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Abstract
Motivated by the randomized generation of slowly synchronizing automata, we study automata
made of permutation letters and a merging letter of rank n− 1. We present a constructive
randomized procedure to generate synchronizing automata of that kind with (potentially) large
alphabet size based on recent results on primitive sets of matrices. We report numerical results
showing that our algorithm finds automata with much larger reset threshold than a mere uniform
random generation and we present new families of automata with reset threshold of Ω(n2/4). We
finally report theoretical results on randomized generation of primitive sets of matrices: a set of
permutation matrices with a 0 entry changed into a 1 is primitive and has exponent of O(n logn)
with high probability in case of uniform random distribution and the same holds for a random
set of binary matrices where each entry is set, independently, equal to 1 with probability p and
equal to 0 with probability 1− p, when np− logn→∞ as n→∞.
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1 Introduction

A (complete deterministic finite) automaton A on n states can be defined as a set of m binary
row-stochastic2 matrices {A1, . . . , Am} that are called the letters of the automaton. We say
that A is synchronizing if there exists a product of its letters, with repetitions allowed, that
has an all-ones column3 and the length of the shortest of these products is called the reset

1 R. M. Jungers is a FNRS Research Associate. He is supported by the French Community of Belgium,
the Walloon Region and the Innoviris Foundation.

2 A binary matrix is a matrix with entries in {0, 1}. A row-stochastic matrix is a matrix with nonnegative
entries where the entries of each row sum up to 1. Therefore a matrix is binary and row-stochastic if
each row has exactly one 1.

3 A column whose entries are all equal to 1.
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48:2 On Randomized Generation of Slowly Synchronizing Automata

Table 1 Table on upper bounds on the reset threshold for some classes of automata and examples
of automata with large reset threshold belonging to these classes, up to date.

Classes Upper b. on rt Families with quadratic rt

Eulerian automata n2 − 3n + 3 (n2 − 3)/2
Kari [16] Szykuła and Vorel [27] (4 letters)

Automata with full 2n2 − 6n + 5 n(n− 1)/2
transition monoid Gonze et. al. [14] Gonze et. al. [14] (n letters)

One cluster automata n2 − 7n + 7 (n− 1)2

Béal et al. [4] Černý [28] (2 letters)

Strongly connected weakly bn(n + 1)/6c ?
monotone automata Volkov [29]

Automata with 2(n− 1)2 (n− 1)2 Černý [28] (2 letters)
simple idempotents Rystov [25] ≥ (n2 + 3n− 6)/4 for n = 4k + 3

[Conjectured (n2 − 1)/2]
≥ (n2 + 3n− 8)/4 for n = 4k + 1
[Conjectured (n2 − 1)/2]
≥ (n2 + 2n− 4)/4 for n = 4k

[Conjectured (n2 − 2)/2]
≥ (n2 + 2n− 12)/4 for n = 4k + 2
[Conjectured (n2 − 10)/2]
Our contribution (3 letters)

threshold (rt(A)) of the automaton. In other words, an automaton is synchronizing if there
exists a word that brings the automaton into a particular state, regardless of the initial one.
Synchronizing automata appear in different research fields; for example they are often used as
models of error-resistant systems [10, 7] and in symbolic dynamics [18]. For a brief account
on synchronizing automata and their other applications we refer the reader to [30]. The
importance of synchronizing automata also arises from one of the most longstanding open
problems in this field, the Černý conjecture, which affirms that any synchronizing automaton
on n states has reset threshold at most (n− 1)2. If it is true, the bound is sharp due to the
existence of a family of 2-letter automata attaining this value, family discovered by Černý
in [28]. Despite great effort, the best upper bound for the reset threshold known so far is
(15617n3 + 7500n2 + 9375n− 31250)/93750, recently obtained by Szykuła in [26] and thereby
beating the 30 years-standing upper bound of (n3−n)/6 found by Pin and Frankl in [11, 22].
Better upper bounds have been obtained for certain families of automata and the search for
automata attaining quadratic reset threshold within these families have been the subject of
several contributions in recent years. These results are (partly) summarized in Table 1.
Exhaustive search confirmed the conjecture for small values of n (see [3, 9]). The hunt for
a possible counterexample to the conjecture turned out not to be an easy task as well; the
search space is wide and calculating the reset threshold is computationally hard (see [10, 21]).
Automata with reset thresholds close to (n− 1)2, called extremal or slowly synchronizing
automata, are also hard to detect and not so many families are known; Bondt et. al. [9] make
a thorough analysis of automata with small number of states and we recall, among others,
the families found by Ananichev et al. [3], by Gusev and Pribavkina [15], by Kisielewicz
and Szykuła [17] and by Dzyga et. al. [19]. These last two examples are, in particular, some
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of the few examples of slowly synchronizing automata with more than two letters that can
be found in the literature. Almost all the families of slowly synchronizing automata listed
above are closely related to the Černý automaton C(n) = {a, b}, where a is the cycle over
n vertices and b the letter that fixes all the vertices but one, which is mapped to the same
vertex as done by a; indeed all these families present a letter that is a cycle over n vertices
and the other letters have an action similar to the one of letter b. As these examples seem to
have a quite regular structure, it is natural to wonder whether a randomized procedure to
generate automata could obtain less structured automata with possibly larger reset thresholds.
This probabilistic approach can be rooted back to the work of Erdős in the 60’s, where he
developed the so-called Probabilistic Method, a tool that permits to prove the existence of a
structure with certain desired properties by defining a suitable probabilistic space in which
to embed the problem; for an account on the probabilistic method we refer the reader to [1].
The simplest way to randomly generate an automaton of m letters is to uniformly and
independently sample m binary row-stochastic matrices: unfortunately, Berlinkov first
proved in [5] that two uniformly sampled random binary row-stochastic matrices synchronize
with high probability (i.e. the probability that they form a synchronizing automaton tends
to 1 as the matrix dimension tends to infinity), then Nicaud showed in [20] that they also
have reset threshold of order O(n log3 n) with high probability. We say that an automaton is
minimally synchronizing if any proper subset of its letters is not synchronizing; what just
presented before implies that a uniformly sampled random automaton of m letters has low
reset threshold and is not minimally synchronizing with high probability. Summarizing:

