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—— Abstract

Motivated by the problem of shape recognition by nanoscale computing agents, we investigate
the problem of detecting the geometric shape of a structure composed of hexagonal tiles by a
finite-state automaton robot. In particular, in this paper we consider the question of recognizing
whether the tiles are assembled into a parallelogram whose longer side has length ¢ = f(h), for
a given function f(-), where h is the length of the shorter side. To determine the computational
power of the finite-state automaton robot, we identify functions that can or cannot be decided
when the robot is given a certain number of pebbles. We show that the robot can decide whether
¢ = ah+b for constant integers a and b without any pebbles, but cannot detect whether £ = f(h)
for any function f(x) = w(z). For a robot with a single pebble, we present an algorithm to
decide whether ¢ = p(h) for a given polynomial p(-) of constant degree. We contrast this result
by showing that, for any constant k, any function f(z) = w(2%+2)
with k states and a single pebble. We further present exponential functions that can be decided
using two pebbles. Finally, we present a family of functions f,(-) such that the robot needs more
than n pebbles to decide whether ¢ = f,,(h).

cannot be decided by a robot
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Figure 1 An exemplary tile configuration. Figure 2 A N-NE-parallelogram with height 4

The top right part of the figure shows the com-  and length 10 = 2-44-2. The black arrows indicate

pass directions we use to describe the move-  the zig-zag movement of a robot as described in

ment of a robot. the proof of Theorem 2. The red arrow shows the
final NE movement.

1 Introduction

The DNA-based self-assembly approach [20], in which large structures have to be assembled
from DNA tiles in a self-organized fashion, is still quite error prone. Numerous techniques
have been studied to reduce the error rates (e.g., [6]), but the research typically focuses on
designing DNA tiles or assembly processes that reduce the error of incorrect attachments.
Given the progress on designing so-called DNA walkers (see, e.g., [22,24,25]), it is foreseeable
that also simple molecular robots could be used in order to make the assemblies more reliable.
For example, such robots may be used to repair structures that did not self-assemble correctly.
In order to be able to repair a given structure, it first has to be possible to detect whether a
structure is not in a correct shape, which motivates the problem of shape recognition. Besides
verifying self-assembled DNA structures, shape recognition could also be useful for minimal
invasive surgery applications, such as looking for harmful substances or cells in a human
body.

Naturally, molecular robots may have very limited capabilities, which is why we are
focusing on robots with the computational power of a finite-state automaton. More precisely,
we build upon the model introduced in [10] where finite-state automaton robots move on a
structure composed of hexagonal tiles, represented as a subgraph of the infinite triangular
lattice, and rearrange the tiles into a certain shape. Although shape formation with
computationally restricted agents, as considered in [10], has been extensively studied in
many other models (see, e.g., [5,13,17,26]), to the best of our knowledge, the closely related
problem of shape detection has never been explicitly studied in our setting.

1.1 Model

We assume that a single robot is placed on a finite set of hexagonal tiles. Each tile occupies
exactly one node of the infinite triangular lattice G = (V, E) (refer to Figure 1). We assume
that the subgraph of G induced by all nodes occupied by tiles is connected. Every node
u € V is adjacent to six neighbors, and, as indicated in the figure, we describe the relative
positions of adjacent nodes by six compass directions.
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Table 1 This table summarizes the results for recognizing whether a given parallelogram has
height h and length ¢ = f(h) given a certain number of pebbles.

Pebbles Possible Impossible Remarks Refer to
0 flz)=az+b f(z) = w(x) a,b constant Section 3.1
n, a; constant for all 4,
1 f@)=anz™+...4a0 f(zx) =w(@*?) k is the number of Section 3.2
the robot’s states
2 flz) = 2% — s constant Section 3.3
—
s+1
n fn(x) frt1(x) — Section 3.4

The robot is initially placed on a tile. It can move on the tile structure and carry a
(possibly empty) set of pebbles, which can be placed on tiles in order to mark them. A tile
can be marked by at most one pebble.

