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Abstract
In this paper we explore hitting distributions, a notion that arose recently in the context of

deterministic “query-to-communication” simulation theorems. We show that any expander in
which any two distinct vertices have at most one common neighbor can be transformed into a
gadget possessing good hitting distributions. We demonstrate that this result is applicable to
affine plane expanders and to Lubotzky-Phillips-Sarnak construction of Ramanujan graphs . In
particular, from affine plane expanders we extract a gadget achieving the best known trade-off
between the arity of outer function and the size of gadget. More specifically, when this gadget
has k bits on input, it admits a simulation theorem for all outer function of arity roughly 2k/2 or
less (the same was also known for k-bit Inner Product). In addition we show that, unlike Inner
Product, underlying hitting distributions in our new gadget are “polynomial-time listable” in the
sense that their supports can be written down in time 2O(k), i.e. in time polynomial in size of
gadget’s matrix.

We also obtain two results showing that with current technique no better trade-off between
the arity of outer function and the size of gadget can be achieved. Namely, we observe that no
gadget can have hitting distributions with significantly better parameters than Inner Product
or our new affine plane gadget. We also show that Thickness Lemma, a place which causes
restrictions on the arity of outer functions in proofs of simulation theorems, is unimprovable.
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1 Introduction

Assume that we have a Boolean function f : {0, 1}n → {0, 1} called outer function and
a Boolean function g : A × B → {0, 1} called gadget. Consider a composed function
f ◦ g : An ×Bn → {0, 1}, defined as follows:

(f ◦ g)((a1, . . . , an), (b1, . . . , bn)) = f(g(a1, b1), . . . , g(an, bn)).

How can we deal with deterministic communication complexity of f ◦ g, denoted below by
Dcc(f ◦ g)? Obviously, we have the following inequality:

Dcc(f ◦ g) ≤ Ddt(f) ·Dcc(g),

where Ddt(f) stands for deterministic query complexity of f . Indeed, we can transform a
decision tree for f making q queries into a protocol of communication cost q · Dcc(g) by
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4:2 From Expanders to Hitting Distributions and Simulation Theorems

simulating each query to f with Dcc(g) bits. It turns out that for some gadgets g and for all
f of arity at most some function of g’s size this simple protocol is essentially optimal. The
first gadget for which this was proved is the Indexing Function

INDk : {1, 2, . . . , k} × {0, 1}k → {0, 1}, g(x, y) = yx.

More specifically, in 2015 Göös et al. ([4]) proved that for all n ≤ 2k1/20 and for all
f : {0, 1}n → {0, 1} it holds that

Dcc(f ◦ INDk) = Ω(Ddt(f) log k). (1)

Actually, instead of f we can have not only a Boolean function but any relation R ⊂ {0, 1}n×C.
The work of Göös et al. was a generalization of the theorem of Raz and McKenzie ([9]), who
in 1997 established (1) for a certain class of outer relations, called DNF-Search problems.

Theorems of this kind, called usually simulation theorems, can be viewed as a new
method of proving lower bounds in communication complexity. Namely, lower bound
on communication complexity of a composed function reduces to lower bound on query
complexity of an outer function, and usually it is much easier to deal with the latter. As
was shown by Raz and McKenzie, this method turns out to be powerful enough to separate
monotone NC-hierarchy. Moreover, as was discovered by Göös et al., this method can be
quadratically better than the logarithm of the partition number, another classical lower
bound method in deterministic communication complexity.

There are simulation theorems not only for deterministic communication and query
complexities, but for other models too, see, e.g., [2, 5, 6, 3].

Note that input length of a gadget in (1) is even bigger than input length of an outer
function. Göös et al. in [4] asked, whether it is possible to prove a simulation theorem
for a gadget which input length is logarithmic in input length of an outer function. This
question was answered positively by Chattopadhyay et al. ([1]) and independently by Wu
et al. ([12]). Moreover, Chattopadhyay et al. significantly generalized the proof of Göös
et al., having discovered a certain property of a gadget g : A × B → {0, 1} which can be
used as a black-box to show new simulation theorems: once g satisfies this property, we have
a simulation theorem for g. This property can be defined as follows. Let µ be probability
distribution over rectangles U × V ⊂ A × B. Distribution µ is called (δ, h)-hitting, where
δ ∈ (0, 1) and h is a positive integer, if for every X ⊂ A of size at least 2−h|A| and for every
Y ⊂ B of size at least 2−h|B| we have that

Pr
U×V∼µ

[U × V ∩X × Y 6= ∅] ≥ 1− δ.

It turns out that if for every b ∈ {0, 1} there is (δ, h)-hitting distribution over b-
monochromatic rectangles of g , then there is a simulation theorem for g. The smaller
δ and the bigger h, the better simulation theorem. More precisely, Chattopadhyay et al.
proved the following theorem.

I Theorem 1. Assume that ε ∈ (0, 1) and an integer h are such that h ≥ 6/ε. Then the
following holds. For every (possibly partial) Boolean function g : A× B → {0, 1} that has
two ( 1

10 , h)-hitting distribution, the one over 0-monochromatic rectangles and the other over
1-monochromatic rectangles, for every n ≤ 2h(1−ε) and f : {0, 1}n → {0, 1} it holds that

Dcc(f ◦ gn) ≥ εh

4 ·D
dt(f).
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Further, they showed that Inner Product and Gap Hamming Distance gadgets on k

bits have (o(1),Ω(k))-hitting distributions for both kinds of monochromatic rectangles.
More precisely, for every constant γ > 0 and for all large enough k they constructed
(o(1), (1/2− γ)k)-hitting distributions for k-bit Inner Product (denoted below by IPk) . Due
to Theorem 1 this yields the following simulation theorem for IPk: for every constant γ > 0
and for all k large enough

Dcc(f ◦ IPk) = Ω(Ddt(f) · k),

where f is any Boolean function depending on at most 2(1/2−γ)k variables. Other gadgets
studied until this work do not achieve the same trade-off between the size of outer functions and
the size of gadget. Namely, for k-bit Gap Hamming Distance the lower bound Dcc(f ◦GHD) =
Ω(Ddt(f) · k) is shown in [1] only for f depending on roughly 20.45k variables or less. For
Indexing gadget, as we saw, this trade-off is exponentially worse.

