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—— Abstract

We investigate the computational complexity of balance problems for {—,-}-circuits computing
finite sets of natural numbers. These problems naturally build on problems for integer expressions
and integer circuits studied by Stockmeyer and Meyer (1973), McKenzie and Wagner (2007), and
GlaBer et al. (2010).

Our work shows that the balance problem for {—, -}-circuits is undecidable which is the first
natural problem for integer circuits or related constraint satisfaction problems that admits only
one arithmetic operation and is proven to be undecidable.

Starting from this result we precisely characterize the complexity of balance problems for
proper subsets of {—,-}. These problems turn out to be complete for one of the classes L, NL,
and NP.
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1 Introduction

In 1973, Stockmeyer and Meyer [18] defined and studied membership and equivalence
problems for integer expressions. They considered expressions built up from single natural
numbers by using set operations (U, N, 7), pairwise addition (+), and pairwise multiplication
(+). For example, 1-1N1 describes the set of primes P.

The membership problem for integer expressions asks whether some given number is
contained in the set described by a given integer expression, whereas the equivalence problem
for integer expressions asks whether two given integer expression describe the same set.
Restricting the set of allowed operations results in problems of different complexities.

Wagner [20] studied a more succinct way to represent such expressions, namely circuits
over sets of natural numbers, also called integer circuits. Each input gate of such a circuit
is labeled with a natural number, the inner gates compute set operations and arithmetic
operations (U, N, ~, 4, -). The following circuit with only 4 inner gates computes the set of
primes.

O—C 2 O—0—®

Starting from this circuit, one can use integer circuits to express fundamental number
theoretic questions: thus, a circuit describing the set of all twin primes or the set of all
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Sophie Germain primes can be constructed. McKenzie and Wagner [15] constructed a circuit
C computing a set that contains 0 if and only if the Goldbach conjecture holds.

Wagner [20], Yang [21], and McKenzie and Wagner [15] investigated the complexity of
membership problems for circuits over natural numbers: here, for a given circuit C, one has
to decide whether a given number n belongs to the set described by C. Travers [19] and
Breunig [2] considered membership problems for circuits over integers and positive integers,
respectively. Glafier et al. [9] studied equivalence problems for circuits over sets of natural
numbers, i.e., the problem of deciding whether two given circuits compute the same set.

Satisfiability problems for circuits over sets of natural numbers, investigated by Glaer
et al. [11], are a generalization of the membership problems investigated by McKenzie and
Wagner [15]: the circuits can have unassigned input gates and the question is: on input of a
circuit C' with gate labels from O C {U,N, ™, +, -} and a natural number b, does there exist
an assignment of the unassigned input gates with natural numbers such that b is contained
in the set described by the circuit?

Barth et al. [1] investigated emptiness problems for integer circuits. Here, for both circuits
with unassigned inputs and circuits without unassigned inputs, the question of whether
an integer circuit computes the empty set (for some/all assignment(s) if the circuits allow
unassigned inputs) is raised and investigated.

Apart from the mentioned research on circuit problems there has been work on related
variants like functions computed by circuits [17] and constraint satisfaction problems (csp)
over natural numbers [10, 5]. The constraint satisfaction problems by Glafler, Jonsson,
and Martin [10] can be considered as conjunctions of equations of integer expressions with
variables standing for singleton sets of natural numbers. Here the question is whether there
is an assignment of the variables such that all equations are satisfied. These constraint
satisfaction problems have the peculiarity that expressions describe sets of integers whereas
variables can only store singleton sets of natural numbers. Dose [5] addressed this and
studied constraint satisfaction problems over finite subsets of N, consequently replaced the
set complement ~ with the set difference —, and allowed the variables to describe arbitrary
finite subsets of N.

Our Model and Contributions

The definition of the circuits investigated in this paper follows the definition of previous
papers such as [15, 9, 11, 1]. Yet there are some differences:

Our circuit problems are about balanced sets where a finite and non-empty set S C
N is balanced if |S| = [{0,1,...,max(S)} — S|. Analogously, S is unbalanced if |S| #
{0,1,...,max(S)} — S|. That means, the maximum of a set marks the relevant area and
then we ask whether there are as many elements inside the set as outside of it. As the notion
of balanced sets only makes sense for finite sets, our circuits should solely compute finite sets.
Due to that we replace the commonly used set complement ~ with the set difference —. Now,
as the circuits only work over the domain of finite subsets of N, it suggests itself to also allow
the input gates of a circuit to compute arbitrary finite subsets of N and not only singleton
sets (cf. Dose [5] where the analogous step was made for constraint satisfaction problems).

For such circuits we ask: is there an assignment of the unassigned inputs with arbitrary
finite subsets of N under which the circuit computes a balanced set? This problem is denoted
by BC(O), where O C {U,N, —, +,-} is the set of allowed operations.

The notion of balance is important in computational complexity. It occurs when consid-
ering counting classes [12] like C_L or C_P for instance. There, the question is whether for
some problem A there is a non-deterministic logarithmic space or polynomial-time machine
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M accepting A, where M accepts some input x if and only if the number of accepting paths
equals the number of rejecting paths.

Balance problems for integer circuits are interesting for another reason. To our knowledge,
there is no natural decision problem for integer circuits or constraint satisfaction problems
over sets of natural numbers that allows only one arithmetic operation and is known to be
undecidable. In this paper, however, it is shown that BC(—, -) is undecidable.