More specifically, the robot acts as a deterministic finite automaton and operates in
look-compute-move cycles. In the look phase the robot can observe the node it occupies
and the six neighbors of that node. For each of these nodes it can determine whether it is
occupied by a tile and whether a pebble is placed on that tile. In the compute phase the
robot potentially changes its state and determines its next move according to the observed
information and the number of carried pebbles. In the move phase the robot can either take
a pebble from its current node (if its tile is marked by a pebble), place a pebble it is carrying
at that node (if its tile is not already marked and the robot carries at least one pebble), or
move to an adjacent occupied node.

Note that even though we describe the algorithms as if the robot knew a global orientation,
we do not actually require the robot to have a compass. For the algorithms presented in this
paper, it is enough for the robot to be able to maintain its orientation with respect to its
initial orientation.

1.2 Related Work

To the best of our knowledge, shape recognition has never been investigated in our model.

However, solving problems by traversing a tile structure with simple agents has been studied
in many different areas. For instance, [23] considers the problem of deciding whether a
structure is simply-connected. Other problems include Gathering and Rendezvous (e.g., [21]),
Intruder Caption and Graph Searching (e.g., [2,8]), or Black Hole Search (e.g., [16]).

For many of the above problems it has also been investigated whether pebbles can be
helpful. This question is particularly well-studied for the classical Network Exploration
Problem (see, e.g., [4]). For example, it is known that a finite automaton robot can neither

explore all planar graphs [9] nor find its way out of a planar labyrinth [3] without any pebbles.

For the Labyrinth Exploration Problem (see [14,15] for a comprehensive survey), it is known
that having a single pebble does not help the robot [11]. However, a robot with two pebbles
can solve the problem [1].
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1.3 Qur Contributions

In this paper we investigate the problem of shape recognition by a single robot. Specifically,
we begin with testing whether a given tile formation is of a certain simple shape, in particular,
a parallelogram. Then, we consider the problem of deciding for a given function f(-) whether
the longer side of a parallelogram has length f(h), where h is the shorter side’s length. We
particularly investigate this problem under the assumption that the robot is given a set of
pebbles that can be used to mark certain positions on the tile structure. An overview of
our results is given in Table 1, in which we give concrete functions f(-) the robot is able
or not able to decide given a certain set of pebbles. Our ultimate goal is to investigate
the computational capabilities of a simple robot concerning shape recognition, and to what
extent the robot can benefit from employing pebbles.

As we do not make any assumptions on the length of the shorter side h of the parallelogram,
we cannot assume that a robot with only a constant number of possible states is able to count
up to h, even less so evaluate the function f(h). Thus, if the robot does not have pebbles at
its disposal, its only option is to make use of the environment’s geometry. For example, the
robot can ‘measure’ h tiles along the longer side of the parallelogram by starting in a corner
and moving diagonally until reaching the opposite boundary. Furthermore, the robot can
measure 2h, 3h, or even ah tiles, for any constant a, along the longer side.

In Section 3.1 we develop this intuition further, and show that the robot can decide
whether the longest side of the parallelogram is £ = ah 4+ b, where a and b are constants. On
the other hand, we show that the robot without pebbles is not able to recognize a superlinear
function. In Sections 3.2 and 3.3 we show that we can tremendously increase the robot’s
computational power by giving it a single pebble or two pebbles, respectively. Having the
ability to mark any tile with a single pebble allows the robot to recognize any polynomial
function of constant degree; and being equipped with two pebbles gives the robot the ability
to recognize power tower functions, where the height of the power tower is constant or even
linear in h. Finally, in Section 3.4 we show that for any number of pebbles there exists a
function that requires that many pebbles to be decided by the robot.

2 Recognizing Simple Shapes

First, observe that a single robot can easily detect whether the initial structure is a line, a
triangle, a hexagon, or a parallelogram.

