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Abstract
We consider the problem of learning the hypergraph using edge-detecting queries. In this model,
the learner is allowed to query whether a set of vertices includes an edge from a hidden hypergraph.
Except a few, all previous algorithms assume that a query’s result is always correct. In this paper
we study the problem of learning a hypergraph where α-fraction of the queries are incorrect. The
main contribution of this paper is generalizing the well-known structure CFF (Cover Free Family)
to be Dense (we will call it DCFF - Dense Cover Free Family) while presenting three different
constructions for DCFF. Later, we use these constructions wisely to give a polynomial time non-
adaptive learning algorithm for a hypergraph problem with at most α-fracion incorrect queries.
The hypergraph problem is also known as both monotone DNF learning problem, and complexes
group testing problem.
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1 Introduction

The classical group testing model consists of a set of n items, where s of these items are
defective (positive) while others are good (negative) items. The problem is to identify all
defective (positive) items with a small number of group tests. A group test is a test with a
negative/positive result, where you can choose an arbitrary group S ⊆ [n] and ask whether
S contains at least one defective item. The outcome is negative if all the items within the
group are good (negative), and positive otherwise (See [13, 12] for more details about group
testing).

Torney [20] was the first who generalized the group testing model to the complex group
testing model, where we have the same set of n items, as in the first model, but instead of
s defective elements, we have s defective groups M1, · · · ,Ms, that are known as positive
complexes, where Mi ⊆ [n] and for any i1, i2 ∈ [s] where i1 6= i2 Mi1 6⊆Mi2 and Mi2 6⊆Mi1 .
In complex group testing model, a complex group test is a test with a negative/positive
result, where you can choose an arbitrary group S ⊆ [n] and ask whether S contains at least
one positive complex. The outcome is negative if all the complexes within the group are
negative, and positive otherwise. A usual assumption is that each positive complex has at
most r items (|Mi| ≤ r).

This problem is also known as graph testing, where a hypergraph H = (V,E) with
s edges and n vertices is given, our objective is to learn the hypergraph by asking edge-
detecting queries (denote query function by Q). An edge detecting-query is a test with a
negative/positive result, where you can choose an arbitrary group of vertices S ⊆ [n] and ask
whether this group of vertices has at least one edge or not. A usual assumption is that each
edge has at most r vertices. It is easy to see that this model is equivalent to the complex
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3:2 Error-Tolerant Learning of Hypergraph

group testing model (see [1]). In addition to complex group testing and graph testing, this
problem is also known as the learning monotone DNF problem with s monomials, where
each monomial contains at most r variables. In this paper, we will use the latter terminology
rather than complexes or graphs.

Tests can be adaptive (sequential), non-adaptive or multi-stage. Adaptive tests are tests
that may be affected by the outcome of earlier tests. Non-adaptive tests, all tests are executed
in parallel without knowledge of any other tests’ outcome. Multi-stage tests are divided into
stages, and all tests within each stage are executed in parallel, but different stages may be
affected by the outcome of earlier stages.

This problem has many applications in chemical reactions, molecular biology and genome
sequencing (see [15, 14, 7, 17, 6]). In these types of applications, an experiment corresponding
to a group test could take several hours or even several days. Thus, non-adaptive algorithms
are most desirable. In addition to the prolonged process, errors in applications are unavoidable.
And as the number of tests increases, the number of errors occurring is increased as well.
Therefore, it is very important to construct error-tolerant algorithms, where the number of
the errors is a fraction of the number of queries. In all of the above applications the size of
each term (rank of the hypergraph) is much smaller than the number of terms (edges), and
both are much smaller than the number of variables (vertices) n. Therefore, throughout the
paper, we will assume that r < s < n (this assumption will be used in the constructions in
Section 3) and will denote d , r + s.

Both adaptive and non-adaptive learning of monotone DNF problem are well-known and
well-studied. In the Adaptive model, Angluin et al. [5] was the first to present a deterministic
optimal adaptive algorithm for learning s-term 2-MDNF (s terms each of size 2). Later,
Abasi et al., [1], gave an almost optimal adaptive algorithm for the general s-term r-MDNF
case and they proved that any algorithm that learns s-term r-MDNF needs to ask at leastr > s Ω

(
(r/s)s−1 + rs logn

)
Queries

r ≤ s Ω
(

(2s/r)r/2 + rs logn
)

Queries

On the non-adaptive side many works studied the s-term r-MDNF. Abasi et al. [2], gave
the first deterministic algorithm which runs in polynomial time and non-adaptively learns a
hypergraph that asks an almost optimal number of queries. On the other hand, only few
algorithms discussed the error-tolerant problems. Stinson and Wei, [18], proved a lower
bound
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where z is constant and the algorithm is tolerant to z/2 errors (constant number of errors).
In the same paper they proved an upper bound of
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Chen et al., [11], improved the last upper bound to
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Lang et al., [16], considered the problem where z errors occur in every m tests. They gave a
random algorithm which identifies all the target function’s terms with high probability. All
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previous algorithms either run in exponential time, are non-deterministic or are tolerant to a
constant number of errors.

