
Finding Short Synchronizing Words for Prefix
Codes
Andrew Ryzhikov
Université Paris-Est, LIGM, Marne-la-Vallée, France
ryzhikov.andrew@gmail.com

Marek Szykuła1

Institute of Computer Science, University of Wrocław, Wrocław, Poland
msz@cs.uni.wroc.pl

Abstract
We study the problems of finding a shortest synchronizing word and its length for a given prefix
code. This is done in two different settings: when the code is defined by an arbitrary decoder
recognizing its star and when the code is defined by its literal decoder (whose size is polynomially
equivalent to the total length of all words in the code). For the first case for every ε > 0 we prove
n1−ε-inapproximability for recognizable binary maximal prefix codes, Θ(logn)-inapproximability
for finite binary maximal prefix codes and n 1

2−ε-inapproximability for finite binary prefix codes.
By c-inapproximability here we mean the non-existence of a c-approximation polynomial time
algorithm under the assumption P 6= NP, and by n the number of states of the decoder in the
input. For the second case, we propose approximation and exact algorithms and conjecture that
for finite maximal prefix codes the problem can be solved in polynomial time. We also study the
related problems of finding a shortest mortal and a shortest avoiding word.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory

Keywords and phrases synchronizing word, mortal word, avoiding word, Huffman decoder, in-
approximability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.21

Acknowledgements The first author would like to thank Dominique Perrin for many useful
discussions. We are also grateful to anonymous reviewers for their comments that improved
presentation of the paper.

1 Introduction

Prefix codes are a simple and powerful class of variable-length codes that are widely used in
information compression and transmission. A famous example of prefix codes is Huffman’s
codes [15]. In general, variable length codes are not resistant to errors, since one deletion,
insertion or change of a symbol can desynchronize the decoder causing incorrect decoding of
all the remaining part of the message. However, in a large class of codes called synchronizing
codes resynchronization of the decoder is possible in such situations. It is known that almost
all maximal finite prefix codes are synchronizing [12]. Synchronization of finite prefix codes
has been investigated a lot [5, 7, 8, 10, 21, 22], see also the book [6] and references therein.
For efficiency reasons, it is important to use as short words resynchronizing the decoder as

1 Supported in part by the National Science Centre, Poland under project numbers 2017/25/B/ST6/01920
and 2014/15/B/ST6/00615.

© Andrew Ryzhikov and Marek Szykuła;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryzhikov.andrew@gmail.com
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Finding Short Synchronizing Words for Prefix Codes

q0

q1q2

1
0

0, 1

0, 1

ε(q0)

1(q1)

11(q2)

111(q0)110(q0)

10(q2)

101(q0)100(q0)

0(q2)

01(q0)00(q0)

Figure 1 The Wielandt automaton on three states and the tree of the code 0{0, 1} ∪ 1{0, 1}2.

possible to decrease synchronization time. However, despite the interest in synchronizing
prefix codes, the computational complexity of finding short synchronizing words for them has
not been studied so far. In this paper, we provide a systematic investigation of this topic.

Each recognizable (by a finite automaton) maximal prefix code can be represented by
an automaton decoding the star of this code. For a finite code, this automaton can be
exponentially smaller than the representation of the code by listing all its words (consider,
for example, the code of all words of some fixed length). This can, of course, happen even if
the code is synchronizing. An important example here is the code 0{0, 1}n−1 ∪ 1{0, 1}n. The
minimized decoder of this code is a famous Wielandt automaton with n+ 1 states (see ex.
[1]), while the literal automaton contains 2n−1 + 2n states, see Figure 1 for the case n = 3.
In different applications, the first or the second way of representing the code can be useful.
In some cases large codes having a short description may be represented by a minimized
decoder, while in other applications the code can be described by simply providing the list of
all codewords. The number of states of the literal decoder is equal to the number of different
prefixes of the codewords, and thus the representations of a prefix code by listing all its
codewords and by providing its literal automaton are polynomially equivalent. We study the
complexity of problems for both arbitrary and literal decoders of finite prefix codes.

In this paper we study the existence of approximation algorithms for the problem Short
Sync Word of finding a shortest synchronizing words in several classes of deterministic
automata decoding prefix codes. In Section 2 we describe main definitions and survey
existing results in the computational complexity of Short Sync Word. In Section 3 we
provide a strong inapproximability result for this problem in the class of strongly connected
automata. Section 4 is devoted to the same problem in acyclic automata, which are then
used in Section 5 to show logarithmic inapproximability of Short Sync Word in the class
of Huffman decoders. In Section 6 we provide a much stronger inapproximability result for
partial Huffman decoders. In Section 7 we provide several algorithms for literal Huffman
decoders and conjecture that Short Sync Word can be solved in polynomial time in this
class. Finally, in Section 8 we apply the developed techniques to the problems of finding
shortest mortal and avoiding words.

2 Main Definitions and Related Results

A partial deterministic finite automaton (which we simply call a partial automaton in this
paper) is a triple A = (Q,Σ, δ), where Q is a set of states, Σ is a finite alphabet and
δ : Q × Σ → Q is a (possibly incomplete) transition function. The function delta can be
canonically extended to a function δ : Q× Σ∗ → Q by defining δ(q, wx) = δ(δ(q, w), x) for



A. Ryzhikov and M. Szykuła 21:3

x ∈ Σ, w ∈ Σ∗. If δ is a complete function, the automaton is called complete (in this case we
call it just an automaton). An automaton is called strongly connected if for every ordered
pair q, q′ of states there is a word mapping q to q′.

