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—— Abstract

We investigate the problem of preselecting a subset of buyers participating in a market so as

to optimize the performance of stable outcomes. We consider four scenarios arising from the
combination of two stability notions, item and bundle envy-freeness, with the two classical ob-
jective functions, i.e., the social welfare and the seller’s revenue. When adopting the notion of
item envy-freeness, we prove that, for both the two objective functions, the problem cannot be
approximated within n'~¢ for any ¢ > 0, and provide tight or nearly tight approximation al-
gorithms. We also prove that maximizing the seller’s revenue is NP-hard even for a single buyer,
thus closing an open question. Under bundle envy-freeness, instead, we show how to transform
in polynomial time any stable outcome for a market involving only a subset of buyers to a stable
one for the whole market without worsening its performance, both for the social welfare and the
seller’s revenue. Finally, we consider multi-unit markets, where all items are of the same type
and are assigned the same price. For this specific case, we show that buyer preselection can
improve the performance of stable outcomes in all of the four considered scenarios, and we design
corresponding approximation algorithms.
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1 Introduction

Determining an efficient pricing strategy is a fundamental problem in many business activities,
as it affects both the seller’s revenue and the customers’ or buyers’ satisfaction. Usually,
optimal prices are the result of a challenging counterbalancing process: selecting low prices,
for instance, may be profitable for the seller when it attracts considerably more customers,
but, at the same time, in case of limited supply, it may leave some buyers unsatisfied, thus

© Vittorio Bild, Michele Flammini, Gianpiero Monaco, and Luca Moscardelli;
37 licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).

Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No.47; pp.47:1-47:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:vittorio.bilo@unisalento.it
mailto:michele.flammini@univaq.it
mailto:gianpiero.monaco@univaq.it
mailto:luca.moscardelli@unich.it
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2

Pricing Problems with Buyer Preselection

generating discontent. In particular, this happens when a customer is negated the right to buy
her preferred set of items, or even any item at all, despite the fact that she is willing to pay
for the posted prices. In this case she is often called loser, as opposed to a customer receiving
items, called winner. For such a reason, pricing problems are traditionally considered under
the hypothesis of envy-freeness [25, 32], which prescribes that, once a pricing strategy has
been established, items have to be allocated to buyers in such a way that no one would prefer
a different set of items.

However, if from the one hand safeguarding the losers’ interests shelters the seller from
possible future losses due to their dissatisfaction, on the other hand, a result by [7] shows that,
in certain markets, an intrinsic and unavoidable hurdle to the construction of a good quality
envy-free solution may come from the presence of a set of “disturbing” customers, that is, a
set of buyers such that at least one of them gets envious in any assignment of sufficiently
high revenue. This observation naturally leads to the following intriguing question: “What
happens if envy-freeness is restricted to apply only to the set of winners? Can the seller
raise enough more revenue (with certainty) today to compensate the (uncertain) future loss
of potential customers?”. Such a relaxed form of envy-freeness models indeed the situation
in which the seller is allowed the freedom to discard any subset of buyers from the given
instance, so as to get rid of envious losers in the assignment she would like to propose. In
addition, one might consider such buyers “preselection” as a situation in which the seller
advertises about the existence of the market only targeted buyers that, once involved, will
all consider the allocation fair; the excluded ones then are simply unaware and won’t feel
any unfairness.

1.1 OQOur Contribution

Motivated by the above discussion, we introduce and investigate the buyer preselection
problem in which, given a pricing problem P with n buyers and m items, we are interested
in computing the best possible envy-free solution that can be achieved by removing any
arbitrary subset of buyers from P. We consider four scenarios arising from the combination
of two stability notions, called item and bundle envy-freeness, respectively, with the two
classical objective functions, namely, the social welfare and the seller’s revenue.

In an item envy-free allocation, given a pricing of the items, each buyer gets the subset
maximizing her utility among all possible subsets that can be created from the set of available
items; in a bundle envy-free allocation, no buyer gets a better utility by receiving the bundle
allocated to any winner. Observe that these allocations are always guaranteed to exist, as it
suffices to assign all items an arbitrarily high price, so that no winner is possible.

For item envy-free allocations and both objective functions, we show that the buyer
preselection problem cannot be approximated within n'=¢ for every € > 0, unless P = ZPP.
On the positive side, under the objective of social welfare, we design an n-approximation
algorithm, while, for the case of revenue maximization, we give an O(n logm)-approximation.
In particular, these results are obtained as follows: all but one buyer are discarded from the
given instance, so that we are left with a pricing problem with a single buyer. While such
a problem is solvable in polynomial time under the objective of social welfare, for revenue
maximization, it already exhibits challenging combinatorial structures and, to the best of our
knowledge, has been considered before only in [5]. In this paper an O(logm)-approximation
is provided, but no lower bounds on the problem complexity are given. We show that the
problem is NP-hard, thus solving the corresponding longstanding open problem raised by the
authors.
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We stress that efficient preselection can be profitable under two orthogonal directions:
from the one hand, the removal of a subset of pathological envious buyers may increase the
value of the optimal solution; from the other hand, even when this does not happen or it
has only a modest impact, simplifying the combinatorial structure defined by the valuation
functions of the winners may lead to the design of better approximation algorithms. In
fact, for the two preselection problems obtained by considering bundle envy-free allocations,
we show how to transform in polynomial time any allocation which is bundle envy-free
only for the subset of the winners to a bundle envy-free allocation for all buyers without
worsening its performance. Hence, although this transformation implies that, in this case,
buyer preselection cannot improve the performance of stable outcomes, it can be used to
map any bundle envy-free allocation for a subset of winners obtained through preselection
back to a bundle envy-free allocation involving all buyers. Therefore, it can be used as an
algorithmic tool for computing good stable outcomes when preselection is not allowed. In
fact, it can be first exploited to simplify the combinatorics of the problem, and then for
mapping back the computed solution to one encompassing all the buyers.