Starting from this undecidable problem BC(—, -), we also investigate BC(O) for arbitrary
proper subsets of {—,-} and precisely characterize the complexity of each such problem. It
turns out that all these problems are in NP. In detail, we show that BC(-) is NL-complete,
BC(—) is NP-complete, and BC() € L.

2 Preliminaries

Basic Notions

Let N denote the set of natural numbers. Nt = N — {0} is the set of positive naturals.
Moreover, the set of primes is denoted by P.

We extend the arithmetical operations + and - to sets of naturals: for A, B C N define
A+B={a+blacAbeB}and A-B={a-b|a€ A,be B}. In contrast to previous
papers, in this paper the multiplication of sets is not denoted by x but by -. Instead, x
denotes the cartesian product. Furthermore, for arbitrary sets, the operations U, N, and —
define the union, intersection, and set difference, respectively. The power set of a set M is
denoted by P (M) whereas P, (M) = {A € P(M) | A finite}. For a finite and non-empty set
S let max(S) (resp., min(.S)) denote the maximum (resp., minimum) number of S. Finite
intervals {x | a < x < b} for a,b € Z are denoted by [a, b].

L, NL, and NP denote standard complexity classes [16] and RE is the set of computably
enumerable problems.

For problems A and B we say that A is (logarithmic-space) many-one reducible to B if
there is some (logarithmic-space) computable function f with ca(z) = c¢g(f(z)), where cx

for a set X is the characteristic function of X. We denote this by A < B (resp., A <!°8 B).

For pairs (4, B) and (C, D) with AN B =CND = () we say that (A, B) is many-one
reducible to (C, D) (denoted as (4, B) <,, (C, D)) if there is a computable function f with
r€A= f(r) € Cand v € B= f(x) € D. Note that if B = A and D = C this coincides
with the usual many-one reducibility, i.e., (4,4) <, (C,C) < A<, C.

CSAT is the circuit satisfiability problem, i.e., the problem of determining whether a
given Boolean circuit has an assignment of the unassigned inputs that makes the output gate
true. The problem is Siﬁg-complete for NP via a trivial reduction from SAT which itself can
be shown to be <!%¢_complete for NP via a construction by Cook [3].

Balanced Sets

A finite and non-empty set S C N is balanced (resp., unbalanced) if |S| = [{0, 1, ..., max(S)}—
S| (resp., |S] # [{0,1,...,max(S)} — S|). Intuitively spoken, max(S) defines the universe
{0,1,...,max(S)} and then S is balanced if it contains the same number of elements as
its complement. Note that the notion of balance/unbalance only makes sense if there is
some maximum element defining the universe. Hence the empty set is neither balanced nor
unbalanced.

The following lemma immediately follows from the definition.

» Lemma 1. Let S € Pgn(N) be balanced. Then S # 0 and max(S) is odd.

5:3

MFCS 2018



5:4

Balance Problems for Integer Circuits

Moreover, we say that S is subbalanced if |S| < (max(S) + 1)/2 which is equivalent to
|S] < max(S)/2. As we want to investigate the complexity of balance problems with
respect to deterministic logarithmic-space reductions, it is important to see that the test of
whether some input set is balanced can be done in deterministic logarithmic space. Define
Bal = {S € Pg,(N) | S is balanced} and the slightly more general problem Baly, = {S €
Pan(N) | M - S is balanced} for a non-empty and finite set M. Standard arguments yield
the following proposition.

» Proposition 2. Baly, € L. In particular, Bal € L.

Circuits and Balance Problems for Circuits

In previous papers such as [1] it was differentiated between completely and partially assigned
circuits. As we restrict on partially assigned circuits in this paper, we define circuits in
general as partially assigned circuits.

A circuit C is a triple (V) E, g¢) where (V, E) is a finite, non-empty, directed, acyclic
graph with a designated vertex gc € V' and a topologically ordered vertex set V' C N i.e., if
u,v € V are vertices with u < v, then there is no edge from v to u. Here, graphs may contain
multi-edges and are not necessarily connected. But we require that C' is topologically ordered.
Note that the test of whether a graph is topologically ordered or not is possible in deterministic
logarithmic space. Consequently, we are able to check in deterministic logarithmic space
whether an input graph is acyclic. Hence there is a deterministic logarithmic-space algorithm
that on input of a graph tests whether the input is a circuit. Therefore, when presenting
algorithms for circuits we may always assume that the input is a valid circuit.

Let O C {U,N,—,+,-}. An O-circuit (or circuit for short if O is apparent from the
context) is a quintuple C' = (V, E, gc, «, 8) where (V, E, g¢) is a circuit whose nodes are
labeled by the labeling function o : V- — O U Pg,(N) U {0} such that each node has indegree
0 or 2, nodes with indegree 0 have a label from Pg,(N) (encoded as a list of all the numbers
in the set) or from {{J}, and nodes with indegree 2 have labels from O. Moreover, (3 is a
function E — {l,r} and we require that for each node u with predecessors u; and ws it holds
{B(u1), B(u2)} = {l,r}. Thus, 8 marks whether an edge starts in the left or right predecessor
of the node it points to.

In the context of circuits, nodes are also called gates. A gate with indegree 0 is called
input gate, all other nodes are inner gates, the designated gate g¢ is also called output gate.
Input gates with a label from P, (N) are assigned input gates whereas input gates with label
(] are unassigned input gates.

