7] for a detailed exposition.

For the plain version of stopping time complexity we prove the equivalence between
five different definitions (Section 2). First, we show that it can be equivalently defined
as (1) the minimal plain complexity of a machine with one-way read-only input tape that
stops after reading x, or (2) the minimal enumeration complexity of a prefix-free set that
contains x. Then we show how the stopping time complexity can be expressed in terms
of plain conditional complexity that is monotone with respect to conditions. Namely, we
prove that (3) the stopping time complexity equals C(x |x∗) where x is used both as an
object and a condition. Of course, according to standard definitions, the complexity C(x |x)
is O(1), but now we treat these two strings x differently (and use a star in the notation
to stress this). One may say that the topologies in the space of objects and the space of
conditions are different. The first x (object to be described) is considered as an isolated
object (terminated string). The second x (in the condition) is considered as a prefix of an
infinite sequence. In [7, Section 6.3] this approach is described in general (see also [5] for even
more general setting); to make this paper self-contained, we give all necessary definitions for
our special case. We call this version of complexity “monotone-conditional complexity” since
this function is monotone with respect to the condition. Then we provide a characterization
of stopping time complexity in quantitative terms proving that (4) stopping time complexity
is the minimal upper semicomputable function satisfying some restrictions (no more than 2n

prefixes of any given sequence could have complexity at most n). Finally, we point out the
connections with the relativized version CA(x) of plain complexity and prove that (5) the

3 We do not allow, however, the description “the last exit before the bridge”, since it uses information
that is unavailable at the moment when we have to take the exit.
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stopping time complexity of a binary string x is the maximal value of CA(x) for all oracles
(infinite bit sequences) A that have prefix x.

Having such a robust definition for plain stopping time complexity, one may ask whether
similar characterizations can be obtained for a more general notion of C(y |x∗) where x and
y are arbitrary strings. Unfortunately, here the situation is much worse, and we prove mostly
negative results (Section 3). We show that while C(y |x∗) can be defined as a minimal plain
complexity of a prefix-stable program that maps x to y (Theorem 12), it cannot be defined
as a minimal plain complexity of a prefix-free program that maps some prefix of x to y
(Theorem 13; this result answers a question posed in [3]). Then we show that the attempt to
define C(y |x∗) by quantitative restrictions also fails: we get another function that may be
up to two times less (Theorem 14).

2 Equivalent definitions

2.1 Machines and prefix-free sets
Consider a Turing machine M that has one-directional read-only input tape with binary
alphabet, and a work tape with arbitrary alphabet (or many work tapes). Let x be a binary
string. We say that M stops at x if M , being started with the input tape x (and an empty
work tape, as usual), reads all the bits of x and stops without trying to read more bits. (We
assume that initially the input head is on the left of x, so it needs to move right before seeing
the first bit of x.) For a given x, we may consider the minimal plain Kolmogorov complexity of
a machine M that stops at x. This quantity is independent (up to O(1)-additive term) of the
details of the definition (work tape alphabet, number of work tapes, etc.) since computable
conversion algorithms exist, and a computable transformation may increase complexity only
by O(1). We arrive at the following definition:

I Definition 1. The plain stopping time complexity of x is the minimal plain Kolmogorov
complexity of a Turing machine that stops at x.

Here is a machine-independent equivalent characterization of the plain stopping time
complexity.

I Theorem 2. Plain stopping time complexity of x equals (up to an O(1) additive term) the
minimal complexity of a program that enumerates some prefix-free set containing x.

(A set of strings is called prefix-free if it does not contain a string and its proper prefix at
the same time.)

Proof. One direction is simple: For a Turing machine M of the type described the set
{x : M stops at x} is enumerable (we may simulate all runs) and prefix-free (if M stops at
some x, then for every extension y of x the machine M will behave in the same way on
tapes x and y, so M with input y stops after reading x and never reads the rest of y). This
computable conversion (of a machine into an enumeration program) increases complexity at
most by O(1).