To this respect, consider for instance the case in which buyers can be partitioned in two
(or more) sets A and B (each of which, for instance, containing only unit-demand buyers or
only single minded ones or only multi-demand buyers with additive valuations), and such
that (i) valuations of players in A and B, if considered separately, allow to compute an
7 s-approximate (resp. rp-approximate) solution of the problem restricted to set A (resp. B)
by exploiting known or new simpler algorithms/techniques and (ii) considering the whole
instance would make difficult the direct application of such algorithms/technique for solving
P. By performing preselection we can easily obtain an r = 2max(r 4, rg)-approximation for
BP(P) (selecting the best solution among the one only for A and the one only for B), and
thus, by the transformation, also for the initial problem P.

Finally, we consider the multi-unit case, where all items are of the same type and are
assigned the same price. We show how preselection can improve the revenue and the
social welfare of both item and bundle envy-free solutions. In particular, for item envy-free
allocations, we show a tight multiplicative factor of m for both objective functions. For
bundle envy-free allocations, we show a lower multiplicative bound of 2 for both the revenue

and the social welfare, and prove that it is tight for the objective of revenue maximization.

We also provide tight results on the complexity of computing optimal solutions for the buyer
preselection problem under envy-freeness.
Due to space limitations, some proofs are only sketched or omitted.

1.2 Related Work

The literature on envy-free pricing is so vast that it cannot be exhaustively covered here. For
such a reason, we simply refer to the achievements which are mostly related to the model of
[28] we consider in this paper.

For the social welfare maximization, the VCG mechanism [33, 19, 26] provides an optimal
solution to the envy-free pricing problem. However, while this mechanism is efficiently
computable in markets with unit-demand buyers, yet for single-minded ones its computation
becomes NP-hard. Approximate solutions are still possible in this case thanks to the results
of [4]. Also Walrasian Equilibria [34] provide an optimal solution to the problem [6]; however,
they are guaranteed to exist only under very stringent hypothesis on the buyers’ valuation
functions [27].

For the revenue maximization, [28, 29, 18, 5, 10] design logarithmic approximation
algorithms for various special cases of the problem. Relative hardness results have been given
by [9, 11, 13, 12, 20]. Further variants have been considered by [14, 16, 22, 3, 7, 15].
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[23] propose an interesting relaxation of the notion of Walrasian Equilibrium, called
Combinatorial Walrasian Equilibrium (CWE), obtained by grouping items into bundles so as
to induce a “reduced market” to which, then, applying the notion of Walrasian Equilibrium.
They show the existence of a CWE yielding a 2-approximation of the optimal social welfare
and that of a CWE yielding a logarithmic approximation of the optimal revenue.

Furthermore, [31] study the case of revenue maximization in markets with multi-unit
items under both item and bundle envy-freeness when allowing both item and bundle pricing.
Such setting has been extended in [24] where the authors consider a social graph of the
buyers and envies can arise only between neighbors.

In our model, by preselecting buyers, we basically require that all the winners are envy-free.
Settings in which, in a similar way, envy-freeness is not guaranteed for all buyers, but only
for the winners, are studied in [1, 2, 17]. In particular, [17] considers “weak” Walrasian
equilibirum, a relaxed version of Walrasian equilibirum in which the goal is that of maximizing
the number of envy-free buyers, with the condition that all the winners must be envy-free.
[1, 2] consider a relaxed version of envy-freeness: in their model, identical items have to be
sold to buyers, with every buyer constituting a node of a given unweighted graph; adjacent
winning buyers have to pay similar prices for the received item, while the losers cannot envy.
This feature is exploited to achieve higher revenue with respect to the classical case in which
there cannot be losers, even if it makes the computational problem harder.

2 Model and Definitions

2.1 Markets

A market is a tuple T' = (N, M, (v;);en), where N is a set of n buyers, M is a set of m items,
and for every buyer i € N, v; : 2M — R>¢ is a valuation function expressing, given a set of
items X C M, the amount of money that buyer 7 is willing to pay for X; we assume that
v;(@) = 0 for every buyer i € N.

Depending on the definition of the valuation functions, different types of markets can be
modeled. In the most general case, called market with combinatorial valuations, function v; is
completely arbitrary for every buyer i € N. In a market with unit-demand buyers, v;(X) =0
for every i € N and X C M with |X| > 1, that is, every buyer is only interested in singleton
sets. In a market with single-minded buyers, for every i € N, there exists a unique set of
items X C M such that v;(X) # 0, that is, every buyer is only interested in a particular set
jex vi({j}) for every i € N and
X C M. We stress that, while the representation of a market with combinatorial valuations
may require Q(n2™) bits, ©(nm) bits suffice to represent the last three types of markets.
Finally, in a market with multi-unit items, all the m items are of the same type and so, for
every i € N, the valuation function becomes of the form v; : {0,1,...,m} — Rx¢, since it is

of items. In a market with additive valuations, v;(X) =3

only required to specify how much a buyer evaluates a set of k items, for every k € {1,...,m}
(clearly, v;(0) = 0); thus, also in this case, the market can be represented with ©(nm) bits.

2.2 Stable Outcomes

Fix a market I". A price vector is an m-tuple p = (p1,...,pm) such that, for every j € M,
p; > 0 is the price of item 4.1 We denote by 0™ the price vector assigning price 0 to all
items. Given a price vector p and a set of items X C M, u;(X,p) = v;(X) — Z]EX pj is

L For the case of markets with multi-unit items, it is only required to fix the price of a single item so that
vector p collapses to a real number p > 0.
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the wtility of buyer ¢ when buying X. The demand set of buyer ¢ for the price vector p is
the set D;(p) = argmax x,ui (X, p) of subsets of items maximizing 4’s utility according to
the prices specified by p.iAn allocation vector is an n-tuple X = (X1,..., X,;) such that
X; C M is the set of items sold to buyer i. The allocation vector X = (X1,...,X,,) is feasible
if X; N X; =0 for each i # i’ € N. An outcome is a pair (X, p) such that X is feasible.
Denote with OUT(T") the set of outcomes of I'. An outcome (X, p) is individually-rational if
u; > 0 for every i € N.