A state in a partial automaton is called sink if each letter either maps the state to itself
or is undefined. A simple cycle in a partial automaton A = (Q,Σ, δ) is a sequence q1, . . . , qk
of its states such that all the states in the sequence are different and there exist letters
x1, . . . , xk ∈ Σ such that δ(qi, xi) = qi+1 for 1 ≤ i ≤ k− 1 and δ(qk, xk) = q1. A simple cycle
is a self-loop if it consists of only one state. We call a partial automaton weakly acyclic if all
its cycles are self-loops, and strongly acyclic if moreover all its states with self-loops are sink
states. Some properties of these automata have been studied in [19].

There is a strong relation between partial automata and prefix codes [6]. A set X of words
is called a prefix code if no word in X is a prefix of another word. The class of recognizable
(by an automaton) prefix codes can be described as follows. Take a strongly connected
partial automaton A and pick a state r in it. Then the set of all first return words of r (that
is, words mapping r to itself such that each non-empty prefix does not map r to itself) is
a recognizable prefix code. Moreover, each recognizable prefix code can be obtained this
way. A prefix code is called maximal if it is not a subset of another prefix code. The class
of maximal recognizable prefix codes corresponds to the class of complete automata. If a
state r can be picked in an automaton in such a way that the set of all first return words is
a finite prefix code, we call the automaton a partial Huffman decoder. If such automaton is
complete (and thus the finite prefix code is maximal), we call it simply a Huffman decoder.

Let A be a partial automaton. A word w is called synchronizing for A if there exists a
state q such that w maps each state of A either to q or the mapping of w is undefined for
this state, and there is at least one state such that the mapping of w is defined for it. That
is, a word is called synchronizing if it maps the whole set of states of the automaton to a
set of size exactly one. An automaton having a synchronizing word is called synchronizing.
A recognizable prefix code is synchronizing if a trim (partial) automaton recognizing the
star of this code is synchronizing [6] (an automaton is called trim if there exists a state such
that each state is accessible from this state, and there exists a state such that each state is
coaccessible from this state). It can be checked in polynomial time that a strongly connected
partial automaton is synchronizing (Proposition 3.6.5 of [6]).

Synchronizing automata have applications in different domains, such as synchronizing
codes, symbolic dynamics, manufacturing and testing of reactive systems. They are also
the subject of the Černý conjecture, one of the main open problems in automata theory. It
stays that every n-state synchronizing automaton has a synchronizing word of length at most
(n− 1)2, while the best known upper bounds are cubic [17, 24]. See [26] for a survey on this
topic. The upper bound on the length of a shortest synchronizing word has been improved
in particular for Huffman decoders [2] and further for literal Huffman decoders [5].

We consider the following computational problem.
Short Sync Word
Input: A synchronizing partial automaton A;
Output: The length of a shortest synchronizing word for A.

Now we shortly survey existing results and techniques in the computational complexity
and approximability of finding shortest synchronizing words for deterministic automata.
To the best of our knowledge, there are no such results for partial automata. See [23] for
an introduction to NP-completeness and [25] for an introduction to inapproximability and
gap-preserving reductions.

MFCS 2018



21:4 Finding Short Synchronizing Words for Prefix Codes

There exist several techniques of proving that Short Sync Word is hard for different
classes of automata. The very first and the most widely used idea is the one of Eppstein [11].
Here, the automaton in the reduction is composed of a set of “pipes”, and transitions define
the way the active states are changed inside the pipes to reach the state where synchronization
takes place. This idea (sometimes extended a lot) allows to prove NP-completeness of Short
Sync Word in the classes of strongly acyclic [11], ternary Eulerian [16], binary Eulerian [27],
binary cyclic [16] automata. This idea is also used in the proofs of [3] for inapproximability
within arbitrary constant factor for binary automata, and for n1−ε-inapproximability for
n-state binary automata [13] (the last proof uses the theory of Probabilistically Checkable
Proofs). In fact, the proof in [13] holds true for binary automata with linear (in the number
of states of the automaton) length of a shortest synchronizing word and a sink state.

Another idea is to construct a reduction from the Set Cover problem. It can be used
to show logarithmic inapproximability of the Short Sync Word in weakly acyclic [14]
and binary automata [4]. Finally, a reduction from Shortest Common Supersequence
provides inapproximability of this problem within a constant factor [14].

In the class of monotonic automata Short Sync Word is solvable in polynomial
time: because of the structure of these automata this problem reduces to a problem of
finding a shortest words synchronizing a pair of states [20]. For general n-state automata, a
dn−1
k−1 e-approximation polynomial time algorithm exists for every k [14].

3 The Construction of Gawrychowski and Straszak

In this section we briefly recall the construction of a gadget invented by Gawrychowski and
Straszak [13] to show n1−ε-inapproximability of the Short Sync Word problem in the
general class of automata. Below we will use this construction several times.