The other direction is a bit more complicated. Imagine that we have a program that
enumerates some prefix-free set U of strings. How can we construct a machine that stops
exactly at the strings in U? Initially no bits of x are read. Enumerating U , we wait until
some element u of U appears. (If this never happens, the machine never stops, and this is
OK.) If u is empty, machine stops. In this case U cannot contain non-empty strings (being
prefix-free), so the machine’s behavior is correct. If u is not empty, we know that empty
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2:4 Plain Stopping Time and Conditional Complexities Revisited

string is not in U (since U is prefix-free), so we may read the first bit of x without any risk,
and get some one-bit string v. Then we wait until v or some extension of v appears in U (it
may have already happened if u is an extension of v). If v itself appears, the computation
stops; if a proper extension of v appears, then v is not in U and we can safely read the next
bit, etc. It is easy to check that indeed this machine stops at some x if and only if x belongs
to U . J

2.2 Monotone-conditional complexity
In this section we show how the stopping time complexity can be obtained as a special case
of some general scheme [5, 8, 7]. This scheme can be used to define different versions of
Kolmogorov complexity. We consider decompressors, called also description modes. In our
case decompressor is a subset D of the set

(descriptions)× (conditions)× (objects).

Here descriptions, conditions, and objects are binary strings. If (p, x, y) ∈ D, we say that p
is a description of y given x as condition, and define the conditional complexity of y given
x (with respect to the description mode D) as the length of the shortest description. The
different versions of complexity correspond to different topologies on the spaces involved,
and imply different restrictions on description modes. This is explained in [8] or [7, Chapter
6], and we do not go into technical details here. Let us mention only that descriptions
and objects can be considered as isolated entities (terminated strings, natural numbers) or
prefixes of an infinite sequence (extension of a string provides more information than the
string itself). In this way we get four classical versions of complexity:

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes decision complexity monotone complexity

As noted in [7], one can also consider different structures on the condition space, thus getting
eight versions of complexity instead of four in the table. In this paper we use only one
of them: objects and descriptions are isolated objects, and conditions are considered as
prefixes. (Vovk and Pavlovic [9] consider also another version of stopping time complexity
that corresponds to the other topology on the description space, but we do not consider this
version now.)

To make this paper self-contained, let us give the definitions tailored to the special case
we consider (the plain version of monotone-conditional complexity). In this case the set D is
called a description mode if it satisfies the following requirements:

D is (computably) enumerable;
for every p and x there exists at most one y such that (p, x, y) ∈ D;
if (p, x, y) ∈ D and x is a prefix of some x′, then (p, x′, y) ∈ D.

The last requirement reflects the idea that x is considered as a known prefix of a yet unknown
infinite sequence; if x′ extends x, then x′ contains more information than x and can be used
instead of x. To stress this kind of monotonicity, we use ∗ in the notation suggested by the
following definition.

I Definition 3. For a given description mode D, we define the function

CD(y |x∗) = min{|p| : (p, x, y) ∈ D}

and call it monotone-conditional complexity of y with condition x with respect to description
mode D.
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By definition, if x is a prefix of some x′, the same description can be used, so CD(y |x′∗) ≤
CD(y |x∗). Therefore, this function is indeed monotone with respect to the condition in a
natural sense.

One could also use a name plain monotone-conditional complexity to distinguish this
notion from prefix monotone-conditional complexity that can be defined in a similar way by
adding the monotonicity restriction along the p-coordinate.

I Proposition 4 (Solomonoff–Kolmogorov’s optimality theorem). There exists a description
mode D that makes CD minimal up to O(1) additive term in the class of all functions CD′

for all description modes D′.

Proof. As usual, we first note that description modes can be effectively enumerated. This
enumeration is obtained as follows. We generate all enumerable sets of triples and then
modify them in such a way that the modified set becomes a description mode and is left
unchanged if it already was a description mode. Namely, when a triple (p, x, y) appears in
the enumeration, we add this triple and all triples (p, x′, y) for all extensions x′ of x, unless
the second condition would be violated after that; in the latter case we ignore (p, x, y).

Let Un be the nth set in this enumeration. The optimal set U can be constructed as

U = {(0n1p, x, y) : (p, x, y) ∈ Un};

the standard argument shows that CU ≤ CUn
+n+ 1 as required. J

I Definition 5. Fix some optimal description mode D provided by Proposition 4. The
function CD(y |x∗) is denoted by C(y |x∗) and called the (plain) monotone-conditional
complexity of y given x, or the (plain) conditional complexity of y given x as a prefix.

