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—— Abstract

The Undecided-State Dynamics is a well-known protocol for distributed consensus. We analyze it
in the parallel PULL communication model on the complete graph with n nodes for the binary
case (every node can either support one of two possible colors, or be in the undecided state).

An interesting open question is whether this dynamics is an efficient Self-Stabilizing protocol,
namely, starting from an arbitrary initial configuration, it reaches consensus quickly (i.e., within
a polylogarithmic number of rounds). Previous work in this setting only considers initial color
configurations with no undecided nodes and a large bias (i.e., O(n)) towards the majority color.

In this paper we present an unconditional analysis of the Undecided-State Dynamics that
answers to the above question in the affirmative. We prove that, starting from any initial con-
figuration, the process reaches a monochromatic configuration within O(logn) rounds, with high
probability. This bound turns out to be tight. Our analysis also shows that, if the initial con-
figuration has bias (y/nlogn), then the dynamics converges toward the initial majority color,
with high probability.
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A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

1 Introduction

Simple local mechanisms for Consensus problems in distributed systems recently received a
lot of attention [2, 1, 18, 19, 28, 31]. In one of the basic versions of the consensus problem
the system consists of anonymous entities (nodes) each one initially supporting a color out
of a finite set of colors . Nodes run elementary operations and interact by exchanging
messages. A Consensus Protocol is a local procedure that makes the system converge to a
monochromatic configuration, where all nodes support the same color. Consensus has to be
valid, i.e., the “winning” color must be one of those initially supported by at least one node.
A crucial property of a consensus protocol is self-stabilization [6, 18, 30]: Informally, if the
system is “perturbed” by some external event and moved to an arbitrary configuration, then
the protocol must bring the system back to a valid consensus and, moreover, once the system
reaches consensus, it must remain in that configuration forever, unless a further external
event takes place?. Self-stabilizing consensus processes are fundamental building-blocks that
play an important role in coordination tasks and self-organizing behavior in population
systems [11, 13, 19, 29].

We study the consensus problem in the PULL communication model [12, 17, 24] where,
at every round, each active node of a communication network contacts one neighbor uniformly
at random to pull information. A natural consensus protocol in this model is the Undecided-
State Dynamics® (for short, the U-Dynamics) in which the state of a node can be either
a color or the undecided state. When a node is activated, it pulls the state of a random
neighbor and updates its state according to the following updating rule (see Table 1): If a
colored node pulls a different color from its current one, then it becomes undecided, while in
all other cases it keeps its color; moreover, if the node is in the undecided state then it will
take the state of the pulled neighbor.

The U-Dynamics has been previously studied in both sequential [2] and parallel [4] models:
Informally, in the former only one random node is activated at every round and it updates
its state according to the local rule, while in the latter all nodes are activated at every round
and they update their state, synchronously.

As for the sequential model?, [2] provides an unconditional analysis showing (among other
results) that the U-Dynamics is a self-stabilizing protocol for binary consensus (i.e., when
|X| = 2) in the complete graph with n nodes. They show the convergence time is O(nlogn)
(and, thus, work per node is O(logn)), with high probability®. This result also clarifies the
algorithmic interest for this process. Indeed, the U-Dynamics can be seen as a variant of the
popular Voter Model [9, 23, 26] where every active node simply takes the color it pulls at
every round. On one hand, the Voter Model uses minimal number of node states (i.e. |3|)
and takes ©(n) work per node to reach consensus (see for instance [25]). On the other hand,
the U-Dynamics exponentially improves the work complexity by using one additional state,
only. Further motivations on the U-Dynamics are discussed in Subsection 1.2.

We remark that the stochastic process induced by the parallel dynamics significantly
departs from the one induced by the sequential dynamics. As a simple evidence of such
qualitative differences, observe that, starting from a configuration with no undecided nodes,

Notice that, according to previous work [6, 18], we require self-stabilization to hold with high probability.
In some previous papers [31] on the binary case (|X| = 2), this protocol has been also called the
Third-State Dynamics. We here prefer the term “undecided” since it also holds for the non-binary case
and, moreover, the term well captures the role of this additional state.

[2] in fact considers the Population-Protocol model which is, in our specific context, equivalent to the
sequential PULL model.