In this paper we introduce the first algorithm, to the best of our knowledge, that handles
α-fraction of incorrect queries which is deterministic and runs in polynomial time. In [2], the
authors use the (n, (s, r))-cover-free family ((n, (s, r)) -CFF). This family is a set A ⊆ {0, 1}n
of assignments such that for every distinct i1, . . . , is, j1, . . . , jr ∈ {1, . . . , n}, there is an
assignment a ∈ A such that

ai1 = · · · = ais = 0 and aj1 = · · · = ajr
= 1.

In this paper we extend the definition of (n, (s, r)) -CFF to be

(n, (s, r) , α) - Dense CFF (DCFF),

where the DCFF is a CFF with an additional requirement, which is that for every dis-
tinct i1, . . . , is, j1, . . . , jr ∈ {1, . . . , n}, an α-fraction of the assignments a ∈ A satisfy the
following:

ai1 = · · · = ais = 0 and aj1 = · · · = ajr
= 1.

Improving techniques that were used in [2], by customizing them to comply with DCFF,
results in the needed algorithm. In the improvement process we used what we defined above
as DCFF. In order to do so, we present three constructions of DCFF, each of which has an
advantage over the other. One of these constructions is superior in terms of density, while
the other two have better time complexities. One of them is better when r < T (s), while
the other is better when r ≥ T (s), where T is a function of s. In addition to the extension
described above, we also prove that α in (n, (s, r) , α)-DCFF cannot exceed

DNS(s, r) , 1(r+s
r
) = 1(d

r
) .

It is also known, [19], that any non-adaptive learning algorithm must ask at least

Ω
((es

r

)r
logn

)
= Ω

(
sr(1+o(1)) logn

)
queries, and therefore any algorithm must run in time poly (n, sr). An algorithm that runs
in time poly (n, sr) is called efficient algorithm.

This paper is organized as follows. Section 2 gives some definitions and preliminary
results that will be used throughout the paper. Section 3 gives three different algebraic
constructions for Dense Cover Free family (see Section 3 for full definition). Section 4 gives
an inefficient algorithm by using DCFF directly. Section 5 gives a reduction to reduce any
non-linear α-error tolerant algorithm that depends on d variables at most to be linear in
logn. And finally in Section 6 we use all the constructions and the reduction to generate an
efficient algorithm that asks

O
(
r11 (4s)r+7 logn

)
= O

(
sr(1+o(1)) logn

)
noisy membership queries and runs in poly (n, sr) , and handles

Ω
(

DNS(s, r)1+o(1)
)

fraction of incorrect queries.
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1.1 Optimality for r = 2 (or any constant r)
The learning problem of a graph (when r = 2) has been considered and well-studied. Angluin
et al., [4, 5], studied the graph problem for the adaptive, nonadaptive and multistage models.
Our construction and algorithm are almost optimal when r = 2 (or any constant r) in terms
of density and query complexity, where the density in case r is constant is Ω (DNS(s, r)) .

1.2 Algorithm idea overview
One can easily see that using (n, (s, r) , α) -DCFF solves the problem of s-term r-MDNF
when less than α/2-fraction of the queries can be incorrect. That is true because for each
subset of s terms there are at least α/2-fraction of the DCFF’s assignments that satisfy one
term (r 1’s) and assigns 0 to all other terms (s− 1 0’s) (see Section 4 for more details).
The problem with using DCFF directly is the time complexity, and that is because we need
to find out whether each possible subset of s terms each of size at most r satisfies a given set
of conditions or not (again, see Section 4 for more details).
In order to achieve a polynomial time complexity, we use bit-wise conjunction of assignments
in each DCFF. The general idea is to create two DCFFs. One of them spreads the set of
terms over different sets, and the other is used afterward with other structures and techniques
to find each term explicitly (see Section 6 and Section 5 for more details).

2 Definitions and Preliminary Results

2.1 Monotone Boolean Functions
For a vector w, we denote by wi the ith entry of w. For a positive integer j, we denote by
[j] the set {1, 2, . . . , j}. For two assignments a, b ∈ {0, 1}n we denote by (a∧ b) ∈ {0, 1}n the
bitwise AND assignment. That is, (a ∧ b)i = ai ∧ bi for all i ∈ [n].

Let f(x1, x2, . . . , xn) be a Boolean function from {0, 1}n to {0, 1}. We say that the
variable xi is relevant in f if f |xi←0 6≡ f |xi←1. A variable xi is irrelevant in f if it is not
relevant in f . We say that the class of functions C is closed under variable projections if for
every function f ∈ C and every two variables xi and xj , i, j ≤ n, we have f |xi←xj

∈ C.
For two assignments a, b ∈ {0, 1}n, we write a ≤ b if for every i ∈ [n], ai ≤ bi. A Boolean

function f : {0, 1}n → {0, 1} is said to be monotone if for every two assignments a, b ∈ {0, 1}n,
if a ≤ b then f(a) ≤ f(b). In other words, there is no negated variables in f . Every monotone
Boolean function f has a unique representation as a reduced monotone DNF, [3].

An s-term r-MDNF is a monotone DNF with at most s monomials, where each monomial
contains at most r variables. It is easy to see that the class s-term r-MDNF is closed under
variable projections.