Suppose that we have a constraint satisfiablity problem (CSP) with N variables and M
constraints such that each constraint is satisfied by at most K assignments (see [13] for the
definitions and missing details). Following the results in [13], we can assume that N,K ≤Mε,
and also that either the CSP is satisfiable, or at most 1

M1−ε fraction of all constraints can be
satisfied by an assignment. It is possible to construct the following ternary automaton Aφ in
polynomial time. For each constraint C the automaton Aφ contains a corresponding binary
(over {0, 1}) gadget TC which is a compressed tree (that is, an acyclic digraph) of height N
and the number of states at most N2K having different leaves corresponding to satisfying
and non-satisfying assignments. The automaton Aφ also contains a sink state s such that
all the leaves corresponding to satisfying assignments are mapped to s, and all other leaves
are mapped to the roots of the corresponding trees. The third letter is defined to map all
the states of each gadget to its root and to map s to itself. For every ε > 0 it is possible
to construct such an automaton with at most MN2K ≤M1+3ε states in polynomial time.
Moreover, for a satisfiable CSP we get an automaton with a shortest synchronizing word
of length at most N + 1 = O(Mε), and for a non-satisfiable CSP the length of a shortest
synchronizing word is at least NM1−ε ≥M1−ε. Since ε can be chosen arbitrary small, this
provides a gap-preserving reduction with a gap of M1−ε.

The described construction can be modified to get the same inapproximability in the
class of strongly connected automata.

I Theorem 1. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of n1−ε for every ε > 0 for n-state binary strongly connected automata
unless P = NP.



A. Ryzhikov and M. Szykuła 21:5

Proof. Consider the automaton Aφ described above. Add a new letter c that cyclically
permutes the roots of all gadgets, maps s to the root of one of the gadgets and acts as
a self-loop for all the remaining states. Observe that thus constructed automaton A is
strongly connected and has the property that every non-satisfying assignment satisfies at
most the fraction of 1

M1−ε of all constraints. Thus, the gap between the length of a shortest
synchronizing word for a satisfying and non-satisfying assignment is still Θ(M1−ε).

It remains to make the automaton binary. This can be done by using Lemma 3 of [4].
This way we get a binary automaton with Θ(M1+3ε) states and a gap between Θ(Mε) and
Θ(M1−ε) in the length of a shortest synchronizing word. By choosing appropriate small
enough ε, we get a reduction with gap n1−ε for binary strongly connected n-state automata,
which proves the statement. J

4 Acyclic Automata

In this section we investigate the simply-defined classes of weakly acyclic and strongly
acyclic automata. The results for strongly acyclic automata are used in Section 5 to obtain
inapproximability for Huffman decoders. Even though the automata in the classes of weakly
and strongly acyclic automata are very restricted and have a very simple structure, the
inapproximability bounds for them are quite strong. Thus we believe that these classes are
of independent interest.

We will need the following problem.
Set Cover
Input: A set X of p elements and a family C of m subsets of X;
Output: A subfamily of C of minimum size covering X.

A family C ′ of subsets of X is said to cover X if X is a subset of the union of the sets in
C ′. For every γ > 0, the Set Cover problem with |C| ≤ |X|1+γ cannot be approximated in
polynomial time within a factor of c′ log p for some c′ > 0 unless P = NP [4].

I Theorem 2. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of c logn for some c > 0 for n-state strongly acyclic automata over an
alphabet of size n1+γ for every γ > 0 unless P = NP .

Proof. We reduce the Set Cover problem. Provided X and C, we construct the automaton
A = (Q,Σ, δ) as follows. To each set ck in C we assign a letter k ∈ Σ. To each element xj in
X we assign a “pipe” of states q(j)

1 , . . . , q
(j)
p in Q. Additionally, we construct a state f in Q.

For 1 ≤ i ≤ p − 1 and all k and j we define δ(q(j)
i , k) = f if ck contains xj , and

δ(q(j)
i , k) = q

(j)
i+1 otherwise. We also define δ(q(j)

p , k) = f for all j and k.
We claim that the length of a shortest synchronizing word for A is equal to the minimum

size of a set cover in C. Let C ′ be a set cover of minimum size. Then a concatenation of the
letters corresponding to the elements of C ′ is a synchronizing word of corresponding length.

In the other direction, consider a shortest synchronizing word w for A. No letter appears
in w at least twice. If the length of w is less than p, then by construction of A the subset of
elements in C corresponding to the letters in w form a set cover. Otherwise we can take an
arbitrary subfamily of C of size p which is a set cover (such subfamily trivially exists if C
covers X).

The resulting automaton has p2 + 1 states and m letters. Thus we get a reduction with
gap c′ log p ≥ c′′ log

√
|Q| = 1

2c
′′ log |Q| for some c′′ > 0. Because of the mentioned result of

Berlinkov, we can also assume that m < p1+γ for arbitrary small γ > 0. J

Now we are going to extend this result to the case of binary weakly acyclic automata.

MFCS 2018



21:6 Finding Short Synchronizing Words for Prefix Codes

I Corollary 3. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of c logn for some c > 0 for n-state binary weakly acyclic automata unless
P = NP .

Proof. We extend the construction from the proof of Theorem 2 by using Lemma 3 of [4].
If we start with a strongly acyclic automaton with p states and k letters, this results in a
binary weakly acyclic automaton with 4pk states. Moreover, the length of a shortest word of
the new automaton is between `(log k + 1) and (`+ 1)(log k + 1), where ` is the length of a
shortest word of the original automaton. Since we can assume p < k < p1+γ for arbitrary
small γ > 0, we have logn = Θ(log p), where n is the number of states of the new automaton.
Thus we get a gap of Θ(log p) = Θ(logn). J

For ternary strongly acyclic automata it is possible to get (2− ε)-inapproximability.

I Theorem 4. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of 2− ε for every ε > 0 for n-state strongly acyclic automata over an
alphabet of size three unless P = NP .

5 Huffman Decoders

We start with a statement relating strongly acyclic automata to Huffman decoders.