Denote as M (X) = [J;cy Xi the set of items sold to some buyer according to a feasible
allocation vector X. Buyer ¢ is a winner if X; # () and W (X) denotes the set of all winners
in X. For an item j € M(X), denote with bx(j) the buyer i € W(X) such that j € X.
When the allocation vector is clear from the context, we simply write b(j).

The following concepts define two types of stable outcomes for T'.

» Definition 1. An individually-rational outcome (X, p) is item envy-free if u;(X;,p) >
u; (T, p) for every buyer ¢ € N and T C M, that is, X; € D;(p) for every i € N.

» Definition 2. An individually-rational outcome (X, p) is bundle envy-free if u;(X;, p) >
u;(X;, p) for every two buyers i,j € N.

Denote with IEF(I") and BEF(T'), the sets of item envy-free and bundle envy-free outcomes
for T', respectively. Notice that IEF(I") C BEF(T") and IEF(T") # 0 (and so also BEF(T') # 0),
since the outcome (X, p) such that X; = () for every i € N and p; = oo for every j € M is
individually-rational and item envy-free.

2.3 Pricing Problems

Fix an outcome (X,p) for a market I". The revenue raised by (X,p) is REV(X,p) =
> jemx)Pj- The social welfare generated by (X,p) is SW(X,p) = >,y ui(Xi)+
Yjemx)Pi = 2iewx)vi(Xi). Note that the social welfare does not depend on the
price vector p and that SW(X,p) > REV(X, p).

Given a market IT', let sol(I') € OUT(I") denote any subset of outcomes for I' and
obj : OUT(I') — R denote an objective function associating a non-negative value to
every outcome for I'. Let opt(I', sol, obj) := argmaxx ,esoir)10bj(X, p)} denote the set of

outcomes in sol(I') maximizing the objective function obj.

» Definition 3. The pricing problem P = (T, sol, obj) is an optimization problem which ,
given a market T'; a set of outcomes sol(I') and an objective function obj, asks for an outcome
o*(P) € opt(P).

In this paper, we consider the cases in which sol(I') € {IEF(T"),BEF(I")} and obj €
{REV, SW}.

Oracles. Fix a pricing problem P = (I',sol, obj). As we have seen, when I is a market with
combinatorial valuations, any algorithm for P needs to deal with an input of exponential
size. In order to circumvent this problem and remain within the realm of polynomial time
algorithms, it is usually assumed that functions v;s are not given as an input of the problem
and are replaced by a polynomial time (with respect to n and m) oracle providing information
about a buyer’s valuation function. An oracle is usually assumed to answer two types of
questions: a walue query which, given a buyer i« € N and a set of items X, returns the
valuation v;(X), and a demand query which, given a price vector p and a buyer i € N,
returns any set in D;(p).

47:5
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We remark that all algorithms of this paper exploiting oracle calls are polynomial also in
the sense that they call the oracle a polynomial number of times. Therefore, when also the
oracle is polynomially computable, the algorithm computation is fully polynomial.

2.4 The Buyer Preselection Problem

Given a market I' = (N, M, (v;);en) and a subset of buyers N’ C N, the submarket of T
induced by N’ is the market T'(N') = (N, M, (v;)ien’)-

» Definition 4. The buyer preselection problem is an optimization problem BP(P)
which, given a pricing problem P = (T',sol,obj) with I' = (N, M, (v;);cn), asks for a
pair (N*(BP(P)),o*(BP(P))) such that N*(BP(P)) € argmax . cn{opt(I'(N’),sol,obj)}
and o*(BP(P)) € opt(I'(N*(BP(P))),sol, 0bj), that is, o*(BP(P)) is the best outcome which
can be realized in all possible submarkets of T".

Clearly, by definition, for every pricing problem P, obj(o*(P)) < obj(o*(BP(P))), that is,
buyer preselection can only improve the quality of the optimal solution.

3 Results for Item Envy-Free Outcomes

In this section, we consider the buyer preselection problem BP(T,|EF, obj) with obj €
{REV, SW}. We start by providing a lower bound on its approximability attained by exploiting
an approximation-preserving reduction from the maximum independent set problem.

» Theorem 5. Let P = (T',IEF,obj) be a pricing problem with obj € {REV,SW}. For every
€ > 0, the buyer preselection problem BP(P) cannot be approximated within n'=¢, unless
P = ZPP, cven when I is a market with single-minded buyers.

Proof. We prove the claim through an approximation-preserving reduction from the max-
imum independent set problem, in which, given an undirected graph, it is asked for a subset
of nodes, no two of which are adjacent, of maximum cardinality. To this aim, consider an
instance of the maximum independent set problem defined by a graph G = (V, E') and denote
with J;(G) the set of edges incident to node i. We create a market I' = (N, M, (v;);en) with
single-minded buyers as follows: we set N =V, M = E and, for every ¢ € N, we define the
valuation function v; in such a way that, for every X C M,

(1 X =6(G)
vi(X) = { 0 otherwise.