5 As usual, we say that an event £, holds w.h.p. if P (,) > 1 — n~ M),
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in the parallel case the system might end up in the non-valid, monochromatic configuration
where all nodes are undecided (this would happen if, for example, at the first round every
node pulled a node with the other color). On the other hand, it is easy to see that in
the sequential case the process always ends up in a monochromatic configuration with no
undecided nodes, unless it starts from a configuration with all nodes undecided. The crucial
difference lies in the random number of nodes that may change color at every round: In
the sequential model, this is at most one®, while in the parallel one, all nodes may change
state in one round and, for most phases of the process, the expected number of changes is
indeed linear in n. The above difference is one of the main reasons why no general techniques
are currently available to extend any quantitative analysis for the sequential process to the
corresponding parallel one (and vice versa). In particular, the analysis in [2] strongly uses
the fact that only one node can change state in one round in order to derive a suitable
supermartingale argument to bound the stopping time of the process. It thus fully covers
the case of sequential interaction models, but it is not helpful to understand the evolution of
the U-Dynamics process on any interaction model in which the number of nodes that may
change state in one round is not bounded by some absolute constant.

As for the parallel PULL model, while it is easy to verify that the U-Dynamics achieves
consensus in the complete graph (with high probability), the convergence time of this
dynamics is still an interesting open issue, even in the binary case. Indeed, in [4] the authors
analyze the U-Dynamics in the parallel PULL model on the complete graph for any number
k= o(nl/ 3) of colors. However, their analysis requires the initial configuration to have a
relatively-large bias s = ¢; — co between the size ¢; of the (unique) initial plurality and the
size ¢ of the second-largest color. More in details, in [4] it is assumed that ¢; > aca, for
some absolute constant o > 1 and, thus, this condition for the binary case would result into
requiring a very-large initial bias, i.e., s = ©(n). This analysis clearly does not show that
the U-Dynamics efficiently solves the binary consensus problem, mainly because it does not
manage balanced initial configurations.

1.1 Our results

We prove that, starting from any color configuration” on the complete graph, the U-Dynamics
reaches a monochromatic configuration (thus consensus) within O(logn) rounds, with high
probability. This bound is tight since, for some (in fact, a large number of) initial configura-
tions, the process requires Q(logn) rounds to converge.

Not assuming a large initial bias of the majority color significantly complicates the analysis.
Indeed, the major technical issues arise from the analysis of balanced initial configurations
where the system “needs” to break symmetry without having a strong expected drift towards
any color. Previous analysis of this phase consider either sequential processes of interacting
particles that can be modeled as birth-and-death chains [2] or parallel processes whose local
rule is fully symmetric w.r.t. the states/colors of the nodes (such as majority rules) [6, 18].
The U-Dynamics process falls neither in the former nor in the latter scenario: It works in
parallel rounds and the role of the undecided nodes makes the local rule not symmetric. We
believe this issue has a per-se scientific interest since symmetry-breaking phenomena yielded
by simple and local mechanisms plays a central role in key aspects of population systems
[10] and, more generally, in the emerging field of natural algorithms [13].

6 This number actually becomes 2 if the sequential communication model activates a random edge per
round, rather than one single node [2].
7 Our analysis also considers initial configurations with undecided nodes.
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Informally speaking, in Section 4 we deal with almost-balanced starting configurations.
By devising a coupling to a “simplified” pruned process, we show that the analysis of this
symmetry-breaking phase essentially reduces to the analysis of a specific regime where the
number ¢ of undecided nodes remains a suitable constant fraction of n until the magnitude of
the bias s reaches Q(y/nlogn): In other words, during this regime, with very high probability
the system never jumps to almost-balanced configurations having either too many or too
few undecided nodes. This fact is crucial for two main reasons: Along this regime, (i) the
variance of the bias s is large (i.e. ©(n)) and (ii) whenever the bias s is Q(y/n), its drift
turns out to be exponential with non-negligible, increasing probability (w.r.t. s itself). Then,
we prove a variant of a general Lemma [18] that provides a logarithmic bound on the hitting
time of Markov chains satisfying Properties (i) and (ii) above.

The symmetry-breaking phase terminates when the U-Process reaches some configuration
having a bias s = Q(y/nlogn). Then we prove that, starting from any configuration having
that bias, the process reaches consensus within O(logn) rounds, with high probability. Even
though our analysis of this “majority” part of the process is based on standard concentration
arguments, it must cope with some non-monotone behavior of the key random variables
(such as the bias and the number of undecided nodes at the next round): Again, this is
due to the non-symmetric role played by the undecided nodes. A good intuition about this
“non-monotone” process can be gained by looking at the mutually-related formulas giving
the expectation of such key random variables (see Equations (1)-(3)). Our refined analysis
shows that, during this majority phase, the winning color never changes and, thus, the
U-Dynamics also ensures Plurality Consensus in logarithmic time whenever the initial bias
is s = Q(v/nlogn).

Interestingly enough, we also show that configurations with s = O(y/n) exist so that the
system may converge toward the minority color with non-negligible probability.