slowly synchronizing automata cannot be generated by a mere uniform randomized
procedure;
minimally synchronizing automata with more than 2 letters are especially of interest as
they are hard to find and they do not appear often in the literature, so the behaviour of
their reset threshold is still unclear.

With this motivation in place, our paper tackles the following questions:
Q1 Is there a way to randomly generate (minimally) slowly synchronizing automata (with

more than two letters)?
Q2 Can we find some automata families with more than two letters, quadratic reset threshold

and that do not resemble the Černý family?

Our Contribution. In this paper we give positive answers to both questions Q1 and Q2.
For the first one, we rely on the concept of primitive set of matrices, introduced by Protasov
and Voynov in [24]: a finite set of matrices with nonnegative entries is said to be primitive if
there exists a product of these matrices, with repetitions allowed, with all positive entries. A
product of this kind is called positive and the length of the shortest positive product of a
primitive setM is called the exponent (exp(M)) of the set. Although the Protasov-Voynov
primitivity has gained a lot of attention in different fields as in stochastic switching systems
[23] and consensus for discrete-time multi-agent systems [8], we are interested in its connection
with automata theory. In the following, we say that a matrix is NZ if it has neither zero-rows
nor zero-columns4; a matrix set is said to be NZ if all its matrices are NZ.

I Definition 1. Let M = {M1, . . . ,Mm} be a binary NZ-matrix set. The automaton
associated to the set M is the automaton A(M) whose letters are all the binary row-
stochastic matrices that are entrywise not greater than at least one matrix inM.

4 Thus a NZ-matrix must have a positive entry in every row and in every column.
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Figure 1 The automata A(M) and A(MT ) of Example 2.

I Example 2. We here provide an example of a primitive set M = {M1,M2} and the
associated automata A(M) and A(MT ) in both their matrix and graph representations
(Figure 1), whereMT = {MT

1 ,M
T
2 }.

M=
{( 0 1 0

1 0 0
0 0 1

)
,
( 1 0 1

0 0 1
0 1 0

)}
, A(M)=

{( 0 1 0
1 0 0
0 0 1

)
,
( 1 0 0

0 0 1
0 1 0

)
,
( 0 0 1

0 0 1
0 1 0

)}
={a, b, c},

A(MT )=
{( 0 1 0

1 0 0
0 0 1

)
,
( 1 0 0

0 0 1
0 1 0

)
,
( 1 0 0

0 0 1
1 0 0

)}
={a, b, c′}.

The following theorem summarizes two results proved by Blondel et. al. ([6], Theorems 16-17)
and a result proved by Gerencsér et al. ([12], Theorem 8). Note that we state it for sets of
binary NZ-matrices but it more generally holds for any set of NZ-matrices with nonnegative
entries; this relies on the fact that in the notion of primitivity what counts is the position of
the nonnegative entries within the matrices of the set and not their the actual values. In this
case we should add to Definition 1 the request of setting to 1 all the positive entries of the
matrices ofM before building A(M).

I Theorem 3. Let M = {M1, . . . ,Mm} a set of binary NZ-matrices of size n × n and
MT = {MT

1 , . . . ,M
T
m}. It holds thatM is primitive if and only if A(M) (equiv. A(MT ))

is synchronizing. IfM is primitive, then it also holds that:

max
{
rt
(
A(M)

)
, rt
(
A(MT )

)}
≤ exp(M) ≤ rt

(
A(M)

)
+ rt

(
A(MT )

)
+ n− 1. (1)

I Example 4. For the matrix set M defined in Example 2, it holds that exp(M) = 8,
rt
(
A(M)

)
= 4 and rt

(
A(MT )

)
= 2.