We also touch upon the following question. Theorem 1 transforms a communication
protocol for f ◦ gn into decision tree for f (here n is the arity of f). It is an interesting
open question whether resulting decision tree can be made efficient, provided that the initial
protocol is efficient. More precisely, a decision tree should decide which variable to query
in time polynomial in n (provided that messages of the initial protocol can be computed
by players in time polynomial in n). Let us note here that we are mostly interested in the
regime when n is exponential in k (the size of input to g) and hence in this regime the size
of g’s matrix is polynomial in n.

Unfortunately, known constructions does not provide this – resulting decision trees work
in exponential time. Among other obstacles to resolve this issue there is a particular step
in transformation which deals with hitting distributions. Namely, a tree constantly runs
a subroutine which, having a family of subrectangles (not necessarily monochromatic) of
g’s matrix on input, outputs single monochromatic rectangle which intersects most of them.
Namely, a subroutine samples rectangle at random from a hitting distribution, which with
good probability gives us a correct answer. To derandomize this procedure instead of sampling
a rectangle we can just try all the rectangles from the support of hitting distribution. If the
support is of size 2O(k) (i.e. polynomial in size of g’s matrix) and, moreover, the support
can be listed in time 2O(k), we call a corresponding hitting distribution (or, more precisely,
family of distributions) polynomial-time listable.

For example, hitting distribution from [1] for k-bit Gap Hamming Distance gadget are
polynomial-time listable (roughly speaking, we just have to list all Hamming balls of a certain
radius). At the same time, hitting distributions for k-bit Inner Product from [1] are not
polynomial-time listable. Namely, their supports are of size 2Ω(k2) (this number corresponds
to the number of k/2-dimensional subspaces of Fk2). Though due to Chernoff bound it is
possible to transform any (0.1, h)-hitting distribution into , say, (0.2, h)-hitting distribution
with support size 2O(k) (see Proposition 7 below), this does not give explicit construction.

1.1 Our results

We show how to transform any explicit expander satisfying one additional restriction into a
gadget with polynomial-time listable hitting distributions. The transformation is as follows.
Assume that we have a graph G = (V,E) and a coloring c : V → {0, 1}. For v ∈ V let Γ(v)
denote the set of all u ∈ V such that u and v are connected by en edge in G. Assume further
that for any two distinct u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1. Then the following partial
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4:4 From Expanders to Hitting Distributions and Simulation Theorems

function is well defined:

g(G, c) : V × V → {0, 1},

g(G, c)(u, v) =


1 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 1,
0 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 0,
undefined otherwise.

Call c balanced if each color is used at least |V |/3 times in c. It turns out that if G is a
good expander and if c is balanced, then g(G, c) possesses good hitting distributions:

I Theorem 2. Assume that G = (V,E) is a (m, d, γ)-spectral expander in which for any two
distinct u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1 and c : V → {0, 1} is a balanced coloring of
G. Assume also that m ≥ 1/γ2. Then for any b ∈ {0, 1} there is a

( 1
10 , b2 log2(1/γ)c − 100

)
-

hitting distribution µb over b-monochromatic rectangles of g(G, c). All the probabilities of µb
are rational. Moreover, there is a deterministic Turing machine which, having b, G and c on
input, in time mO(1) lists all the rectangles from the support of µb, together with probabilities
µb assigns to them.

Provided that G’s adjacency matrix and c’s truth table can be computed in time mO(1),
from Theorem 2 we obtain polynomial-time listable family of hitting distributions.

In particular, we apply Theorem 2 to the following explicit family of expanders. If q is a
power of prime, let APq denote a graph in which vertices are pairs of elements of Fq and in
which (a, b), (x, y) ∈ F2

q are connected by an edge if and only if ax = b+ y. It is known that
APq is a (q2, q, 1/√q)-spectral expander. It can be easily shown that for any two distinct
vertices u, v of APq it holds that |Γ(u) ∩ Γ(v)| ≤ 1.

I Corollary 3. Let q be a power of prime. Then in APq for any two distinct vertices u, v it
holds that |Γ(u) ∩ Γ(v)| ≤ 1. Moreover, for all n ≤ 2log2 q−200 and f : {0, 1}n → {0, 1} the
following holds: if c is a balanced coloring of APq, then

Dcc(f ◦ g(APq, c)) ≥
log2(q/n)− 200

4 ·Ddt(f)

(in g(APq, c) each party receives 2 log2 q bits).

We also give an example of a natural-looking gadget for which Corollary 3 implies a
simulation theorem. Our gadget is the following one: Alice gets a ∈ Fq2 and Bob gets b ∈ Fq2 .
Here q is a power of an odd prime. Their goal is to output 1, if a− b is a square in Fq2 (by
that we mean that there is c ∈ Fq2 such that a − b = c2), and 0 otherwise. Let us denote
this gadget by SQRq.

Since Fq2 is a linear space over Fq, we can naturally identify inputs to SQRq with F2
q, i.e

SQRq can be viewed as a function of the form SQRq : F2
q × F2

q → {0, 1}.

I Proposition 4. For all large enough q the following holds. If q is a power of an odd prime,
then there exists a balanced covering c of APq such that g(APq, c) is a sub-function of SQRp,
i.e. whenever g(APq, c)(a, b) is defined, we have g(APq, c)(a, b) = SQRq(a, b). A truth table
of c can be computed in time qO(1).

This Proposition implies a simulation theorem for SQRq, with the same parameters as in
Corollary 3 and with polynomial-time listable underlying hitting distributions.