I Lemma 5. Let A be a synchronizing strongly acyclic automaton over an alphabet of size k.
Let ` be the length of a shortest synchronizing word for A. Then there exists a Huffman
decoder AH over an alphabet of size k + 2 with the same length of a shortest synchronizing
word, and AH can be constructed in polynomial time.

Proof. Provided a strongly acyclic automaton A = (Q,Σ, δ) we construct a Huffman decoder
AH = (QH ,ΣH , δH).

Since A is a synchronizing strongly acyclic automaton, it has a unique sink state f . We
define the alphabet ΣH as the union of Σ with two additional letters b1, b2. The set of states
QH is the union of Q with some auxiliary states defined as follows. Consider the set S of
states in A having no incoming transitions. Construct a full binary tree with the root f
having S as the set of its leaves (if |S| is not a power of two, some subtrees of the tree can be
merged). Define b1 to map each state of this tree to the left child, and b2 to the right child.
Transfer the action of δ to δH for all states in Q and all letters in Σ. For all the internal
states of the tree define all the letters of Σ to map these states to f . Finally, for all the states
in Q define the action of b1, b2 in the same way as some fixed letter in Σ.

Observe that any word w over alphabet Σ synchronizing A also synchronizes AH . In the
other direction, any synchronizing word for AH has to synchronize Q, which means that each
state in Q has to be mapped to f first, so the length of a shortest synchronizing word for
AH is at least the length of a shortest synchronizing word for A. J

Now we use Lemma 5 to get preliminary inapproximability results for Huffman decoders.

I Corollary 6.
(i) The Short Sync Word problem is NP-complete for Huffman decoders over an alphabet

of size 4.
(ii) The Short Sync Word problem cannot be approximated in polynomial time within a

factor of 2− ε for every ε > 0 for Huffman decoders over an alphabet of size 5 unless
P = NP .



A. Ryzhikov and M. Szykuła 21:7

(iii) For every γ > 0, the Short Sync Word problem cannot be approximated in polynomial
time within a factor of c logn for some c > 0 for Huffman decoders over an alphabet of
size n1+γ unless P = NP .

Proof.
(i) The automaton in the Eppstein’s proof of NP-completeness of Short Sync Word

[11] is strongly acyclic. Then the reduction described in Lemma 5 can be applied.
(ii) A direct consequence of Theorem 4 and Lemma 5.
(iii) A direct consequence of Theorem 2 and Lemma 5. J

Now we show how to get a better inapproximability result for binary Huffman decoders
using the composition of synchronizing prefix codes. We present a more general result for
the composition of synchronizing codes which is of its own interest. This result shows how
to change the size of the alphabet of a synchronizing complete code in such a way that the
approximate length of a shortest synchronizing pair for it is preserved.

A set X of words over an alphabet Σ is a code if no word can be represented as a
concatenation of elements in X in two different ways. In particular, every prefix code is a
code. A pair (`X , rX) of words in X∗ is called absorbing if `XΣ∗ ∩ Σ∗rX ⊆ X∗. The length
of a pair is the total length of two word. A code X over an alphabet Σ is called complete if
every word w ∈ Σ∗ is a factor of some word in X∗, that is, if for every word w ∈ Σ∗ there
exist words v1, v2 ∈ Σ∗, u ∈ X∗ such that v1wv2 = u. In particular, every maximal (by
inclusion) code is complete. A complete code having an absorbing pair is called synchronizing.
We refer to [6] for a survey on the theory of codes.

Let Y be a code over ΣY and Z be a code over ΣZ . Suppose that there exists a bijection
β : ΣY → Z. The composition Y ◦β Z is then defined as the code X = {β(y) | y ∈ Y } over
the alphabet ΣZ [6]. Here β(y) is defined as β(y1)β(y2) . . . β(yk) for y = y1y2 . . . yk, yi ∈ ΣY .
Sometimes β is omitted in the notation of composition.

I Theorem 7. Let Y and Z be two synchronizing complete codes, such that Z is finite
and m and M are the lengths of a shortest and a longest codeword in Z. Suppose that the
composition Y ◦ Z is defined. Then the code X = Y ◦ Z is synchronizing, and the length of a
shortest absorbing pair for X is between m` and 2M`+ 2c, where ` is the length of a shortest
absorbing pair for Y and c is the length of a shortest absorbing pair for Z.

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. First,
assume that Y and Z are synchronizing, and let (`Y , rY ), (`Z , rZ) be shortest absorb-
ing pairs for Y and Z. Then `Y Σ∗Y ∩ Σ∗Y rY ⊆ Y ∗ and `ZΣ∗Z ∩ Σ∗ZrZ ⊆ Z∗. We will
show that p1 = (β(`Y )`ZrZβ(rY ), β(`Y )`ZrZβ(rY )) is an absorbing pair for X. Consider
the set β(`Y )`ZrZβ(rY )Σ∗Z ∩ Σ∗Zβ(`Y )`ZrZβ(rY ). It is a subset of the set β(`Y )(`ZΣ∗Z ∩
Σ∗ZrZ)β(rY ) ⊆ β(`Y )Z∗β(rY ) = β(`Y Σ∗Y rY ) ⊆ β(Y ∗) = X∗. Thus, p1 is an absorbing pair
for X. Moreover, the length of this pair is between 2m(|`Y | + |rY |) + 2(|`Z | + |rZ |) and
2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |).