If we omit the third requirement for description modes, we get the standard conditional
complexity C(y |x) in the same way. The notation we use (placing ∗ after the condition)
follows [3] though a different version of monotone-conditional complexity is considered there.
In general, C(y |x∗) is greater than the standard conditional complexity C(y |x) since we
have more requirements for the description modes. One may say also that the condition now
is weaker than in C(y |x) since we do not know where x terminates. It is easy to show that
the difference is bounded by O(log |x|), since we need at most O(log |x|) bits to specify how
many bits should be read in the condition x. Difference of this order is possible: for example,
C(n |0n) = O(1), but C(n |0n∗) = C(n) +O(1) (the condition 0n is a prefix of a computable
sequence 000 . . ., so it does not help at all).

The following simple result shows that the plain stopping time complexity (Definition 1)
is a special case of this definition when x = y (so we do not need a separate notation for the
stopping time complexity).

I Theorem 6. The complexity C(x |x∗) is equal (up to O(1) additive term) to the plain
stopping time complexity of x.

Proof. Let D be a description mode. Then for every p we may consider the set Sp of strings
x such that (p, x, x) ∈ D. This set is prefix-free: if (p, x, x) and (p, x′, x′) belong to D and x is
a prefix of x′, then (p, x′, x) ∈ D according to the third condition, and then x = x′ according
to the second condition. The algorithm enumerating Sp can be constructed effectively if p is
known, so its complexity is bounded by the length of p (plus O(1), as usual). Choosing the
shortest p such that (p, x, x) ∈ D, we conclude that the minimal complexity of an algorithm
enumerating a prefix-free set containing x does not exceed C(x |x∗) +O(1).

MFCS 2018



2:6 Plain Stopping Time and Conditional Complexities Revisited

Going in the other direction, consider an optimal decompressor U(·) that defines the
(plain Kolmogorov) complexity of programs enumerating sets of strings. A standard trimming
argument shows that we may modify U in such a way that all algorithms U(p) enumerate
only prefix-free sets of strings (not changing the sets there were already prefix-free). Then
consider a set D of triples

(p, x, y) ∈ D ⇔ y is a prefix of x and y is enumerated by U(p).

This set in obviously enumerable; the second requirement is satisfied since D(p) enumerates a
prefix-free set; the third requirement is true by construction, so D is a description mode. If p
is the shortest description of a program that enumerates a set containing x, then (p, x, x) ∈ D,
so CD(x |x∗) ≤ |p|. Switching to the optimal description mode, we get similar inequality
with O(1) additive term, as required. J

Another simple observation shows that indeed this complexity may be called the stopping
time complexity.

I Proposition 7. If x has length n, then C(x |x∗) = C(n |x∗) +O(1).

Proof. If D is the optimal description mode used to define C(y |x∗), we may consider a
new set D′ = {(p, u, |x|) : (p, u, x) ∈ D} that also is a description mode, and then note that
CD′(n |x∗) ≤ CD(x |x∗). For the other direction, we consider D′ = {(p, u, z) : ∃n [(p, u, n) ∈
D, |u| ≥ n, and z = (n-bit prefix of u)]}. J

I Remark. If a0a1a2 . . . is a computable sequence, then

C(a0 . . . an−1 |a0 . . . an−1∗) = C(n |a0 . . . an−1∗) = C(n)

with O(1)-precision (the constant depends on the computable sequence, but not on n), so
the stopping time complexity can be considered as a generalization of the plain complexity
(of a natural number n).

2.3 Quantitative characterization
There is a well known characterization (see, e.g., [8, Section 1.1, Theorem 8]) for plain
complexity in terms of upper semicomputable functions that satisfy some properties. Recall
that a function is called upper semicomputable if it is a pointwise limit of a decreasing
sequence of uniformly computable total functions. (Now we need this notion for integer-
valued functions; in this case we may assume without loss of generality that the total
computable functions used in the definition are also integer-valued; in the general case one
needs to consider rational-valued functions.) An equivalent definition of a semicomputable
natural-valued function S(x) requires the set {(n, x) : S(x) < n} to be enumerable.