Next we observe that any spectral expander “similar” to APq automatically satisfies
restrictions of Theorem 2.
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I Proposition 5. Assume that G = (V,E) is a (m, d, γ)-spectral expander and

2d+ 4 > d2
(

2γ2 + 4(1− γ2)
m

)
.

Then for any two distinct vertices u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1.

In particular, all (m2,m, 1/
√
m)-spectral expanders satisfy these restrictions. However,

Proposition 5 is by no means a necessary condition. For example, Theorem 2 can be also
applied Lubotzky-Phillips-Sarnak construction of Ramanujan graphs ([8]). More specifically,
if p, q are unequal primes, p, q ≡ 1 (mod 4) and p is a quadratic residue modulo q, the paper
[8] constructs an explicit graph Xp,q which, in particular, is a (q(q2−1)/2, p+1, 2√p/(p+1))-
spectral expander and in which the shortest cycle is of length at least 2 logp q. It can also
be easily shown that provided p < q2 there are no self-loops in Xp,q. Thus if p < √q, then
any two distinct vertices of Xp,q have at most one common neighbor, while inequality from
Proposition 5 is false for Xp,q.

We then obtain some results related to the following question: what is the best possible
trade-off between the arity of outer functions and the size of gadget in deterministic simulation
theorems? Once again, consider SQRq. Note that in SQRq each party receives k = 2 log2 q

bits. Corollary 3 lower bounds Dcc(f ◦ SQRq) whenever arity of f is at most 2k/2−O(1). In
this regime the lower bound is of the form Ω(Ddt(f)) (compare it to the O(k ·Ddt(f)) upper
bound). In turn, if the arity of f is at most 2(1/2−Ω(1))k, the lower bound becomes tight,
namely Ω(k ·Ddt(f)). Thus SQRq achieves the same trade-off between the arity of f and
the size of a gadget as k-bit Inner Product (while underlying hitting distributions for SQRq,
unlike Inner Product, are polynomial-time listable).

Ramanujan graphs yield gadgets with much worse trade-off. Namely, if p is of order √q
and c is a balanced coloring of Xp,q, then g(Xp,q, c) is a gadget on k ≈ 3 log2 q bits which
admits a simulation theorem for all outer functions of arity roughly 2log2 p = 2k/6.

This raises the following question: for a given k what is the maximal h such that there is
a gadget on k bits having two ( 1

10 , h)-hitting distributions, the one over 0-monochromatic
rectangles and the other over 1-monochromatic rectangles? Above discussion shows that h
can be about k/2. In the following Proposition we observe that it is impossible to obtain
any constant bigger than 1/2 before k.

I Proposition 6. For every g : {0, 1}k × {0, 1}k → {0, 1} and for every integer h ≥ 1 there
exists b ∈ {0, 1} such that the following holds. For every probability distribution µ over
b-monochromatic rectangles of g there are X,Y ⊂ {0, 1}k of size at least 2k−h such that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≤ 2k−2h+1.

In addition we show the following simple proposition, studying the minimal possible
support size of hitting distributions.

I Proposition 7. For every g : {0, 1}k × {0, 1}k → {0, 1} the following holds
if there is

( 1
20 , h

)
-hitting distribution over b-monochromatic rectangles of g for some

b ∈ {0, 1}, then there is
( 1

10 , h
)
-hitting distribution over b-monochromatic rectangles of g

which support is of size 2O(k).
Assume that for some δ < 1 and h ∈ N there are two (δ, h)-hitting distributions µ0, µ1,
where µb is over b-monochromatic rectangles of g. Then the support of µb is of size at
least 2h, for every b ∈ {0, 1}.
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4:6 From Expanders to Hitting Distributions and Simulation Theorems

So it is impossible to improve a trade-off between the size of outer functions and the
size of gadgets simply by improving hitting distributions. However, until now we only spoke
about improving gadgets. What about outer functions? What causes a restriction on the
arity of f in Theorem 1? It can be verified that the only place in which arity of f appears in
the proof is so-called Thickness Lemma. Let us state this Lemma.

Assume that A is a finite set and X is a subset of An. Here n corresponds to the
arity of f . Let X[n]/{i} denote the projection of X onto all the coordinates except the i-th
one. Define the following auxiliary bipartite graph Gi(X). Left side vertices of Gi(X) are
taken from A, right side vertices of Gi(X) are taken from X[n]/{i}. We connect a ∈ A with
(x1, . . . , xi−1, xi+1, . . . xn) ∈ X[n]/{i} if and only if

(x1, . . . , xi−1, a, xi+1, . . . xn) ∈ X.

Clearly, there are |X| edges in Gi(X).
Let MinDegi(X) denote the minimal possible degree of a right side vertex of Gi(X).

Similarly, let AvgDegi(X) denote the average degree of a right side vertex of Gi(X). There
are |X| edges and |X[n]/{i}| right side vertices, hence it is naturally to define AvgDegi(X) as

AvgDegi(X) = |X|
|X[n]/{i}|

.

Thickness Lemma relates this two measures. Namely, it states that if for every i average
degree of Gi(X) is big, then there is a large subset X ′ ⊂ X such that for every i minimal
degree of Gi(X ′) is big. The precise bounds can be found in the following

I Lemma 8 ([9]). Consider any δ ∈ (0, 1). Assume that for every i ∈ {1, 2, . . . , n} we have
that AvgDegi(X) ≥ d. Then there is X ′ ⊂ X of size at least (1− δ)|X| such that for every
i ∈ [n] it holds that MinDegi(X ′) ≥ δd

n .

One possible way to improve a trade-off between the arity of f and the size of gadget is
to improve Thickness Lemma. For example, if we could replace δd

n with δd√
n
in Lemma 8 ,

this would mean that k-bit Inner Product and k-bit SQR-gadget admit simulation theorems
for all outer functions of arity roughly 2k ( rather than 2k/2).