Fix any subset of buyers N’ C N. Given an individually-rational outcome o = (X, p) €
OUT(I'(N')), define Vrev(o) :={i € V': 3} .. pj > 0} and Vsw(o) := {i € V : v;(X;) > 0}
By construction of the valuation functions, both Vrey(0) and Vsw /(o) have to be independent
sets for G. Let obj € {REV,SW}. Since >, pj < 1 and v;(X;) < 1 for every i € N', it
follows that

obj(0) < [Vobj(0)|- (1)

Let V* C V be a maximum independent set for G. It is easy to see that the outcome (X*, p*)
such that X} = 6;(G) for every i € V* and

« { 1/6:(G) if j € 5:(G)

Pj = 0 otherwise.
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is an item envy-free outcome (actually it is also a Walrasian equilibrium because the market
clears, i.e, every unsold item is assigned price zero) for market I'(N'). This implies

obj(0"(BP(P))) > obj(X*, p*) = [V"]. (2)

Assume, for the sake of contradiction, that there exists an approximation algorithm for
BP(P) returning an outcome o such that n'=¢obj(o) > obj(o*(BP(P))) for some ¢ > 0. Using
(2), we get n'~“obj(o) > |V*| which combined with (1) implies that n'=¢|Voy;(0)| > [V*|: a
contradiction to the inapproximability result for the maximum independent set problem. <«

As a positive result, we show that, by building upon (approximation) algorithms for pricing
problems defined on markets with a unique buyer, it is possible to obtain approximation
algorithms for the buyer preselection problem. In particular, the following theorem can be
proved by considering the buyer providing, when being alone in the market, the best possible
outcome with respect to the considered objective function.

» Lemma 6. Given a buyer preselection problem BP(P), where P = (T',IEF,obj) with
obj € {REV,SW}, if there exists a polynomial time algorithm A returning an outcome for the
pricing problem defined on markets with a unique buyer whose objective value is at least an
a fraction of the optimal social welfare, then BP(P) admits an an-approximation algorithm.

Proof. Assume that o*(BP(P)) := (X*, p*). For every i € N*(BP(P)), define

Yiex: ) if obj = REV,

3
v (X}) if obj = SW. ()

obj;(0"(BP(P))) = {

Consider the preselection algorithm which, given I', returns a buyer ¢* € N such that
i* € argmax;cy {maxxca{vi(X)}}. Let o € IEF(I'({i*})) be the outcome returned by A
when executed on the pricing problem P’ = (I'({i*}), |IEF, obj). We have

obj(0*(BP(P))) = Y obj;(o"(BP(P))

i€N*(BP(P))

< Y wex)
i€N*(BP(P))

< nus(X5)

< anobj(o),

where the first inequality comes from (3) and the fact that } ;. v. p; < v;(X;) because of
individual rationality, the second inequality follows from the definition of i*, and the third
inequality comes from the hypothesis on algorithm A. |

As a consequence of Theorem 5 and Lemma 6, we have that the buyer preselection problem
BP(T, IEF, obj), with obj € {REV,SW}, admits a polynomial time algorithm providing the
best possible approximation guarantee, whenever the pricing problem defined on markets
with a unique buyer can be solved in polynomial time with respect to the social welfare
objective function. For such a reason, in the following subsection, we focus on the solution of
the latter problem.

47:7
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3.1 Pricing Problems Defined on Markets with a Unique Buyer

Throughout this subsection, since there is only one buyer in the market, for the sake of
simplicity we remove the pedis 1 from the notation.
As a warmup, we start by considering the simpler case in which obj = SW.

» Claim 7. Let ' be a market with a single buyer and combinatorial valuations. The pricing
problem (I, IEF,SW) can be solved in polynomial time.

In fact, observe that an outcome (X*,0™) such that X* € argmaxyc,v(X) verifies
(X*,0™) € opt(P), and a set X* € argmaxyc,,0(X) can be obtained in polynomial time by
using the price vector 0™ as the input of an oracle demand query.

We show in the next theorem that the case of obj = REV yields an NP-hard problem,
thus solving a longstanding open problem left by [5] (where in Lemma 7 an approximation
algorithm with no hardness result is provided). Theorem 8 can be proved by exploiting a
polynomial reduction from 3SAT, in which a given boolean formula ¢ is transformed into a
market with a unique buyer, whose items are the literals of ¢.

» Theorem 8. Let I' be a market with a single buyer and combinatorial valuations. The
pricing problem (', IEF, REV) is NP-hard.

Proof. We prove the claim through a reduction from 3SAT. To this aim, given a boolean
formula ¢, let V(¢) denote the set of its variables and L(¢) the set of all possible literals on
variables in V(¢); moreover, denote v = |V(¢)|. Throughout this proof, we assume v > 4.
An assignment for ¢ is a function f : V(¢) — {0, 1} assigning to each variable of ¢ a boolean
value. Denote with F(¢) the set of all possible assignments for ¢ and with ¢(f) the boolean
value obtained by evaluating all literals occurring in ¢ according to f. ¢ is satisfiable if
there exists an assignment f € F(¢) such that ¢(f) = 1 and it is unsatisfiable if, for every
assignment f € F(¢), ¢(f) = 0. Given a set of literals X C L(¢), with a little abuse of
notation, we write X € F(¢) whenever there exists an assignment f € F(¢) such that
X contains all and only those literals which are evaluated 0 according to f. A formula
¢ is an instance of 3SAT if ¢ is expressed in Conjunctive Normal Form and each clause
is the disjunction of 3 literals, so that ¢ can be completely expressed by listing the set
C ={c1,...,cx} of its clauses, where each clause ¢; (i =1,...,k) is a set of three literals.

Given an instance of 3SAT ¢ := C, we construct a market I' = ({1}, M, v) with a unique
buyer such that M = L(¢) and the valuation function v is defined as follows:

1 if | X| =1,
34e fXeC
X) = ’
v(X) if X € F(¢),
0 otherwise,

where € > 0 is arbitrarily small.