For a function f = M1 ∨ · · · ∨Ms that belongs to an s-term r-MDNF class, we say that
b ∈ {0, 1}n separates a term Mi in f from other terms if Mi(b) = 1 and Mj(b) = 0 for any
i 6= j. In the same way, we say that b ∈ {0, 1}n separates the terms Mi1 , . . . ,Mik in f from
other terms if Mj(b) = 1 for any j ∈ {i1, . . . , ik}, and otherwise Mj(b) = 0.

2.2 α-Error Tolerant Learning from Noisy Membership Queries
Consider a teacher that has a target function f : {0, 1}n → {0, 1} that is an s-term r-MDNF.
The teacher can answer noisy membership queries. That is, when receiving a ∈ {0, 1}n, it
returns f(a) = 1 − f(a) for α-fraction of the queries, and f(a) for the rest. This teacher
is called α-Liar Teacher. An α-error tolerant learning algorithm is an algorithm that can
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ask the α-Liar Teacher noisy membership queries. The goal of the learning algorithm is
to exactly learn (exactly find) f with a minimum number of noisy membership queries and
optimal time complexity.

2.3 Dense Perfect Hash Function, Cover Free Family and Dense Cover
Free Family

I Definition 1 (Perfect Hash Family). Let H be a family of functions h : [n]→ [q]. For d ≤ q
we say that H is an (n, q, d, 1− ε)- dense perfect hash family ((n, q, d, 1− ε) -DPHF) if for
every subset S ⊆ [n] of size |S| = d there are at least (1− ε)|H| hash functions h ∈ H such
that h|S is injective (one-to-one) on S, i.e., |h(S)| = d.

I Lemma 2 ([8]). Let q be a power of prime. If ε > 4(d(d − 1)/2 + 1)/q, then there is a
(n, q, d, 1− ε)-DPHF of size

O

(
d2 logn
ε log εq

d2

)
,

that can be constructed in linear time.

I Definition 3 (Cover Free Family). An (n, (s, r))- cover free family ((n, (s, r)) -CFF), is a
set A ⊆ {0, 1}n, such that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s+ r and every
J ⊆ [d] of size |J | = s, there is a ∈ A such that aik = 0 for all k ∈ J and aij = 1 for all
j ∈ [d]\J . Denote by N(n, (s, r)) the minimum size of such set.

I Definition 4 (Dense Cover Free Family). An (n, (s, r), α)- dense cover free family
((n, (s, r), α) -DCFF), is a set A ⊆ {0, 1}n, such that for every 1 ≤ i1 < i2 < · · · < id ≤ n

where d = s+ r and every J ⊆ [d] of size |J | = s, the following holds for α-fraction vectors
a ∈ A: aik = 0 for all k ∈ J and aij = 1 for all j ∈ [d]\J . Denote by N(n, (s, r), α) the
minimum size of such set.

I Lemma 5. Let A be an (n, (s, r), α) -DCFF, then α ≤ 1
(d

r)
, DNS(s, r).

Proof. For any d = r + s variables, we must have exactly
(
d
r

)
different assignments to cover

all the possible assignments over d variables. Otherwise, one assignments at least will be
missed. Denote these assignments by R. If there is at least one assignment r0 ∈ R that
appears among (n, (s, r), α)-DCFF more than 1/

(
d
r

)
times, then by pigeonhole principle,

there exists at least one assignment r1 ∈ R, that appears less than 1/
(
d
r

)
times. Therefore, α

cannot exceed 1/
(
d
r

)
. J

For completeness we show:

I Lemma 6. Let H1 be an (n, q, d, 1− ε)-DPHF, and H0 is a (q, (r, s), α)-DCFF, then
DC = {h0(h1)|h0 ∈ H0, h1 ∈ H1} is an (n, (r, s), α(1− ε))-DCFF of size |H0||H1|.

Proof. We will show that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s+ r and for every
J ⊆ [d] of size |J | = s there are α(1− ε)|H0||H1| vectors h ∈ DC such that h(ik) = 0 for all
k ∈ J , and h(ij) = 1 for all j ∈ [d]\J .
Since H1 is (n, q, d, 1 − ε)-DPHF, then there are (1 − ε)|H1| functions h1 ∈ H where
h1(i1), . . . , h1(id) are distinct. And since H0 is a (q, (r, s), α)-DCFF, then for each
h1(i1), . . . , h1(id) distinct values there are α|H0| vectors h0 ∈ H0, where for every J ⊆ [d]
of size |J | = s, such that h0(h1(ik)) = 0 for all k ∈ J and h0(h1(ij)) = 1 for all j ∈ [d]\J .
Accordingly, there are (1− ε)|H1| ·α|H0| vectors h ∈ DC where for every 1 ≤ i1 < i2 < · · · <
id ≤ n where d = s + r and for every J ⊆ [d] of size |J | = s, h(ik) = 0 for all k ∈ J and
h(ij) = 1 for all j ∈ [d]\J . J

MFCS 2018
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Table 1 Dense CFF, assuming r ≤ O
(
(log2 d)/(log log d)

)
.

Constr. Construction Time Size Density

I O
(

d
√

r
log r

(
d
r

)r
n log n

)
O
(

d
√

r
log r

(
d
r

)r log n
)

Ω
(

DNS(s, r)d−
√ r

log r

)
II O

(
cd · d2d+6s2 ( es

r

)2r
n log n

)
O
(
d3s2 ( es

r

)r log n
)

Ω (DNS(s, r))

III O

(
d3
(

ed3

r

)r+2
(4s)2r+4 n log n

)
O
(
d3 (4s)r+2 log n

)
Ω
(

DNS(s,r)
(c·r)r

)

3 Explicit Dense Cover Free Family Constructions

In this section we will show three different constructions of (n, (r, s), α)-DCFF - each of
which has an advantage on the other. Before we introduce the constructions, we will state
the results for each construction in Table 1.