Line. For example, to test if a given tile shape is a line, the robot first chooses a direction
in which there is a tile (say, w.l.o.g., N), walks in that direction as far as possible (i.e., until
there is no tile in that direction anymore), and then traverses the structure into the opposite
direction until no longer possible. If it ever encounters a tile to the left or right of any
traversed tile, the structure is not a line.

Parallelogram. To test if a given tile shape is a (filled) parallelogram axis-aligned along
the directions N and NFE (see Figure 2), first, the robot moves to a locally southernmost tile
of the structure by moving S and SW as long as there is a tile in any of these directions. It
then traverses the shape column by column in a snake-like fashion by repeating the following
movements: First, the robot moves N as far as possible; it then moves one step NE; then it
moves S as far as possible, and it finally moves one step NE. The above procedure is repeated
until a NE movement is impossible. By performing local checks alongside the movements
described above the robot can verify whether the tile shape is a parallelogram.
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The other simple shapes can be easily tested in a similar fashion.

» Observation 1. A robot without any pebble can detect whether the initial tile configuration
is a line, a triangle, a hexagon, or a parallelogram.

3 Recognizing Parallelograms with Specific Side Ratio

As noted in Observation 1, a single robot without pebbles can verify whether a given shape
is a parallelogram. To investigate the computational power of a finite automaton, in this
section we consider the problem of deciding whether a parallelogram has a given side ratio.
Additionally, we examine how pebbles can be helpful to decide more complex side ratios.

We assume w.l.o.g. that the robot needs to detect whether the given tile configuration is
a parallelogram that is axis-aligned along the north and north-east direction, as indicated in
Figure 2. We denote a maximal sequence of consecutive tiles from N to S as a column and a
maximal sequence of consecutive tiles from SW to NE as a row. Let h be the size of each
column, i.e., the parallelogram’s height, ¢ be the size of each row, i.e., the parallelogram’s
length, and let h < £. We number the columns of the parallelogram from 0 to £ — 1 growing
in the north-eastern direction.

3.1 A Robot without any Pebble

First, we point out that a single robot can detect whether the structure is a parallelogram in
which its length ¢ is a linear function of its height h.

» Theorem 2. A single robot can detect whether the tile configuration is a parallelogram
with £ = ah + b for any constants a,b € N.

Proof. First, the robot verifies whether the structure is a parallelogram. If so, the robot
moves to the northernmost tile of column 0. It then traverses the tile structure in two stages
to verify the ratio of the sides. In the first stage, the robot “measures” the distance ah along
the length of the parallelogram moving in a zig-zag fashion as depicted in Figure 2. In the
second stage the robot measures the second term b. More specifically, in the first stage, the
robot repeats the following movements in a loop: (1) move SE as far as possible, (2) move N
as far as possible, and (3) make one step NE. After having performed the complete sequence
of SE movements a times, the robot moves on to the second stage, in which it makes an
additional b NFE steps.

If the robot reaches the easternmost column before completing the above procedure, or
finally halts on a tile with a neighboring tile at NE, it terminates with a negative result.
Otherwise, it terminates with a positive result. It is easy to see that ¢ = ah + b if and only if
the robot terminates with a positive result. <

» Remark. The algorithm in the previous theorem can be adapted for b € Z, i.e., b can also
be a negative integer. To achieve that, we halt the execution of the first stage once the robot
has performed |b| SE steps, then move SW as far as possible, and continue the first stage
from there. Then, £ = ah + b if and only if the robot eventually reaches the southernmost
tile of column ¢ — 1.

» Remark. The algorithm can be further extended to apply in the case of a rational a. Let
a = p/q be an irreducible fraction. Instead of moving in a zig-zag fashion in the first stage,
the robot alternates between moving p steps NE and ¢ steps S. To exactly end up at the
southernmost tile of column ¢ — 1, the robot needs to skip the very first NE and S step.
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We have shown that a single robot can determine whether the length of a parallelogram
is given by a certain linear function of its height. However, that is as much as one robot can
hope for. Indeed, a single robot is not able to decide whether the length of the parallelogram
is given by a superlinear function of its height, as the following theorem states.

