Complexity of Preimage Problems for
Deterministic Finite Automata

Mikhail V. Berlinkov'

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
berlm@mail.ru

Robert Ferens?
Institute of Computer Science, University of Wroctaw, Wroctaw, Poland

robert.ferens@interia.pl

Marek Szykuta®
Institute of Computer Science, University of Wroctaw, Wroctaw, Poland
msz@cs.uni.wroc.pl

—— Abstract

Given a subset of states S of a deterministic finite automaton and a word w, the preimage is
the subset of all states that are mapped to a state from S by the action of w. We study the
computational complexity of three problems related to the existence of words yielding certain
preimages, which are especially motivated by the theory of synchronizing automata. The first

problem is whether, for a given subset, there exists a word extending the subset (giving a larger
preimage). The second problem is whether there exists a word totally extending the subset
(giving the whole set of states) — it is equivalent to the problem whether there exists an avoiding
word for the complementary subset. The third problem is whether there exists a word resizing
the subset (giving a preimage of a different size). We also consider the variants of the problem
where an upper bound on the length of the word is given in the input. Because in most cases our
problems are computationally hard, we additionally consider parametrized complexity by the size
of the given subset. We focus on the most interesting cases that are the subclasses of strongly
connected, synchronizing, and binary automata.

2012 ACM Subject Classification Theory of computation — Problems, reductions and com-
pleteness

Keywords and phrases avoiding word, extending word, extensible subset, reset word, synchro-
nizing automaton

Digital Object ldentifier 10.4230/LIPIcs. MFCS.2018.32

Related Version https://arxiv.org/abs/1704.08233

1 Introduction

A deterministic finite complete (semi)automaton & is a triple (Q, X, d), where @ is the set
of states, ¥ is the input alphabet, and §: Q x X — Q is the transition function. We extend ¢
to a function @ x ¥* — @ in the usual way. Throughout the paper, by n we always denote
the number of states |Q|.

L Supported by Russian Foundation for Basic Research, grant no. 16-01-00795, and the Competitiveness
Enhancement Program of Ural Federal University.

2 Supported in part by the National Science Centre, Poland under project number 2014/15/B/ST6/00615.

3 Supported in part by the National Science Centre, Poland under project number 2017/25/B/ST6,/01920.

© Mikhail V. Berlinkov, Robert Ferens, and Marek Szykula;

37 licensed under Creative Commons License CC-BY
43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 32; pp. 32:1-32:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:berlm@mail.ru
mailto:robert.ferens@interia.pl
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.32
https://arxiv.org/abs/1704.08233
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2

Extending Word Problems

Figure 1 The Cerny automaton with 4 states.

When the context automaton is clear, given a state ¢ € @ and a word w € ¥*, we write
shortly ¢ - w for §(g,w). Given a subset S C @, the image of S under the action of a word
weX*is §-w=05§(S,w)={q-w|qe S} The preimage is S- w1 =46"1(S,w)={q€ Q|
q-w € S}. If S = {q}, then we usually simply write ¢ - w1

We say that a word w compresses a subset S if |S - w| < |S], avoids S if (Q -w) NS = 0,
extends S if |S-w™1| > |S|, and totally extends S if S-w™! = Q. A subset S is compressible,
avoidable, extensible, and totally extensible, if there is a word that respectively compresses,

avoids, extends and totally extends it.

» Remark. A word w € ¥* is avoiding for S C @ if and only if w is totally extending for
Q\S.

Fig. 1 shows an example automaton. For S = {2,3}, the shortest compressing word is
aab, and we have {2,3} - aab = {1}, while the shortest extending word is ba, and we have
{2,3} - (ba)~! = {1,2} - b = {1,2,4}.

In fact, the preimage of a subset under the action of a word can be smaller than the subset.
In this case, we say that a word shrinks the subset (not to be confused with compressing
when the image is considered). For example, in Fig. 1, subset {1,4} is shrank by b to subset
{4}.

Note that shrinking a subset is equivalent to extending its complement. Similarly, a word
totally extending a subset also shrinks its complement to the empty set.

» Remark. |S-w™t > |S| if and only if [(Q\ S) - w™!| < |Q\ S|, and S - w~! = @ if and
only if (Q\ S) - w=t=0.
Therefore, avoiding a subset is equivalent to shrinking it to the empty set.

The rank of a word w is the cardinality of the image @ - w. A word of rank 1 is called
reset or synchronizing, and an automaton that admits a reset word is called synchronizing.
Also, for a subset S C @, we say that a word w € 3* such that |S - w| = 1 synchronizes S.

Synchronizing automata serve as transparent and natural models of various systems
in many applications in different fields, such as coding theory, DNA-computing, robotics,
testing of reactive systems, and theory of information sources. They also reveal interesting
connections with symbolic dynamics, language theory, group theory, and many other parts of
mathematics. For a detailed introduction to the theory of synchronizing automata we refer
the reader to the survey [31], and for a review of relations with coding theory to [16] and [8].

The famous Cerny conjecture [11], which was formally stated in 1969 during a conference
([31]), is one of the most longstanding open problems in automata theory, and is the central
problem in the theory of synchronizing automata. It states that a synchronizing automaton
has a reset word of length at most (n —1)2. Besides the conjecture, algorithmic issues are also
important. Unfortunately, the problem of finding a shortest reset word is computationally
hard [12, 21], and also its length approximation remains hard [13]. We also refer to surveys
[24, 31] about algorithmic issues and the Cerny conjecture.