Plain complexity function C(x) is upper semicomputable; we know also that

#{x : C(x) < n} < 2n (*)

since there are less than 2n programs of length less than n. The characterization that we
mentioned says that there exist a minimal (up to O(1) additive term) upper semicomputable
function that satisfies the requirement (∗), and it coincides with the plain complexity function
with O(1)-precision.

It turns out that this characterization can be generalized to plain stopping time complexity
(though the proof becomes more involved). Consider upper semicomputable functions S(x)
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on strings that have the following property: for each infinite binary sequence α and for each
n there exists less than 2n prefixes x of α such that S(x) < n. The following statement is
true (it appears as Theorem 18 in the extended version of Vovk–Pavlovic’s paper [9]).

I Theorem 8. There exist a minimal (up to O(1) additive term) function in this class; it
coincides with the plain stopping time complexity C(x |x∗) with O(1)-precision.

Proof. The easy part is to show that C(x |x∗) belongs to the class. It is upper semicomputable,
since in general the function C(x |y∗) is upper semicomputable (enumerating the set D of
triples, we get better and better upper bounds, finally reaching the limit value).

Let α be some infinite sequence. There are less than 2n algorithms of complexity less
than n enumerating prefix-free sets, and each of this prefix-free sets may contain at most one
prefix of α. So the second condition is also true.

In the other direction we use some online (interactive) version of Dilworth’s theorem
(saying that a partially ordered finite set where maximal chain is of length at most k can be
partitioned into k antichains) where the set is growing and splitting into antichains should
be performed at each stage (and cannot be changed later). The exact statement is as follows.

Consider a game with two players. Alice and Bob alternate. Alice may at each move
(irreversibly) mark a vertex of the full binary tree. The restriction is that each infinite branch
should contain at most k marked vertices. Bob replies by assigning a color from 1, . . . , k
to the newly marked vertex. No vertices of the same color should be comparable (be on
the same branch). The colors cannot be changed after they are assigned. Bob loses if he is
unable to assign color at some stage (not violating the rules).

I Lemma 9. Bob has a computable strategy that prevents him from losing.

Proof of Lemma 9. This lemma can be proven in different ways. In the extended version of
Vovk–Pavlovic’s paper [9] the following simple strategy is suggested: Bob assigns the first
available color. In other terms, for a new vertex x Bob chooses the first color that is not
used for any vertex comparable with x. One needs to check that k colors are always enough.
It is not immediately obvious, since more than k vertices could be comparable with x (being
its descendants, for example). However, we may note that during the process:

Colors of comparable vertices are different. (By construction.)
If a vertex x gets color i, then each smaller color is used either for a predecessor of x or
for a descendant of x. (By construction.)
If x is a vertex (colored or not), Tx is the set of colors used in the subtree rooted at x
(including x itself), and Px is the set of colors used on the path to x (not including x), then
Tx and Px are disjoint and Tx is the initial segment in the complement to Px. (Indeed,
the disjointness is mentioned above. If y appears in Tx, then all smaller colors appear
either below y (therefore in Px or in Tx), or above y (therefore in Tx).
The sets Tx0 and Tx1 for two brother vertices x0 and x1 are comparable with respect to
inclusion. (Indeed, they are two initial segments of the same ordered set, the complement
to Px0 or Px1; note that Px0 = Px1.)
For each x the total number of colors used in Tx is minimal, i.e., this number equals the
maximal number of marked vertices on some path in Tx. (Induction using the previous
property.)

The last property implies that Bob never uses more than k colors, since by assumption
the total number of marked vertices on a path is at most k.

A different description of the same strategy that explains why it is successful is provided
in the extended version of this paper [1]. J
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2:8 Plain Stopping Time and Conditional Complexities Revisited

Now let us show how the lemma is used to finish the proof of Theorem 8. Let S be
a function in the class; since S is upper semicomputable, Alice may, given n, enumerate
strings x such that S(x) < n; we know that there is at most 2n strings of this type along
any branch of the tree, so Alice never violates the restriction for k = 2n. The lemma then
says that Bob can assign 2n colors (represented as n-bit strings) to all the vertices in such
a way that compatible vertices (a string and its prefix) never get the same color. We run
these games for all n in parallel; if vertex x gets color c, we put x into an enumerable set
indexed by c. The rules of the game guarantee that all these sets are prefix-free, and the
algorithm enumerating cth set needs only |c| bits of information. So, if S(x) < n, there exists
an algorithm of complexity n+O(1) that enumerates a prefix-free set containing x. This
means that C(x |x∗) ≤ S(x) +O(1) as required. J