Theorem 3 will be extensively used throughout the paper. It shows that primitive sets can
be used for generating synchronizing automata and Equation (1) tells us that the presence
of a primitive set with large exponent implies the existence of an automaton with large reset
threshold; in particular the discovery of a primitive setM with exp(M) ≥ 2(n− 1)2 − n+ 1
would disprove the Černý conjecture. On the other hand, the upper bounds on the automata
reset threshold mentioned before imply that exp(M)=O(n3).
One advantage of using primitive sets is the Protasov-Voynov characterization theorem (see
Theorem 6 in Section 2) that describes a combinatorial property that a NZ-matrix set must
have in order not to be primitive: by constructing a primitive set such that each of its proper
subsets has this property, we can make it minimally primitive5.
We decided to focus our attention on what we call perturbed permutation sets, i.e. sets made
of permutation matrices (binary matrices having exactly one 1 in every row and in every
column) where a 0-entry of one of these matrices is changed into a 1. These sets have many
interesting properties:

5 Thus a minimally primitive set is a primitive set that does not contain any proper primitive subset.
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they have the least number of positive entries that a NZ-primitive set can have, which
intuitively should lead to sets with large exponent;
the associated automatonA(M) of a perturbed permutation setM can be easily computed.
It is made of permutation letters and a letter of rank n−1 and its alphabet size is just
one unit more than the cardinality ofM;
if the matrix setM is minimally primitive, the automaton A(M) is minimally synchron-
izing (or it can be made minimally synchronizing by removing one known letter, as shown
in Proposition 9);
primitivity is easily checked by the Protasov-Voynov algorithm ([24], Proposition 2), and
primitivity ofM assures that A(M) is synchronizing (Theorem 3).

The characterization theorem for primitive sets and the above properties are the main
ingredients of our randomized algorithm that finds minimally synchronizing automata of 3
and 4 letters (and can eventually be generalized to m letters); to the best of our knowledge,
this is the first time where a constructive procedure for finding minimally synchronizing
automata is presented. This is described in Section 3 where numerical results are reported.
The random construction let us also find new families of 3-letters automata, presented in
Section 4, with reset threshold Ω(n2/4) and that do not resemble the Černý automaton, thus
answering question Q2. Finally, in Section 5 we extend a result on perturbed permutation
sets obtained by Gonze et al. in [13]: we show that a random perturbed permutation set
is primitive with high probability for any matrix size n (and not just when n is a prime
number as in [13]) and that its exponent is of order O(n logn) still with high probability. A
further generalization is then presented for sets of random binary matrices: if each entry
of each matrix is set to 1 with probability p and to 0 with probability 1− p, independently
from each other, then the set is primitive and has exponent of order O(n logn) with high
probability for any p such that np− logn→∞ as n→∞.
The proofs of the results presented in this paper have been omitted due to length restrictions.

2 Definitions and notation

In this section we briefly go through some definitions and results that will be needed in the
rest of the paper.
We indicate with [n] the set {1, . . . , n} and with Sk the set of permutations over k elements;
with a slight abuse of notation Sk will also denote the set of the k× k permutation matrices.
An n-state automaton A= {A1, . . . , Am} can be represented by a labelled digraph on n

vertices with a directed edge from vertex i to vertex j labelled by Ak if Ak(i, j) = 1; in this
case we also use the notation iAk = j. We remind that a matrix M is irreducible if there does
not exist a permutation matrix P such that PMPT is block-triangular; a set {M1, . . . ,Mm}
is said to be irreducible iff the matrix

∑m
i=1 Mi is irreducible. The directed graph associated

to an n×n matrix M is the digraph DM on n vertices with a directed edge from i to j if
M(i, j) > 0. A matrix M is irreducible if and only if DM is strongly connected, i.e. if and
only if there exists a directed path between any two given vertices. A primitive setM is
a set of m matrices {M1, . . . ,Mm} with nonnegative entries where there exists a product
Mi1 · · ·Mil > 0 entrywise, for i1, . . . , il ∈ [m]. The length of the shortest of these products
is called the exponent (exp(M)) of the set. Irreducibility is a necessary (but not sufficient)
condition for a matrix set to be primitive (see [24], Section 1). Primitive sets of NZ-matrices
can be characterized as follows:

MFCS 2018
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I Definition 5. Let Ω =
⋃̇k
l=1Ωl be a partition of [n] with k ≥ 2. We say that an n × n

matrix M has a block-permutation structure on the partition Ω if there exists a permutation
σ∈Sk such that ∀ l=1, . . . , k and ∀ i∈Ωl, if M(i, j) > 0 then j ∈ Ωσ(l). We say that a set
of matrices has a block-permutation structure if there exists a partition on which all the
matrices of the set have a block-permutation structure.

I Theorem 6 ([24], Theorem 1). An irreducible set of NZ matrices of size n × n is not
primitive if and only if the set has a block-permutation structure.

We end this section with the last definition and our first observation (Proposition 8).

I Definition 7. A matrix A dominates a matrix B if A(i, j) ≥ B(i, j), ∀ i, j.

I Proposition 8. Consider an irreducible set {M1, . . . ,Mm} in which every matrix dominates
a permutation matrix. If the set has a block-permutation structure, then all the blocks of the
partition must have the same size.