M. V. Berlinkov, R. Ferens, and M. Szykufa

Our general motivation comes from the fact that words compressing and extending
subsets play a crucial role in synchronization automata. In fact, all known algorithms
finding a reset word as intermediate steps use finding words that either compresses or
extends a subset (e.g. [1, 7, 12, 18, 22]). Moreover, probably all proofs of upper bounds
on the length of the shortest reset words use bounding the length of words that compress
(e.g. [2, 7,9, 12, 14, 27, 29, 32]) or extend (e.g. [3, 4, 7, 17, 26, 27]) some subsets.

In this paper, we study several natural problems related to preimages. Our goal is to
provide a systematic view of their computational complexity and solve several open problems.

1.1 Compressing a Subset

The complexities of problems related to compressing a subset have been well studied.

It is known that given an automaton &/ and a subset S C @), determining whether there
is a word that synchronizes it is PSPACE-complete [23]. The same holds even for strongly
connected binary automata [33].

On the other hand, checking whether the automaton is synchronizing (whether there is a
word that synchronizes Q) can be solved in O(]%|n?) time and space [11, 12, 31] and in O(n)
average time and space for the random binary case [6]. To this end, we just verify whether
all pairs of states are compressible. Using the same algorithm, we can determine whether a
given subset is compressible.

Deciding whether there exists a synchronizing word of a given length is NP-complete
[12] (cf. [21] for the complexity of the corresponding functional problems), even if the given
automaton is binary. There exist stronger results, such as NP-completeness of this problem
when the automaton is Eulerian and binary [34], which immediately implies that for the
class of strongly connected automata the complexity is the same.

However, deciding whether there exists a word that only compresses a subset still can
be solved in O(|X|n?) time, as for every pair of states we can compute a shortest word that
compresses the pair.

The problems have been also studied in other settings than DFAs. We refer to [20, 23]
for the cases of NFA and PDFA (partial deterministic finite automata), and to [15] for the
partial observability setting. Finally, in [10] the problem of reachability of a given subset in
a DFA has been studied.

1.2 Extending a Subset and Our Contributions

In contrast to the problems related to images (compression), the complexity of the problems
related to preimages has not been well studied. In the paper, we fill this gap. We study
three families of problems. As we noted before, extending is equivalent to shrinking the
complement, hence we deal only with the extending word problems.

Ezxtending words: Our first family of problems is the question whether there exists an
extending word (Problems 1, 7, 9, 13, 16, 22).

This is motivated by the fact that finding such a word is the basic step of the so-called
extension method of finding a reset word that is used in many proofs and also some algorithms.
The extension method of finding a reset word is to start from some singleton Sy = {q}, and
iteratively find extending words wy, ..., wy such that [Sp - w; ' - w; | > [So-wt - w |
for 1 < ¢ < k, and where final S - wl_1 i ~w,:1 = @. For finding a short reset word one needs
to bound the lengths of the extending words. For instance, by showing that in the case of
FEulerian automata there are always extending words of length at most n, which implies the
upper bound (n — 2)(n — 1) 4+ 1 on the length of the shortest reset words for this class [17].
In this case, a polynomial algorithm for finding extending words has been proposed in [7].

32:3

MFCS 2018

32:4

Extending Word Problems

Table 1 Computational complexity of decision problems in classes of automata. Given an
automaton &7 = (Q, 3,) with n states and a subset S C @, is there a word w € ¥* such that:

All Strongly _ Str. con.
Subclass of automata Synchronizing
automata | connected and synch.

S-w|=1 PSPACE-
ol C o) o)
(reset word) [23, 33]
S-w| < |S O(|Z|n?
5wl <Is] (1=1n?) o o
(compressing word) [11, 31]
[S-w™t > || PSPACE-c PSPACE-c o)
(Problem 1) (Thm. 3) (Prop. 5)
S wl=Q PSPACE-c) o)
(Problem 2) (Thm. 3) (Thm. 6)
1S w™H >8], 18] < k o(IZ|n") O([[n*) o)
(Problem 9) (Prop. 10) (Prop. 10)
S wl=Q,|S| <k O(|Z|(n® +n*)) O(|%In) o)
(Problem 11) (Prop. 12) (Thm. 6)
|S-w™| >|S|, |S| >n—k | PSPACE-c PSPACE-c

Open o)
(Problem 16, k > 2) (Thm. 19) (Thm. 19)
S-wt=Q,|S|=n—k O(n® + [S[n*) O(|Z[n) o)
(Problem 17, k > 2) (Thm. 21) (Thm. 6)
Sw'=Q |S|=n—1 o([EIn?)

o(Ixl) o(1)

(Problem 18) (Thm. 20)
S w! S oO(|z|n?
S w £ s) (=) o o
(Problem 27) (Thm. 29)

Totally extending words and avoiding: We study the problem whether there exists a
totally extending word (Problems 2, 8, 11, 14, 17, 23). The question about the existence of a
totally extending word is equivalent to the question about the existence of an avoiding word
for the complementary subset.