2.4 Oracles and the stopping time complexity
It is natural to compare the stopping time complexity C(x |x∗) and the relativized complexity
CX(x) where X is some oracle (infinite binary sequence) that has x as a prefix. (The
relativized complexity CX(x) can be naturally defined as a function of two arguments, a
binary string x and an infinite binary sequence X, up to O(1) additive term.)

It is easy to see that

CX(x) ≤ C(x |x∗)

for every X that has prefix x: an oracle access to entire sequence X is more powerful than
a bit-by-bit sequential access to x without the right to read too much (beyond x). More
formally, let D be a set of triples (p, x, y) used to define C(y |x∗) (Definition 5). Then we say
that p is a description of x with oracle X (as the definition of CX(x) requires) if (p, z, x) ∈ D
for some z that is a prefix of X. For a given X every string p can be a description of only one
x, since D is monotone. If (p, x, x) ∈ D and X is an extension of x, then p is a description
of x, and we get the required inequality.

The “last exit before the bridge” example shows that CX(x) can be much smaller than
C(x |x∗) for some extensions X of x: we have C(0n |0n∗) = C(n) +O(1), but CX(0n) = O(1)
for X = 0n10∞.

So it is natural to take maximum over all oracles X that extend a given string x. Indeed
this approach works:

I Theorem 10.

C(x |x∗) = max{CX(x) : X is an infinite extension of x}+O(1).

Proof. As we have already mentioned, CX(x) ≤ C(x |x∗) +O(1) for every infinite extension
X of x. This shows that right hand side does not exceed the left hand side.

Before proving the reverse inequality, let us discuss informally its meaning (this discussion
is not used in the argument below and can be omitted). The reverse inequality is a minimax-
type result that shows that either (1) there exists a short program that produces x given
any extension of x as an oracle (and never reads bits after x, but this is not so important for
us now), or (2) there exists a “hard to use” extension X of x such that any program that
computes x given X is long. In other words, it is not possible that for every extension X of
x there exists a short program that computes x given X as an oracle, but these programs
depend on X and only a much longer program works for all extensions.

For the proof of the reverse inequality we use the quantitative characterization of stopping
time complexity (Theorem 8). Let S(x) be the value of the right hand side. It is enough to
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prove that S is upper semicomputable and that S(x) < n cannot happen for 2n different
prefixes x of some infinite branch X.

The second claim follows directly from the definition. Let x1, . . . , xk be some prefixes of
an infinite sequence X such that S(xi) < n for all i = 1, . . . , k. We need to show that k < 2n.
Since S(xi) is defined as maximum and X is an extension of xi, we know that CX(xi) < n

for all i and the same X. It remains to note that the number of different programs of length
less than n is smaller than 2n (and the same programs with the same oracles give the same
results).

To show that S(x) is upper semicomputable, we use the standard compactness argument.
As usual, it is enough to show that the binary relation S(x) < n is (computably) enumerable.
Indeed, for every x, the set {X : CX(x) < n} is the union, taken over all strings p of length
less than n, of the sets

{X : p is a description of x with oracle X}.

Each of these sets is an open set in the Cantor space, since every terminating oracle
computation uses only a finite part of the oracle, and the intervals in the Cantor space that
form these sets, can be effectively enumerated for all p and x. The inequality S(x) < n

means that the union of these intervals for all p of length less than n covers the Cantor
space. Now compactness guarantees that this happens already at some finite stage of the
enumeration, so the property S(x) < n is indeed enumerable. J

3 Non-equivalence results

3.1 Prefix-stable or prefix-free functions?
Looking at the characterization of C(x |x∗) as the minimal enumeration complexity of a
prefix-free set containing x (Theorem 6), one can ask whether a similar characterization works
for the general case, i.e., whether C(y |x∗) can be characterized as a minimal complexity
of programs (machines) with some property. The answer is ‘yes’, but we should be careful
choosing a property of programs used in this characterization. Here are the details.