1.2 Further motivation and related work

On the U-Dynamics. The interest in the U-Dynamics arises in fields beyond the borders of
Computer Science and it seems to have a key-role in important biological processes modeled
as so-called chemical reaction networks [11, 19]. For such reasons, the convergence time of
this dynamics has been analyzed on different communication models [2, 3, 4, 27, 31]. As
previously mentioned, the U-Dynamics has been analyzed in the parallel PULL model in [4]
and their results concern the evolution of the process for the multi-color case when there is a
significant initial bias (as a protocol for plurality consensus).

As for the sequential model, the U-Dynamics has been introduced and analyzed in [2]
on the complete graph. They prove that this dynamics, with high probability, converges to
a valid consensus within O(nlogn) activations and, moreover, it converges to the majority
whenever the initial bias is w (v/nlogn).

Still concerning the sequential model, [27] recently analyzes, besides other protocols,
the U-Dynamics in arbitrary graphs where in the initial configuration each node samples
uniformly at random one out of two colors. In this (average-case) setting, they prove that
the system converges to the initial majority color with higher probability than the initial
minority one. They also give results for special classes of graphs where the minority can win
with large probability if the initial configuration is chosen in a suitable way. Their proof for
this result relies on an exponentially-small upper bound on the probability that a certain
minority can win in the complete graph (see [27] for more details). In [3, 7, 20, 31], the same
dynamics for the binary case has been analyzed in other sequential communication models.
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On some other consensus dynamics. Recently, further simple consensus protocols have
been deeply analyzed in several papers, thus witnessing the high interest of the scientific
community on such processes [2, 5, 9, 11, 15, 16, 18, 31].

The parallel 3-MAJORITY is a protocol where at every round, each node picks the colors
of three random neighbors and updates its color according to the majority rule (taking
the first one or a random one to break ties). The authors of [5] assume that the bias is
Q(min{v/2k, (n/logn)"/} - /nlogn). Under this assumption, they prove that consensus is
reached with high probability in O(min{k, (n/log n)l/g} -logm) rounds, and that this is tight
if £ < (n/log n)l/ % The first result without bias [6] restricts the number of initial colors to
k= O(nl/ 3). Under this assumption, they prove that 3-MAJORITY reaches consensus with
high probability in O((k?(log n)1/2 + klogn) - (k +logn)) rounds. Very recently, such result
has been generalized to the whole range of k in [8].

In [18] the authors provide an analysis of the 3-median rule, in which every node updates

its value to the median of its current value and the values of two randomly chosen neighbors.

They show that this dynamics converges to an almost-agreement configuration (which is even

a good approximation of the global median) within O(log k - loglog n 4 logn) rounds, w.h.p.

It turns out that, in the binary case, the median rule is equivalent to the 2-CHOICES dynamics,
a variant of 3-MAJORITY, thus their result implies that this is a stabilizing consensus protocol
with O(logn) convergence time. As mentioned earlier, our analysis borrows a hitting-time
bound on general Markov chains from [18].

Very recently, [22] provides an optimal bound ©(klogn) for the 2-CHOICES dynamics on
the complete graph even under some dynamic adversary. In [15, 16], the authors consider
the 2-CHOICES dynamics for plurality consensus in the binary case (i.e. k= 2). For random
d-regular graphs, [15] proves that all nodes agree on the majority color in O(logn) rounds,
provided that the bias is w(n - \/1/d + d/n). The same holds for arbitrary d-regular graphs

if the bias is Q(Aq - n), where Ag is the second largest eigenvalue of the transition matrix.

In [16], these results are extended to general expander graphs.

1.3 Structure of the paper

In Section 2, we provide some preliminaries and an informal description of the expected
evolution of the U-Process. In Section 3, we formally state the main results of this paper
and describe an outline of the corresponding proofs. Section 4 is devoted to the description
of the tight analysis of the symmetry-breaking phase. The analysis of the “majority” phase
of the process is given in Section 5. Conclusions and some open questions are discussed in
Section 6. Due to lack of space, all the omitted proofs can be found in the full-version of the
paper [14].

2 Preliminaries

We analyze the parallel version of the dynamics called U-Dynamics in the (uniform) PULL
model on the complete graph: Starting from an initial configuration where every node
supports a color, i.e. a value from a set ¥ of k possible colors®, at every round, each node
u pulls the color of a randomly-selected neighbor v. If the color of node v differs from its
own color, then node w enters in an undecided state (an extra state with no color). When a

8 W.l.o.g. we can define ¥ = [k] where [k] = {1,2,--- ,k}.

28:5
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Table 1 The update rule of the U-Dynamics where i, 5 € [k] and 7 # j.