Totally extending words themselves can be viewed as a generalization of reset words: a
word totally extending a singleton to the whole set of states @ is a reset word. If we are not
interested in bringing the automaton into one particular state but want it to be in any of the
states from a specified subset, then it is exactly the question about totally extending word
for our subset. In view of applications of synchronization, this can be particularly useful
when we deal with non-synchronizing automata, where reset words cannot be applied.

Avoiding word problem is a recent concept that is dual to synchronization: instead of
being in some states, we want to not be in them. A quadratic upper bound on the length of
the shortest avoiding words of a single state have been established in [27], where avoiding
words were also used to improve the best known upper bound on the length of the shortest
reset words. The computational complexity of the problems related to avoiding, both a
single state or a subset, have not been established, which is another motivation to study

M. V. Berlinkov, R. Ferens, and M. Szykufa

Table 2 Computational complexity of decision problems in classes of automata. Given an
automaton o/ = (Q, X, §) with n states, a subset S C @, and an integer £ given in binary form, is
there are a word w € ¥* of length < £ such that:

Subclass All Strongly n Str. con.
Synchronizing
of automata automata | connected and synch.
S -wl=1 PSPACE-c NP-c NP-c
(reset word) [23, 33] [12] [34]
|- w| < [S] o(IZIn?) O(IIn?) o(I[n?)
(compressing word) [12] [12] [12]
[S-w™t > || PSPACE-c PSPACE-c NP-c
(Problem 7) (Subsec. 2.1) (Subsec. 2.1) | (Thm. 25)
S-wt=Q PSPACE-c NP-c NP-c
(Problem 8) (Subsec. 2.1) (Cor. 26) (Cor. 26)
IS w™H > 18], S| < k o(IZIn") o([z[n") O([=|n*)
(Problem 13) (Prop. 10) (Prop. 10) (Prop. 10)
S-wt=Q, |8 <k NP-c NP-c NP-c
(Problem 14) (Prop. 15) (Prop. 15) (Prop. 15)
|S-w™t >|S],|S| >n—k | PSPACE-c o PSPACE-c NP-c
pen
(Problem 22, k > 2) (Thm. 19) (Thm. 19) (Cor. 26)
S-wt=Q,|8|>n—k NP-c NP-c NP-c
(Problem 23, k > 2) (Cor. 26) (Cor. 26) (Cor. 26)
S-wl=Q, |8 =n-1 NP-c NP-c NP-c
(Problem 24) (Thm. 25) (Thm. 25) (Thm. 25)
IS w™t| # |8 O(|2n?) O(|2n?) o(2[n%)
(Problem 28) (Thm. 29) (Thm. 29) (Thm. 29)

totally extending words. We give a special attention to the problem of avoiding one state
and a small subset of states (totally extending a large subset), since they seem to be most
important in view of their applications (and as we show, the complexity grows with the size
of the subset to avoid).

Resizing: Shrinking a subset is dual to extending, i.e. shrinking a subset means extending

its complement. Therefore, the complexity immediately transfers from the previous results.

However, in Section 5 we consider the problem of determining whether there is a word whose
inverse action results in a subset having a different size, that is, either extends the subset or
shrinks it (Problems 27, 28).

Interestingly, in contrast with the computationally difficult problems of finding a word
that extends the subset and finding a word that shrinks the subset, for this variant there
exists a polynomial algorithm finding a shortest resizing word in all cases.

We can mention that in some cases extending and shrinking words are related, and it
may be enough to find either one. For instance, this is used in the so-called averaging trick,
which appears in several proofs (e.g. [7, 17, 25]).

32:5

MFCS 2018

32:6

Extending Word Problems

Summary: For all the problems we consider the subclasses of strongly connected, synchro-
nizing, and binary automata. Also, we consider the problems where an upper bound on the
length of the word is additionally given in binary form in the input. Since in most cases, the
problems are computationally hard, in Section 3 and Section 4 we consider parameterized
complexity by the size of the given subset.

Table 1 and Table 2 summarize our results together with known results about compressing
words. For the cases where a polynomial algorithm exists, we put the time complexity of the
best one known. All the hardness results hold also in the case of a binary alphabet.

2 Extending a Subset in General

We deal with the following problems:
» Problem 1 (Extensible subset). Given o/ = (Q,%,9) and a subset S C @, is S extensible?

» Problem 2 (Totally extensible subset). Given o = (Q,%,0) and a subset S C Q, is there
a word w € ¥* such that S -w™! = Q?

» Theorem 3. Problem 1 and Problem 2 are PSPACE-complete even if of is strongly
connected.

Proof idea. To solve both problems in NPSPACE, we just guess the length of a (totally)
extending word and then subsequently its letters, storing only the current subset all the time.

For PSPACE-hardness, we perform a reduction from the problem of determining whether
an intersection of regular languages given as DFAs is non-empty [19]. We create one instance
for both problems that consists of a strongly connected automaton and a subset S extensible if
and only if it is also totally extensible, which is simultaneously equivalent to the non-emptiness
of the intersection of the given regular languages. |

We ensure that both problems remain PSPACE-complete in the case of a binary alphabet,
which follows from the following theorem.