Conversely, assume that (`X , rX) is a shortest absorbing pair for X, hence `XΣ∗Z∩Σ∗ZrX ⊆
X∗. Then by the definition of composition X∗ ⊆ Z∗ and `X , rX ∈ Z∗; thus, (`X , rX)
is also absorbing for Z. Next, let `Y = β−1(`X), rY = β−1(rX), `Y , rY ∈ Y ∗. Then
β(`Y Σ∗Y ∩ Σ∗Y rY ) = `XZ

∗ ∩ Z∗rX ⊆ `XΣ∗Z ∩ Σ∗ZrX ⊆ X∗ = β(Y ∗). Since the mapping β is
injective, `YB∗ ∩B∗rY ⊆ Y ∗. Consequently Y is synchronizing, and (`Y , rY ) is an absorbing
pair for it of length between 1

M (|`X |+ |rX |) and 1
m (|`X |+ |rX |).

Summarizing, we get that the length of a shortest absorbing pair for X is between
m(|`Y |+ |rY |) and 2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |). J

MFCS 2018



21:8 Finding Short Synchronizing Words for Prefix Codes

q0 q1

a
b, c

a, b

c
ε

1

11(c)10(b)

0(a) q0

q′
0

q1

q′
1

1
0

0, 1

0 1

1
0

Figure 2 An automaton recognizing some infinite maximal prefix code, the tree of a finite maximal
prefix code and an automaton recognizing their composition.

In the case of maximal prefix codes the first element of the absorbing pair can be taken
as an empty word. For recognizable maximal prefix codes Y and Z, where Z is finite, a
Huffman decoder recognizing the star of X = Y ◦ Z can be constructed as follows. Let HY

be a Huffman decoder for Y . Consider the full tree TZ for Z, where each edge is marked by
the corresponding letter. For each state q in HY we substitute the transitions going from this
state with a copy of TZ as follows. The root of TZ coincides with q, and the inner vertices
are new states of the resulting automaton. Suppose that v is a leaf of TZ , and the path from
the root to v is marked by a word w. Let a be the letter of the alphabet of HY which is
mapped to the word w in the composition. Then the image of q under the mapping defined
by a is merged with v. In such a way we get a Huffman decoder with Θ(nY nZ) states, where
nY , nZ is the number of states in HY and TZ . By the definition of composition, this decoder
has the same alphabet as Z. See Figure 2 for an example.

I Corollary 8. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of c logn for some c > 0 for binary n-states Huffman decoders unless
P = NP .

Proof. We start with claim (iii) in Corollary 6 and use Theorem 7 to reduce the size of the
alphabet. Thus, we reduce Short Sync Word for Huffman decoders over an alphabet of
size n1+γ to Short Sync Word for binary Huffman decoders.

Assume that the size of the alphabet k = n1+γ is a power of two (if no, duplicate some
letter the required number of times). We take the code 0{0, 1}log k−1 ∪ 1{0, 1}log k as Z.
This is a code where some words are of length log k and the other words are of length
log k + 1 (after minimization the star of this code is recognized by a Wielandt automaton
with log k + 1 states discussed in the introduction). This code has a synchronizing word of
length Θ((log k)2) [1]. The number of vertices in the tree of this code is Θ(n).

Let ` be the length of a shortest synchronizing word for the original automaton. By
Theorem 7, the length of a shortest synchronizing word for the result of the composition is
between ` log k and 2(log k + 1)`+ Θ((log k)2) = Θ((`+ log k) log k).

For the Set Cover problem the inapproximability result holds even if we assume that
the size of the optimal solution is of size at least d log |X| for some d > 0. Indeed, if d is
a constant we can check all the subsets of C of size at most d log |X| in polynomial time.
Thus, we can assume that ` ≥ log k implying (`+ log k) log k = Θ(` log k). Hence after the
composition the length of a shortest synchronizing word is changed by at most constant
multiplicative factor, and we we get a gap-reserving reduction with gap Θ(logn). The
resulting automaton is of size Θ(n2+γ), and the (2 + γ) dependence is hidden in the constant
c in the statement of this corollary. J



A. Ryzhikov and M. Szykuła 21:9

6 Partial Huffman Decoders

In this section we investigate automata recognizing the star of a non-maximal finite prefix
code. Such codes have some noticeable properties which do not hold for maximal finite
prefix codes. For example, there exist non-trivial non-maximal finite prefix codes with finite
synchronization delay, which provides guarantees on the synchronization time [9]. This allows
to read a stream of correctly transmitted compressed data from arbitrary position, which
can be useful for audio and video decompression.

First we show that the known upper bounds and approximability for Short Sync Word
hold true for strongly connected partial automata. Because of Proposition 3.6.5 of [6],
Algorithm 1 of [26] works without any changes for strongly connected partial automata. The
analysis of its approximation ratio is the same as in [14]. Thus we get the following.

I Theorem 9. There exists a polynomial time algorithm (Algorithm 1 of [26]) finding a
synchronizing word of length at most n

3−n
6 for a n-state strongly connected partial automaton.

Moreover, this algorithm provides a O(n)-approximation for the Short Sync Word problem.

Now we provide a lower bound on the approximability of the Short Sync Word problem
for partial Huffman decoders by extending the idea used to prove inapproximability for
Huffman decoders in the previous sections. First we prove the result for alphabet of size 5
and then use a composition with a maximal finite prefix code to get the same result for the
binary case.

I Theorem 10. The Short Sync Word problem cannot be approximated within a factor
of n 1

2−ε for every ε > 0 for n-state partial Huffman decoders over an alphabet of size 5 unless
P = NP .