A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

’ u\v H undecided color % ‘ color j ‘
undecided || undecided i ki
i i i undecided
ki ki undecided ki

node is in the undecided state and pulls a color, it gets that color. Finally, a node that pulls
either an undecided node or a node with its own color remains in its current state.

In this paper we consider the case in which there are two possible colors (say color Alpha
and color Beta). Let us name C the space of all possible configurations and observe that,
since the graph is complete, a configuration x € C is uniquely determined by fixing the
number of Alpha-colored nodes and the number of Beta-colored ones, say a(x) and b(x),
respectively.

It is convenient to give names also to two other quantities that will appear often in
the analysis: The number ¢(x) = n — a(x) — b(x) of undecided nodes and the difference
s(x) = a(x) — b(x) called the bias of x. Notice that any two of the quantities a(x), b(x), ¢(x),
and s(x) uniquely determine the configuration. When it will be clear from the context, we
will omit x and write a,b, ¢, and s instead of a(x), b(x), ¢(x), and s(x).

Observe that the U-Dynamics defines a finite-state Markov chain {X;};>¢ with state
space C and three absorbing states, namely, ¢ = n, a = n, and b = n. We call U-Process the
random process obtained by applying the U-Dynamics starting at a given state. Once we fix
the configuration x at round ¢ of the process, i.e. X; = x, we use the capital letters A, B, Q,
and S to refer to the random variables a(X;41),b(X¢y1), ¢(Xiv1), $(Xip1).

From the definition of U-Dynamics it is easy to calculate the following expected values
(see also Section 3 in [4]):

E[A|th]a<a—;2q>, (1)
2 a

E[QIXt:x]=%2b, 2)

E[S|Xt:x]:a(a22Q)—b(bZ%):s(1+%>. 3)

2.1 The expected evolution of the U-Process

Equations (1)-(3) can be used to have a preliminary intuitive idea on the expected evolution
of the U-Process. From (3) it follows that the bias s increases exponentially, in expectation,
as long as the number ¢ of undecided nodes is a constant fraction of n (say, ¢ > dn, for some
positive constant ¢). By rewriting (2) in terms of ¢ and s we have that

@ 42ab 27+ (n—q)? —s* s?

E[Q|X, =x =1— o >3 5 (4)

3

where in the inequality we used the fact that the minimum of 2¢? + (n — ¢)? is achieved at

q = %5 and its value is %nQ. From (4) it thus follows that, as long as the magnitude of the

bias is smaller than a constant fraction of n (say s < %n), the expected number of undecided

nodes will be larger than a constant fraction of n at the next round (say, E [Q | X; =x] > §).

When the magnitude of the bias s reaches %n, it is easy to see that the expected number
of nodes with the minority color decreases exponentially. Indeed, suppose w.l.o.g. that Beta
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is the minority color and rewrite (1) for B and in terms of b and s. We get

E[BXt:x]:b<b+n2q>:b<1—28+§f_n>. (5)

Hence, when s > 2n we have that E [B|X; = x| < 2b.

The above sketch of the analysis in expectation would suggest that the process should
end up in a monochromatic configuration within O(logn) rounds. Indeed, in Theorem 2
we prove that this is what happens with high probability (w.h.p., from now on) when the
process starts from a configuration that already has some bias, namely s = Q(y/nlogn).

When the process starts from a configuration with a smaller bias, the analysis in ezpec-

n

tation looses its predictive power. As an extreme example, observe that when a = b = %

7

the system is “in equilibrium” according to (1)-(3). However, the equilibrium is “unstable
and the symmetry is broken by the variance of the process (as long as s = o(y/n)) and by
the increasing drift towards majority (as soon as s > /n). As mentioned in the Introduc-
tion, the analysis of this symmetry-breaking phase is the key technical contribution of the
paper and it will be described in Section 4. This analysis will show that, starting from any
initial configuration, the system reaches a configuration where the magnitude of the bias is
Q(yv/nlogn) within O(logn) rounds, w.h.p.

3 Main results and the digraph of the U-Process’ phases

As informally discussed in the introduction, we prove the two following results characterizing
the evolution of the U-Dynamics on the synchronous PULL model in the complete graph.

» Theorem 1 (Consensus). Let the U-Process start from any configuration in C. Then the
process converges to a (valid) monochromatic configuration within O(logn) rounds, w.h.p.
Furthermore, if the initial configuration has at least one colored node (i.e. ¢ < n —1), then
the process converges to a configuration such that |s| = n, w.h.p.