3 Minimally primitive sets and minimally synchronizing automata

In this section we focus on perturbed permutation sets, i.e. matrix sets made of permutation
matrices where a 0-entry of one matrix is changed into a 1. We represent a set of this kind as
M = {P1, . . . , Pm−1, Pm + Ii,j}, where P1, . . . , Pm are permutation matrices, Ii,j is a matrix
whose (i, j)-th entry is equal to 1 and all the others entries are equal to 0 and Pm(i, j′) = 1
for a j′ 6= j. The first result states that we can easily generate minimally synchronizing
automata starting from minimally primitive perturbed permutation sets:

I Proposition 9. Let M = {P1, . . . , Pm−1, Pm + Ii,j} be a minimally primitive perturbed
permutation set and let j′ 6= j be the integer such that Pm(i, j′) = 1. The automaton A(M)
(see Definition 1) can be written as A(M) = {P1, . . . , Pm−1, Pm,M} withM = Pm+Ii,j−Ii,j′ .
If A(M) is not minimally sychronizing, then Ā = {P1, . . . , Pm−1,M} is.

3.1 A randomized algorithm for constructing minimally primitive sets
If we want to find minimally synchronizing automata, Proposition 9 tells us that we just need
to generate minimally primitive perturbed permutation sets; in this section we implement a
randomized procedure to build them.
Theorem 6 says that a matrix set is not primitive if all the matrices share the same block-
permutation structure, therefore a set of m matrices is minimally primitive iff every subset
of cardinality m − 1 has a block-permutation structure on a certain partition; this is the
condition we will enforce. As we are dealing with perturbed permutation sets, Proposition 8
tells us that we just need to consider partitions with blocks of the same size; if the blocks of
the partition have size n/q, we call it a q-partition and we say that the set has a q-permutation
structure. Given R,C ⊂ [n] and a matrix M , we indicate with M(R,C) the submatrix of
M with rows indexed by R and columns indexed by C. The algorithm first generates a set
of permutation matrices satisfying the requested block-permutation structures and then a
0-entry of one of the obtained matrices is changed into a 1; while doing this last step, we will
make sure that such change will preserve all the block-permutation structures of the matrix.
We underline that our algorithm finds perturbed permutation sets that, if are primitive,
are minimally primitive. Indeed, the construction itself only ensures minimality and not
primitivity: this latter property has to be verified at the end.
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3.1.1 The algorithm
For generating a set of m matrices M = {M1, . . . ,Mm} we choose m prime numbers
q1 ≥ · · · ≥ qm ≥ 2 and we set n =

∏m
i=1 qi. For j = 1, . . . ,m, we require the set

{M1, . . . ,Mj−1,Mj+1, . . . ,Mm} (the set obtained fromM by erasing matrix Mj) to have a
qj-permutation structure; this construction will ensure the minimality of the set. More in
detail, for all j=1, . . . ,m we will enforce the existence of a qj-partition Ωqj =

⋃̇qj

i=1Ωji of [n]
on which, for all k 6= j, the matrix Mk has to have a block-permutation structure. As stated
by Definition 5, this request means that for every k = 1, . . . ,m and for every j 6= k there
must exist a permutation σkj ∈ Sqj

such that for all i=1, . . . , qj and l 6= σkj (i), Mk(Ωji ,Ω
j
l ) is

a zero matrix.
The main idea of the algorithm is to initialize every entry of each matrix to 1 and then,
step by step, to set to 0 the entries that are not compatible with the conditions that we
are requiring. As our final goal is to have a set of permutation matrices, at every step we
need to make sure that each matrix dominates at least one permutation matrix, despite the
increasing number of zeros among its entries.

IDefinition 10. Given a matrixM and a q-partition Ωq=
⋃̇q
i=1Ωqi , we say that a permutation

σ ∈ Sq is compatible with M and Ωq if for all i = 1, . . . , q, there exists a permutation matrix
Qi such that

M
(
Ωqi ,Ω

q
σ(i)
)
≥ Qi. (2)

The algorithm itself is formally presented in Listing 1; we here describe in words how it
operates. Each entry of each matrix is initialized to 1. The algorithm has two for-loops: the
outer one on j = 1, . . . ,m, where a qj-partition Ωqj =