Proof. First we prove inapproximability for the class of partial strongly acyclic automata,
that is, automata having no simple cycles but loops in the sink state. We start with the CSP
problem described in Section 3 with all the restriction defined there. Having an instance
of this problem with N variables and M constraints such that each constraint is satisfied
by at most K assignments, we construct an automaton Abφ over the alphabet {0, 1}. For
each constraint j, we construct M identical compressed trees T 1

j , . . . , T
M
j corresponding to

this constraint (also described in Section 3). Then for 1 ≤ i ≤M − 1 we merge the leaves
of T ij corresponding to non-satisfying assignments with the root of T i+1

j , and delete all the
leaves corresponding to satisfying assignments (leaving all the transition leading to deleted
states undefined). For each TMj , we again delete all the leaves corresponding to satisfying
assignments and merge all the leaves corresponding to non-satisfying assignments with a new
state s. This state is a self-loop, that is, 0, 1 map s to itself. Now we define an additional
letter a and M new states r1, . . . , rM . We define a to map rj to the root of T 1

j . Finally,
we add N + 1 new states c0, . . . , cN such that a maps c0 to c1, and 0, 1 map ci to ci+1 for
1 ≤ i ≤ N − 1, and map cN to s. All other transitions are left undefined.

If a is applied first, the set S of states to be synchronized is c1 together with the roots of
T 1
j for all j. Observe that a cannot be applied anymore, since it would result in mapping all

the active states of the automaton to void. If a letter other than a is applied first, a superset
of S must be synchronized then.

If there exists a satisfying assignment x1, . . . , xN then the word ax1 . . . xN is synchronizing,
since it maps all the states but c0 to void. Otherwise, to synchronize the automaton we need
to pass through M compressed trees, since each tree can map only at most Mε states to
void (since for every non-satisfiable CSP the maximum number of satisfiable constraints is

MFCS 2018



21:10 Finding Short Synchronizing Words for Prefix Codes

Mε in the construction, see Section 3). Thus we get a gap of M1−ε = n
1
2−ε for the class of

n-state strongly acyclic partial automata.
Now we are going to transfer this result to the case of partial Huffman decoders. We

extend the idea of Lemma 5. All we need is to define transitions leading from s to the states
having no incoming transitions (which are r1, . . . , rM together with c0). The only difference
is that now we have to make sure that a cannot be applied too early resulting in mapping all
the states of the compressed trees to void leaving the state s active.

To do that, we introduce two new letters b1, b2 and perform branching as described in
Lemma 5. Thus we get M + 1 leaves of the constructed full binary tree. To each leave we
attach a chain of states of length MN ending in the root of T 1

j (or in c0). This means that
we introduce MN new states and define the letters b1, b2 to map a state in each chain to the
next state in the same chain. This guarantees that if the letter a appears twice in a word of
length at most MN , this word maps all the states of the automaton to void. Finally, the
action of b1, b2 on the compressed trees and the states c0, . . . , cN repeats, for example, the
action of the letter 0.

The number of states of the automaton in the construction is O(M2+3ε) The gap is then
M1−2ε. By choosing small enough ε we thus get a gap of n 1

2−ε as required. J

The next lemma shows that under some restrictions it is possible to reduce the alphabet
of a non-maximal prefix code in a way that approximate length of a shortest synchronizing
word is preserved. A word is called non-mortal for a prefix code X if it is a factor of some
word in X∗.

I Lemma 11. Let Y, Z be synchronizing prefix codes such that Z is finite and maximal. Let
m and M be the lengths of a shortest and a longest codeword in Z. Suppose that Y ◦β Z is
defined for some β. If there exists a synchronizing word wZ for Z such that β−1(w) is a
non-mortal word for Y , then the composition X = Y ◦β Z is synchronizing. Moreover, then
the length of a shortest synchronizing word for X is between m` and M`+ |wZ |, where ` is
the length of a shortest synchronizing word for Y .

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. Let wY be a
synchronizing word for Y . Then wZβ(wY ) is a synchronizing word for X of length at most
M`+ |wZ |. In the other direction, let wX be a synchronizing word for X. Then β−1(wX) is
a synchronizing word for Y . Thus, |wX | ≥ m`. J

I Corollary 12. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of n 1

2−ε for every ε > 0 for binary n-state partial Huffman decoders
unless P = NP .

Proof. We use the composition of the automaton constructed in the proof of Theorem 10
with the prefix code {aaa, aab, ab, ba, bb} having a synchronizing word baab. The word baab
is a concatenation of two different codewords, so their pre-images can be taken to be a and
0, resulting in a non-mortal word a0 for A, so we can use Lemma 11. J

7 Literal Huffman Decoders

In this section we deal with literal Huffman decoders. Given a finite maximal prefix code
X over an alphabet Σ, the literal automaton recognizing X∗ is an automaton A = (Q,Σ, δ)
defined as follows. The states of A correspond to all proper prefixes of the words in X, and
the transition function is defined as



A. Ryzhikov and M. Szykuła 21:11

δ(q, x) =
{
qx if qx 6∈ X,
ε if qx ∈ X

We will need the following useful lemma. The rank of a word w ∈ Σ∗ with respect to an
automaton A = (Q,Σ, δ) is the size of the image of Q under the mapping defined by w.

I Lemma 13 ([5, Lemma 16]). For every n-state literal Huffman decoder over an alphabet
of size k there exists a word of length dlogk ne and rank at most dlogk ne.