Clearly T' can be constructed in polynomial time with respect to the representation of
¢. However, in order to complete the reduction, we have to construct an oracle which can
answer both demand and value queries in polynomial time. To this aim, observe that, given
a set of literals X, checking whether X is a singleton set, or X € C, or X € F(¢) can be
performed in polynomial time, so that value queries can be efficiently answered. In order
to provide an efficient answer to a demand query, we first observe that the cardinalities of
sets L(¢) and C are polynomial in the representation of ¢, and therefore, given a pricing
vector, a set of items in L(¢) and C yielding the highest utility can be efficiently computed
by enumeration. Then, in order to compute a set X € F(¢) of maximum utility, note that all
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the candidate sets have the same valuation so that, in order to return one with the highest
utility, we simply need to choose, for each variable in V(¢), the related literal having the
lowest price. Hence, market I' can be generated and managed in polynomial time.

Now, in order to complete the proof, we show that there exists an outcome o € OUT(T")
such that REV(0) = v if and only if ¢ is satisfiable.

Assume first that ¢ is satisfiable and let f be a satisfying assignment for ¢. Let X be
the set of literals which are evaluated 0 in f and let p be the pricing vector such that all
literals in X are priced 1, while all literals in L(¢) \ X are priced oo. By definition, we have
u(X,p) =0, so that (X, p) is individually-rational. Moreover, (X,p) € D(p). In fact, for
every X’ # X such that X’ € F(¢), u(X’,p) < 0 since X’ has to contain at least one item
priced oo; for every X’ € C, u(X’,p) < 0 since, as we have ¢(f) = 1, X’ has to contain
at least one item priced oo; for every X' € L(¢), u(X’,p) < 0 by construction. Hence,
(X,p) € IEF(T) and REV(X, p) = v.

Secondly, assume that there exists an outcome (X, p) € IEF(T') such that REV(X,p) = v.

By construction of the valuation function, this is possible only if X € F(¢) and > jexPi =V,
so that u(X,p) = 0. However, since v({¢}) = 1 for every ¢ € L(¢), (X,p) € IEF(T") implies
that it must also be p; > 1 for each j € X. Hence, we can conclude that p; = 1 for each
j € X. Assume, for the sake of contradiction, that ¢ is unsatisfiable. This implies that
the assignment induced by all literals in L(¢) \ X cannot satisfy ¢, that is, there exists a
clause ¢; € C such that ¢; € X. This implies u(c;, p) = 3+ € — 3 = € > 0 thus contradicting
(X,p) € IEF(T"). Hence, ¢ has to be satisfiable. <

On the positive side, [5] derive an O(log m)-approximation algorithm for this problem.

An interesting feature of this algorithm is that its performance guarantee holds also with
respect to the maximum social welfare which is an upper bound to the maximum revenue,
thus allowing the application of Lemma 6.

Hence, by combining Lemma 6 with Claim 7 and the result of [5], we obtain the following
upper bounds.

» Theorem 9. Let P = (T, IEF,obj) be a pricing problem with obj € {REV,SW}. The
buyer preselection problem BP(P) admits an n-approximation when obj = SW, and an
O(nlog m)-approximation when obj = REV.

It is worth noticing that, given the proof of Lemma 6, the preselection claimed in Theorem 9
is someway “oblivious”, i.e., it can be obtained by exploiting the minimum possible number
of oracle queries, that is only a single oracle (demand) query for each buyer.

In light of the lower bound given in Theorem 5, the upper bounds given in Theorem
9 are asymptotically tight both for obj = SW (unless P = ZPP) and for obj = REV when
m = o(n) (unless P = ZPP).

4 Results for Bundle Envy-Free Outcomes

In this section, we consider the buyer preselection problem BP(T',BEF,obj) with obj €
{REV,SW}. Since we deal with bundle envy-free outcomes, we suppose that the price of
any unsold item is infinite. Formally, given an outcome (N, o), where o = (X, p), for the
buyer preselection problem BP(T', BEF,obj) with I' = (N, M, (v;)ien), we have that, for any
jeM\MX),pj =oc.

We start by considering the buyer preselection problem BP(T', BEF, REV).

The following theorem shows how it is possible to transform a bundle envy-free solution
(N,6) with preselection into anther one (without preselection) having a non-smaller revenue.
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» Theorem 10. Given any solution (N,0) for the buyer preselection problem BP(T', BEF,
REV), with T' = (N, M, (v;)icn), it is possible to compute in polynomial time an outcome
o € BEF(T") for problem P such that REV(0) > REV(0).

Theorem 10 can be proved by exploiting the notion and properties of maximal solutions, i.e,
solutions in which no item price can be increased without changing the allocation (notice
that an optimal solution is maximal), and by providing a constructive algorithm working on
maximal solutions and allocating bundle of items to the players in N \ N that envy other
winners. In particular, we first show that in a maximal solution (N,6) with preselection
(i) for any buyer with positive utility, there exists another sold bundle providing her the
same utility and (ii) there always exists a winner buyer having utility equal to 0. Given
these properties, it is possible to exchange among the buyers the assigned bundles so that an
excluded envious buyer can be assigned her preferred sold bundle X ; and can be therefore
added to the solution without generating envy. Buyer j, getting bundle X j in (N,0), gets
another one providing her the same utility (by property (i) such a bundle always exists).
This process can be iterated until a winner buyer with utility equal to 0 is reached and
removed from the set of winners (it is possible to show that in this process a buyer is never
considered twice and therefore by property (ii) it always terminates).

We now consider the buyer preselection problem BP (T, BEF, SW). Analogously to The-
orem 10 holding for the revenue maximization case, next theorem shows that a bundle
envy-free outcome for the buyer preselection problem can be efficiently transformed in a
bundle envy-free outcome, for the corresponding pricing problem (without preselection),
having at least the same social welfare.

» Theorem 11. Given any solution (N,0) for the buyer preselection problem BP (T, BEF,SW),
with T = (N, M, (v;)ien), it is possible to compute in polynomial time an outcome o € BEF(T")
for problem P such that SW(o) > SW(0).