However, such an improvement is impossible and the bounds given in Lemma 8 are
near-optimal. Note that Thickness Lemma says nothing about whether there even exists
a non-empty subset X ′ ⊂ X such that for all i ∈ [n] it holds that MinDegi(X ′) is larger,
say, by a constant than d

n . And indeed, we show that for some X there is no such X ′ at all.
More precisely, we show the following

I Theorem 9. For every ε > 0 and for all integer n ≥ 2, s ≥ 1 there exists m ∈ N and a
non-empty set X ⊂ {0, 1, . . . ,m− 1}n such that

for all i ∈ [n] it holds that AvgDegi(X) ≥ s(n− ε);
there is no non-empty Y ⊂ X such that for all i ∈ [n] it holds that MinDegi(Y ) ≥ s+ 1.

1.2 Organization of the paper
The rest of the paper is organized as follows.

In Section 2 we give Preliminaries. In Section 3 we prove Theorem 2 and derive Corollary
3. In Section 4 we prove Proposition 4. In Section 5 we prove Theorem 9. In Section 6
we prove Proposition 5. In section 7 we prove proposition 6. The proof of Proposition 7 is
omitted due to space constraints.
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2 Preliminaries

2.1 Sets notations
Let [n] be the set {1, 2, . . . , n}.

Assume that A is a finite set, X is a subset of An and S = {i1, . . . , ik}, where i1 < i2 <

. . . < ik, is a subset of [n]. Let XS denote the following set:

XS = {(xi1 , . . . , xik ) : (x1, . . . , xn) ∈ X} ⊂ A|S|.

GivenX ⊂ An and i ∈ [n], consider the following bipartite graphGi(X) = (A,X[n]\{i}, E),
where

E = {(xi, (x1, . . . , xi−1, xi+1, . . . , xn)) : (x1, . . . , xn) ∈ X} .

Vertices of Gi(X) which are from A will be called left vertices. Similarly, vertices of
Gi(X) which are from X[n]\{i} will be called right vertices.

Define MinDegi(X) as minimal d such that there is a right vertex of Gi(X) with degree
d. Define AvgDegi(X) = |X|/|X[n]\{i}|.

2.2 Communication and query complexity
For introduction in both query and communication complexities see, e.g., [7]. We will use
the following notation.

For a Boolean function f : {0, 1}n → {0, 1} let Ddt(f) denote f ’s deterministic query
complexity, i.e. minimal d such that there is a deterministic decision tree of depth d computing
f . For a (possibly partial) Boolean function g : A×B → {0, 1}, where A,B are some finite
sets, let Dcc(g) denote g’s deterministic communication complexity, i.e. minimal d such that
there is a deterministic communication protocol of depth d, computing g. Let us stress that
in the case when g is partial by “deterministic communication protocol computes g” we
mean only that a protocol outputs 0 on (a, b) whenever g(a, b) = 0 and outputs 1 on (a, b)
whenever g(a, b) = 1; on inputs on which g is not defined the protocol may output anything.

If f, g are as above, let f ◦ g denote the following (possibly partial) function:

f ◦ g :An ×Bn → {0, 1},
(f ◦ g)((a1, . . . , an), (b1, . . . , bn)) = f(g(a1, b1), . . . , g(an, bn)).

We can also measure Dcc(f ◦g), deterministic communication complexity of f ◦g, assuming
that Alice’s input is (a1, . . . , an) ∈ An and Bob’s input is (b1, . . . , bn) ∈ Bn.

2.3 Hitting distributions
Fix a (possibly partial) Boolean function g : A × B → {0, 1}. A set R ⊂ A × B is called
rectangle if there are U ⊂ A, V ⊂ B such that R = U × V . If b ∈ {0, 1}, then we say that
rectangle R is b-monochromatic for g if g(a, b) = b whenever (a, b) ∈ R. We stress that if g is
partial, then in the definition of b-monochromatic rectangle we require that g is everywhere
defined on R.

Let δ be positive real and h be positive integer. A probability distribution µ over rectangles
R ⊂ A × B is called (δ, h)-hitting if for all X ⊂ A, Y ⊂ B such that |X| ≥ 2−h|A|, |Y | ≥
2−h|B| it holds that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≥ 1− δ.

MFCS 2018



4:8 From Expanders to Hitting Distributions and Simulation Theorems

In this paper we are focused only on those µ such that there exists b ∈ {0, 1} for which all
rectangles from the support of µ are b-monochromatic for g. In this case we simply say that
µ is over b-monochromatic rectangles of g.

Let gt : {0, 1}kt × {0, 1}kt → {0, 1} be family of gadgets and µt be family of probability
distributions, where µt is over rectangles of gt. We call µt polynomial-time listable if the
following holds:

the size of the support of µt is 2O(kt);
all the probabilities of µt are rational;
there is a deterministic Turing machine which, having kt on input, in time 2O(kt) computes
gt’s matrix and lists all the rectangles from the support of µt, together with probabilities
µt assigns to them.

2.4 SQR-gadget
Consider a finite field of size q, denoted below by Fq. We call a ∈ Fq a square if there is
b ∈ Fq such that a = b2 in Fq. Let SQRq denote the following Booelan function:

SQRq : Fq2 × Fq2 → {0, 1}, SQRq(a, b) =
{

1 if a− b is a square in Fq2 ,
0 if a− b is not a square in Fq2 .

2.5 Expanders
We consider undirected graphs which may have parallel edges and self-loops. We assume
that a self-loop at vertex v contributes 1 to degree of v. A graph is called d-regular if each
its vertex has degree d.

A coloring of a graph G = (V,E) is a function c : V → {0, 1}. It is called balanced if
|V |/3 ≤ |c−1(1)| ≤ 2|V |/3. For any A ⊂ V let Γ(A) denote the set of all v ∈ V such that
there is u ∈ A connected with v by an edge of G. If v ∈ V , define Γ(v) = Γ({v}).