Note that construction II is the best construction in terms of density. When r is non-
constant then construction I and III are much better than construction II in terms of time
complexity. Accordingly, when

ω(1) < r < O

(
log2 d

log log d

)
,

then we prefer construction III over I. Otherwise we prefer construction I over III.
In our algorithms, we will distinguish between the cases r is constant and r is non-

constant. When r is non-constant, we will only deal with the case where ω(1) < r <

O
(
(log2 d)/(log log d)

)
, and it can be done similarly for the other case.

3.1 Explicit Construction
Before we start our explicit constructions, we will start with lemmas from [10, 9], that are
necessary for our constructions.

I Lemma 7 ([9] - Derandomization lemma). Let S be a finite sample space with a probability
distribution D.
Let X1, . . . , XN be random variables over S that take values from {0, 1}. Suppose that for
every s ∈ S = S1 × S2 × · · · × Sn, the values X1(s), . . . , XN (s) can be computed in Õ(N)1.
Let

N ′ ≤ N, 0 < ε ≤ 1
2 .

λi = (1− ε)pi, where 0 < pi ≤ Es∼D[Xi(s)] for all i ∈ [N ′] := {1, . . . , N ′}.
λj = (1 + ε)pj, where 1 > pj ≥ Es∼D[Xj(s)] for all j ∈ (N ′, N} := {N ′ + 1, . . . , N}.
α = mini min (1/(1− pi), 1/(1− λi)) and m ≥ 4 lnN

mini piε2 .
If any expectation of the form E[Xi(x1, . . . , xn)|x1 = ξ1, . . . , xj = ξj ] can be computed in
time T , then there is an algorithm that runs in time

Õ
(
T (|S1|+ · · ·+ |Sn|) ·Nm2 logα

)
, and outputs S′ = {s1, . . . , sm+1} ⊆ S

such that for all i ∈ [N ′] and j ∈ (N ′, N ] : Es∼US′ [Xi(s)] ≥ λi, Es∼US′ [Xj(s)] ≤ λj , where
US′ is the uniform distribution over S′.

1 Õ(N) is O(N · poly(log T )) where T is the time complexity of the construction.
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In other words, the lemma says if you have a set of random variables over a big range S,
in our case |S| = 2n, then there is a smaller set S′ that can replace S while keeping the
expectation of each variable the same to the factor of (1± ε). This lemma will help us convert
a random algorithm to a deterministic one, since the set S′ is “small” and we can go over all
possible values in a polynomial time.

I Lemma 8 ([10] - CFF explicit construction). Fix any integers r < s < d with d = r+s, there
is an almost optimal (n, (r, s))-CFF, i.e., of size N(r, s)1+o(1) logn, where N(r, s) = d(d

r)
log (d

r)
,

that can be constructed in linear time.

I Corollary 9. There is an
(
n, (r, s), 1

N(r,s)1+o(1) logn

)
-DCFF of size N(r, s)1+o(1) logn, that

can be constructed in linear time.

3.2 First Construction
From the proof of Lemma 8, we infer that the accurate value of the size is

N(n) = t(d)
(
d
r

)r logn.

where

t(d) =


2O(r log log d) r > O

(
log2 d

log log d

)
2
O

(√
r log d√

log r

)
Otherwise

Now we can build the first DCFF by Lemma 2, Lemma 6 and Lemma 8.
Simply choose ε = 0.01 (or any small constant) and a prime q = O(d3). By Lemma 2,
there is a (n, q, d,Ω(1))-DPHF of size O

(
d2 logn

)
. By Corollary 9 and the claim above, for

q = O
(
d3), there is

an
(
O
(
d3) , r, s,Ω(DNS(s,r)

t(d)

))
-DCFF, that can be constructed in linear time.

By using Lemma 6, we can get(
n, r, s,Ω

(
DNS(s, r)

t(d)

))
-DCFF of size O

(
t(d)

(
d

r

)r
logn

)
.

I Theorem 10. There is an
(
n, (r, s),Ω

(
DNS(s,r)

t(d)

))
-DCFF

of size O
(
d2 log dN(r, s)1+o(1) logn

)
that can be constructed in linear time.

3.3 Second Construction
I Theorem 11. There is an (n, (r, s),Ω (DNS(s, r)))-DCFF of size O

(
s
(
es
r

)r logn
)
that

can be constructed in poly
(
nd
)
.

Proof. We define a probability space over the vectors x = (x1, . . . , xn) ∈ {0, 1}n, where

xi =
{

0, with probability sd
1, with probability rd

For every couple of sets {i1, . . . , ir}, {j1, . . . , js}, we define the random variable
Xi1,··· ,ir,j1,··· ,js

where

Xi1,··· ,ir,j1,··· ,js(x) =
{

1, If xi1 = · · · = xir = 1, xj1 = · · · = xjs
= 0.