O-circuits are also called integer circuits. If g is some gate of C' with a(g) = ® € O and
with predecessors ¢’ and ¢” satisfying 5(¢’) =1 and 5(g”) = r, then we also write g = ¢’ ® ¢”'.

For an O-circuit C' with unassigned input gates g1 < --- < g, and X1,..., X,, € Pan(N),
let C(X1,...,X,) be the circuit that arises from C by modifying the labeling function «
such that a(g;) = X; for every 1 <i <n.

For a circuit C = (V, F, g¢, ) without unassigned input gates we inductively define the

set I(g; C') computed by a gate g € V for g =1,...,|V| by
a(g) €N if g has indegree 0,
I(g’c) - ! 1 : / 1
I(g,C)® I(g",C) ifg=g ®4g"

The set computed by the circuit is denoted by I(C) and defined to be the set computed by
the output gate I(gc; C).
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It is convenient to introduce notations for basic constructions of circuits. For X € Pg,(N)
we use X as an abbreviation for the circuit ({1},2,{1},1 — X). For O-circuits C,C’ for
some O and ® € {U,N,, —+,-} let C ® C’ be the circuit obtained from C’ and C” by feeding
their output gates to the new output gate ®. This is possible in logarithmic space.

As an example, for an unassigned input gate g = 0, consider the circuit C' = (g — {0}) —
((g —{0}) - {2}), which is the following circuit

1

1
@

where each node is given by its number and its label. The node 5 is the output gate and it
computes the set {1} if and only if 1(2;C) is a set of the form {2° 21,22 ... 2"} for r € N.

Now we define the problems this paper focuses on.
» Definition 3. Let O C {—,U,N,+,-} and define
BC(0)={C| C is an O-circuit with n unassigned inputs and there exist
Xi,...,Xn € Pan(N) such that I(C(Xy,...,X,)) is balanced}.

We use the following abbreviations if confusions are impossible: we write g or I(g) for
I(g; C), where C is a circuit and g is a gate of C; we write C for I(C), where C is a circuit;
we write BC(—,-) for BC({—,-}) and the like.

3 Set Difference and Multiplication Lead to Undecidability

This section contains our main result: the undecidability of BC(—, ) which is achieved by a
reduction from a famously known RE-complete problem. According to the Matiyasevich-
Robinson-Davis-Putnam theorem [14, 4] the problem of determining whether there is a
solution for a given Diophantine equation is RE-complete. It can be derived by standard
arguments that also the following problem is RE-complete (with regard to <, ).

DE = {(p(z1,...,2,),q(x1,..-,2,)) | Ja1,...,a, € N play,...,a,) = qlai,...,ay)

for multivariate polynomials p and ¢ with coefficients from N*}.
» Theorem 4. BC(—, ) is RE-complete.

Let for the remainder of this section O = {—, -} unless stated differently. For the sake of
brevity, we make use of intersection gates but note that A N B is just an abbreviation for
A—(A-B). Further abbreviated notations are A—J;_, B; for (...((A—B1)—Bs)—...)—B,
and A — (Ui, Bi — {1}) for (... (A — (B1 — {1})) = (B2 — {1})) —... = (Bn — {1}).

In order to prove Theorem 4 we define a slightly different version of the problem BC(—, )
which can be reduced to the original version in logarithmic space.

» Definition 5. Define

BC'(0) = {(C,Q) | C is a partially assigned O-circuit, Q is a subset of the nodes of C,
and there exist X1, ..., X,, € Pan(NT) such that I(C(Xy,...,X,))
is balanced and I(K;C(Xq,...,X,)) = {1} for all K € Q}.

For the sake of simplicity, we call instances of BC'(0Q) O-circuits as well.
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» Lemma 6. 1. For K € Pg,(N) with x := max(K) > 3 it holds |K - K - K| < k3/2.
2. BC'(0) <ls BC(O) for O = {—,-}.

Proof sketch. We only sketch the proof of statement 2. Let C' be a partially assigned
O-circuit with output node g¢ and let @ be a subset of the nodes of C. Starting with this
circuit, we build a new circuit and denote this modified circuit by C:

For each assigned or unassigned input node g, add a node g’ of type — which computes
the set g — {0}, replace all edges (g, h) with (¢’, k), and in case g € @, remove g from Q and
add ¢'. Then add a new output node gcr = go - [[gco(K - K - K).

Making use of Statement 1, it can be proved that BC'(0) <8¢ BC(O) via C + C'. <

Before proving Theorem 4 we introduce some O-circuits which will be used extensively
as components of circuits expressing Diophantine equations.

» Lemma 7. For every finite P = {p1,...,pn} C P withn = |P| > 1 there is an O-circuit
(Cp,Qp) containing gates gb, ..., g% satisfying the following properties:
1. For an arbitrary assignment with values from Pg,(NT) it holds:
if K= {1} for all K € Qp, then Imen Yie1...n 9o = {1, piy ..., P}
2. For each m € N there is an assignment with values from Pgn(NT) under which g =
{1, pi,...,pI"} and K = {1} for all K € Qp.

Proof sketch. Construct the O-circuit (Cp,Qp) as follows.
For each p € P insert an input gate X, and gates h, = X, — (X, - {p}) and h;, =
({1,p} - Xp) — (X, — {1}). Put all the nodes h,, into Qp.
Similarly, for k& € {p1 - p2,p2 - P3,.-.,Pn—1 - Pn} insert an input gate X; and gates
hi = X — (X - {k}) and b}, = ({1,k} - Xi) — (Xi — {1}). Insert all nodes hy, into Qp.
For each k = p; - piy1 with i € {1,...,n — 1} add a node v = hj, — ((hy,, - by, ) — {1})
and let @Qp contain all these nodes.
Denote g = X, .