» Theorem 3. A single robot without any pebbles cannot decide whether the tile configuration
is a parallelogram with £ = f(h), where f(x) = w(x).

Proof. Suppose there is an algorithm that lets the robot decide whether the tiles are arranged
into a parallelogram with ¢ = f(h) for some superlinear function f(x) = w(x). Let k be the
total number of states used by the robot in the algorithm. Choose h large enough such that
LWJ > k, which can be done since f(h) = w(h).

Consider the execution of the algorithm on a parallelogram P with height h and length
£ = f(h). We will show that there exists another parallelogram with height kA and length
greater than f(h) on which the robot will eventually terminate in exactly the same state as
on P, which contradicts the assumption that the algorithm is correct.

We first place the robot on the northernmost tile of column 0. First, observe that if the
robot does not visit column ¢ — 1 during the execution of the algorithm, it cannot correctly
detect the length of the parallelogram. Thus, the robot visits this column at least once.

Consider the execution of the algorithm as a sequence (p1,ps,...) of tuples of nodes and
states p; = (u;,q;). Denote as 1, ..., T, the subsequences of the execution of the algorithm,
where each subsequence starts whenever the robot leaves a node of column 0 or £ — 1, and
ends when it enters a node of one of those columns. More specifically, the first and last node
of each m; is a node adjacent to column 0 or £ — 1 and the node immediately before and
after each m; is a node of 0 or ¢ — 1. Note that in each m; the robot exclusively moves in the
columns between column 0 and ¢ — 1.

First, consider a subsequence 7; at the beginning of which the robot leaves, and at the
end of which, enters the same column 0 (or £ —1). Let p; = (s;,¢;) be the node-state
tuple right before the robot enters the subsequence m; when executing the algorithm on
the parallelogram P. Then, the robot would execute exactly the same subsequence 7; on a
parallelogram P’ with a larger length than the one of P, if it were placed on a node of P’
corresponding to s; with the same state g;.

Next, consider a subsequence 7; at the beginning of which the robot leaves, w.l.o.g.,
column 0, and at the end of which it enters £ — 1. Since the robot completely traverses the
tile structure from column 0 to £ — 1, there must be a row R; in which the robot steps on
no less than LW] > k tiles. Therefore, there will be two nodes u; and v; in the row R;
in which the robot appears in the same state. Let c,,c, be the column indices of u; and
vj, respectively, and define d; = |¢, — ¢,|. Let (sj,q;) be the node-state tuple of the robot
immediately before it enters the subsequence 7; and (s;»7 qé) be the node-state tuple of the
robot immediately after the subsequence 7; is finished. Then, consider a parallelogram
with height h and length f(h) + cd;, where ¢ € Ny. If the robot starts in the same state
g; on the node corresponding to s; (i.e., the node in column 0 and the row of s;) in the
parallelogram @, it will move entirely between the westernmost and easternmost column of
@ until it reaches the node corresponding to s} (i.e., the node of column f(h) + cd; and the
row of s%) in @ in state ¢;.

Now consider the execution of the algorithm on a parallelogram P’ with height h and
length f(h) + [];d; for each subsequence 7; where the robot completely traverses the
parallelogram between column 0 and ¢ — 1. By the above argument, the robot will enter
and leave those columns on the same tile and in the same state as in the execution of the
algorithm on P. Thus, executing the same algorithm on the parallelogram P’ the robot will
ultimately terminate in the same state as if it were on the parallelogram P. Therefore, the
robot cannot decide whether the initial tile configuration is a parallelogram with £ = f(h)
for any superlinear function f(z) = w(z). <



R. Gmyr et al.

3.2 A Robot with a Single Pebble

In the following, we demonstrate that, in contrast to the negative result of Theorem 3, a
single robot can decide any polynomial of constant degree.