0, Otherwise

MFCS 2018
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Note that the number of random variables is N =
(
n
d

)(
d
r

)
, and that the expectation of each

random variable is E[Xi1,··· ,ir,j1,··· ,js
] =

(
r
d

)r ( s
d

)s
.

We now use Lemma 7. Note that

N ′ = N, ε = 1
2 , pi1,··· ,ir,j1,··· ,js = p :=

(
rrss

dd

)
.

λi = λ := 1
2p, m ≥ 4 ln (n

d)(d
r)

p
4

= O
(
s
(
es
r

)r logn
)
.

Therefore, according to Lemma 7, there is an algorithm that runs in

Õ(nNm2 logα) = O
(
n
(
en
d

)d
s2 ( es

r

)2r log2 n
)
time, and outputs

S′ = {s1, . . . , sm+1} ⊆ S, such that, for all i = (i1, . . . , ir, j1 . . . , js) ∈ [n]d, holds:

Es∼US′ [Xi(s)] ≥ 1
2
(
r
d

)r ( s
d

)s = Ω (DNS(s, r)) J

The size of the construction is almost optimal, while the running time is exponential. In the
third construction we will reduce the exponent from d to r.

3.4 Third Construction
I Theorem 12. There is an

(
n, (r, s),Ω

(
DNS(s,r)

(cr)r

))
-DCFF of size O

(
(4s)r+2 logn

)
that

can be constructed in poly (nr).

Through applying the same technique from the Second construction wisely, we reduce the
number of random variables this time, leading to a reduced construction time.

Proof. We define a probability space over the vectors x = (x1, . . . , xn) ∈ {0, 1}n, where

xi =
{

1, with probability 1
4s

0, with probability 4s−1
4s .

For every couple of sets {i1, . . . , ir}, {j1, . . . , js}, we define the following random variables:

Xi1,··· ,ir,j1,··· ,js(x) =
{

1, If xi1 = · · · = xir = 1, xj1 = · · · = xjs
= 0.

0, Otherwise.

Yi1,··· ,ir,j(x) =
{

1, If xi1 = · · · = xir = xj = 1.
0, Otherwise.

, j ∈ {j1, . . . , js}

Zi1,··· ,ir (x) =
{

1, If xi1 = · · · = xir = 1.
0, Otherwise.

Note that we can bound the random variable X, by an expression of Y and Z in the
following way:

Xi1,··· ,ir,j1,··· ,js
≥ Zi1,··· ,ir −

∑s
k=1 Yi1,··· ,ir,jk

The correctness of the above equation follows immediately from the definition.
Note that instead of

(
n
d

)
that we used in the previous construction, now we can do a similar

construction by using the following number of random variables

N =
(
n
r+1
)
(r + 1) +

(
n
r

)
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and the expectation of each random variable is

E[Xi1,··· ,ir,j1,··· ,js
] ≥ E[Zi1,··· ,ir ]−

∑s
k=1 E[Yi1,··· ,ir,jk

] = 3
4

1
(4s)r

Again we use Lemma 7 for the random variables Z and Y . Note that
1. N ′ =

(
n
r

)
, ε = 1

2 .
2. pi1,··· ,ir = p0 :=

( 1
4s
)r
.

3. pi1,··· ,ir,j = p1 :=
( 1

4s
)r+1

.

4. λi1,··· ,ir = λ0 := 1
2p0.

5. λi1,··· ,ir,j = λ1 := 3
2p1.

6. m ≥ 4 ln(( n
r+1)(r+1)+(n

r))
p1
4

= O
(
(4s)r+2 logn

)
.

Therefore, according to Lemma 7, there is an algorithm that runs

Õ
(
nNm2 logα

)
= O

(
n
(en
r

)r+2
(4s)2r+4 log2 n

)
, and outputs

S′ = {s1, . . . , sm+1} ⊆ S,

such that for all i = (i1, . . . , ir) ∈ [n]r, j = (j1, . . . , jr, jr+1) ∈ [n]r+1:

Es∼US′ [Zi(s)] ≥
1
2 ( 1

4s )r and Es∼US′ [Yj(s)] ≤
3
2 ( 1

4s )r+1, so

E[Xi1,··· ,ir,j1,··· ,js
] ≥ E[Zi1,··· ,ir ]−

∑s
k=1 E[Yi1,··· ,ir,jk

] ≥ 1
2 ( 1

4s )r − s · 3
2 ( 1

4s )r+1

E[Xi1,··· ,ir,j1,··· ,js ] ≥ 1
8 ( 1

4s )r J

Note that we can apply Lemma 2 and Lemma 6 on the second and third constructions,
the same way we did in the first construction to get the needed results.

4 Direct Usage of DCFF: α-Error Tolerant Algorithm

In this section we discuss and explain the intuition behind using DCFF, and show how we can
use it directly to present an α-error tolerant algorithm of a hidden hypergraph. Unfortunately
though, the time complexity of the algorithm will not be polynomial. The issue of the time
complexity will be solved in the following sections by wise use of the DCFF combined with
other algebraic structures.