It can be shown that (Cp,Qp) satisfies the requirements of the lemma. |

By adding nodes of the form H;Zl g;; for some ¢ we receive the following.

» Lemma 8. For every finite P = {p1,...,pn} C P with n = |P| > 1 there is an O-circuit
(Dp,Qp) with gates g%, gh, ..., g satisfying the following properties:
1. For an arbitrary assignment with values from Pgn(NT) it holds

Vikeor K ={1} = FnentVico,.n |l9gbl =m', 1 € gb, and the prime divisors
of numbers in gb are all in P.

2. For each m € N there is an assignment with values from Pgn(NT) under which |gb| = m’
and 1 € gi for all i, the prime divisors of numbers in g are all in P, and K = {1} for

all K € Qp.

Proof of Theorem 4. Due to Lemma 6 it suffices to show DE < BC'(—,-). Instead of
showing this reduction directly we define an intermediate problem, the cardinality circuit
problem CC given by

{(C,Q,s,t) | C=(V,E, gc,,B) is a {—, - }-circuit, Q C V, s,t € V, and there exists
an assignment with values from P, (NT) under which
L |I(s)] = [ (®)]
2. 1el(s)nI(t)
3. I(K)={1}forall K € Q
4. I(s) and I(t) only contain numbers whose prime divisors are all > 3}.
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Moreover, define

C={(CQ,st)|C = (V,E,gc,a,p) is a {—,}-circuit, Q@ C V, s,t € V, for all assign-
ments with values from Pg, (NT) satisfying Vixeg K = {1} it holds that
s >t and s and ¢ only contain numbers whose prime divisors are > 3},

i.e., for all circuits in C each relevant assignment maps s to a set with higher or equal
cardinality than the set it maps ¢ to and each relevant assignment maps s and ¢ to sets that
do not contain any numbers with prime divisors < 3. For the sake of simplicity, we also call
tuples (C, @, s,t) {—, -}-circuits.

The proof will be given in the two steps
1. (DE,DE) <, (CC,CCNC)
2. (CC,CCNC) <, (BC'(—,-),BC (—,)).
Thus the function composition of the two reduction functions shows DE <, BC'(—, ).
1. Roughly speaking, the first of the two reductions generates a circuit computing two sets
whose cardinalities express the results of two multivariate polynomials.

Let ¢ and ¢’ be multivariate polynomials with variables z1,...,x,. Then for any assign-
ment with positive natural numbers aq,. .., a, it holds ¢(a1,...,a,) = ¢(a1,...,a,) if and
only if g(a1,...,an)? + ¢ (a1,...,a,)> =2-q(a1,...,an) - ¢ (a1,...,a,). Observe that here
because of (q(ai,...,a,) — ¢ (ai,...,a,))? > 0 we have q(ay,...,a,)% + ¢ (a,...,a,)* >
2-qg(ay,...,an) ¢ (a1,...,ay) for any assignment. Due to that we may assume that we are
given multivariate polynomials ¢ and ¢’ with variables z1,...,x, such that ¢ > ¢’ for all

assignments of the variables with values from N*. Let

m n

Tll/ n d/
_ d;,j ’r_ / i,j
q—E ai-ij and q—g ainj
i=1  j=1

i=1 j=1

for positive numbers m, m/, a;, and a} and natural numbers d; ; and d; ;- Moreover, for each
% )

variable z; define e; = max({dyj,...,dmj,d} j,...,d;,. ;}), i.e., e; denotes the maximum
exponent of the variable z; occurring in a monomial of g or ¢'.
We now successively build the output circuit (C,Q, s,t). For the single steps we give
intuition which is written italic.
1. For each variable z; select a set P; = {pj1,...,pj¢,; } of primes greater than 3 such that
|Pj| = e; and P;N Py = () for j # j'. Then insert a circuit (Cp,,Qp,) according to

Lemma 8 and for all P;, insert the nodes of Qp, into Q.

We will make use of the notation of Lemma 8, in particular of the nodes g%j, . ,gle%.

That means, for any assignment which satisfies K = {1} for all K € Q D Qp,, it holds
|g}'3j| = mé for mj € N* and for all ¢ < e;. Moreover, in that case all primes dividing
some number of gp are in Pj.

For intuition, think of the node g};j as a set whose cardinality describes x;

2. a. Choose a prime p > 3 not used before and insert gates h; = {1,p,... ,p‘”_l}-H?:l g;%'j
foralli=1,...,m.
Loosely speaking, the cardinality of h; describes the value of the i-th monomial of q.

b. For each node h; choose a prime p; > 3 not used before and insert a node h] =

({1,pi} - ha) = (hi — {1}).
As addition is supposed to be simulated by union, we need to make sure that the sets
standing for distinct monomials are disjoint. Still, for a technical reason we have to
keep 1 in each set. So the idea is to let bl consist of 1 and a copy of h; multiplied with
an additional prime factor.

5:7
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c. Fori=1,...,m add an unassigned input node z,. Finally add nodes z, — (Um hl —

i=1"Y
{1}) and R} — (24 — {1}) (for i = 1,...,m) and insert these nodes into Q.
Roughly speaking, z, describes the value of ¢+ 1 as it is the union of all the hl.