Fix graph G = (V,E) and a coloring c : V → {0, 1}. Assume that for any two distinct
u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1. Then the following partial function is well defined:

g(G, c) : V × V → {0, 1},

g(G, c)(u, v) =


1 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 1,
0 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 0,
undefined otherwise.

Let MG be an adjacency matrix of a d-regular graph G = (V,E) with |V | = m. Note
that d is an eigenvalue of MG. A graph G is called (m, d, γ)-spectral expander if MG satisfies
the following conditions:

multiplicity of an eigenvalue d is 1;
absolute value of any other eigenvalue of MG is at most γd.

I Proposition 10 ([11], Theorem 4.6). Assume that a graph G = (V,E) is (m, d, γ)-spectral
expander. Then for any A ⊂ V :

|Γ(A)|
|A|

≥ 1
γ2 + (1− γ2) |A|m

.
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Assume the q is a power of prime. Let APq denote the following graph. Vertices of APq
are pairs of elements of Fq so that the number of vertices is q2. We connect (x, y) with (a, b)
by an edge if and only if ax = b+ y in Fq. It is easy to see that APq is q-regular.

I Proposition 11 ([10], Lemma 5.1). APq is (q2, q, 1/√q)-spectral expander.

2.6 k-wise independent hash functions
We will need the following

I Proposition 12 ([11], Corollary 3.34). For every n, k ∈ N there exists a polynomial-time
computable function ψ : {0, 1}kn × {0, 1}n → {0, 1} such for all distinct x1, . . . , xk ∈ {0, 1}n
and for all b1, . . . , bk ∈ {0, 1} the following holds:

Pr[ψ(s, x1) = b1, . . . , ψ(s, xk) = bk] = 2−k,

where the probability is over uniformly random s ∈ {0, 1}kn.

2.7 Some useful facts
We will use the following inequality involving binomial coefficients:

I Lemma 13. For every k,m the following holds: if k ≤ m/2, then
(
m−k
k

)
/
(
m
k

)
≥ 1− k2

m−k .

Proof. Observe that:(
m−k
k

)(
m
k

) = m− k
m

· m− k − 1
m− 1 · . . . · m− 2k + 1

m− k + 1 ≥
(
m− 2k
m− k

)k
=
(

1− k

m− k

)k
≥ 1− k2

m− k
.

The first inequality here is due to the fact that for all positive i we have:
k

m− k + i
≤ k

m− k
=⇒ 1− k

m− k + i
≥ 1− k

m− k

=⇒ m− 2k + i

m− k + i
≥ m− 2k

m− k
.

The second inequality here is Bernoulli’s inequality. It is legal to apply this inequality because
k ≤ m/2 and hence k

m−k ≤ 1. J

Note that Fq2 contains a subfield of size q. Namely, Fq = {x ∈ Fq2 : xq = x}.

I Lemma 14. Assume that q is a power of an odd prime. Let α be a primitive root of Fq2 .
Then the following holds:

0, α2, α4, . . . , αq
2−1 are the only squares in Fq2 ;

all the elements of Fq are squares in Fq2 .

Proof. Let us prove the first statement of the lemma. Assume that j ∈ {1, 2, . . . , q2 − 1}
is an odd integer. We will show that αj is not a square. Indeed, assume for contradiction
there is a non-zero y ∈ Fq2 such that αj = y2. Therefore for some integer i we have that
αj−2i = 1. Since α is the primitive root of Fq2 , this means that j − 2i is divisible by q2 − 1.
But j − 2i is odd and q2 − 1 is even.

To show the second statement of the lemma assume that x = αk is a non-zero root of
xq = x. Then we have that αk(q−1) = 1. Due to the same argument as above k(q − 1) is
divisible by q2 − 1. This implies that k is divisible by q + 1. Hence k is even and x = αk is a
square. J
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3 Transforming Expanders into Gadgets

In this section we prove Theorem 2 and derive Corollary 3.

Proof of Theorem 2. Fix b ∈ {0, 1} and set h = b2 log2(1/γ)c − 100. Let us define a
( 1

10 , h)-hitting distribution µb over b-monochromatic rectangles of g(G, c). Take v ∈ c−1(b)
uniformly at random. Split Γ(v) into two disjoints subsets A,B randomly according to 10-wise
independent hash function ψ : {0, 1}10·dlog2 me × {0, 1}dlog2 me → {0, 1} from Proposition 12.
Namely, take s ∈ {0, 1}10dlog2 me uniformly at random. An element u ∈ Γ(v) goes into A if
ψ(s, u) = 0 and into B if ψ(s, u) = 1. By definition A×B is a b-monochromatic rectangle
of g(G, c). Indeed, any two distinct vertices from Γ(v) have a common neighbor colored in
b. It remains to show that for all S, T ⊂ V of size at least 2−hm with probability at least
0.9 we have that A×B ∩ S × T 6= ∅. It is enough to show that Pr[A ∩ S 6= ∅] ≥ 0.96 and
Pr[B ∩ T 6= ∅] ≥ 0.96. Let us show that the first inequality holds, the proof of the second
inequality is exactly the same. Actually we will show that Pr[|Γ(v)∩S| ≥ 10] ≥ 0.97. This is
enough for our purposes: conditioned on [|Γ(v)∩S| ≥ 10] the probability that A is disjoint with
S is at most 2−10 (due to proposition 12 this is the probability that ψ(s, ·) sends 10 fixed points
of Γ(v) into B). Therefore Pr[A ∩ S] ≥ (1− 2−10) Pr[|Γ(v) ∩ S| ≥ 10] ≥ 0.999 · 0.97 > 0.96.