We assume our function is f = M1 ∨ · · · ∨ Ms′ , s′ ≤ s, and each Mi is of size at
most r. For simplicity we assume that s′ = s and each term is of size exactly r. Denote
Sterms = {xi1 · · ·xir |1 ≤ i1 < . . . < ir ≤ n and xi1 · · ·xir 6∈ {M1, . . . ,Ms}}.
In order to find M1 we need a set of assignments AM1 such that:
1. ∃a ∈ AM1 such that M1(a) = 1,Mi(a) = 0 (1 < i ≤ s).
2. ∀t ∈ Sterms ∃a ∈ AM1 where t(a) = 1 and f(a) = 0.
If all the above is satisfied, then we can find M1 simply by trying all the possible terms of
size r. One can easily see that any (n, (s, r), α)-DCFF(CFF) has a subset that satisfies all
the above requirements. To satisfy the first requirement we need r 1′s (to satisfy M1) and
s− 1 0′s (to falsify Mi, 1 < i ≤ s), and to satisfy the second requirement we need s 0′s (to
falsify Mi, 1 ≤ i ≤ s) and r 1′s (to satisfy a given term t ∈ Sterms).
Now we present the details of the algorithm:

We construct an (n, (s, r), β)-DCFF A, where β = 2α + 1
|A| . Denote by A′(M) the set

{a ∈ A|M(a) = 1 and Q′(a) = 1}. Now, take every monomial M of size at most r where
|A′(M)| ≤ α|A|. The disjunction of all such monomials is equivalent to the target function.

MFCS 2018



3:10 Error-Tolerant Learning of Hypergraph

This follows from the following two facts: (1) for any monomial M ′ such that M ′ 6⇒ f , there
are at least

(
α+ 1

|A|

)
|A| assignments a ∈ A such that Q′(a) = 0 and M ′(a) = 1 (2) for any

monomial M ′ ⇒ f , there are at least
(
α+ 1

|A|

)
|A| assignments a ∈ A such that Q′(a) = 1

and M ′(a) = 1. Since only α|A| queries can be incorrect, and there are β|A| assignments
where M ′(a) = 1 and Q(a) = 0 for each M ′ 6⇒ f , then there are more than α|A| assignments
a ∈ A where Q(a) = 0 and M ′(a) = 1. Similarly, for each M ′ ⇒ f there are at most α|A|
assignments a ∈ A where Q(a) = 0 and M ′(a) = 1.

I Lemma 13. If an
(
n, (s, r), 2α+ 1

|A|

)
-DCFF A of size N can be constructed in time T ,

then there is an algorithm that learns the class s-term r-MDNF with N noisy membership
queries in time

O

(
T +Nr

r∑
r′=0

(
n

r′

))
.

Correctness and time complexity of the algorithm follows from the above explanation
and from the correctness of the error-free folklore algorithm [2].

5 α-Error Tolerant Reduction

In this section, we give a reduction to reduce the query complexity of any α-error tolerant
algorithm that depends on d variables to become linear in logn. The idea behind this is to
map the n-dimensional variables space to g(d)-dimensional space, where g is a polynomial
function of d. Then we run the original algorithm over the new space. The main challenge
here is to recover the original function efficiently (in terms of time complexity), while keeping
the algorithm Ω(α)-error tolerant. This can be done by using PHF in the following way: by
the definition of PHF, it contains a function h such that h maps each variable of MDNF
to a distinct variable. After finding this h, we use it to reduce the variables space from
n-dimensional to g(d)-dimensional. Here is the main theorem of this section:

I Theorem 14. Let H be a class of boolean functions that is closed under variable projection.
And suppose there is an algorithm that, given f ∈ H as an input, finds the relevant variables
of f in time R(n).

If H is non-adaptively learnable in time T (n) with Q′(n) noisy membership queries, and
αQ′(n)-errors might occur, then H is non-adaptively learnable in time

O

(
d2n logn
ε log(εq/d3) + d2 logn

ε log(εq/d3) (T (q) +Q′(q)n+R(q))
)
,with

Qnew(n) = O

(
d2Q′(q)

ε log(εq/d3) logn
)

noisy membership queries where less than 1−ε
2 αQnew(n) errors might occur, and d is an

upper bound on the number of relevant variables in f ∈ C and q is any integer such that
q ≥ 2(d+ 1)2.

Consider the algorithm in Figure 1.
Let A(n, α) be a non-adaptive algorithm that learns H in T (n) time with Q′(n) noisy

membership queries, where αQ′(n) errors might occur. Let f ∈ Hn be the target function.
Consider the (n, q, d+ 1, 1− ε)-DPHF P that was constructed in Lemma 2 (Step 1 in the
algorithm).

The following lemma follows from the fact that H is closed under variable projection:
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Reduction
A(n, α) is a non-adaptive α error tolerant learning algorithm for H.
1) Construct an (n, q, d+ 1, (1− ε))-DPHF P .
2) For each h ∈ P

Run A(q, α) to learn fh := f(xh(1), . . . , xh(n)).
Let f ′h ∈ H be the output of A(q, α).

3) For each h ∈ P
Vh ← the relevant variables in f ′h

4) G(h) = |{h′||Vh′ | = |Vh|, h′ ∈ P}|, H ′ = {h ∈ H|G(h) ≥ 1−ε
2 |P |}

dmax ← maxh∈H′ |Vh|.
5) X ← {x1, x2, . . . , xn}.
6) For each i ∈ [n], W (i) = |{h ∈ H|xh(i) 6∈ Vh, |Vh| = dmax}|

If W (i) ≥ 1−ε
2 |P |, then X ← X\{xi}

7) Take all h ∈ H with |Vh| = dmax
8) Replace each relevant variable xi in f ′h by xj ∈ X where h(j) = i.
9) Output the function that appears at least 1−ε

2 |P | times from step (8).