3. Do the same as in step 2 but for ¢’. In particular a node z, is added.

4. Define s = z; and t = z.

First, observe that the function (¢,q") — (C,Q, s,t) is computable. In order to show

(¢,¢') € DE = (C,Q,s,t) € CC  and (q,q¢') ¢ DE = (C,Q,s,t) € CCNC

we make the following central observation.

» Claim 9.

1.

For each y1,...,yn € NT there is an assignment of the circuit (C, Q) with values from
Pan(NT) such that s (resp., t) consists of 1+ q(y1,...,yn) (resp., 1+ ¢ (y1---,9n))
numbers whose prime divisors are greater than 8, 1 € sNt, and K = {1} for all K € Q.

. If K = {1} for all K € Q under some assignment with values from P, (NT), then there

are y1,...,yn € NV such that |s| =1+ q(y1,---,yn) and |t| =1+ ¢ (y1,.-.,yn) and s
and t solely contain numbers whose prime divisors are all greater than 3.

Proof of Claim 9.

1.

Let y1,...,yn € NT. Then according to Lemma 8 the inputs of the circuits (Cp,,Qp,)
can be chosen such that
K = {1}4f0r all K elij,
|g})j| =yjand1egp fori=1,. € and
all prime divisors of numbers in g};j are in P; and greater than 3.
As the set of primes chosen for two different variables are disjoint and in step 2b we select
1,7

primes not used before, the gate h; associated with the monomial a; - H;Zl x;l contains

a; - H?Zl y;-ii’j elements that only have prime divisors greater than 3. Furthermore, as
1 € h; for all 4, we have |h}| = 2 - |h;| — (Jh;] — 1) = |hs| + 1. Moreover, observe that
h; 0 R} = {1} for arbitrary i # j.

For the node z, choose the assignment (J;-, h}. Consequently, 1 € z, and

g =14 ) (=1 =14 a;- [[ 25 =1+qn,....n).
=1 =il i=1 =1

Since we do the same for the nodes associated with the polynomial ¢’ we have |zy| =
14+ ¢ (y1,...,yn) and 1 € z,. Observe that the prime divisors of numbers in z, and zy
are greater than 3.

It remains to observe that all nodes added into @ in step 2c compute the set {1}. This
holds since z, was chosen to be (J;, h}.

. Counsider an assignment with K = {1} for all K € Q. Then according to Lemma 8 for

each variable z; we have |gj§7,| = y; for some y; € Nt and i = 0,...,e; and all numbers in
these gates solely have prime divisors in P;. As the P; are pairwise disjoint and in step 2b
we select primes not used before, we obtain |h;| = a; - H?Zl y}ii’j and |hl| = |h;| + 1. As
h; O Y = {1} for i # j and each R contains 1, it holds |z¢| = 1+ >0, a; - [T}, y;li’j =
14 q(y1,-..,Yn). Similarly we obtain |zy/| =1+ ¢ (y1, ..., Yn)-

It remains to argue that under the given assignment s and ¢ do not contain any numbers
with prime divisors < 3. Obviously, the assigned inputs only compute sets whose elements
solely have prime divisors greater than 3. By our construction and Lemma 8 the same



T.

Dose

holds for all nodes gf:,j. As a consequence, all nodes h; and h; have the same property
and due to zy — (U, B} — {1}) = {1} (cf. Step 2c) this also holds for z; = s. An
analogous argumentation shows that also ¢ does not contain any numbers with prime
divisors < 3. <

As it has been argued above that |¢| > |¢’|, Claim 9 implies the following two statements:

If (¢, ) € DE, then (C,Q, s,t) € CC. If (¢.¢') ¢ DE, then (C, @, s,t) € CCNC.

2. Now we show (CC,CCNC) <, (BC'(—,-),BC'(—,-)). The following algorithm computes
the reduction function. The italic comments are supposed to give some intuition.

1.

2.

3.

4,

5.

Let a circuit (C, Q, s,t) be given. We construct a circuit (C’, Q') by successively updating
the given circuit.
Add new unassigned input gates X and X’. Insert the following nodes into Q’:

{1,2}-s = (X = {1}), (
{1,2} -t = (X = {1}), (2
{12} (X =) = (X'U(X =) = {1}), (
X' —{2}- (X — ). (

The basic idea is as follows: X is supposed to be an interval containing s and t and X'
basically encodes the set X — s where this set is made disjoint to t by multiplying it with
{2}. As |s| > |t], the set X' Ut is subbalanced. But if |s| = |t|, then X' Ut is almost
balanced. Adding the element max(X')+1 would make the set balanced. This element is
generated in the next step.

Let p1 = 2 and py = 3. Add a circuit (Cyp, p,}, Qp,.pp}) according to Lemma 7. Put all

nodes of Qyp, 5,3 into Q'. Add a node g = (g%pl,pz} {1,3}) — (g%pum} —{1}).
Add a new unassigned input node O and the following nodes which are also added to @Q’:

O—((X'UtUg)—{l}), (5)
X' —(0—-{1}), (6)
t—(0—{1}), (7)
g—(0-{1}). (8)

Thus, roughly speaking, the output set O equals X' Ut U g and is only balanced if |t| > |s]|.
Let O be the output node of the circuit (C’, Q’).

» Claim 10. If (C,Q, s,t) € CC, then (C',Q’) € BC'(—, ).