The size of S is at least 2100γ2m. Partition S into 10 disjoint subsets S1, . . . , S10, each
of size at least 2000bγ2mc. Since m ≥ 1/γ2, we also have |S1|, . . . , |S10| ≥ 1000γ2m. If
|Γ(v) ∩ S| < 10, then Γ(v) is disjoint with Si for some i ∈ [10]. Hence

Pr[|Γ(v) ∩ S| < 10] ≤
10∑
i=1

Pr[Γ(v) ∩ Si = ∅].

If we show for all i ∈ [10] that Pr[Γ(v)∩Si = ∅] ≤ 0.003, we are done. Observe that Γ(v)
is disjoint with Si if and only if v /∈ Γ(Si). This implies that

Pr[Γ(v) ∩ Si = ∅] = |c
−1(b) \ Γ(Si)|
|c−1(b)| ≤ m− |Γ(Si)|

m
3

. (2)

In the last inequality we use the fact that c is balanced. By Proposition 10 we get

|Γ(Si)| ≥
|Si|

γ2 + |Si|
m

≥ |Si|
|Si|

1000·m + |Si|
m

≥ 1000 ·m
1001 > 0.999m.

Here in the second inequality we use the fact that |Si| ≥ 1000γ2m. Due to (2) this means
that Pr[Γ(v) ∩ Si = ∅] ≤ 0.003 and thus the proof that µb is

( 1
10 , h

)
-hitting is finished.

Let us now show that µb can be “written down” in time mO(1) from G and c. First
of all, note that g(G, c) is a gadget on k = dlog2me bits. To specify a rectangle from a
support of µb we need to specify a vertex of G and a “seed” s of length 10k. This shows
that the support of µb is of size mO(1) = 2O(k). This observation also allows us to list all the
rectangles from the support of µb in time 2O(k) – just go through all vertices from c−1(b)
and all seeds. Further, the µb-probability of A×B can be computed as follows:

µb(A×B) = |{v ∈ V : Γ(v) = A ∪B}|
|c−1(b)| ·

∣∣{s ∈ {0, 1}10k : φ(s, ·) splits A ∪B into A and B}
∣∣

210k .

This probability is rational and can be computed in time 2O(k), again by exhaustive search
over all vertices and seeds. J
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Now let us derive Corollary 3. Indeed, APq is (q2, q, 1/√q)-spectral expander by Pro-
position 11. Thus theorem 2, applied to APq, states that for any balanced coloring c of
APq and for any b ∈ {0, 1} there exists

( 1
10 , blog2(q)c − 100

)
-hitting distribution over b-

monochromatic rectangles of g(APq, c). Apply Theorem 1 to these hitting distributions with
ε = 1− log2(n)/(blog2(q)c − 100).

We only need to check that in APq for any two distinct vertices u, v is holds that
|Γ(u) ∩ Γ(v)| ≤ 1. Assume that (x, y) and (u, v) are distinct vertices of APq. Take any
(a, b) ∈ Γ((x, y)) ∩ Γ((u, v)). Then

(
x −1
u −1

)
·
(
a

b

)
=
(
y

v

)
. (3)

If x 6= u, then det
(
x −1
u −1

)
6= 0 and hence system (3) has exactly one solution. If x = u,

then y 6= v and system (3) has no solution. Therefore |Γ((x, y)) ∩ Γ((u, v))| ≤ 1.

4 SQRq Gadget

In this section we prove Proposition 4.
Fix w ∈ Fq2 such that {1, w} is a basis of Fq2 over Fq. Consider the following coloring of

APq: set c((a, b)) = 1 if and only if 1 + wa is a square in Fq2 ; clearly a truth table of such c
can be computed in time qO(1). Note that g(APq, c)((x, y), (u, v)) is defined if and only if
(x, y), (u, v) are distinct and there is (a, b) ∈ Γ((x, y)) ∩ Γ((u, v)). Let us show that for any
such (x, y), (u, v) it holds that

g(APq, c)((x, y), (u, v)) = c((a, b)) = SQRq(x+ yw, u+ vw). (4)

Indeed, we have that ax = b+ y, au = b+ v. This means that y − v = a(x− u). Moreover,
due to distinctness of (x, y), (u, v) we have that x 6= u. Further,

x+ yw − (u+ vw) = (x− u) + w(y − v) = (x− u)(1 + wa).

Note that x− u is a non-zero element of Fq. By the second item of Lemma 14 this implies
that x+ yw − (u+ vw) is a square if and only if 1 +wa is a square. Hence (4) is true for all
(x, y), (u, v) from the domain of g(APq, c).

It remains to show that c is balanced. Take (a, b, λ) ∈ Fq × Fq × (Fq \ {0}) uniformly
at random. Note that c((a, b)) = 1 if and only if 1 + wa is a square. Thus |c−1(1)| =
q2 Pr[1 + wa is a square]. Due to the second item of Lemma 14 we have that 1 + wa is a
square if and only if λ(1 + wa) is a square. Note that λ(1 + wa) = λ+ λaw is distributed
uniformly in {i + wj : i, j ∈ Fq, i 6= 0} (this is because for any λ0 the distribution of λa
given λ = λ0 is uniform in Fq). Due to the first item of Lemma 14 for all large enough q
there are at least 0.4q2 squares and at least 0.4q2 non-squares in {i+ wj : i, j ∈ Fq, i 6= 0}.
This means that 1/3 ≤ Pr[λ(1 + wa) is a square] ≤ 2/3 for all large enough q. Hence
q2/3 ≤ |c−1(1)| ≤ 2q2/3 and c is balanced.

5 Unimprovability of Thickness Lemma

Consider any set X ⊂ {0, 1, . . . ,m − 1}n and take any i ∈ [n]. Let us say that x ∈ X is
i-unique in X if there is no other x′ ∈ X such that

x1 = x′1, . . . , xi−1 = x′i−1, xi+1 = x′i+1, . . . , xn = x′n.