» Theorem 2 (Plurality consensus). Let v be any positive constant. Assume that the U-Process
starts at any biased configuration such that |s| = yv/nlogn and assume w.l.o.g. the majority
color is Alpha. Then the process converges to the monochromatic configuration with a =n
within O(logn) rounds, w.h.p. Furthermore, the result is almost tight in a twofold sense: (i)
An initial configuration exists, with |s| = Q(v/nlogn), such that the process requires Q(logn)
rounds to converge w.h.p. and (i) there is an initial configuration with |s| = ©(y/n) such
that the process converges to the minority color with constant probability.

Outline of the two proofs. The two theorems above are consequences of our refined
analysis? of the evolution of the U-Process. The analysis is organized into a set of possible
process phases, each of them is defined by specific ranges of parameters ¢ and s. A high-level
description of this structure is shown in Fig. 1 where every rectangular region represents a
subset of configurations with specific ranges of s and g and it is associated to a specific phase.
In details, let v be any positive constant, then the regions are defined as follows: H; is the
set of configurations such that s < vy/nlogn and ¢ > %n; H, is the set of configurations

9 We remark that our analysis focuses on asymptotic bounds and it does not definitely optimize the
corresponding constants: However, using technicalities and loosing readability, all such constants can be
largely improved.
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n—1
Hy
O(log 1) |
rounds
%n * H4 HG
\ O(log n) - O(log n)
Hy rounds rounds
O(log n) |
rounds
n A
8" T T
-
\/nlogn |~~~ =77 4-- - -~ - ="
Hs H | H,
one one one
round round round
4

'Y O(4/nlogn) %n n-5y/nlogn

Figure 1 {H1,..., H7} is the considered partitioning of the configuration space C. On the x
axis we represent the bias s, on the y axis the number of undecided nodes gq. Missing arrows are
transitions that have negligible probabilities.

such that s < yy/nlogn and txn < ¢ < 3n; Hs is the set of configurations such that
s < yyv/nlogn and q < t5n. Hy is the set of configurations such that vy/nlogn < s < 2n
and q > %n; Hj is the set of configurations such that yv/nlogn < s < %n and ¢ < Tlsn; H;
is the set of configurations such that 2n < s < n —5y/nlogn and ¢ < y/nlogn. Hg is the
set of configurations such that s > %n minus Hr.

For each region, Fig. 1 specifies our upper bound on the exit time of the corresponding
phase, while black arrows represent the phase transitions which may happen with non-
negligible probability.

Observe that the scheme highlighted in Fig. 1 can be seen as a directed acyclic graph G
having a single sink, Hg, that is reachable from any other region. We remark that, starting
from certain configurations, a monochromatic state may be reached via different paths in
G. This departs from previous analysis of consensus processes [4, 5, 18] in which the phase
transition graph is essentially a path.

We now outline the proofs of the two main results of this paper.

Outline of the Proof of Theorem 2. Consider an initial configuration x such that s(x) >
~vv/nlogn, for some positive constant v, and assume w.l.o.g. that the majority color
in x is Alpha. We first show that, if the initial configuration x is in Hy4, then the bias
grows exponentially fast and thus the process enters in Hg within O(logn) rounds. Then
we prove that, once in Hg, the process ends in the monochromatic configuration where
a = n within O(logn) rounds, w.h.p. All the other cases “reduce” to the above ones in
at most two rounds. Indeed, we show that, starting from any configuration in Hs, the
process falls into Hy or Hg in one round and that, starting from any configuration in
H, the process falls into Hy, Hs or Hg in one round. As for the tightness of the result
stated in the second part of the theorem, we have that the lower bound (Claim (i)) on
the convergence time is an immediate consequence of Claim (ii) of Lemma 12, while the
second claim, concerning the lower bound on the initial bias, is proved in the full version
of the paper [14].

Outline of the Proof of Theorem 1. We first observe that the configuration where all nodes
are undecided (i.e. ¢ =n) is an absorbing state of the U-Process and thus, for this initial
configuration, Theorem 1 trivially holds. In Section 4, we will show that, starting from
any balanced configuration, i.e. with s = o(v/nlogn), the U-Process “breaks symmetry”
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reaching a configuration y with s(y) = Q(y/nlogn) within O(logn) rounds, w.h.p. Then,
the thesis easily follows by applying Theorem 2 with initial configuration y. As for
the symmetry-breaking phase, in Lemma 3 we prove that, if the process starts from
a configuration in H; or Hj (see Figure 1), then after O(logn) rounds either the bias
between the two colors becomes Q(y/nlogn) or the system reaches some configuration in
H,, w.h.p. In Lemma 8 we then prove that, if the process is in a configuration in Hs,
then the bias s will become Q(y/nlogn) within O(logn) rounds, w.h.p.