Theorem 11 can be proved by considering a new market I with unit-demand buyers, in which
the set of buyers is N and there is an item for every bundle sold in (N,0). In fact, given
that markets with unit-demand buyers always admit a Walrasian Equilibrium computable in
polynomial time and that, by the well known First Welfare Theorem, Walrasian equilibria
maximize social welfare over all possible outcomes, it can be easily obtained, by suitably
setting the price of the items in I' as a function of those in I, a bundle envy-free solution
for I with no excluded buyer and having the same social welfare of o.

As a consequence of Theorems 10 and 11, we obtain the following corollary.

» Corollary 12. For obj € {REV,SW}, given an a-approzimate solution (N,o0) (with o > 1,
notice that when o = 1 the corollary holds for optimal solutions) for the buyer preselection
problem BP(P) with P = (I, BEF,obj) and T' = (N, M, (v;)icn), it is possible to compute
in polynomial time an outcome o' € BEF(T') approzimating the optimal solution of P by a
factor equal to «.

On the one hand, Corollary 12 tells us that, for obj € {REV,SW}, any inapproximability
result holding for a pricing problem P = (T, BEF, obj) directly extends to the buyer preselec-
tion problem BP(P); on the other hand, it tells us that any a-approximation algorithm for
BP(P) is also an a-approximation algorithm for P. Thus, as discussed in the Our Contri-
bution subsection, preselection can be exploited as an algorithmic framework for designing
approximation algorithms for the normal market scenario (without preselection).
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5  The multi-unit case

In this section we study the multi-unit case, in which all the m items are of the same type.
Recall that, for every ¢ € N, the valuation function becomes of the form v; : {1,...,m} — R>¢
and that the market can be represented with ©(nm) bits. Furthermore, in this case an
allocation vector X can be specified by the number of items assigned to each buyer, i.e.
X = (x1,...,2p), with z; € {0,...,m} forany i = 1,...,n, and Y, z; < m. Finally, we
set the item pricing to p (i.e., all the multi-items have the same price) and the total price for
selling z items is pz.

A particular situation of multi-unit market, moreover, arises when one assumes single-
minded buyers; in this case, since, for every player i = 1,...,n, valuation function v; can be
completely defined by specifying how much every player valuates the set containing k; items
(being the only set she is interested in), ©(nlogm) bits suffice to represent the market.

We first focus on the case of item envy-free solutions. Next claim shows that preselection
can improve both the revenue and the social welfare of a market with multi-unit items, even
in the case of single-minded buyers.

» Claim 13. For any € > 0, there exists a market T' with single-minded buyers and multi-
unit items, and a pricing problem P = (T',IEF(T'), obj) with obj € {REV,SW}, such that
obj(o*(BP(P))) > (m — €)obj(o*(P)).

In fact, consider a market with only two single-minded buyers. Buyer 1 valuates 1 + ¢, for a
small € > 0, for receiving any (one) item. Buyer 2 valuates m for receiving all the m items.
Notice that, in any item envy-free outcome for the setting without preselection, buyer 2
receives no item. In fact, if buyer 2 receives m items, the item pricing p must be at most
1. Thus, buyer 1 would be envious since she would get no item (i.e., there are no enough
items). Therefore, for the market without preselection, the only feasible solutions are selling
one item to buyer 1 at price at least 1 and at most 1 + ¢’. Thus the optimal revenue and the
optimal social welfare are at most 1 + ¢/. However, if we consider the submarket with only
buyer 2, i.e., we exclude buyer 1, we can sell m items at item pricing 1, thus obtaining a
revenue and social welfare of m.

We notice that the above bound is tight. It is easy to see that preselection cannot improve
the revenue and social welfare of envy-free solutions by a factor greater than m. In fact, it is
sufficient to sell items to the buyer ¢ such that (i,5) = argmaxi:L___m;j:l,MmM.

Now we focus on the computation of optimal or approximate solution for the preselection
problem in the case of item envy-free outcomes, both for the social welfare and the revenue

objective functions.

» Theorem 14. Given a pricing problem P = (I',IEF(I"), obj), where I = (N, M, (v;);en) is
a market with multi-unit items and obj € {REV,SW}, the buyer preselection problem BP(P)
can be optimally solved in polynomial time.

Proof. Recall that solving the buyer preselection problem BP(P) corresponds to find a subset
N* of players to admit to the market and an optimal outcome o* = (X*,p*), in which in the
considered case of multi-unit items p* is just the price of a single item.

In order to prove the claim, we first show that it is possible to compute in polynomial
time a set P containing the optimal price p* for problem BP(P).

Consider the set P defined as follows:

P = {ylvi(k) —yk =v(k') —yk',ie N,
koK € {0,1,... m} k£ k).
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Roughly speaking, for all buyers ¢ € N and for all couples (k, k) of integers belonging to
{0,1,...,m} such that k # k’, P contains the solution y of equality v;(k) — yk = v; (k') — y&'.
Clearly, P can be computed in O(nm?) time, i.e., in polynomial time in the size of the
instance. Now, assume by contradiction that the optimal solution (N*,0*) for BP(P) with
the highest possible item price assign to an item price p* € P, and let p’ € P the smallest
element of P such that p’ > p*. Notice that this element p’ € P has to exist, because p* must
verify, for any i = 1,...,n, v;(Z;) —p*Z; > 0 and y verifying equality v;(Z;) — yZ; = 0 belongs
to P. Since p* induces an envy-free solution, it has to verify, for every i = 1,...,n, constraint
vi(Z;) — p*Z; > v (j) — p*j for any j = 0,...,m; since, p* € P, given how P is defined, it
follows that all above constraints are not verified in a strict manner, i.e. it is verified that,
for every i = 1,...,m, v;(Z;) — p*ZT; > v;(j) — p*j for any j = 0,...,m. Therefore, p’ still
continues to verify all envy-free constraints (with some constraints possibly become strict).
It follows that we have found a new envy-free outcome o’ such that SW(o’') = SW(o*) and
REV(0') > REV(0*): a contradiction to the fact that o* was the optimal outcome with the
highest possible item price.