Proof of Claim 10. Let (C,Q,s,t) € CC. Then there is some assignment with

|s| = [t],

lesnt,

K ={1} for all K € @, and

s and t only contain numbers whose prime divisors are all greater than 3.

We now consider the circuit (C’,Q’) under an assignment satisfying the four conditions just
mentioned. Moreover, we choose the input of Cy,, 1,3, X, X', and O such that

g ={1,3™} for m minimal with 4 - (max(sUt)+1) < 3™ and 4 | 3™ — 1 and all nodes in
Q{p,,p,} compute {1} (such an assignment exists by Lemma 7),
X={r|l<z< @ —1)2},

X' ={1}u{2} - (X —s), and

O=X'uUtug=(({2}- (X —s)))utu{3m}.

5:9
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In order to see K = {1} for all K € Q' it remains to consider the nodes added in the steps 2
and 4. Due to the choice of g and X it holds max(X) > 2-max(sUt) and thus the nodes defined
in (1) and (2) compute {1}. The choice of X’ immediately implies that the node defined in (4)
computes {1}. Now we argue for the node defined in (3): As X' = {1} U{2}- (X —s) we have
(1,2} (X =) = (X' U (X — ) — {1}) = {1,2}- (X — ) — (({1,2}- (X — 5)) — {1}) = {1,
The nodes defined in (5), (6), (7), and (8) compute {1} by the choice of g, X, X', and O.

As s and t only contain numbers whose prime divisors are > 3, the sets {2} - (X — s), ¢,
and {3™} are disjoint. Hence, |O| = max(X) — |s| + |[¢| + 1 = max(X)+1= % +1=
% and thus O is balanced. <

» Claim 11. If (C,Q,s,t) € CCNC, then (C',Q") € BC'(—, -).

Proof of Claim 11. For a contradiction, assume that (C,Q,s,t) € CCNC and (C', Q') €
BC'(—,-). As the second circuit is an extended version of the first circuit, both circuits can
now be considered under the same assignment. Choose an assignment with values from
Phin (NT) under which O is balanced and all K € Q' satisfy K = {1}. As by construction
Q C @', we have K = {1} for K € Q.

As in particular the nodes defined in (1) and (2) compute {1}, we obtain 1 € sNt,
X D {1,2} - suU{1,2} - t, and in particular s C X and max(X) > max(s) > 1. As
{1,2} - (X = s) = (X' U (X —5)) — {1}) = {1} (cf. (3)), it holds 2 - max(X) € X'. Since
the node defined in (4) computes {1}, we obtain X’ C {1} U {2} - (X — s). In particular,
max(X’) =2 max(X).

The fact that the nodes defined in (5), (6), (7), and (8) compute {1} implies 1 € ONX'NtNg
and O = X’ Ut U g. Moreover, it follows from Lemma 7 that g = {1,3™} for some m € N*.
Thus, as 1 € ¢,

OC{1}U({2}- (X —5)UtUg= ({2} - (X —5)) UtU{3™}. 9)

As O is balanced, max(O) is odd by Lemma 1. Since X D t and max(X’) = 2- max(X) is
even, max(0) = 3™ > max(X’). Due to (C,Q, s,t) € C, under the given assignment |s| > |¢|
and s and ¢ do not contain any numbers with prime divisors < 3. Due to that, since we have
seen 1 € sNt, and as by assumption (C,Q, s,t) ¢ CC, it even holds |s| > |¢|.

Putting things together, as we have proven (9), [s| > |t|, 1 € t, s C X, max(X') =
2 - max(X), and max(O) > max(X'), we now obtain |O| < max(X) — |s| + [t| +1 <
max(X)+1= max(;(')ﬁ < max(20)+1, which contradicts the fact that O is balanced. <

This completes the proof of (CC,CCNC) <,, (BC'(—,-),BC’(—,-)) and thus BC'(—,-) and
BC(—, ) are < -complete for RE. <

4 Smaller Sets of Operations Lead to Problems in NP

In this section it is shown that all problems BC(O) for O C {—,-} are in NP. Each of these
problems is proven to be <1°_complete for one of the classes L, NL, and NP.

4.1 The Complexity of the Problem Solely Admitting Multiplication

This section’s purpose is to argue for the NL-completeness of BC(-). Special cases of strong
results from the literature [7, 8, 13] essentially yield the following theorem.

» Theorem 12. There exists u € N such that for all non-empty sets A, B € Pxn(N) with
max(A) > p and max(B) > p the set A - B is subbalanced.
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» Theorem 13. BC(-) is <%¢-complete for NL.

Proof. In the following we present an NL-algorithm for BC(:). We make use of the fact that
the graph accessibility problem for directed graphs and the modifications of this problem

GAP>y = {(G, s,t) | G is an directed graph, there exist k paths from s to ¢}
and consequently
GAP_; = {(G, s,t) | G is an directed graph, the number of paths from s to ¢ is k}

for k € N* are in NL. We may assume the following for the input circuit C:

1. All gates in C are connected to the output gate go. Otherwise, delete all edges not
connected to the output, which can be done by an NL-subroutine.

2. No assigned input computes the empty set or the set {0}. Otherwise, under the assumption
of 1 we may reject immediately.

3. There is an assigned input gate a computing a set with maximum > 2. Otherwise: under
the assumption of 1 and 2,

we may accept if there is an unassigned input or no assigned input computes {0, 1}
we may reject if there does not exist an unassigned input and there is an assigned
input computing {0, 1}.