» Theorem 4. Given an automaton o = (Q,%,9) and a subset S C Q, we can construct in
polynomial time a binary automaton &' = (Q',{a’,b'},d") and a subset S C Q' such that:
(1) o is strongly connected if and only </’ is strongly connected;

(2) S’ is extensible in o' if and only if S is extensible in < ;

(3) S’ is totally extensible in <" if and only if S is totally extensible in of .

Proof idea. Let ¥ = {a1,...,ar}. We reduce & to a binary automaton &/’ that consists of
k copies of &7. The first letter a acts in an i-th copy as the letter a; in <. The second letter
b acts cyclically on these copies. Then we define S’ to contain the states from S in the first
copy and all states from the other copies. |

Now we consider the subclass of synchronizing automata.

» Proposition 5. When the automaton is binary and synchronizing, Problem 1 remains
PSPACE-complete.

Proof idea. We just add a sink state z and a letter which synchronizes & = (Q, %, 0) to z.
Additionally, a standard tree-like binarization is suitably used to obtain a binary automaton
that preserves extensibility of the subset. |

» Theorem 6. When the automaton is synchronizing, Problem 2 can be solved in O(|X|n)
time and is NL-complete.

M. V. Berlinkov, R. Ferens, and M. Szykufa

Proof idea. Since &/ is synchronizing, the problem reduces to checking whether there is a
state g € S reachable from every state: It is well known that a synchronizing automaton has
precisely one strongly connected sink component that is reachable from every state. If S
does not contain a state from the sink component, then every preimage of S also does not
contain these states. The problem can be solved in O(|X|n) time, since the states of the sink
component can be determined in linear time by Tarjan’s algorithm [28]. <

Note that in the case of strongly connected synchronizing automaton, both problems
have a trivial solution, since every non-empty proper subset of () is totally extensible (by a
suitable reset word); thus they can be solved in constant time, assuming that we can check
the size of the given subset and the number of states in constant time.

2.1 Bounded Length of the Word

We turn our attention to the variants in which an upper bound on the length of word w is
also given.

» Problem 7 (Extensible subset by short word). Given o = (Q,X%,4), a subset S C Q, and
an integer £ given in binary form, is S extensible by a word of length at most €7

» Problem 8 (Totally extensible subset by short word). Given & = (Q,%,0), a subset S C Q,
and an integer { given in binary form, is there a word w € ¥* such that S -w™' = Q of
length at most £?

Obviously, these problems remain PSPACE-complete (also when the automaton is strongly
connected and binary), as we can set £ = 2", which bounds the number of different subsets

of . In this case, both the problems are reduced respectively to Problem 1 and Problem 2.

When the automaton is synchronizing, Problem 8 is NP-complete, which will be shown in
Corollary 26. Of course, Problem 7 remains PSPACE-complete for a synchronizing automaton
by the same argument as in the general case.

3 Extending Small Subsets

The complexity of extending problems rely on the size of the given subset. Variable subset
size is essential for hardness. In the proof of PSPACE-hardness in Theorem 3 the used
subsets and simultaneously their complements may grow with an instance of the reduced
problem, and it is known that the problem of the emptiness of intersection can be solved
in polynomial time if the number of given DFAs is fixed. Here we study the computational

complexity of the extending problems when the size of the subset is not larger than a fixed k.

» Problem 9 (Extensible small subset). For a fized k € N, given o/ = (Q, %,) and a subset
S C Q with |S| < k, is there a word extending S ?¢

» Proposition 10. Problem 9 can be solved in O(|X|n*) time.

Proof. We build the k-subsets automaton &/ <F = (Q=F %, §<F Sy, F), where Q=% = {A C
Q: |A| < k} and 6=F is naturally defined by the image of § on a subset. Let the set of initial
states be [= {A € Q=F: |A-a~!| > |S| for some a € X}, and the set of final states be the
set of all subsets of S. A final state can be reached from an initial state if and only if S is
extensible in 7. We can simply check this condition by a BFS. The size (number of states
and edges) of this automaton is bounded by O(|X|n*), so the procedure takes this time. <

32:7

MFCS 2018

32:8

Extending Word Problems

» Problem 11 (Totally extensible small subset). For a fized k € N, given o7 = (Q,X,d) and
a subset S C Q with |S| < k, is there a word w € ¥* such that S - wl=Q?

For k = 1 Problem 2 is equivalent to checking if the automaton is synchronizing to the
given state, thus can be solved in O(|X|n?) time. For larger k& we have the following:

» Proposition 12. Problem 11 can be solved in O(|Z](n® 4+ n¥)) time.

Proof. Let u be a word of the minimal rank in /. We can find such a word and compute
the image @ - u in O(|X|n3) time, using e.g. the algorithm from [12].

For each w € ¥* we have S-w™! = Q if and only if Q -w C S. We can meet the required
condition for w if and only if (@ - u)-w C S. Surely [(Q - u) - w| = |(Q - u)|. The desired
word does not exist if the minimal rank is larger than |S| = k. Otherwise, we can build the
subset automaton o7 </Qul (similarly as in the proof of Proposition 10). The initial subset is
Q - u. If some subset of S is reachable by a word w, then the word uw totally extends S in
/. Otherwise, S is not totally extensible. Reachability can be checked in at most O(|X|n*)
time. However, if the rank r of u is less than k, the algorithm takes only O(|X|n") time. <«

3.1 Bounded Length of the Word

We also have the two variants of the above problems when an upper bound on the length of
the word is additionally given.