⋃̇qj

i=1Ωji of [n] is uniformly randomly
sampled and then the inner one on k = 1, . . . ,m with k 6= j where we verify whether there
exists a permutation σkj ∈ Sqj that is compatible with Mk and Ωqj . If it does exist, then
we choose one among all the compatible permutations and the algorithm moves to the next
step k + 1. If such permutation does not exist, then the algorithm exits the inner for-loop
and it randomly selects another qj-partition Ω′qj

of [n]; it then repeats the inner loop for
k = 1, . . . ,m with k 6= j with this new partition. If after T1 steps it is choosing a different
qj-partition Ω′qj

the existence, for each k 6= j, of a permutation σ′kj ∈ Sqj that is compatible
withMk and Ω′qj

is not established, we stop the algorithm and we say that it did not converge.
If the inner for-loop is completed, then for each k 6= j the algorithm modifies the matrix Mk

by keeping unchanged each block Mk

(
Ωji ,Ω

j

σk
j

(i)
)
for i = 1, . . . , qj and by setting to zero all

the other entries of Mk, where σkj is the selected compatible permutation; the matrix Mk

has now a block-permutation structure over the sampled partition Ωqj
. The algorithm then

moves to the next step j + 1. If it manages to finish the outer for-loop, we have a set of
binary matrices with the desired block-permutation structures. We then just need to select a
permutation matrix Pk ≤Mk for every k = 1, . . . ,m and then to randomly change a 0-entry
into a 1 in one of the matrices without modifying its block-permutation structures: this is
always possible as the blocks of the partitions are non trivial and a permutation matrix has
just n positive entries. We finally check whether the set is primitive.
Here below we present the procedures that the algorithm uses:
(a) [p, P ] = Extractperm(M,met)

This is the key function of the algorithm. It returns p=1 if the matrix M dominates a
permutation matrix, it returns p= 0 and P =M otherwise. In the former case it also
returns a permutation matrix P selected among the ones dominated by M according
to met; if met = 2 the matrix P is sampled uniformly at random, while if met = 3 we

MFCS 2018
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make the choice of P deterministic. More in detail, the procedure works as follows: we
first count the numbers of 1s in each column and in each row of the matrix M . We then
consider the row or the column with the least number of 1s; if this number is zero we
stop the procedure and we set p = 0, as in this case M does not dominate a permutation
matrix. If this number is strictly greater than zero, we choose one of the 1-entries of
the row or the column attaining this minimum: if met = 2 (method 2) the entry is
chosen uniformly at random while if met = 3 (method 3) we take the first 1-entry in
the lexicographic order. Suppose that such 1-entry is in position (i, j): we set to zero all
the other entries in row i and column j and we iterate the procedure on the submatrix
obtained from M by erasing row i and column j. We can prove that this procedure is
well-defined and in at most n steps it produces the desired output: p = 0 if and only if
M does not dominate a permutation matrix and, in case p = 1, method 2 indeed sample
uniformly one of the permutations dominated by M , while method 3 is deterministic
and the permutation obtained usually has its 1s distributed around the main diagonal.
Method 3 will play an important role in our numerical experiments in Section 3.2 and in
the discovery of new families of automata with quadratic reset threshold in Section 4.

(b) [a,A] = DomPerm(M,Ω,met)
It returns a= 1 if there exists a permutation compatible with the matrix M and the
partition Ω =

⋃̇q
i=1Ωq

i , it returns a= 0 and A=M otherwise. In the former case it
chooses one of the compatible permutations, say σ, according to met and returns the
matrix A equal to M but the entries not in the blocks defined by (2) that are set to zero;
A has then a block-permutation structure on Ω. More precisely, DomPerm acts in two
steps: it first defines a q × q matrix B such that, for all i, k = 1, . . . , q,

B(i, k) =
{

1 if M(Ωqi ,Ω
q
k) dominates a permutation matrix

0 otherwise
;

this can be done by calling ExtractPerm with input M(Ωqi ,Ω
q
k) and met for all i, k =

1, . . . , q. At this point, asking if there exists a permutation compatible with M and Ω is
equivalent of asking if B dominates a permutation matrix. Therefore, the second step is
to call again [p, P ] = ExtractPerm(B,met): if p = 0 we set a = 0 and A = M , while if
p = 1 we set a = 1 and A as described before with σ = P (i.e. σ(i) = j iff P (i, j) = 1);
indeed the permutation P is one of the permutations compatible with M and Ω.

(c) Mset = Addone(P1, ..., Pm)
It changes a 0-entry of one of the matrices P1, ..., Pm into a 1 preserving all its block-
permutation structures. The matrix and the entry are chosen uniformly at random and
the procedure iterates the choice till it finds a compatible entry (which always exists); it
then returns the final perturbed permutation set Mset.

(d) pr = Primitive(Mset)
It returns pr=1 if the matrix setMset={M1, . . . ,Mm} is primitive and pr = 0 otherwise.
It first verifies if the set is irreducible by checking the strong connectivity of the digraph
DN where N =

∑k
i=1 Mi (see Section 2) via breadth-first search on every node, then

if the set is irreducible, primitivity is checked by the Protasov-Voynov algorithm ([24],
Section 4).

All the above routines have polynomial time complexity in n, apart from routine Primitive
that has time complexity O(mn2).

I Remark.
1. In all our numerical experiments the algorithm always converged, i.e. it always ended

before reaching the stopping value T1, for T1 large enough. This is probably due to
the fact that the matrix dimension n grows exponentially as the number of matrices m
increases, which produces enough degrees of freedom. We leave the proof of this fact for
future work.
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2. A recent work of Alpin and Alpina [2] generalizes Theorem 6 for the characterization
of primitive sets to sets that are allowed to be reducible and the matrices to have zero
columns but not zero rows. Clearly, automata fall within this category. Without going
into many details (for which we refer the reader to [2], Theorem 3), Alpin and Alpina
show that an n-state automaton is not synchronizing if and only if there exist a partition⋃̇s
j=1Ωj of [n] such that it has a block-permutation structure on a subset of that partition.