Note that if a n-state literal Huffman decoder has a synchronizing word of length at
most O(logn), this word can be found in polynomial time by examining all words of length
up to O(logn). Thus, in further algorithms we will assume that the length of a shortest
synchronizing word is greater than this value. Lemma 13 stays that a word of rank at most
dlogk ne can also be found in polynomial time.

I Theorem 14. There exists a O(logn)-approximation polynomial time algorithm for the
Short Sync Word problem for literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. Let w be a word
of rank at most dlogk ne found as described above. Let Q′ be the image of Q under the
mapping defined by w, i.e. Q′ = δ(Q,w). Define by v the word subsequently merging pairs
of states in Q′ with shortest possible words. Note than a shortest word synchronizing A has
to synchronize every pair of states, in particular, one that requires a longest word. Thus the
length of v is at most dlogk ne times greater than the length of a shortest word synchronizing
A. Then the word wv is a O(logn)-approximation for the Short Sync Word problem. J

I Theorem 15. For every ε > 0, there exists a (1+ε)-approximation O(nlogn)-time algorithm
for the problem Short Sync Word for n-state literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. First we check all words
of length at most 1

εdlogk ne, whether they are synchronizing. The number of these words is
polynomial, and the check can be performed in polynomial time. If a synchronizing word is
found then we have an exact solution. Otherwise, a shortest synchronizing word must be
longer than that and we proceed to the second stage.

Let w be a word of rank at most dlogk ne found as before. Now we construct the power
automaton A≤dlogk ne restricted to all the subsets of size at most dlogk ne. Using it, we find
a shortest word synchronizing the subset δ(Q,w); let this word be v. We return wv.

Let w′ be a shortest synchronizing word for |A|. Clearly, |w′| ≥ |v| and ε|w′| > dlogk ne.
Thus |wv| ≤ (1 + ε)|w′|, so wv is a (1 + ε)-approximation as required. J

In view of the presented results we propose the following conjecture.

I Conjecture 16. There exists an exact polynomial time algorithm for the Short Sync
Word problem for literal Huffman decoders.

Finally, we remark that it is possible to define the notion of the literal automaton of a
non-maximal finite prefix code in the same way. In this case we leave undefined the transitions
for a state w and a letter a such that w is a proper prefix of a codeword, but wa is neither
a proper prefix of a codeword nor a codeword itself. However, the statement of Lemma 13
is false for partial automata. Indeed, consider a two-word prefix code {(0n1n)n, (1n0n)n}.
Its literal automaton has 2n2 − 1 states, and a shortest synchronizing word for it is 0n+1 of
length n+ 1. Every word of length at most n which is defined for at least one state is of the
form 0∗1∗ or 1∗0∗ and thus has rank at least n− 1.

MFCS 2018



21:12 Finding Short Synchronizing Words for Prefix Codes

8 Mortal and Avoiding Words

A word w is called mortal for a partial automaton A if its mapping is undefined for all the
states of A. The techniques described in this paper can be easily adapted to get the same
inapproximability for the Short Mortal Word problem defined as follows.

Short Mortal Word
Input: A partial automaton A with at least one undefined transition;
Output: The length of a shortest mortal word for A.

This problem is connected for instance to the famous Restivo’s conjecture [18].

I Theorem 17. Unless P = NP, the Short Mortal Word problem cannot be approximated
in polynomial time within a factor of
(i) n1−ε for every ε > 0 for n-state binary strongly connected partial automata;
(ii) c logn for some c > 0 for n-state binary partial Huffman decoders.

Proof. It can be seen that in Theorem 1 and Corollary 8 we construct an automaton with
a state s such that each state has to visit s before synchronization. Introduce a new state
s′ having all the transitions the same as s, and for s set the only defined transition (for an
arbitrary letter) to map to s′. Thus we get an automaton such that every mortal word has
to map each state to s before mapping it to nowhere. Thus we preserve all the estimations
on the length of a shortest mortal word, which proves both statements. J

Moreover, it is easy to get a O(logn)-approximation polynomial time algorithm for Short
Mortal Word for literal Huffman decoders following the idea of Theorem 14. Indeed, it
follows from Lemma 13 that either there exists a mortal word of length at most dlogk ne, or
there exists a word w of rank at most dlogk ne. In the latter case we can find a word which
is a concatenation of w and a shortest word mapping all this states to nowhere one by one.
By the arguments similar to the proof of Theorem 14 we then get the following.

I Proposition 18. There exists a O(logn)-approximation polynomial time algorithm for the
Short Mortal Word problem for n-state literal Huffman decoders. This algorithm always
finds a mortal word of length O(n logn).

Another connected and important problem is to find a shortest avoiding word. Given an
automaton A = (Q,Σ, δ), a word w is called avoiding for a state q ∈ Q if q is not contained
in the image of Q, that is, q 6∈ δ(Q,w). Avoiding words play an important role in the recent
improvement on the upper bound on the length of a shortest synchronizing word [24]. They
are in some sense dual to synchronizing words.

Short Avoiding word
Input: An automaton A and its state q admitting a word avoiding q;
Output: The length of a shortest word avoiding q in A.

If q is not the root of a literal Huffman decoder A (that is, not the state corresponding
to the empty prefix), then a shortest avoiding word consists of just one letter. So avoiding is
non-trivial only for the root state.

I Proposition 19. For every ε > 0, there exists a (1 + ε)-approximation O(nlogn)-time
algorithm for the problem Short Sync Word for n-state literal Huffman decoders.