» Theorem 4. A single robot with a pebble can decide whether the tile configuration is a
parallelogram of height h and length £ = p(h) for any given polynomial p(-) of constant degree
n.

Proof. Define the falling factorial of z as (z); := x(x — 1)---(z — i+ 1), and transform
the input polynomial into the form p(z) = an - ()n + an—1 - (¥)n—1 + ... + ag. We will
show that the robot can move the pebble in phases, by |a; - (h);| steps in each phase
i. Let lem;(z) := lem(z,...,2 — i + 1), where lem is the least common multiple, and
gi(x) := (x);/lem;(z). From [12] it follows that lem;(z) | (x);, and that g;(z) is periodic with
period lem(1,...,i — 1), i.e., g;(z) = gi(z + lem(1,...,i — 1)). Let p;(x) be the sum of the

first n — ¢ summands of p(x), i.e., p;() = an - (X)n + an-1 - ()1 + .-+ anit1 - (X)n—it1.

Initially, the pebble is located on the northernmost tile of column 0. To test whether
¢ = p(h), the robot will move the pebble along the northernmost row in phases, until it is
eventually shifted p(h) — 1 steps to the NE from its original position. If upon termination
the pebble is located at the northernmost tile of column ¢ — 1, then p(h) = £.

The algorithm proceeds in phases n,...,0. We maintain the invariant that after phase
i for all i > 0, the pebble is located at the northernmost tile of column p;(h). That is, in

phase ¢, the robot moves the pebble |a; - (h);| steps NE, if a; is positive, and SW, otherwise.

In the final phase i = 0, the robot moves the pebble by |ag — 1| steps NE, if ag > 1, and SW,
otherwise. For now, assume that each movement can be carried out without moving the
pebble outside of the parallelogram. We will later describe how to lift this restriction.

We now describe how the pebble is moved by |a; - (h);] steps. First, note that a; - (h); =
a;-g;(h)-lem;(h). The first factor a; is a constant. The second factor g;(h) can be determined
as follows. We encode all possible values of g;(-) for all i € {0,...,n} into the robot’s memory,
which can be done since n is constant and g;(-) has a constant period. Before the main
algorithm’s execution, the robot can compute g;(h) for all ¢ by moving through column 0
from north to south: Starting with g;(1), in every step to the south the robot computes the
subsequent function value until the period of g;(-) is reached, in which case it restarts with
gi(1). When it reaches the southernmost tile of the column, it knows g;(h) for all i.

We next show how the robot moves the pebble by lem;(h) steps, which, by repeating
the movement |a; - g;(h)| times, concludes how the complete movement by |a; - (h);| steps is
performed. Assume the pebble is in some column ¢ and lem;(h) | ¢ (which we will prove by
induction shortly). The robot alternates between the following two operations: (1) move
the pebble into column ¢’ by moving it one step NE, if a; > 0, or SE, otherwise; (2) verify
whether lem;(h) | ¢ as follows. The robot first performs the zig-zag movement from the proof
of Theorem 2 to verify whether h | ¢/, i.e., whether a NE movement moves the robot onto a
tile occupied by the pebble. It continues to analogously verify whether h — 1| ¢, h — 2 ¢,

.., h—i+1] ¢ by performing a modified zig-zag movement an additional ¢ — 1 times. Here,
the zig-zags of the j-th verification are adjusted accordingly by moving j steps to the south
prior to each sequence of SE movements. The robot stops alternating between the two above
operations once the pebble has been moved to a column ¢’ such that lem;(h) | ¢’ for the first
time. Then, the pebble must have been moved by lem;(h) steps.