This characterization is clearly less restrictive: it just suffices to find a subset I ⊂ [s] such
that for each letter A of the automaton there exists a permutation σ ∈ SI such that for
all i ∈ I, if A(i, j) = 1 then j ∈ Ωσ(i). Our algorithm could leverage this recent result
in order to directly construct minimal synchronizing automata. We also leave this for
future work.

Listing 1 Algorithm for finding minimally primitive sets.
Input: q_1 ,... ,q_m ,T1 ,met
Initialize M_1 ,... , M_m as all -ones matrices
for j:=1 to m do

t1=0
while t1 <T1 do

t1=t1+1
choose a q_j - partition Omega_j
for k=1 to m and k!=j do

[a,A_k ]= DomPerm (M_k ,Omega_j ,met)
if a==0

exit inner for -loop
end

end
if a==1

exit while -loop
end

end
if t1==T1

display ’does not converge ’, exit procedure
else

set M_k=A_k for all k=1 ,... ,m and k!=j
end

end
for i:=1 to m do

[p_i ,P_i ]= Extractperm (M_i ,met)
end
Mset= Addone (P_1 ,... , P_m)
pr= Primitive (Mset)
return Mset , pr

3.2 Numerical results
We have seen that once we have a minimally primitive perturbed permutation set, it is easy
to generate a minimally synchronizing automaton from it, as stated by Proposition 12. Our
goal is to generate automata with large research threshold, but checking this property on
many randomly generated instances is prohibitive. Indeed, we recall that computing the
reset threshold of an automaton is in general NP-hard [10]. Instead, as a proxy for the reset
threshold, we compute the diameter of the square graph, which we now introduce:
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I Definition 11. The square graph S(A) of an n-state automaton A is the labelled directed
graph with vertex set V ={(i, j) : 1 ≤ i ≤ j ≤ n} and edge set E such that e={(i, j), (i′, j′)}∈
E if there exists a letter A∈A such that A(i, i′) > 0 and A(j, j′) > 0, or A(i, j′) > 0 and
A(j, i′) > 0. In this case, we label the directed edge e by A (multiple labels are allowed). A
vertex of type (i, i) is called a singleton.

A well-known result ([30], Proposition 1) states that an automaton is synchronizing if and
only if in its square graph there exists a path from any non-singleton vertex to a singleton
one; the proof of this fact also implies that

diam
(
S(A)

)
≤ rt(A) ≤ n · diam

(
S(A)

)
, (3)

where diam
(
S(A)

)
denotes the diameter of S(A) i.e. the maximum length of the shortest

path between any two given vertices, taken over all the pairs of vertices. The diameter
can be computed in polynomial time, namely O(mn2) with m the number of letters of the
automaton.

We now report our numerical results based on the diameter of the square graph. We
compare three methods of generating automata: we call method 1 the uniform random
generation of 2-letter automata made of one permutation matrix and a matrix of rank n− 1,
while method 2 and method 3, already introduced in the previous paragraph, refer to
the different ways of extracting a permutation matrix from a binary one in our randomized
construction. We set T1 = 1000 and for each method and each choice of n we run the
algorithm it(n) = 50n2 times, thus producing each time 50n2 sets. This choice for it(n) has
been made by taking into account two facts: on one hand, it is desirable to keep constant the
rate it(n)/km(n) between the number of sampled sets it(n) and the cardinality km(n) of the
set of the perturbed permutation sets made of m matrices. Unfortunately, km(n+ 1)/km(n)
grows approximately as nm and so km(n) explodes very fast. On the other hand, we have
to deal with the limited computational speed of our computers. The choice of it(n) = 50n2

comes as a compromise between these two issues, at least when n ≤ 70.
Among the it(n) generated sets, we select the primitive ones and we generate their associated
automata (Definition 1); we then check which ones are not minimally synchronizing and
we make them minimally synchronizing by using Proposition 9. Finally, we compute the
square graph diameter of all the minimally synchronizing automata obtained. Figure 2
reports on the y axis the maximal square graph diameter found for each method and for
each matrix dimension n when n is the product of three prime numbers (left picture) and
when it is a product of four prime numbers (right picture). We can see that our randomized
construction manages to reach higher values of the square graph diameter than the mere
random generation; in particular, method 3 reaches quadratic diameters in case of three
matrices.