Proof. We use the same algorithm as in the proof of Theorem 15. The only difference is
that we check whether the words are avoiding instead of synchronizing. J



A. Ryzhikov and M. Szykuła 21:13

9 Concluding Remarks

For prefix codes, a synchronizing word is usually required to map all the states to the root [6].
One can see that this property holds for all the constructions of the paper. Moreover, in all
the constructions the length of a shortest synchronizing word is linear in the number of states
of the automaton. Thus, if we restrict to this case, we still get the same inapproximability
results. Also, it should be noted that all the inapproximability results are proved by providing
a gap-preserving reduction, thus proving NP-hardness of approximating the Short Sync
Word problem within a given factor.

References

1 Dmitry S. Ananichev, Vladimir V. Gusev, and Mikhail V. Volkov. Slowly synchronizing
automata and digraphs. In Mathematical Foundations of Computer Science, LNCS vol.
6281, pages 55–65. Springer, 2010.

2 Marie-Pierre Béal, Mikhail V. Berlinkov, and Dominique Perrin. A quadratic upper bound
on the size of a synchronizing word in one-cluster automata. International Journal of
Foundations of Computer Science, 22(2):277–288, 2011.

3 Mikhail V. Berlinkov. Approximating the minimum length of synchronizing words is hard.
Theory of Computing Systems, 54(2):211–223, 2014.

4 Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata. In
Arseny M. Shur and Mikhail V. Volkov, editors, DLT 2014. LNCS, vol. 8633, pages 61–67.
Springer, Cham, 2014.

5 Mikhail V. Berlinkov and Marek Szykuła. Algebraic synchronization criterion and comput-
ing reset words. Information Sciences, 369:718–730, 2016.

6 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Encyc-
lopedia of Mathematics and its Applications 129. Cambridge University Press, 2010.

7 Marek Biskup. Error Resilience in Compressed Data – Selected Topics. PhD thesis, Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, 2008.

8 Marek Tomasz Biskup andWojciech Plandowski. Shortest synchronizing strings for huffman
codes. Theoretical Computer Science, 410(38):3925–3941, 2009.

9 Véronique Bruyère. On maximal codes with bounded synchronization delay. Theoretical
Computer Science, 204(1):11–28, 1998.

10 Renato M. Capocelli, A. A. De Santis, Luisa Gargano, and Ugo Vaccaro. On the con-
struction of statistically synchronizable codes. IEEE Transactions on Information Theory,
38(2):407–414, 1992.

11 David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990.

12 Christopher F Freiling, Douglas S Jungreis, François Théberge, and Kenneth Zeger. Almost
all complete binary prefix codes have a self-synchronizing string. IEEE Transactions on
Information Theory, 49(9):2219–2225, 2003.

13 Paweł Gawrychowski and Damian Straszak. Strong inapproximability of the shortest reset
word. In F. Giuseppe Italiano, Giovanni Pighizzini, and T. Donald Sannella, editors, MFCS
2015. LNCS, vol. 9234, pages 243–255. Springer, Heidelberg, 2015.

14 Michael Gerbush and Brent Heeringa. Approximating Minimum Reset Sequences, pages
154–162. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

15 David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

MFCS 2018



21:14 Finding Short Synchronizing Words for Prefix Codes

16 Pavel Martyugin. Complexity of problems concerning reset words for cyclic and eulerian
automata. Theoretical Computer Science, 450(Supplement C):3–9, 2012. Implementation
and Application of Automata (CIAA 2011).

17 Jean-Eric Pin. On two combinatorial problems arising from automata theory. In C. Berge,
D. Bresson, P. Camion, J.F. Maurras, and F. Sterboul, editors, Combinatorial Mathem-
atics Proceedings of the International Colloquium on Graph Theory and Combinatorics,
volume 75 of North-Holland Mathematics Studies, pages 535–548. North-Holland, 1983.

18 Antonio Restivo. Some remarks on complete subsets of a free monoid. Quaderni de ”La
ricerca scientifica”, CNR Roma, 109:19–25, 1981.

19 Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. In
Arnaud Carayol and Cyril Nicaud, editors, CIAA 2017, LNCS, vol. 10329, pages 188–200.
Springer, Cham, 2017.

20 Andrew Ryzhikov and Anton Shemyakov. Subset synchronization in monotonic automata.
In Juhani Karhumäki and Aleksi Saarela, editors, Proceedings of the Fourth Russian Finnish
Symposium on Discrete Mathematics, TUCS Lecture Notes 26, pages 154–164, 2017. Ac-
cepted to Fundamenta Informaticae.

21 Marcel-Paul Schützenberger. On the synchronizing properties of certain prefix codes. In-
formation and Control, 7(1):23–36, 1964.

22 Marcel-Paul Schützenberger. On synchronizing prefix codes. Information and Control,
11(4):396–401, 1967.

23 Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2012.

24 Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

25 Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, 2001.
26 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-

Vide, Friedrich Otto, and Henning Fernau, editors, LATA 2008. LNCS, vol. 5196, pages
11–27. Springer, Heidelberg, 2008.

27 Vojtěch Vorel. Complexity of a problem concerning reset words for eulerian binary auto-
mata. Information and Computation, 253(Part 3):497–509, 2017. LATA 2014.


	Introduction
	Main Definitions and Related Results
	The Construction of Gawrychowski and Straszak
	Acyclic Automata
	Huffman Decoders
	Partial Huffman Decoders
	Literal Huffman Decoders
	Mortal and Avoiding Words
	Concluding Remarks