4 Symmetry breaking

In this section we show that, starting from any (almost-) balanced configuration, i.e. those
with s = o(y/nlogn), the U-Process “breaks symmetry” reaching a configuration with
s = Q(yv/nlogn) within O(logn) rounds, w.h.p. This part of our analysis is organized as
follows.

In Lemma 3 we prove that, if the process starts at a configuration in H; or Hs (see
Figure 1), i.e., when the number of undecided nodes is either smaller than n/18 or larger
than n/2, then, after O(logn) rounds, either the bias between the two colors already gets
magnitude Q(y/nlogn) or the system reaches some configuration in Hs (i.e., a configuration
where the number of undecided nodes is between n/18 and n/2). In Lemma 8 we then prove
that, if the process is in a configuration in Hs, then the bias between the two colors will get
magnitude Q(y/nlogn) within O(logn) rounds, w.h.p.

» Lemma 3 (Phases H; and Hj: Starters).
Starting from any configuration & € Hs, the U-Process reaches a configuration X €
(Hy U Hy U Hy) in one round, w.h.p.
Starting from any configuration & € H,, the U-Process reaches a configuration X €
(H2 U Hy) within O(logn) rounds, w.h.p.

If the system lies in a configuration of Hs, we need more complex probabilistic arguments
to prove that the bias between the two colors reaches Q(y/nlogn) within O(logn) rounds
w.h.p. We will make use of the following bound on the hitting time of any Markov chain
having suitable drift properties. This result is a variant of Claim 2.9 in [18] that requires a
new proof.

» Lemma 4. Let {X;}ien be a Markov Chain with finite state space  and let f: Q — [0, n]

be a function that maps states to integer values. Let c3 be any positive constant and let

m = cgy/nlogn be a target value. Assume the following properties hold:

1. For any positive constant h, a positive constant c; < 1 exists such that, for any x €
with f(x) < m, it holds that

P (f(Xi41) < h/n|X, =z) < e,

2. Two positive constants €, co exist such that, for any x € Q with f(x) < m, it holds that
P (f(Xi+1) < (142 f(X0)| X, = ) < e=2f @7 /n

Then the process reaches a state x such that f(x) > m within O(logn) rounds, w.h.p.

Proof. We first define a set of hitting times T' = {7(i) };en where

7(i) = inf{t: ¢ > 7(i = 1), f(Xs) > h/n}
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setting 7(0) = 0. By Hypothesis (1), for every i € N, the expectation of 7(4) is finite. Then
we define the following stochastic process which is a subsequence of {X;}en: {R;}ien =
{X7() tien. Observe that {R;}cn is still a Markov Chain. Indeed, let {x1,...,2;_1} a set of
states in 2:

P(R;=z|Ri-1=zi—1 A ANRy=11)
=P (Xr) =Xy =@ica Ao A X1y = 1)
= > P(Xyp =Xy =zici Ao A Xy) = 1)
t(i)A--At(0)EN
P (i) = ti) ATl — 1) = ti— 1) A+ AT(1) = £(1))
Y. P (X =Xy = i)
t(i)A---At(0)EN
P () = @) Al — 1) = i — 1) A= AT(1) = £1))
=P (X, =X -1y =xim1) =P (R =2|Ris1 = xi_1) .

By definition the state space of R is {z € Q: f(x) > hy/n}. Moreover Hypothesis (2) still
holds for this new Markov Chain. Indeed:

P (f(Rit1) < (1+e)f(R)|R:i = x))

=1-P(f(Riy1) = 1 +e)f(Ri)|R; = x))
=1 =P (f(Xr(11) = (L4 ) f(Xr0) [ Xri) = )

<1=P (f(Xrirn) = (L) f(Xri) AT(i+ 1) = 7(8) + 1| X5y = @)
=1-P (f(Xriy1) 2 (L+2)f (X)) Xr(e) = )

—1—P (f(Xp1 = (1 +e)f(X)|X, = x)) < e 2/ @7/n,

These two properties are sufficient to study the number of rounds required by the new
Markov Chain {R;};cn to reach the target value m. Indeed, by defining the random variable
Z; = fi;%) and considering the following “potential” function, Y; = exp(J= — Z;) we can
compute its expectation at the next round as follows. Let us fix any state x € 2 such that

hy/n < f(x) < m and define z = y) and y = exp(T —2). We get:

E [Vi1|Ri = 2] <P (f(Rip1) < (1+¢e)f(x)) eV
+P (f(Rit1) =1 +e)f(x))e m/vn—(1+e)z
(from Hypothesis (2)) < e L gm/Vi 4 1 e/ V= (14e)z (6)
— em/\/ﬁ—02z2 + em/ﬁ—z—az