Therefore, since the number of values that can be assigned to p* in order to obtain an
optimal outcome is polynomial in the size of the instance, it remains to show that, given a
fixed price p*, it is possible to optimally compute in polynomial time a subset N* of players
to admit to the market and an allocation X*. In fact, the optimal solution of BP(P) is given
by the best solution among the ones obtained for all the candidate prices belonging to P.

The 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP) is a generalization of the classical
Knapsack problem introduced in [30]. In this problem, we are given « classes Cy,Cs, ..., C,
of elements to pack in some knapsack of capacity c. For every ¢ = 1,...,n, each element
e € C; (let class(e) =i be the index of the class to which e belongs) has a profit 5. and a
volume 7., and the problem is to choose a set E containing at most one element from each
class such that the profit sum is maximized without the volume sum exceeding capacity c. In
[21] it is shown that it can be optimally solved in pseudo-polynomial time, i.e., in time O(c).

We now provide a polynomial reduction from our problem to 0-1 MCKP. Given an
instance I of BP(P) and fixed a price p*, we construct an instance I’ of 0-1 MCKP as follows:
We have a = n classes (one class for each buyer) and the capacity ¢ = m. Consider, for
every buyer ¢ = 1,...,n, the number of items providing her with the highest possible utility:
let U; = argmaxy—1,. . .m V;(k) — kp* be the set containing these values. It is easy to check
that, in every item envy-free solution, allocation X must satisfy x; € U; for every player
i=1,...,n. For every i = 1,...,n, consider set U;: we add to class C; an element e for
every k € U; such that 7, = k and

Be = k if obj = REV;

Be = v;(k) if obj = SW.

Given a solution for I" with total profit = 3" 5 f., it is possible to obtain a solution for
I with fixed price p*, i.e., a subset IV of players to admit to the market and an allocation
X, as follows: N contains the players associated to classes containing an element belonging
to E, i.e., N = {i|C; N E # 0}, and the allocation vector X = (Z1,...,%,) is such that, for
every i = 1,...,n, x; = 7. if there exists an element e € C; N E. Clearly, obj((X,p*)) = 8.
Furthermore, by the way U; is defined, outcome ()_( ,p*) is item envy-free.

Conversely, given a subset N of preselected players and an outcome o = (X, p*) for I, it
is possible to obtain a solution for I’ as follows: for every i € N, add to E element e € C;
such that 7, = z; (by recalling the definition of U;, it holds that this element e belongs to C;
because outcome o is item envy-free). Clearly, the total profit 3 =3 5 8. = obj((X,p*)).

The claim follows by noticing that, since ¢ = m, the pseudo-polynomial algorithm of [21]
is in fact polynomial with respect to the size of the instance of problem BP(P). <
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For the special case of single-minded buyers in which an instance of the buyer preselection
problem can be represented by ©(nlogm) bits, by exploiting the same ideas used for proving
Theorem 14, the following theorem provides an FPTAS.

» Theorem 15. Given a pricing problem P = (T',IEF(T), obj), where T = (N, M, (v;)ien) i
a market with single-minded buyers and multi-unit items, for obj € {REV,SW}, the buyer
preselection problem BP(P) admits a fully polynomial approximation scheme.

We complement the result of Theorem 15 by showing a tight lower bound to the problem
of computing the maximum revenue to the case of item envy-free with single-minded buyers
and multi-unit items. The following claim can be proved by exploiting a reduction from the
Subset Sum problem.

» Claim 16. Given a pricing problem P = (T',IEF(T), REV), where T' = (N, M, (v;)ien) s a
market with single-minded buyers and multi-unit items, the buyer preselection problem BP(P)
is NP-Hard.

Proof. We use a reduction from the Subset Sum problem, that is defined as follows: given a
set of integers and an integer s, does any non-empty subset sum to s? Let n be the number of
elements {a1,as,...,a,} in the given instance of the Subset sum problem, and let s be the
required sum. We assume that >, a; > s, as otherwise the problem is trivial. For all a; in
the input of the Subset sum problem, we create a corresponding buyer ¢ with the following
valuation. Buyer ¢ has valuation a; for receiving a; items, and zero otherwise. Moreover,
we set the number of items m = s. In such case, if there is a solution for the Subset sum
problem, then by setting the item pricing p = 1 and selling to corresponding buyers gives us
a feasible and envy-free outcome in which the revenue equals to m. It is easy to see that
m is an upper bound to the maximum revenue. On the other hand, if the revenue of the
optimal outcome to the buyer preselection problem is equal to m, we can obtain the solution
to the subset sum problem. Notice that we can obtain a revenue of m only if we sell exactly
m items at item pricing p = 1. In fact, at item pricing p > 1, we sell no item, and at item
pricing p < 1, we do not get an optimal solution. |

We now focus on the case of bundle envy-free solutions. We first notice that the results
of Section 4 claiming that bundle envy-free solutions do not improve the quality of outcomes
(with respect neither to social welfare nor to revenue maximization) do not hold for the
multi-unit case, because in this case it is not possible to change the price of some item
without influencing the other ones. We start by showing that preselection can improve both
the revenue and the social welfare of a market with multi-unit items, even in the case of
single-minded buyers.

» Claim 17. For any € > 0, there exists a market I' with single-minded buyers and multi-
unit items, and a pricing problem P = (I';BEF(T"),obj) with obj € {REV,SW}, such that
obj(0o*(BP(P))) > (2 — €)obj(o*(P)).