MFCS 2018



4:12 From Expanders to Hitting Distributions and Simulation Theorems

Call a set X ⊂ {0, 1, . . . ,m− 1}n reducible if for all non-empty Y ⊂ X there is i ∈ [n]
such that MinDegi(Y ) = 1. Note that X is reducible if and only if for all non-empty Y ⊂ X
there is y ∈ Y which is i-unique in Y for some i ∈ [n].

I Lemma 15. For every ε > 0 and for every n ≥ 2 there exists m > 0 and a reducible set
X ⊂ {0, 1, . . . ,m− 1}n such that for all i ∈ [n] it holds that AvgDegi(X) ≥ n− ε.

Proof. Take any m > 0. Consider the following sequence of sets X2, X3, . . ., where Xn is a
subset of {0, 1, . . . ,m− 1}n:

X2 = {(j, j) : j ∈ {0, 1, . . . ,m− 1}} ∪ {(j, j + 1) : j ∈ {0, 1, . . . ,m− 2}},

X`+1 = {(x, j) : x ∈ X`, j ∈ {0, 1, . . . ,m− 1}}
∪
{

(y, 0) : y ∈ {0, 1, . . . ,m− 1}`/X`

}
.

We have the following relation between the size of X`+1 and the size of X`:

|X`+1| = m · |X`|+m` − |X`| = m · (|X`| − 1) +m`.

Let us show by induction on n that |Xn| ≥ nmn−1 − n(1 +m+ . . .+mn−2). Indeed, for
n = 2 this inequality is true: |X2| = 2m − 1 > 2m − 2. Now, assume that for n = ` this
inequality is proved, i.e. |X`| ≥ `m` − `(1 +m+ . . .+m`−2). Then

|X`+1| = m · (|X`| − 1) +m`

≥ m ·
(
`m`−1 − `(1 +m+ . . .+m`−2)− 1

)
+m`

≥ (`+ 1) ·m` − (`+ 1) · (1 +m+ . . .+m`−1).

This means that for every n and i ∈ [n] it holds that

AvgDegi(Xn) = |Xn|
|(Xn)[n]/{i}|

≥ nmn−1 − n(1 +m+ . . .+mn−2)
mn−1 ,

and the latter tends to n as m→∞. Thus to show the lemma it is sufficient to show that
Xn is reducible. Once again, we will show it by induction on n.

Consider n = 2 and take any non-empty Y ⊂ X2. Let y ∈ Y be the smallest element of
Y in lexicographical order. If y = (j, j), then y is 1-unique in Y and hence MinDeg1(Y ) = 1.
If y = (j, j + 1), then y is 2-unique in Y and hence MinDeg2(Y ) = 1.

Further, assume that for n = ` the statement is proved, i.e. X` is reducible. Consider any
non-empty Y ⊂ X`+1. Assume that Y intersects

{
(y, 0) : y ∈ {0, 1, . . . ,m− 1}`/X`

}
and

hence for some y /∈ X` it holds that (y, 0) ∈ Y . Then MinDeg`+1(Y ) = 1. Indeed, in this
case (y, 0) is (`+ 1)-unique in Y , because if (y, j) ∈ Y ⊂ X`+1 for some j > 0, then y ∈ X`,
contradiction.

Now assume that Y is a subset of {(x, j) : x ∈ X`, j ∈ {0, 1, . . . ,m− 1}}. Then for some
j ∈ {0, 1, . . . ,m − 1} a set Y ′ = {x ∈ X` : (x, j) ∈ Y } is non-empty. Since by induction
hypothesis X` is reducible, there is y ∈ Y ′ which is i-unique in Y ′ for some i ∈ [`]. Let us
show that (y, j) is i-unique in Y (this would mean that MinDegi(Y ) = 1). Indeed, assume
that there is (y′, j′) ∈ Y which coincides with (y, j) on all the coordinates except the ith one.
Then j = j′ and y′ ∈ Y ′. Due to i-uniqueness of y ∈ Y ′ we also have that y = y′. J

I Definition 16. Let s,m, n be positive integers and assume that X is a subset of {0, 1, . . . ,
m− 1}n. Let In(X, s) ⊂ {0, 1, . . . , sm− 1}n denote the following set:

In(X, s) = {(sx1 + r1, sx2 + r2, . . . , sxn + rn) :
(x1, . . . , xn) ∈ X, r1, . . . , rn ∈ {0, 1, . . . , s− 1}}.
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Observe that for every (y1, . . . , yn) ∈ In(X, s) there is exactly one (x1, . . . , xn) ∈ X such
that for some r1, . . . , rn ∈ {0, 1, . . . , s− 1} it holds that

y1 = sx1 + r1, . . . , yn = sxn + rn.

I Lemma 17. For every i ∈ {1, 2, . . . , n} it holds that AvgDegi(In(X, s)) = s ·AvgDegi(X).

Proof. Lemma follows from the following two equalities:

|In(X, s)| = sn · |X|, |In(X, s)[n]/{i}| = sn−1 · |X[n]/{i}|. J

I Lemma 18. Assume that X ⊂ {0, 1, . . . ,m − 1}n is reducible. Then for all non-empty
Y ⊂ In(X, s) there is i ∈ [n] such that MinDegi(Y ) ≤ s.

Proof. Let Y ′ be the set of all (x1, . . . , xn) ∈ X for which there are

r1, . . . , rn ∈ {0, 1, . . . , s− 1}

such that (sx1 + r1, . . . , sxn + rn) ∈ Y . Clearly Y ′ is non-empty. Let x′ = (x′1, . . . , x′n) ∈ Y ′
be a string which is i-unique in Y ′. Let us show that MinDegi(Y ) ≤ s. By definition there
are r1, . . . , rn ∈ {0, 1, . . . , s− 1} such that (y′1, . . . , y′n) = (sx′1 + r1, . . . , sx

′
n + rn) ∈ Y . It is

easy to see that (y′1, . . . , y′i−1, y
′
i+1, . . . , y

′
n) ∈ Y[n]/{i} is connected with at most s left vertices

of Gi(Y ). More precisely, the only possible neighbors of (y′1, . . . , y′i−1, y
′
i+1, . . . , y

′
n) are

sx′i, sx
′
i + 1, . . . , sx′i + s− 1.