— em/\/ﬁfz(ezfqz2 —|—67€Z) < 6m/\/ﬁfz(672 —|—672) (7)
em/\/ﬁfz y
<—< 3,
e e
where in (7) we used that z is always at least h and thanks to Hypothesis (1) we can choose
a sufficiently large h. By applying the Markov inequality and iterating the above bound, we
get:
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We observe that if ¥; < 1 then R; > m, thus by setting i = m/y/n+logn = (¢3 + 1) logn,
we get:

1

p (R(CS-‘rl)IOgn < m) =P (Y(CS-‘rl)l()gn > 1) < n (8)

Our next goal is to give an upper bound on the hitting time 7(c,11)10g- Note that the event
“T(cg+1)logn > Calogn” holds if and only if the number of rounds such that f(X;) > hy/n
(before round ¢4 logn) is less than (¢3 4+ 1) logn. Thanks to Hypothesis (1), at each round ¢
there is at least probability 1 — ¢; that f(X;) > hy/n. This implies that, for any positive
constant ¢4, the probability P (T(CB+1) logn > C410g n) is bounded by the probability that,
within ¢4 log n independent Bernoulli trials, we get less than (c3 + 1) logn successes, where
the success probability is at least 1 —c;. We can thus choose a sufficiently large ¢4 and apply
the multiplicative form of the Chernoff bound (see e.g. Theorem 1.1 in[21]) and obtain:

1
P (T(63+1)logn > ¢y logn) < —~ o
We are now ready to prove the Lemma using (8) and (9), indeed:

P (3t <cqlogn: Xy =>m)>P (R(cgﬂ)logn Z M A T(cz41)logn < C4 logn)
=1-P (R(C3+1) logn < M 4 T(cz+1)logn = C4 log n)

>1 =P (Rieg+1)10gn < M) = P (T(cs11)logn > calogn)
2
>1-—.
n
Hence, choosing a suitable big ¢4, we have shown that in ¢4 logn rounds the process reaches

the target value m, w.h.p. <

The basic idea would be to apply the above lemma to the U-Process with f(X;) = [s(X%)|
in order to get an upper bound on the number of rounds needed to reach a configuration
having bias Q(y/nlogn). To this aim, we first show that, for any configuration in Hs,
Properties 1 and 2 in Lemma 4 are satisfied.

» Claim 5. Let x € C be any configuration such that {5 < q(x) < § and [s(x)| < cay/nlogn
for any positive constant c4, then it holds:

1. for any constant h > 0 a constant ¢; < 1 exists such that P (|S| < hy/n| Xy = @) < c1,
2. two positive constants ca, € exist such that P (|S]| > (1+¢)s| Xy =) > 1 — e=cas*/n,

It is important to observe that the above claim ensures Properties 1 and 2 of Lemma 4
whenever %n <¢q< %n Unfortunately, Lemma 4 requires such properties to hold for any
(almost-)balanced configuration: If ¢ = n — o(n), Property 1 does not hold, while Property
2 is not satisfied if ¢ = o(n). In order to manage this issue, in Subsection 4.1, we define a
pruned process, a variant of U-Process where it is possible to apply Lemma 4. Then, in
Subsection 4.2 we show a coupling between the U-Process and the pruned one.

4.1 The pruned process

The helpful, key point is that, starting from any configuration x € Hs, the probability that
the process goes in one of those “bad” configurations with ¢ < %n orq > %n is negligible
(see Claim 7). Thus, intuitively speaking, all the configurations actually visited by the process
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before leaving Hs do satisfy Lemma 4. In order to make this intuitive argument rigorous, in
what follows, we define a suitably pruned process by removing from Hs all the unwanted
transitions.

Let 5 € [n] and z(5) be the configuration such that s(z(5)) = § and ¢(z(5)) = 3n.
Let px,y be the probability of a transition from the configuration x to the configuration
y in the U-Process. We define a new stochastic process: The U-Pruned-Process. The
U-Pruned-Process behaves exactly like the original process but every transition from a
configuration x € H, to a configuration y such that ¢(y) < 75n or ¢(y) > 3n now have
probability p} , = 0. Moreover, for any s € [n], starting from any configuration x € Ha, the
probability of reaching the configuration z(s) is:

Prea(s) = Pxa(s) T Z Dx.y.
yi(ay)<fsnva@)>3n) A\ s(y)=5

Finally, all the other transition probabilities remain the same.

Observe that, since the U-Pruned-Process is defined in such a way it has exactly the
same marginal probability of the original process with respect to the random variable s, then
Claim 5 holds for the U-Pruned-Process as well. Thus, we can choose constants h, ¢y, cs, e
such that the two properties of Lemma 4 are satisfied.