» Problem 13 (Extensible small subset by short word). For a fized k € N, given & = (Q, %, 0),
a subset S C Q with |S| < k, and an integer £ given in binary form, is there a word extending
S of length at most £?

Problem 13 can be solved by the same algorithm in a Proposition 10, since the procedure
can find a shortest extending word.

» Problem 14 (Totally extensible small subset by short word). For a fized k € N, given
o =(Q,%,0), a subset S C Q with |S| < k, and an integer ¢ given in binary form, is there
a word w € X* such that S - w™' = Q of length at most £%

» Proposition 15. For every k, Problem 14 is NP-complete, even if the automaton is
simultaneously strongly connected, synchronizing, and binary.

Proof. The problem is in NP, as the shortest extending words have length at most O(n?+n*)
(since words of this length can be found by the procedure from Proposition 12).

When we choose S of size 1, the problem is equivalent to finding a reset word that maps
every state to the state in S. In [34] it has been shown that for Eulerian automata that
are simultaneously strongly connected, synchronizing, and binary, deciding whether there
is a reset word of length at most ¢ is NP-complete. Moreover, in this construction, if there
exists a reset word of this length, then it maps every state to one particular state sy (see [34,
Lemma 2.4]). Therefore, we can set S = {s2}, and thus Problem 14 is NP-complete. <

4 Extending Large Subsets

We consider here the case when the subset S contains all except at most a fixed number of
states k.

» Problem 16 (Extensible large subset). For a fized k € N, given o7 = (Q,%,0) and a subset
S CQ with |Q\ S| <k, is there a word extending S?

M. V. Berlinkov, R. Ferens, and M. Szykufa

» Problem 17 (Totally extensible large subset). For a fized k € N, given & = (Q,%,6) and a
subset S C Q with |Q\ S| < k, is there a word w € X% such that S-w™! =Q?

Problem 17 is equivalent to deciding the existence of an avoiding word for a subset .S of
size < k. Note that both problems are equivalent for £ = 1, which is the problem of avoiding
a single given state. Their properties will also turn out to be different than in the case of
k > 2. We give a special attention to this problem and study it separately.

» Problem 18 (Avoidable state). Given & = (Q,X,0) and a state q € Q, is there a word
w € X* such that ¢ ¢ Q - w?

The following result may be a bit surprising, in view of that it is the only case where the
general problem remains equally hard when the subset size is bounded. We state that the
first problem remains PSPACE-complete for all k > 2, although the problem remains open
for strongly connected automata.

» Theorem 19. Problem 16 is PSPACE-hard for every k > 2 and |X| > 2 even if the given
automaton is synchronizing.

Proof idea. We show a reduction from PSPACE-complete Problem 2 (Thm. 3). Our obtained
automaton is ternary and synchronizing with a sink state €’.

We reduce the alphabet to two letters by an application of the Theorem 4 to Problem 16.
The reduction in the proof keeps the size of complement set the same, so we can apply
it. Furthermore, we identify all copies of the sink state e’, which ensures that it remains
synchronizing. <

Now, we focus on totally extending words for large subsets, which we study in terms of
avoiding small subsets. First we provide a complete characterization of single states that are
avoidable:

» Theorem 20. Let & = (Q,%,0) be a strongly connected automaton. For every q € @,
state q is avoidable if and only if there exists p € Q \ {q} and w € ¥* such that ¢-w =p - w.

Proof. Let p and w be the state and the word from the theorem for a given state ¢. Since
the automaton is strongly connected, there is a word w’ such that such that (p-w) - w’' =
(¢-w)-w' = p. For each subset S C @ such that p € S we have p € S - ww’. Moreover, if
g € S then |S - ww'| < |S|, because {q,p} - ww’ = {p}. If ¢ is not avoidable, then all subsets
Q- (ww'), Q- (ww)?,... contain ¢ and they form an infinite sequence of subsets of decreasing
cardinality, which is a contradiction.

Now consider the other direction. Suppose for a contradiction that ¢ is avoidable, but
there is no state p € @ \ {q} such that {¢,p} can be compressed. Let u be a word of the
minimal rank in &, and v be a word that avoids q. Then w = uv has the same rank and

also avoids g. Let ~ be the equivalence relation defined by
p1~p2 <~ p1-wW=p2-w.

The equivalence class [p]. for p € Q is (p-w) - w™L. There are |Q/~| = |Q - w| equivalence

classes and one of them is {q}, since ¢ does not belong to a compressible pair of states.

For every state p € @, we know that |(Q - w) N [p]~| < 1, because [p].. is compressed by
w to a singleton and @ - w cannot be compressed by any word. Note that every state
r € @ - w belongs to some class [p]... From the equality |Q/ ~ | = |Q - w| we conclude that
for every class [p]. there is a state r € (Q - w) N [p]~, thus |(Q - w) N [p]~| = 1. In particular,
1=)(Q -w)Ng~] = (@ w)N{q}|- This contradicts that w avoids g. <

32:9

MFCS 2018

32:10

Extending Word Problems

Note that if &7 is not strongly connected, then every state from a strongly connected
component that is not a sink can be avoided. If a state belongs to a sink component, then
we can consider the sub-automaton of this sink component, and by Theorem 20 we know
that given ¢ € @, it is sufficient to check whether ¢ belongs to a compressible pair of states.
Hence, Problem 18 can be solved using the well-known algorithm [12] computing the pair
automaton and performing a breadth-first search with inverse edges on the pairs of states. It
works in O(|%|n?) time and O(n? + |£|n) space.