Indeed, otherwise there is xi 6= x′i such that (x′1, . . . , x′i−1, xi, x
′
i+1, . . . , x

′
n) ∈ Y . The latter

contradicts the fact that x′ is i-unique in Y . J

Proof of Theorem 9. Due to Lemma 15 there is a reducible X ′ ⊂ {0, 1, . . . ,m− 1}n such
that for every i ∈ [n] we have AvgDegi(X ′) ≥ n−ε. By Lemma 17, applied to X = In(X ′, s)
for every i ∈ [n] we have: AvgDegi(X) ≥ s(n − ε). Finally, due to Lemma 18, for all
non-empty Y ⊂ X there is i ∈ [n] such that MinDegi(Y ) ≤ s. J

6 Expanders Similar to APq

In this section we prove Proposition 5. Let us stress that this Proposition is just a slight
improvement of Proposition 10 for sets of size 2. Proposition 10 itself is not strong enough
to conclude that in all (m2,m, 1/

√
m)-spectral expanders any two distinct vertices have at

most 1 common neighbor.
For S ⊂ V let IS ∈ R|V | denote characteristic vector of a set S. Assume for contradiction

that there are distinct u, v ∈ V such that |Γ(u) ∩ Γ(v)| ≥ 2. Then the size of Γ({u, v}) is at
most 2d− 2. Assume that M is the adjacency matrix of G. Denote w = {u, v}. Let us show
that

‖MIw‖2 ≤ d2
(

2γ2 + 4(1− γ2)
m

)
. (5)

Indeed, observe that Iw = 2
m IV + (Iw − 2

m IV ) and (Iw − 2
m IV ) is perpendicular to IV . Since
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G is a (m, d, γ)-spectral expander, this implies that

‖MIw‖2 = ‖M
(

2
m
Iw
)
‖2 + ‖M

(
Iw −

2
m
IV
)
‖2 ≤ 4d2

m
+ γ2d2‖

(
Iw −

2
m
IV
)
‖2

= 4d2

m
+ γ2d2

(
2
(

1− 2
m

)2
+ (m− 2) 4

m2

)

= 4d2

m
+ γ2d2

(
2− 4

m

)
= d2

(
2γ2 + 4(1− γ2)

m

)
,

and thus (5) is proved.
To obtain a contradiction it is enough to show the following inequality

‖MIw‖2 ≥ 2d+ 4. (6)

Assume that there are t ≤ 2d − 2 non-zero coordinates in MIw. Let ξ1, . . . , ξt be the
values of these coordinates. Their sum is 2d. We need to show that ξ2

1 + . . .+ ξ2
t ≥ 2d+ 4.

Observe that ξ1 − 1, . . . , ξt − 1 are non-negative integers and their sum is 2d− t ≥ 2. Clearly
this implies that (ξ1− 1)2 + . . .+ (ξt− 1)2 ≥ 2. Indeed, otherwise the sum of ξ1− 1, . . . , ξt− 1
is either 0 or 1. Hence

ξ2
1 + . . .+ ξ2

t = (ξ1 − 1)2 + . . .+ (ξt − 1)2 + 4d− t ≥ 2 + 4d− t ≥ 2d+ 4.

7 Proof of Proposition 6

Denote s = 2k−h. Assume that there is a 0-monochromatic rectangle A×B of g such that
|A| ≥ s and B ≥ s. Then clearly the proposition is true for b = 1 and X = A, Y = B.

Now assume that if A× B is a 0-monochromatic rectangle of g, then either |A| < s or
B < s. Take X ,Y independently and uniformly at random from the set of all s-element
subsets of {0, 1}k. Fix any 0-monochromatic rectangle A×B of g. Let us show that X × Y
intersects A × B with probability at most 2k−2h+1. Indeed, assume WLOG that |A| < s.
Then

Pr[X × Y ∩A×B 6= ∅] ≤ Pr[X ∩A 6= ∅] = 1−
(2k−|A|

s

)(2k

s

) ≤ 1−
(2k−s

s

)(2k

s

)
Since h ≥ 1, we have that s ≤ 2k/2. Applying Lemma 13 we obtain:

Pr[X × Y ∩A×B 6= ∅] ≤ s2

2k − s ≤
s2

2k/2 = 2k−2h+1.

Due to the standard averaging argument this means that for any probability distribution
µ over 0-monochromatic rectangles of g it is possible to fix X = X,Y = Y in such a way that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≤ 2k−2h+1.
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1 Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. Simula-

tion theorems via pseudorandom properties. arXiv preprint arXiv:1704.06807, 2017.
2 Susanna F de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction

hinders real communication (and what it means for proof and circuit complexity). In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
295–304. IEEE, 2016.

3 Mika Goos, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.

4 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 1077–1088. IEEE, 2015.

5 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for bpp.
arXiv preprint arXiv:1703.07666, 2017.

6 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for xor func-
tions. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 282–288. IEEE, 2016.

7 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 2006.

8 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

9 Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. In Foundations of
Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 234–243. IEEE,
1997.

10 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.

11 Salil P Vadhan et al. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012.

12 Xiaodi Wu, Penghui Yao, and Henry Yuen. Raz-mckenzie simulation with the inner product
gadget. In Electronic Colloquium on Computational Complexity (ECCC), 2017.

MFCS 2018


	Introduction
	Our results
	Organization of the paper

	Preliminaries
	Sets notations
	Communication and query complexity
	Hitting distributions
	SQR-gadget
	Expanders
	k-wise independent hash functions
	Some useful facts

	Transforming Expanders into Gadgets
	SQR ^q Gadget
	Unimprovability of Thickness Lemma
	Expanders Similar to AP_q
	Proof of Proposition 6