I Definition 11. A partial function f defined on binary strings is called
prefix-free if its domain is prefix-free (function is never defined on a string and its extension
at the same time);
prefix-stable if for every x, if f(x) is defined, then f is defined and has the same value on
all (finite) extensions of x.

It is easy to see that the definition of C(y |x∗) can be reformulated in terms of prefix-stable
functions:

I Theorem 12. The minimal plain complexity of a program that computes a prefix-stable
function mapping x to y is equal to C(y |x∗) +O(1).

Proof. A description mode can be considered as a family of prefix-stable functions (indexed
by the first argument p). This shows that there exist a program for a prefix stable function
mapping x to y of complexity at most C(y |x∗) +O(1). On the other hand, one can efficiently
“trim” all programs to make them prefix-stable; if û is the trimmed version of a program
u and U is the decompressor used to define plain complexity of programs, then the set
D = {p, x, Û(p)(x) : p, x} satisfies the conditions and may be considered as a decompressor
in the definition of C(y |x∗). Using this decompressor, we get the reverse inequality. J
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More interesting question: is a similar statement true for prefix-free functions instead of
prefix-stable ones? As we mentioned above, Theorem 6 implies that this is the case when
x = y. (We spoke about programs that stop at x, but we may assume without loss of
generality that the output is also x.) But in the general case it is not true anymore. Let us
make this statement more precise. The first idea is to consider the minimal plain complexity
of a program computing a prefix-free function mapping x to y. But this quantity does not
look reasonable: the complexity of empty string Λ with condition x defined in this way may
be arbitrarily large (and is actually the stopping time complexity of the condition x).

A more reasonable approach is to consider function C′(y |x∗) defined as the minimal
complexity of a prefix-free program that maps some prefix of x to y. This approach still does
not work, as the following result shows.

I Theorem 13. The inequality C(y |x∗) ≤ C′(y |x∗)+c holds for some c and for all x, y. The
reverse inequality does not: there exist strings xi, yi (for i = 0, 1, 2, . . .) such that C(yi |xi∗)
is bounded while C′(yi |xi∗) is unbounded.

Proof. The first part is easy: if an algorithm computing a prefix-free function f is given,
we can effectively transform it into an algorithm that computes its prefix-stable extension g
such that g(x) = y if f(u) = y for some prefix u of x.

For the second part of the proof (using game arguments in the sense of [4]) see the
extended version of this paper [1]. J

Theorem 13 implies that the conjecture from [3, p. 254] is false, and the function CT

defined there may exceed CE more than by O(1) additive term. We do not go into the details
of the definition used in [3]; let us mention only that CE(yi |xi) is bounded while CT (yi |xi)
is not: for every twice prefix machine (as defined in [3, p. 252]) we get a prefix-free function
if we fix the first argument (denoted there by p).

3.2 Quantitative characterization of C(y |x∗) works only up to factor 2
In Section 2.3 we provided a quantitative characterization of stopping time complexity,
or C(x |x∗), with O(1)-precision (Theorem 8). The natural question is whether a similar
characterization works in the general case, i.e., for C(x |y∗). As we will see, the answer is
negative.

For C(x |y) (the standard version of conditional complexity, with no monotonicity require-
ment) such a characterization is well known: C(x |y) is the minimal upper semicomputable
function of two arguments K(x, y) such that for every string y and every number n there is
at most 2n different strings x such that K(x, y) < n.

The natural approach is to keep this restriction and add the monotonicity requirements:

K(x, y0) ≤ K(x, y) and K(x, y1) ≤ K(x, y), for every x and y.

We get some class of functions (that are upper semicomputable, satisfy the cardinality
restriction and are monotone in the sense described). Can we characterize C(x |y∗) as the
minimal function in this class? No, as the following theorem shows.

I Theorem 14.
(a) Function C(x |y∗) belongs to this class.
(b) There exists a minimal (up to O(1) additive term) function in this class;
(c) Function C(x |y∗) is not minimal in this class: there exist a function K in this class,

and sequences of strings xn and yn such that K(xn, yn) ≤ n, but C(xn |yn∗) ≥ 2n − c
for some c and for every n.
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(d) The factor 2 that appears in the previous statement is optimal: if K is a function in the
class (for example, the minimal one), then C(x |y∗) ≤ 2K(x, y) + c for some c and for
all x and y.