We note that in a synchronizing automaton all states are avoidable except a sink state,
which is a state g such that ¢ -a = ¢ for all a € 3. We can check this condition and hence
verify if a state is avoidable in a synchronizing automaton in O(|X]) time.

The above algorithm does not find an avoiding word but checks avoidability indirectly.
For larger subsets than singletons, we construct another algorithm finding a word avoiding
the subset, which also generalizes the idea from Theorem 20. From the following theorem, it
follows that Problem 17 for k > 2 can be solved in polynomial time.

» Theorem 21. Let of = (Q,%,0), let r be the minimum rank in <7 over all words, and let
S C Q be a subset of size < k. We can find a word w such that (Q -w) NS =0 or verify
that it does not exist in O(n® + |S|(n? + n™P k) time and O(n? 4 n™PF) 1 |8|n) space.
Moreover the length of w is bounded by O(n® + n™n(mk)Y)),

Proof. Similarly to the proof of Theorem 20, let v be a word of the minimal rank r in &/
and let ~ be the equivalence relation on @ defined by

P1~p2 < pP1-U=DpP3"U.

The equivalence class [p]. for p € Q is the set (p-u)-u~!. There are |Q/~| = |Q - u|
equivalence classes.

Now, we are going to show the following characterization: S is avoidable if and only if
there exist a subset Q' C @ - u of size |S/~| and a word w’ such that (Q"-w’) N ([s]~\S) # 0
for each s € S.

Suppose that S is avoidable, and let w’ be an avoiding word for S. Then the word
w = uw' also avoids S. Observe that w has rank r as u has. For every state p € Q, we know
that |(@ - w) N [p]~| < 1, because [p]~. is compressed by u to a singleton and @ - w cannot be
compressed by any word. Note that every state ¢ € @ - w belongs to some class [p]~... From
the equality |Q/ ~ | = |@ - u| = |@ - w| we conclude that for every class [p]~ there is a unique
state g, € (Q - w) N [p~.

Then for every state s € S, we have qf, € [s]~ \ S, because w avoids S and ¢, € Q- w.
Notice that [s]. NS can contain more than one state, so the set {q[5 | s € S} has size [S/~|,
which is not always equal to |S|. Therefore, there exists a subset Q' C @ - u of size |S/~|
such that Q"-w’ = {q(5. | s € S}. Now, we know that for every s € S we have ¢ € Q"-w’
and gy, € [s]~ \ S. We conclude that, if S is avoidable, then there exist a subset Q" C Q - u
of size |S/~| and a word w’ such that (Q" - w’) N ([s]~ \ S) # 0 for every s € S.

Conversely, suppose that there is a subset Q' C @ - u of size |S/~| and a word w’ such
that (Q"-w') N ([s]~ \ S) # 0 for every s € S. Since in the image Q - uw’ there is exactly one
state in each equivalence class, we have ((Q-u)\ Q') -w' C Q\ U,cg([s]~) € @\ S, and by
the assumption, (Q’ - w’) NS = (). Therefore, we get that uw’ is an avoiding word for S.

This characterization gives us Alg. 1 to find w or verify that S cannot be avoided.

Alg. 1 first finds a word u of the minimal rank. This can be done by iterative compressing
the subset as long as possible by the algorithm from [12], which works in O(n3 + |£|n?) time
and O(n? + |X|n) space. For every subset Q' C Q - u of size z = |S/~| the algorithm checks

M. V. Berlinkov, R. Ferens, and M. Szykufa

Algorithm 1 Avoiding a subset.
Require: Automaton &/(Q,%,0) and a subset S C Q.

1: Find a word u of the minimal rank.
2: Compute |S/~/|.

3: for all Q' C Q - u of size |S/~| do
4 if there is a word w’ such that (Q" - w’) N ([s]~ \ S) # @ for each s € S then
5: return uw’.
6 end if

7: end for

8: return “S is unavoidable”.

whether there is a word w’ mapping @’ to avoid S, but using its ~-classes. This can be done
by constructing the automaton 2/*(Q*, 3, §%), where 6% is § naturally extended to z-tuples
of states, and checking whether there is a path from @Q’ to a subset containing a state from
each class [s]. but avoiding the states from S. Note that since Q' cannot be compressed,
every reachable subset from @' has also size |@Q’|. The number of states in this automaton is
(7) € O(n*). Also, note that we have to visit every z-tuple only once during a run of the
algorithm, and we can store it in O(n* + |X|n) space. Therefore, the algorithm works in
O(n? + |3|(n? +n?)) time and O(n? + n* + |X|n) space.