4. No assigned input gate but possibly a computes a set containing 0. Otherwise, under the
assumptions 1 and 3 we may delete 0 from all assigned inputs and insert 0 into a.

5. There is an assigned input node ¢g; computing {1}.

6. For each set M C Py, (N) there is at most one assigned input computing M. Otherwise,
select one of the nodes computing M, let all outgoing edges of nodes computing M start
in this node, and delete all other nodes computing M and their incident edges.

Assume there is an NL-algorithm P that accepts the set of those circuits C' which satisfy

the mentioned properties and whose unassigned inputs can be assigned with sets of positive

naturals such that the output set is balanced. Then the following NL-algorithm accepts

BC(-) (on input of a circuit C satisfying the properties listed above).

If P accepts on C', accept.

If there is an unassigned input, then add 0 into the set computed by the aforementioned
node a and accept if P accepts the modified circuit.

Reject.

Now we sketch P and argue that it is an NL-algorithm. Let p > 2 be the number mentioned in

Theorem 12, i.e., for A, B € Pg,(N) with max(A) > p < max(B) the set A- B is subbalanced.

The algorithm will query the following constant-size problem

@Z{(B7k‘1,k2) |Bg {(h,Zh) | hg {071a'--7,u'}a1 Sih SQ}v|B| S,u7k'1 SU7k2 S/,L,
k1 ko

I Bay FrsF ety || R [ B [] F7 s balanced}.
(hvih)eB i=1 i=1

1. If there are two assigned input gates each containing an element > pu, reject.
If there is an assigned input gate with two paths to go containing an element > p, reject.
2. If there are at least u assigned input gates computing a set with maximum > 2, reject.
3. In case there is an assigned input gate computing a set with maximum > 2 with at least
three paths to the output, reject.
4. Let vq,...,v, be the nodes of the circuit in topological order. For ¢ = 1,... n, if one of
the conditions
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v; is an unassigned input with at least three paths to g¢.
v; is an unassigned input with precisely one path to gc, such that there are at least u
unassigned inputs < v; with precisely one path to g¢.
v; is an unassigned input with precisely two paths to go, such that there are at least
1 unassigned inputs < v; with precisely two paths to g¢.
g1 is the only input with a path to v;.

is satisfied, then delete v; and let all outgoing edges of v; start in g;.

This step can be implemented as a non-deterministic logarithmic-space subroutine.

5. Let n; (resp., na) be the number of unassigned inputs with 1 path (resp., 2 paths) to
gc- Due to Step 4 we have max(ny,ng) < u. Moreover, let A be a set consisting of all
pairs (h, i) where h is a set computed by an assigned input with 1 < max(h) < p and
ip € {1,2} is the number of paths from h to gc. Due to Step 2 it holds |A| < u. We have
the following cases.

a. In case there is no assigned input gate with an element > pu:
If (A, n1,n2) € O, then accept. Otherwise reject.
Computing the triple (A, ny,n2) is possible in non-deterministic logarithmic space
whereas the subsequent test only requires constant time.
b. In case there is one assigned input gate g with an element > u:
Due to Step 1 the node g only has one path to the output.
i. Forall By,...,E,,,F1,...,F,, € P{1,...,u}) do the following
Compute the constant-size set

M:ﬁEi-ﬁFf- I »
=1

=1 (hin)EAh#g

Test whether g € Balys and accept in case the answer is “yes”.
ii. Reject.
By Proposition 2 this step can be executed in logarithmic space.

In the following we observe that each step of the algorithm P accepts (resp., rejects) if
and only if the circuit at the beginning of the execution of the respective step has a (resp.,
no) balancing assignment with values from Pg, (N1). It suffices to argue for the following
steps.

1. If the algorithm rejects in this step, then there are sets A and B with max(A) > p <
max(B) and a set M such that g0 = A- B+ M. Then according to Theorem 12 it
holds |(A U {0}) - B| < max(A) - max(B)/2. Hence for each set M € Pg,(N) the set
M-A-B C (Au{0})-B-(M —{0}) contains at most max(A)-max(B)-max(M)/2 elements
and its greatest element is max(A) - max(B) - max(M). Thus, the set is subbalanced.

2. If there are > u sets with maximum greater 2 connected to the output, then we can
interpret these sets as two sets with maxima > p and argue in the same way as in the
step before.

3. If the algorithm rejects in this step, then there are sets A and M with max(A) > 2 and
gc =A-A-A-M. If max(A) = 2, then Lemma 1 states that the output set is not balanced.
Otherwise, max(A) > 3 and according to Statement 2 of Lemma 6 the set A- A- A
contains less than max(A)3/2 elements. Hence go contains less than max(A)?-max(M)/2
elements and the maximum of this set is max(A)3 - max(M). Thus g¢ is subbalanced.

5. At the beginning of the execution of this step we have the following situation: Due to the
steps 1, 2, and 3 and because of the assumption we made on the input circuit there
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is at most one assigned input containing an element > p and this has at most one
path to the output gate.
are at most p assigned inputs with maximum > 2 and all these inputs have at most
two paths to the output gate.
is one assigned input with maximum < 2, namely ¢; = {1}.
Moreover, as observed above, because of Step 4 it holds max(n1,n2) < p and there are
no unassigned inputs with more than 2 paths to the output.