Proof. The statements (a) and (b) are “good news”, while the statement (c) is “bad news”
showing that our characterization does not work. (It is possible a priori that one can get
a natural characterization of C(x |y∗) by adding some other restrictions, but it is quite
unclear what kind of restrictions could help here.) Finally, the statement (d) partly saves
the situation and shows that the minimal function in the class and C(x |y∗) differ at most by
factor 2.

The statement (a) is obvious; note that C(x |y∗) is bigger than C(x |y), so the cardinality
restriction remains true. Other requirements immediately follow from the definition.

The statement (b) can be proved in a standard way. We can enumerate all functions
in the class and get a uniformly computable sequence of functions Km(x, y). For that we
enumerate all monotone upper semicomputable functions and then “trim” them by deleting
small values that make the cardinality restriction false. Then we construct the minimal
function K(x, y) by letting

K(x, y) = min
m

(Km(x, y) +m+ 1).

It is upper semicomputable and monotone; for every y, the set of x such that K(x, y) < n

is the union of sets {x : Km(x, y) < n−m− 1} that have cardinality at most 2n−m−1, and
2n−1 + 2n−2 + . . . < 2n. The function K is minimal, since K ≤ Km +m+ 1.

For the proofs of statements (c) and (d) see the extended version of this paper [1]. These
proofs use game arguments in the sense of [4]. J

4 Questions

I Question 1. Imagine Turing machines with two read-only input tapes; for such a machine
M consider a function fM such that fM (x, y) = z if M stops at x and y on first and second
tape respectively (reading all bits and not more) and produces z. Could we characterize
the functions fM (called twice prefix free in [3, page 242]) or at least their domains? Such
a domain is an enumerable set of pairs that does not contain two pairs (x, y) and (x′, y′)
where x is compatible with x′ (one is a prefix of the other) and y is compatible with y′.
Still this necessary condition is not sufficient, as the following argument shows. Let zi be a
computable sequence of pairwise incompatible strings (say, zi = 0i1). Let P and Q be two
enumerable sets that are inseparable (do not have a decidable separating set). Consider the
set of pairs that contains

(zi0, zi0) for all i;
(zi, zi1) for i ∈ P ;
(zi1, zi) for i ∈ Q.

This set satisfies the necessary condition above (does not contain two compatible pairs).
However, assume that some twice prefix free machine has this set as a domain. Then it
should terminate after reading zi0 on the first tape and zi0 on the second tape. Consider
the last zero bits on both tapes. One of these bits should be read first (if they are read
simultaneously, we may choose any of two). If this is the first bit, then i ∈ P is impossible
(since the machine cannot read 1 on the second tape before reading 0 on the first tape). For
the same reason, i ∈ Q is impossible if the second bit is read first. Therefore, a decidable
separator exists.

Can we add some conditions to get a characterization of domains of twice prefix free
machines? What do we get if we define stopping time complexity for pairs using machines of
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this type? Does it have some equivalent description (for example, can it be defined using
monotone-conditional complexity with pairs as conditions, Section 2.2)?
I Question 2. Do we have C(x |x∗) = maxz C(x |z) +O(1) where the maximum is taken over
all finite extensions z of x? (The problem is that the compactness argument does not work
anymore.)
I Question 3. One may consider the function

K(x, y) = max{CY (x) : Y is an infinite extension of y}

We have shown that for x = y it coincides with C(x |x∗), showing that it does not exceed
C(x |x∗) and satisfies the quantitative restrictions of Theorem 8. Both arguments remain
valid (with minimal changes) for the general case, and we conclude that K(x, y) defined in this
way does not exceed C(x |y∗) and also satisfies the cardinality restrictions of Theorem 14, (b).
However, now these upper bound and lower bound differ, and we do not know where the
function K(x, y) defined as shown above lies. Does it coincide with its upper bound C(x |y∗)
for arbitrary x and y, or with its lower bound, the minimal upper semicomputable function
that satisfies the cardinality requirements (see Theorem 14), or neither?
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