We also report in Figure 3 (left) the behavior of the average diameter of the minimally
synchronizing automata generated on 50n2 iterations when n is the product of three prime
numbers: we can see that in this case method 2 does not perform better than method 1,
while method 3 performs just slightly better. This behavior could have been expected since
our primary goal was to randomly generate at least one slowly synchronizing automata; this
is indeed what happens with method 3, that manages to reach quadratic reset thresholds
most of the times.
A remark can be done on the percentage of the generated sets that are not primitive; this is
reported in Figure 3 (right), where we divide nonprimitive sets into two categories: reducible
sets and imprimitive sets, i.e. irreducible sets that are not primitive. We can see that the
percentage of nonprimitive sets generated by method 1 goes to 0 as n increases, behavior
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Figure 2 Comparison of our methods (met 2 and 3) with the naive method (met 1) with respect
to the maximal diameter found on 50n2 iterations. Left: n is the product of three prime numbers;
the y axis is in logarithmic scale. Right: n is the product of four prime numbers.

Figure 3 Left: Average diameter found by methods 1, 2 and 3 when n is the product of three
prime numbers. Right: Percentage of nonprimitive sets (divided into reducible and imprimitive sets)
generated by methods 1, 2 and 3 (indicated above each bar) when n is the product of three prime
numbers. For instance, on sets of dimension n = 20, method 1 generates 0.35% of nonprimitive sets
(0.35% reducible, 0% imprimitive), method 2 generates 6.15% of nonprimitive sets (5.18% reducible,
0.97% imprimitive) and method 3 generates 84.5% of nonprimitive sets (77.9% reducible, 6.6%
imprimitive).

that we expected (see Section 5, Theorem 18), while method 2 seems to always produce a not
negligible percentage of nonprimitive sets, although quite small. The behavior is reversed
for method 3: most of the generated sets are not primitive. This can be interpreted as a
good sign. Indeed, nonprimitive sets can be seen as sets with infinite exponent; as we are
generating a lot of them with method 3, we intuitively should expect that, when a primitive
set is generated, it has high chances to have large diameter.
The slowly synchronizing automata found by our randomized construction are presented in
the following section. We believe that some parameters of our construction, as the way a
permutation matrix is extracted from a binary one or the way the partitions of [n] are selected,
could be further tuned or changed in order to generate new families of slowly synchronizing
automata; for example, we could think about selecting the ones in the procedure Extractperm
according to a given distribution. We leave this for future work.

4 New families of automata with quadratic reset threshold

We present here four new families of (minimally synchronizing) 3-letter automata with square
graph diameter of order Ω(n2/4), which represents a lower bound for their reset threshold.
These families are all made of two symmetric permutation matrices and a matrix of rank
n− 1 that merges two states and fixes all the others (a perturbed identity matrix): they thus
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lie within the class of automata with simple idempotents, class introduced by Rystsov in [25]
in which every letter A of the automaton is requested either to be a permutation or to satisfy
A2 = A. These families have been found via the randomized algorithm described in Section
3.1 using the deterministic procedure to extract a permutation matrix from a binary one
(method 3). The following proposition shows that primitive sets made of a perturbed identity
matrix and two symmetric permutations must have a very specific shape; we then present our
families, prove closed formulas for their square graph diameter and finally state a conjecture
on their reset thresholds. With a slight abuse of notation we identify a permutation matrix
Q with its underlying permutation, that is we say that Q(i) = j if and only if Q(i, j) = 1;
the identity matrix is denoted by I. Note that a permutation matrix is symmetric if and
only if its cycle decomposition is made of fixed points and cycles of length 2.

I Proposition 12. Let Mij = {Īij , Q1, Q2} be a matrix set of n× n matrices where Īij =
I + Iij , j 6= i, is a perturbed identity and Q1 and Q2 are two symmetric permutations. IfM
is irreducible then, up to a relabelling of the vertices, Q1 and Q2 have the following form:

if n is even

Q1(i) =


1 if i = 1
i + 1 if i even, 2 ≤ i ≤ n− 2
i− 1 if i odd, 3 ≤ i ≤ n− 1
n if i = n

, Q2(i) =

{
i− 1 if i even
i + 1 if i odd

(4)

or

Q1(i) =


n if i = 1
i + 1 if i even, 2 ≤ i ≤ n− 2
i− 1 if i odd, 3 ≤ i ≤ n− 1
1 if i = n

, Q2(i) =

{
i− 1 if i even
i + 1 if i odd

(5)

if n is odd

Q1(i) =


1 if i = 1
i + 1 if i even
i− 1 if i odd, 3 ≤ i ≤ n

, Q2(i) =


i− 1 if i even
i + 1 if i odd, 1 ≤ i ≤ n−2
n if i = n

. (6)

I Proposition 13. A matrix setMij = {Īij , Q1, Q2} of type (5) is never primitive.

I Definition 14. We define Aij = {Iij , Q1, Q2} to be the associated automaton A(Mij) of
Mij (see Definition 1), where Iij = I + Iij − Iii.

It is clear that Aij is with simple idempotents. Figure 4 represents A1,6 with n = 8.
We set now En = A1,n−2 for n = 4k and k ≥ 2, E ′n = A1,n−4 for n= 4k + 2 and k ≥ 2,
On = An−1

2 ,n+1
2

for n = 4k + 1 and k ≥ 1, O′n = An−1
2 ,n+1

2
for n = 4k + 3 and k ≥ 1. The

following theorem holds:

I Theorem 15. The automaton En has square graph diameter (SGD) of (n2 + 2n− 4)/4,
E ′n has SGD of (n2 + 2n − 12)/4, On has SGD of (n2 + 3n − 8)/4 and O′n has SGD of
(n2 +3n−6)/4. Therefore all the families En, E ′n, On and O′n have reset threshold of Ω(n2/4).