In fact, consider a market with « + 1 single-minded buyers. Buyer 1 valuates x for receiving
z items. Buyer 4, for any ¢ = 2,3,...,z + 1, valuates 1 + €, for a small ¢ > 0, for receiving
any (one) item. Finally, the number of items is 22 — 1. Notice that, in any bundle envy-free
outcome for the setting without preselection, if buyers 1 receives z items, it implies that the
item pricing p must be at most 1. It further implies that, in such outcome, no buyer i, for
any i = 2,3,...,x+ 1, can get items. The reason is that such buyers have positive utility for
receiving one item, but the number of items is not sufficient to satisfy all of them. Therefore,
the only chance is selling no bundle of one item. Thus, on one hand, without preselection,
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the best revenue and social welfare is 2(1 4 €'). It can be obtained by selling one item to
buyers 4, for any ¢ = 2,3, ...,z + 1, at price 1 + €. On the other hand, if we consider the
submarket with only buyers 1,2, ...,z (i.e., we exclude one buyer that valuates 1 + ¢’ for
receiving any (one) item), we can sell 22 — 1 items at item pricing 1, that is 2 items to buyer
1, and one item to buyers i, for any i = 2,...,z, thus obtaining a revenue and social welfare
of 2x — 1.

We now show that, for the market with multi-unit items and general valuations, preselec-
tion can improve the revenue by a multiplicative factor of at most 2, thus closing in a tight
way the previous bound.

» Theorem 18. Given a solution (N, 0) for the buyer preselection problem BP(I', BEF, REV),
with T' = (N, M, (v;)ien) being a market with multi-unit items, it is possible to compute in
polynomial time an outcome o € BEF(T') for problem P such that REV(6) < 2REV(0).

Proof. Let 6 = (X, 7). In the following we will show how to compute in polynomial time

an outcome o € BEF(I") with o = (X, p) such that (i) p > p and (ii) |M(X)| > %X)‘, ie.,

outcome o sells at least one half of the items sold by outcome o at a price at least equal to p.
Clearly, this directly implies that REV(0) > %@.

For every j € {1,...,m}, let a; be the number of items that could be sold to some buyers
in bundles of cardinality j at price p (we require that these buyers obtain a non-negative utility
for a bundle of j items). More formally, for every j = 1,...,m, let B;(X) = {i|v;(j)—jp > 0}
be the subset of players obtaining a non-negative utility for a bundle with j items; then,
a; = j1B; (X))

We divide the proof in two disjoint cases. B

If there exists j € {1,...,m} such that a; > ‘M(QX)‘, outcome o = (X, p) is such that

xy, = j for every k € B; (X), and xj, = 0 otherwise. By setting p = p, by the definition of

aj, we know that a; items could be sold without generating envy.

If a; < m, we are done.

If j > w, we can increase the price p so that only buyer ¢, with ¢ such that
v;(j) = max}_, vg(j), is assigned the bundle (notice that in this way no other buyer is
envious).

It remains to deal with the subcase in which a; > m and j < w: We increment price

p until the number of buyers x with positive utility is such that xj < m. We then assign
bundles of j items to all buyers with positive utility and to as many buyers with zero
utility as possible. Notice that (i) since j < IM(X)] implies that m — j M, this

- 2 2
process leads to obtain at least M assigned items and (ii) again no buyer is envious.

If for all j € {1,...,m} it holds that a; < w, outcome o = (X, p) (with the same
price of outcome 0) is computed as follows.

Foranyi=1,...,nand k = 1,...,m, let u}¥ = max¥_, v;(¢)—tp be the maximum possible
utility of buyer i for bundles of at most k items and b* = min{j|v;(j) — jp = ui*} the
minimum size of a bundle of maximum utility for buyer i. Moreover, for any k=1,...,m
and j =1,...,k, let By ; = {i|b;* = j} be the set of buyers having j items as their best
bundle of maximum utility, among all bundles made up to k items, and resolving ties by
selecting the bundle of minimum size.

Clearly, By ; can be computed in time O(poly(n,m)). For k = 1,...,m, consider

k

allocation X* = (z¥,...,2%) such that, for every i = 1,...,n, @ = j if i € By

and xz = 0 otherwise. By the definition of By ; it follows that allocation X* is envy-
free. Moreover, it can be easily verified that |M(X!)| = a; and, for any j = 2,...,m,
|M(X7)] = [M(XT7H)] < aj.



V. Bilo, M. Flammini, G. Monaco, and L. Moscardelli

If [IM(X™)| < m, the claim trivially follows by setting X = X™ because we are allocating
at least all items allocated in o.

Otherwise, let &’ be the minimum value of k = 2,...,m such that |M(X*)| > m: the
claim follows by setting X = X* =1 In fact, since | M (X*)|—|M(X* 1| < ap < M,

it follows that [M(X*=1)| > m — ML > M| <

It is worth noticing that, on the one hand, preselection can be exploited as an algorithmic
framework for designing good approximation algorithms (loosing only a moltiplicative factor
of 2) for the normal market scenario without preselection; on the other hand, since the
optimal revenue with preselection is at most twice the one without, an a-approximation
algorithm for the normal market without preselection, is a 2a-approximation one for market
with preselection.

6 Final remarks and Future work

Many results holding for the item envy-free outcomes and social welfare objective function
extend to the notion of Walrasian equilibria, that are item envy-free outcomes with the

additional requirement that the market clears, i.e., every unsold item is assigned price zero.

In particular, the inapproximability result of Theorem 5 and the n-approximation algorithm

for the buyer preselection problem of Theorem 9 directly extend to Walrasian equilibria.

Notice also that for the remaining uncovered cases, that is when the goal is that of optimizing
the seller’s revenue, there is no reason for requiring market clearance, a condition clearly
limiting the power of setting prices so as to maximize the revenue.

The main left open problems are: for markets with a unique buyer, closing the gap between
the NP-hardness and the logarithmic approximation for the case of revenue maximization and
item envy-free solutions; for the multi-unit case with bundle envy-free outcomes, determining
an upper bound to the social welfare improvement achievable by preselection and setting the

complexity of computing optimal solutions, for both the revenue and the social welfare cases.
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