The length of u is bounded by O(n?), and the length of w’ is at most O(n?). Note that
z = |8/~| < min(r,|S]|), where r is the minimal rank in the automaton. <

4.1 Bounded Length of the Word

We now turn our attention to the variants of the problems where an upper bound on the
length of the word is given.

» Problem 22 (Extensible large subset by short word). For a fixed k € N, given o/ = (Q, %, 9),
a subset S C Q with |Q \ S| < k, and an integer £ given in binary form, is there a word
extending S of length at most £¢

» Problem 23 (Totally extensible large subset by short word). For a fized k € N, given
o = (Q,%,0), a subset S C Q with |Q\ S| <k, and an integer £ given in binary form, is
there a word w € ¥* such that S -w™! = Q of length at most £7

As before, both problems for k = 1 are equivalent to the following:

» Problem 24 (Avoidable state by short word). Given o = (Q,%,0), a state ¢ € Q, and an
integer £ given in binary form, is there a word w € X* such that ¢ ¢ Q - w of length at most
14

Problem 22 for k > 2 obviously remains PSPACE-complete. By the following theorem, we
show that Problem 24 is NP-complete, which then implies NP-completeness of Problem 23
for every k > 1 (by Corollary 26).

» Theorem 25. Problem 24 is NP-complete, even if the automaton is simultaneously strongly
connected, synchronizing, and binary.

Proof idea. The problem is in NP, because we can non-deterministically guess a word w as
a certificate, and verify ¢ ¢ @ -w in O(|X|n) time. If the state ¢ is avoidable, then the length
of the shortest avoiding words is at most O(n?) [27]. Then we can guess an avoiding word w
of at most quadratic length and compute Q - w in O(n?3) time.

32:11

MFCS 2018

32:12

Extending Word Problems

To prove NP-hardness, we show a reduction from the problem of determining the reset
threshold in the specific subclass of automata constructed in the Eppstein’s proof of [12,
Theorem 8|, which is known to be NP-complete. The reduction has two steps. First, we
construct a strongly connected synchronizing ternary automaton for which deciding about
the length of an avoiding word is equivalent to determining the existence of a reset word in
the original automaton. Then, based on the ideas from [5] we turn the automaton into a
binary one that still has the desired properties. <

As a corollary from Theorem 25 and Theorem 21, we complete the results.

» Corollary 26. Problem 23 is NP-complete, Problem 8 is NP-complete when the automaton
is synchronizing, and Problem 22 is NP-complete when the automaton is strongly connected
and synchronizing. They remain NP-complete when the automaton is simultaneously strongly
connected, synchronizing, and binary.

5 Resizing a Subset

» Problem 27 (Resizable subset). Given an automaton o = (Q,%,6) and a subset S C Q,
is there a word w € ¥* such that |S - w™ # |S|?

» Problem 28 (Resizable subset by short word). Given an automaton o = (Q,%,9), a subset
S C Q, and an integer £ given in binary form, is there a word w € ¥* such that |S-w=1| # |S]
of length at most £?

In contrast to the cases |S - w™!| > |S| and |S - w™!| < |S|, there exists a polynomial
time algorithm for both these problems.

» Theorem 29. Given an automaton o/ = (Q,%,9), a subset S C Q, there exists an
algorithm working in O(|X|n?) time (assuming constant time arithmetic of integers whose
values are bounded by O(2™)) that computes a shortest word w such that |S - w™1| # |S| or
verifies that there is no such word. Moreover, the length of the shortest such words is a at
most n — 1.

Proof idea. We construct a reduction to the problem of multiplicity equivalence of NFAs and
apply the algorithm from [30] with an improvement to achieve the desired complexity*. <

The running time O(|X|n?) of the algorithm is quite large (and may require large
arithmetic), and it is an interesting open question whether there is a faster algorithm for
Problems 27 and 28.

We note that Problem 27 becomes trivial when the automaton is synchronizing: A word
resizing the subset exists if and only if S # @) and S # @, because if w is a reset word and
{q} = Q - w, then S-w™! is either Q when q € S or () when ¢ ¢ S. This implies that there
exists a faster algorithm in the sense of expected running time when the automaton over an
at least binary alphabet is drawn uniformly at random:

» Remark. The algorithm from [6] checks in expected O(n) time (regardless of the alphabet
size, which is not fixed) whether a random automaton is synchronizing, and it is synchronizing
with probability 1 — 6(1/n%5l) (for |¥| > 2). Then only if it is not synchronizing we

4 In a previous version of our proof we presented our own algorithm having O(|X|n3) time complexity
under the assumption of performing arithmetic computations in constant time. We thank one of the
anonymous reviewers that suggested a shortcut by reducing to multiplicity equivalence of NFAs.

M. V. Berlinkov, R. Ferens, and M. Szykufa

have to use the algorithm from Theorem 29. Thus, Problem 28 can be solved for a random
automaton in the expected time

(IZIn%) - ©(1/n***) + O(n) = O(IE[n*~) < O(@n?).

Note that the bound is independent on the alphabet size, and this is because a random

automaton with a growing alphabet is more likely to be synchronizing, so less likely we need

to use Theorem 29.

—— References

1

10

11

12

13

14

15

16

17

18

D. S. Ananichev and V. V. Gusev. Approximation of Reset Thresholds with Greedy Algo-
rithms. Fundamenta Informaticae, 145(3):221-227, 2016.