Figure 5 represents the square graph of the automaton E8, where its diameter is colored
in red. All the singletons but the one that belongs to the diameter have been omitted.
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1 2 3 4 5 6 7 8

Figure 4 The automata A1,6 with n = 8; rt(A1,6)=31. Dashed arrows refer to matrix Q2, normal
arrows to matrix Q1 and bold arrows to matrix I1,6 where its selfloops have been omitted.
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Figure 5 Square graph of automaton E8, diam
(
S(E8)

)
= 19. Normal arrows refer to matrix Q1,

dotted arrows to matrix Q2 and bold arrows to matrix I1,6, where its selfloops have been omitted.
The red path is the diameter.

I Conjecture 16. The automaton En has reset threshold of (n2−2)/2, E ′n has reset threshold
of (n2−10)/2 and On and O′n have reset threshold of (n2−1)/2. Furthermore, they represent
the automata with the largest possible reset threshold among the family Aij for respectively
n = 4k, n = 4k + 2, n = 4k + 1 and n = 4k + 3.

We end this section by remarking that, despite the fact that the randomized construction
for minimally primitive sets presented in Section 3 works just when the matrix size n is the
product of at least three prime numbers, here we found an extremal automaton of quadratic
reset threshold for any value of n.

5 Primitivity with high probability

We call random perturbed permutation set a perturbed permutation set of m≥2 matrices
constructed with the following randomized procedure:

I Procedure 17.
1. We sample m permutation matrices {P1, . . . , Pm} independently and uniformly at random

from the set Sn of all the permutations over n elements;
2. A matrix Pi is uniformly randomly chosen from the set {P1, . . . , Pm}. Then, one of

its 0-entry is uniformly randomly selected among its 0-entries and changed into a 1. It
becomes then a perturbed permutation matrix P̄i;

3. The final random perturbed permutation set is the set {P1, . . . , Pi−1, P̄i, Pi+1, . . . , Pm}.
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This procedure is also equivalent to choosing independently and uniformly at random
m− 1 permutation matrices from Sn and one perturbed permutation matrix from S̄n with
S̄n = {P̄ : P̄ =P + Ii,j , P ∈Sn, P (i, j′) = 1, j 6= j′}. We say that a property X holds for a
random matrix set with high probability if the probability that property X holds tends to 1
as the matrix dimension n tends to infinity.

I Theorem 18. A random perturbed permutation set constructed via Procedure 17 is primitive
and has exponent of order O(n logn) with high probability.

Theorem 18 can be extended to random sets of binary matrices. It is clear that focusing
just on binary matrices is not restrictive as in the definition of primitivity what counts is just
the position of the positive entries within the matrices and not their actual values. Let B(p)
denote a random binary matrix where each entry is independently set to 1 with probability
p and to 0 with probability (1− p) and let Bm(p) denote a set of m ≥ 2 matrices obtained
independently in this way. Under some mild assumptions over p, we still have primitivity
with high probability:

I Theorem 19. For any fixed integer m ≥ 2, if np− logn −→∞ as n→∞, then Bm(p) is
primitive and exp

(
Bm(p)

)
= O(n logn) with high probability.

It is interesting to compare this result with the one obtained by Gerencsér et al. in
[12]: they prove that, if exp(n) is the maximal value of the exponent among all the binary
primitive sets of n× n matrices, then limn→∞(log exp(n))/n = (log 3)/3. This implies that,
for n big enough, there must exist some primitive sets whose exponent is close to 3n/3, but
these sets must be very few as Theorem 19 states that they are almost impossible to be
detected by a mere random generation. We conclude with a result on when a set of two
random binary matrices is not primitive with high probability:

I Proposition 20. For any fixed integer m ≥ 2, if 2np − logn −→ −∞ as n → ∞, then
Bm(p) is reducible with high probability. This implies that Bm(p) is not primitive with high
probability.

6 Conclusion

In this paper we have proposed a randomized construction for generating slowly minimally
synchronizing automata. Our strategy relies on a recent characterization of primitive sets
(Theorem 6), together with a construction (Definition 1 and Theorem 3) allowing to build
(slowly minimally) synchronizing automata from (slowly minimally) primitive sets. We have
obtained four new families of automata with simple idempotents with reset threshold of order
Ω(n2/4). The primitive sets approach to synchronizing automata seems promising and we
believe that out randomized construction could be further refined and tweaked in order to
produce other interesting automata with large reset threshold, for example by changing the
way a permutation matrix is extracted by a binary one. As mentioned at the end of Section
3.1, it would be also of interest to apply the minimal construction directly to automata by
leveraging the recent result of Alpin and Alpina ([2], Theorem 3).
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