Figure 1 Reduction.

I Lemma 15. For every h ∈ P , the function fh := f(xh(1), . . . , xh(n)) is in Hq.

I Lemma 16. The total number of queries after the reduction is Qnew = |P |Q′(q).

Proof. For each h ∈ P , we run A(q, α) to learn fh. It is known that A(q, α) generates Q′(q)
queries, so overall we have |P |Q′(q) queries. J

I Lemma 17. (Step 2 in the algorithm) Let f ′h be the output of algorithm A(q, α) when it
runs on fh, and let K = {h|h ∈ P and f ′h 6≡ fh}, then K < 1−ε

2 |P |.

Proof. The lemma follows from the fact that the number of times when αQ′(q) errors appear
while running A(q, α) is less than 1−ε

2 |P |. Otherwise, the number of errors will be at least
1−ε

2 α|P |Q′(q) = 1−ε
2 αQnew(n). J

(Step 3 in the algorithm) Note that if the number of errors when running A(q, α) is less than
αQ′(q)-errors, then the algorithm finds the correct relevant variables of f ′h, by the definition
of A(q, α).

I Lemma 18. (Step 4 in the algorithm) Suppose xi1 , . . . , xid′ , d
′ ≤ d are the relevant

variables in the target function f , then dmax = d′.

Proof. Let Vh be the set of relevant variables of f ′h and let dmax = maxh∈H′ |Vh|. By the
definition of P there are at least (1 − ε)|P | maps h′ ∈ P such that h′(i1), . . . , h′(id′) are
distinct, and since more than αQ′(q) errors might occur in less than 1−ε

2 |P | functions h ∈ H
(as mentioned above), then there are at least (1− ε)|P | − 1−ε

2 |P | =
1−ε

2 |P | functions h
′ ∈ P

where h′(i1), . . . , h′(id′) are distinct and their Vh′ equals d′. Such h′ satisfies G(h′) ≥ 1−ε
2 |P |,

so h′ ∈ H ′. Stemming from the same fact, there are less than 1−ε
2 |P | functions h ∈ P where

the learned function f ′h can have number of relevant variables greater than d′. Such h satisfies
G(h) < 1−ε

2 |P |, so h 6∈ H
′. And therefore, dmax = d′. J

I Lemma 19. (Step 6 in the algorithm) If xi is an irrelevant variable, then for at least
1−ε

2 |P | maps h ∈ P |Vh| = dmax and xh(i) 6∈ Vh.

MFCS 2018



3:12 Error-Tolerant Learning of Hypergraph

Learn(fMDNF )
1) Construct an (n, (1, r), α1)-DCFF A and an (n, (s− 1, r), α2)-DCFF B.
2) Ask noisy membership queries for all a ∧ b, a ∈ A and b ∈ B.
3) For every b ∈ B.
4) Tb ← 1.
5) For every i ∈ [n].
6) If for at most β1|A| assignments a ∈ A, (a ∧ b)i < Q′(a ∧ b)
7) then Tb ← Tb ∧ xi.
8) T ← T ∪ {Tb}.
9) Remove from T all the terms that appear at most β2|B|-times.
10) Remove from T the term ∧i∈[n]xi

and all subterms of a larger term.

Figure 2 An algorithm for learning s term r MDNF.

Proof. Consider any irrelevant variable xj 6∈ {xi1 , . . . , xid′}. Since P is (n, q, d + 1, 1 − ε)-
DPHF, there are (1 − ε)|P | functions h′′ ∈ P such that h′′(j) and h′′(i1), . . . , h′′(id′) are
distinct. Again since αQnew errors might occur, then f ′h′′ depends on xh′′(i1), . . . , xh′′(id′ ),
and not on xh′′(j) and |Vh| = dmax for at least 1−ε

2 |P | functions h
′′ ∈ P . J

This way the irrelevant variables can be eliminated. Since the above is true for every irrelevant
variable, the set X contains only the relevant variables of f , after Step 6 in the algorithm.
Then in Steps 7 and 8, we find all functions f for which the number of relevant variables is
d′. The target function appears at least 1−ε

2 |P | times, and any other function appears less
than 1−ε

2 |P | times. This is Step 9 in the algorithm. The correctness of the algorithm follows
immediately from the above lemmas and explanation.

6 Efficient α-Error Tolerant Algorithm

In Section 4 we used DCFF directly to present a non-polynomial algorithm. In order to
improve the time complexity we will now use two DCFFs. One of them is used to spread the
set of terms over different sets, and the other is used afterwards to find each term explicitly.
The complexity of this process is the bit-wise conjunction of assignments in each DCFF is
f(r, s) log2 n, where f(r, s) is a monotone function of s and r. In order to make our algorithm
linear in logn, we use the reduction from the previous section.

I Theorem 20. Let A be an (n, (1, r), α1)-DCFF and B be an (n, (s − 1, r), α2)-DCFF,
and let β1 , α1

2 −
1
|A| , β2 , α2

2 −
1
|B| . There is a non-adaptive α-error tolerant learning

algorithm for s-term r-MDNF that asks all the queries A ∧B and finds the target function,
when α = β1β2.