D. S. Ananichev and M. V. Volkov. Synchronizing generalized monotonic automata. The-
oretical Computer Science, 330(1):3-13, 2005.

M.-P. Béal, M. Berlinkov, and D. Perrin. A quadratic upper bound on the size of a synchro-
nizing word in one-cluster automata. International Journal of Foundations of Computer
Science, 22(2):277-288, 2011.

M. Berlinkov. Synchronizing Quasi-Eulerian and Quasi-one-cluster Automata. Interna-
tional Journal of Foundations of Computer Science, 24(6):729-745, 2013.

M. Berlinkov. On Two Algorithmic Problems about Synchronizing Automata. In Develop-
ments in Language Theory, LNCS, pages 61-67. Springer, 2014.

M. Berlinkov. On the probability of being synchronizable. In CALDAM, volume 9602 of
LNCS, pages 73-84. Springer, 2016.

M. Berlinkov and M. Szykuta. Algebraic synchronization criterion and computing reset
words. Information Sciences, 369:718-730, 2016.

J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 2009.

M. T. Biskup and W. Plandowski. Shortest synchronizing strings for Huffman codes. The-
oretical Computer Science, 410(38-40):3925-3941, 2009.

E. A. Bondar and M. V. Volkov. Completely reachable automata. In C. Campeanu,
F. Manea, and J. Shallit, editors, DCFS, LNCS, pages 1-17. Springer, 2016.

J. Cerny. Poznamka k homogénnym eksperimentom s koneénymi automatami.
Matematicko-fyzikdlny Casopis Slovenskej Akadémie Vied, 14(3):208-216, 1964. In Slovak.
D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19:500-510, 1990.

P. Gawrychowski and D. Straszak. Strong inapproximability of the shortest reset word.
In Mathematical Foundations of Computer Science, volume 9234 of LNCS, pages 243-255.
Springer, 2015.

M. Grech and A. Kisielewicz. The Cerny conjecture for automata respecting intervals of
a directed graph. Discrete Mathematics and Theoretical Computer Science, 15(3):61-72,
2013.

K. Guldstrand Larsen, S. Laursen, and J. Srba. Synchronizing Strategies under Partial
Observability. In P. Baldan and D. Gorla, editors, CONCUR 2014, pages 188-202. Springer,
2014.

H. Jurgensen. Synchronization. Information and Computation, 206(9-10):1033-1044, 2008.
J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,
295(1-3):223-232, 2003.

A. Kisielewicz, J. Kowalski, and M. Szykula. Computing the shortest reset words of syn-
chronizing automata. Journal of Combinatorial Optimization, 29(1):88-124, 2015.

32:13

MFCS 2018

32:14

Extending Word Problems

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

D. Kozen. Lower Bounds for Natural Proof Systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, FOCS, pages 254-266, 1977.

P. Martyugin. Computational Complexity of Certain Problems Related to Carefully Syn-
chronizing Words for Partial Automata and Directing Words for Nondeterministic Au-
tomata. Theory of Computing Systems, 54(2):293-304, 2014.

J. Olschewski and M. Ummels. The complexity of finding reset words in finite automata.
In Mathematical Foundations of Computer Science, volume 6281 of LNCS, pages 568-579.
Springer, 2010.

A. Roman and M. Szykula. Forward and backward synchronizing algorithms. FExpert
Systems with Applications, 42(24):9512-9527, 2015.

I. K. Rystsov. Polynomial complete problems in automata theory. Information Processing
Letters, 16(3):147-151, 1983.

S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 5-33. Springer, 2005.

B. Steinberg. The averaging trick and the Cerny conjecture. International Journal of
Foundations of Computer Science, 22(7):1697-1706, 2011.

B. Steinberg. The Cerny conjecture for one-cluster automata with prime length cycle.
Theoretical Computer Science, 412(39):5487-5491, 2011.

M. Szykuta. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1-56:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146-160, 1972.

A. N. Trahtman. The Cerny conjecture for aperiodic automata. Discrete Mathematics and
Theoretical Computer Science, 9(2):3-10, 2007.

W.-G. Tzeng. The Equivalence and Learning of Probabilistic Automata. In Proceedings of
the 30th Annual Symposium on Foundations of Computer Science, FOCS, pages 268-273.
IEEE Computer Society, 1989.

M. V. Volkov. Synchronizing automata and the éerny conjecture. In Language and Au-
tomata Theory and Applications, volume 5196 of LNCS, pages 11-27. Springer, 2008.

M. V. Volkov. Synchronizing automata preserving a chain of partial orders. Theoretical
Computer Science, 410(37):3513-3519, 20009.

V. Vorel. Subset Synchronization of Transitive Automata. In Proceedings 14th International
Conference on Automata and Formal Languages (AFL 2014), pages 370-381, 2014.

V. Vorel. Complexity of a problem concerning reset words for Eulerian binary automata.
Information and Computation, 253(Part 3):497-509, 2017.

	Introduction
	Compressing a Subset
	Extending a Subset and Our Contributions

	Extending a Subset in General
	Bounded Length of the Word

	Extending Small Subsets
	Bounded Length of the Word

	Extending Large Subsets
	Bounded Length of the Word

	Resizing a Subset