Thus we have to consider two cases. Either there is no assigned input with maximum
> p or there is one. In the first case the circuit has a balancing assignment with values
from Pg,(NT1) if and only if there are ny + ny sets Ev, ..., E,,, Fi,..., F,, € Pa,(NT)
such that [, ;yep ™ - 15, B - T122, F2 is balanced. This is what the algorithm tests.
In the second case, assigning one of the unassigned inputs with a set with maximum
> p would lead to a subbalanced output with the same argument as was used for
Step 1. Thus, only assignments with values from P({1,...,u}) have to be consid-
ered. Hence, there is a balancing assignment with values from Pg,(NT) if and only
if there are sets Ey,...,E,,,Fi,...,F,, € P({1,...,u}) such that [[}*, E; - [[[2, F? -
(H(h,ih)eA,h;ég hi”/) - g is balanced. This is what the algorithm tests.

It remains to observe that the circuit has a balancing assignment with values from
Pan(NT) before the execution of Step 4 if and only if it has afterwards:
In case there are more than p unassigned inputs with one path (resp., two paths) to the
output and more than p of them are mapped to sets containing elements > 2, then the same
arguments as for Step 2 yield that the output is subbalanced. Therefore, all but p of these
nodes can be replaced with g;.
Let g be an unassigned input with at least three paths to the output (if such a node exists).
Assigning this node with a set with maximum > 2 leads to a subbalanced output set with
the same arguments as were used for Step 3. Therefore, g can be replaced with g;.
For each node v; there exists an input that has a path to v;. Hence, if no input different
from ¢; has a path to v;, then v; computes {1} and can be replaced with g¢;.

By a straightforward reduction from a problem investigated by McKenzie and Wagner
[15] one receives the NL-hardness of BC(-). <

4.2 The Complexity of the Problems Not Admitting Multiplication

We consider the two remaining problems and prove that BC(—) is <!9-complete for NP and
BC(0) is in L. The NP-hardness of BC(—) can be obtained by a straightforward reduction
from CSAT. Hence, for the following theorem it suffices to argue for the membership in NP.

» Theorem 14. BC(-) is <!%%-complete for NP.

Proof. We sketch an NP-algorithm that accepts BC(—).

1. Input: a circuit C' with output node g and labeling function a.

2. Go from g¢ upwards always taking the left predecessor. Denote the input gate finally
reached by g.

3. If g is assigned, then: guess an assignment with values from P(a(g)) and accept if the
output set is balanced for this assignment, otherwise reject.

4. Here g is unassigned. Let M be the union of all sets computed by assigned inputs. Let
m = max(M) + 1. Guess an assignment such that I(g) = {m} and each unassigned input
either computes {m} or (. If under this assignment gc contains m, then accept.
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5. Guess an assignment of the unassigned inputs such that each of them computes a subset
of M. In case g¢ is balanced, accept. Otherwise reject.

If the algorithm accepts, then C € BC(—): It suffices to consider the 4-th step. If the
algorithm accepts in this step, then there is an assignment that maps each unassigned
input either to {m} or to () such that m is in the output set. Now change this assignment
such that the sets mapped to {m} are now mapped to {m +1,m+2,...,2m + 1}. Then
I(C)={m+1,m+2,...,2m + 1} is balanced and C € BC(—). Trivially, in case C' is
accepted in the 5-th step, C' € BC(—).

If the algorithm rejects, then C' & BC(—): If the algorithm rejects, then this happens in
step 3 or step 5. We argue for the first case. Here g is an assigned input gate. As the
output set is a subset of «(g), it holds g. C a(g) for any assignment and hence it suffices to
consider assignments that map all unassigned inputs to subsets of a(g). As the algorithm
rejects, go is not balanced under any of these assignments and thus C' ¢ BC(—).

It remains to argue for the case where the algorithm rejects in step 5. In this case, g is an
unassigned input and as step 4 did not accept, there is no assignment putting elements
outside of M into the circuit’s output set. Hence, it is sufficient to consider assignments
that solely map to subsets of M. As the algorithm rejects, none of these assignments
yields a balanced output set and hence there is no assignment at all under which the
output set is balanced. Therefore, C' ¢ BC(—). <

The following theorem basically follows from Proposition 2.

» Theorem 15. BC(0) € L.

5 Conclusion and Open Questions

The following table summarizes our results, namely the lower and upper complexity bounds
for the complexity of BC(O) with O C {—,-}.

BC(O) for O = | <!%_hard for contained in
0 L, Theorem 15

{-} NP, Theorem 14 | NP, Theorem 14
{} NL, Theorem 13 | NL, Theorem 13
{1} undecidable, Theorem 4

To our knowledge, in contrast to all results from previous papers on complexty issues

concerning decision problems for integer circuits (e.g., [15, 19, 2, 9, 11, 1]) or related constraint
satisfaction problems ([10, 5]), a problem admitting only one arithmetic operation is shown
to be undecidable. Beginning with this problem, namely BC(—, ), the problems BC(O) for
O C {—, -} are systematically investigated and for each of these problems the complexity is
precisely characterized. It turns out that decreasing the size of the set of allowed operations
yields problems that are in NP. In particular, all these problems are <!95-complete for one
of the classes L, NL, and NP.

Hence, in some sense the questions of this paper are completely answered. Nevertheless,
there arise new questions from our results: Is there a set O C {—, U, N} such that BC(OU{+})
is undecidable? And if so, for which of the sets this is the case and for which it is not?
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