This gives the algorithm in Figure 2.

I Lemma 21. If b ∈ B separates a term T in f from other terms, and at most β1|A| errors
can occur, then Tb = T .

Proof. According to the definition of A, for each distinct i1, . . . , ir and j1 there are α1|A|
assignments a ∈ A, where ai1 = · · · = air = 1 and aj1 = 0. Since β1|A| of the queries might
have incorrect results, then each xi ∈ T can appear as xi = 1 while also Q = 1 in at least
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α1− β1 > β1 fraction of the assignments. Each xi 6∈ T can appear as xi = 0 while also Q = 1
in at least α1 − β1 > β1 fraction of the assignments. So by the definition of Tb, Tb = T . J

I Lemma 22. Let Ab = {a ∧ b|a ∈ A}. If α , β1β2 is the fraction of queries that can be
incorrect, then for at most β2|B| assignments b ∈ B, Ab contains more than β1|A| errors.

Proof. If there are more than β2|B| b ∈ B such that Ab contains more than β1|A| errors,
then the fraction of errors is bigger than (β2|B|)(β1|A|)

|A||B| = β1β2. J

Now we are ready to prove Theorem 20

Proof. Let f = M1 ∨M2 ∨ · · · ∨Ms be the target function. For every b ∈ B, let Fb(i) =
{a|a ∈ A, (a ∧ b)i < Q′(a ∧ b)}, Ab = {a ∧ b|a ∈ A}, Ib = {i||Fb(i)| ≤ β1|A|}, and Tb be the
following term: Tb := ∧i∈Ib

xi. We will show:
1. For each T in f , there are more than β2|B| assignments b ∈ B, such that Tb = T .
2. Every other term Tb that appears more than β2|B| times, is either equal to ∧i∈[n]xi or to

a subterm of one of the terms in f .
In case no errors occur, the term that can be learned from each block Ab is either one of the
following:
1. In case b separates a term in f then Ib will be the separated term.
2. In case b separates k terms in f then Ib will be a subterm of one of the terms in f (the

intersection of the k terms).
3. In case b separates no term in f then Ib will be ∧i∈[n]xi.

(For more details see Lemma 13 in [2]).
By Lemma 22, the number of assignments b ∈ B where Ab has more than β1|A| errors is
β2|B|, so any term different than a term in f , a subterm of one of the terms in f and ∧i∈[n]xi
appears at most β2|B| times.
Now we prove that each term T in f appears more than β2|B| times.

Since there are α2|B| assignments b ∈ B that separate T from all other terms in f , among
which at most β2|B| assignments Ab can have more than β1|A| errors, then by Lemma 21
(α2 − β2)|B| > β2|B| of Ab will return Tb = T . J

I Theorem 23. Fix any integers r < s < d with d = r + s, and let d ≤ n. There is
a non-adaptive proper α error tolerant learning algorithm for s-term r-MDNF that asks
O
(
r9(4s)r+5 log2 n

)
queries and runs in time poly(n, sr), with

α = Ω
( 1
rr DNS(1 , r)DNS(s − 1 , r)

)
-fraction of the queries might be incorrect.

Proof. By Theorem 11 (second construction), we can construct a (n, (1, r), α1)-DCFF, of
size |A| = O

(
r6 logn

)
, where α1 = Ω (DNS(1 , r)) . And by Theorem 12 (third construc-

tion), we can construct a (n, (s− 1, r), α2)-DCFF of size |B| = O
(
d3 (4s)r+2 logn

)
, where

α2 = Ω
(( 1
rr

)
DNS(s − 1 , r)

)
.

The construction of the above DCFFs takes poly (n, |A|, |B|) time. By Theorem 20, the
learning takes |A∧B| · n = poly (n, |A|, |B|) time. The number of queries of the algorithm is
|A ∧B| ≤ |A| · |B| = O

(
r9(4s)r+5 log2 n

)
. J

We are now ready to prove the main result:

I Theorem 24. Fix any integers r < s < d with d = r + s, and let d ≤ n. There is a
non-adaptive proper α error tolerant learning algorithm for s-term r-MDNF that asks

O(r11(4s)r+7 logn)

queries where α = Ω
( 1
rr DNS(1 , r)DNS(s − 1 , r)

)
-fraction of the queries might return incor-

rect result, and runs in time (n logn) · poly(sr).
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Proof. We use Theorem 14. H is the class of s-term r-MDNF. This class is closed under
variable projection. Given f that is s-term r-MDNF, one can find all the relevant variables in
R(n) = O(sr) time. The algorithm in the previous section runs in time T (n) = poly(n, sr) and
asks Q′(n) = O(r9(4s)r+5 log2 n) queries. The number of variables in the target is bounded
by d = rs. Let q = O

(
d3) ≥ 2d2. By Theorem 14, there is a non-adaptive algorithm

that runs in time O
(
qd2n logn+ d2 logn

log(q/d2) (T (q)n+R(q))
)

= (n logn)poly(sr), and asks

O
(
d2Q′(q)

log(q/d2) logn
)

= O(r11(4s)r+7 logn), noisy membership queries. J
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