» Corollary 6. Starting from any configuration x € Hs, the U-Pruned-Process reaches a
configuration X € Hy within O(logn) rounds, w.h.p.

4.2 Back to the original process

The definition of the U-Pruned-Process suggests a natural coupling between the original
process and the pruned one: If the two processes are in different states then they act
independently, while, if they are in the same configuration x, they move together unless
the U-Process goes in a configuration y such that ¢(y) < txn or ¢(y) > in. In that case
the U-Pruned-Process goes in z(s(y)). Using this coupling, we first show that, if the two

processes are in the same configuration, the probability that they get separated is negligible.

» Claim 7. For every configuration © € Hs, the probability that the number of undecided
nodes in the next round of the U-Process is not between n/18 and n/2 is

P (q(XtH) ¢ [% g} | X, = :1:) e O,

Then, thanks to the above claim, we can show that the Hs exit time of the pruned procedure
stochastically dominates the Hy exit time of the original process. Thus, using Corollary 6,
we get the main result of this section.

» Lemma 8 (Phase H,). Starting from any configuration x € Hs, the U-Process reaches a
configuration X € Hy within O(logn) rounds, w.h.p.

5 Convergence to the majority

In this section we state the key technical lemmas we use to prove our second main result,
namely Theorem 2, which essentially establishes that, starting from any sufficiently-biased
configuration, the U-Process converges to the monochromatic configuration where all nodes
support the initial majority color within ©(logn) rounds, w.h.p.
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The proofs of the technical lemmas, as well as the almost-tightness result on the minimal
magnitude of the initial bias stated in Theorem 2, can be found in the full version of the
paper [14].

Phases Hys and H (Starters Il)

We show that if the process is in a configuration where the number of the undecided nodes is
relatively small with respect to the bias, then in the next round the number of the undecided
nodes becomes large while the bias does not decrease too much, w.h.p. This essentially
implies that if the process starts in Hy then in the next round the process moves to a
configuration belonging to Hy or Hg (Lemma 9), while if it starts in H; then in the next
round it moves to Hy or Hs or Hg (Lemma 10).

» Lemma 9 (Phase H;). Starting from any configuration © € Hs with a > b, the U-Process
reaches a configuration X € (Hy U Hg) with a > b in one round, w.h.p.

» Lemma 10 (Phase H;). Starting from any configuration € Hy with a > b, the U-Process
reaches a configuration X € (Hy U Hs U Hg) with a > b in one round, w.h.p.
Phase H, (Age of the undecideds)

We first show that, under some parameter ranges including Hy (and hence when the number
of the undecideds are large enough), the growth of the bias is exponential.

» Claim 11. Let v be any positive constant and x € C be any configuration such that
s > yy/nlogn and q > &n. Then, it holds that s (1+1/36) < S < 2s, w.h.p.

The above result allows us to prove the following bounds on the time the process requires
to reach Phase Hg.

» Lemma 12 (Phase Hy). Let x € Hy be a configuration with a > b. Then, (i) starting from
x, the U-Process reaches a configuration X' € Hg with a > b within O(logn) rounds, w.h.p.
Moreover, (i) an initial configuration y € Hy exists such that the U-Process stays in Hy for
Q(logn) rounds, w.h.p.

Phase Hg (Majority takeover)

This is the phase in which, due to the large bias, the nodes converge to the majority color
within a logarithmic number of rounds. We first prove that the number of nodes that support

the minority color decreases exponentially fast and that the bias is preserved round by round.

Then, when b < 2v/nlogn, the number of undecided nodes starts to decrease exponentially
fast as well. At the very end, when there are only few nodes (i.e., O(y/nlogn)) that do
not support the majority color yet, the minority color disappears in few steps and thus the
U-Process converges to majority within O(logn) rounds

» Lemma 13 (Phase Hg). Starting from any configuration € Hg with a > b, the U-Process
ends in the monochromatic configuration where a = n within O(logn) rounds, w.h.p.

6 Conclusions

We provided a full analysis of the U-Dynamics in the parallel PULL model for the binary
case showing it is an efficient self-stabilizing consensus protocol. Besides giving tight bounds
on the convergence time, our set of results well-clarifies the main aspects of the process
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evolution and the crucial role of the undecided nodes in each phase of this evolution. An
interesting open question is that of considering the same process in the multi-color case and
to derive bounds on the time required to break symmetry from balanced configurations, as
well. Finally, we believe that our analysis can be suitably adapted in order to show that the

U-Dynamics efficiently stabilizes to a valid consensus “regime

” 10 even in the presence of a

dynamic adversary that can change the state of a subset of nodes of size o(y/n) provided
that the initial number of colored nodes is Q(y/n).
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