It remains to prove that when the robot wants to move the pebble, currently occupying a
node of column ¢, by lem;(h) steps for some i, then lem;(h) | ¢. The invariant holds initially
for ¢ = 0. Now assume it holds immediately after having moved the pebble by lem;(h) steps
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into column ¢ =+ lem;(h). By induction hypothesis, lem;(h) | ¢. Afterwards, the robot can
move the pebble by either lem;(h) steps again, in which case lem;(h) | ¢ £ lem; (k) holds, or
it moves it by lem;_1(h) steps, and lem;_1(h) | ¢ £ lem; (k) holds since lem;_q () | lem; (h).

Finally, we show how the robot can resolve overflows, i.e., situations in which the above
algorithm would move the pebble outside of the parallelogram. First, note that the execution
of the algorithm after an overflow can, in principle, be continued by the robot by “mirroring”
all movements beyond the westernmost or easternmost column, carrying them out into
reverse direction. Assume that h is sufficiently large such that |a; - (h); + ...+ ao| < p(h) for
all ¢. For all small h = O(max;(|a;|)) we can encode the constantly many possible function
values into the robot’s state and test them prior to the algorithm’s execution by traversing
the two sides of the parallelogram once. If throughout the execution of the algorithm the
robot ever attempts to move the pebble into a column west of column 0 or east of “virtual”
column 2¢ (while performing the mirroring method from above), it would subsequently not
be able to ever move the pebble back into column ¢ (following from the assumption that
h is sufficiently large), and consequently ¢ # p(h). Therefore, the robot can prematurely
terminate with a negative result whenever it encounters such a situation. |

The next theorem gives a lower bound on the amount of states needed to decide whether
¢ =h° a € N, thereby proving that no robot with one pebble can decide whether ¢ = f(h)
for f(z) = w(z*)Va € N.

» Theorem 5. A robot with k states and a single pebble cannot decide whether the tile
configuration is a parallelogram of height h and length £ = f(h), f(x) = w(x8+2).

Proof. First, we give a brief outline of the following proof. Assuming such a robot exists, we
place the robot with its pebble on the northernmost tile of column 0 of a parallelogram P with
height h and length ¢ = f(h). We begin by subdividing P horizontally into parallelograms of
height i which we will refer to as blocks. We define the westernmost and easternmost blocks
as the outer blocks O, and O,., respectively, and denote all other blocks as inner blocks. We
choose the length b of all inner blocks such that when the robot moves through a sequence of
inner blocks (from NW to SE or SE to NW), while either carrying the pebble the entire time
or not visiting it at all, its row and state repeat every b columns. The outer blocks will have
length at least b.

As in the proof of Theorem 3, we consider the execution of the algorithm as a sequence
of tuples of nodes and states, and divide it into subsequences m, ..., m,,. Subsequence 7;
starts with the robot carrying the pebble into some outer block, and ends when it reaches
the opposite outer block while carrying the pebble. The robot terminates in 7,,, and, as this
is the final subsequence, before entering the opposite block while carrying the pebble. We
define 7, and ¢n, to be the robot’s row and state at the beginning of ;. By considering
where the robot places and picks up the pebble, we identify a value d such that ., and
¢r, Temain the same if the robot is executed on a parallelogram P’ of height h and length
f(h) + db, and therefore falsely terminates with a positive result.

We begin the proof by identifying a value b. Consider the robot’s execution without the
pebble on a parallelogram of height hA and infinite length in both directions, starting in row
r and state g. If the robot moves by at most kh columns in NW or SE direction, we define
dy,q = 1. Otherwise, by the pigeonhole principle, there are two columns that are visited on
a node of the same row and in the same state. In this case, we define d, 4 to be the distance
between these two columns. Note that the robot moves arbitrarily far in this case, its row and
state repeating every d, , columns. Let D := {d, 4}. Analogously, we consider the execution
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of the robot if it initially carries the pebble, and define dj , := 1, if it ever drops the pebble
or moves by at most kh columns in NW or SE direction. Otherwise, there is a repetition
every d. , columns, and the robot carries the pebble indefinitely far. Let D* := {d; ,}.

We now show that |D| < 3k. If the robot ever is in row 7 in state g, or row 7’ in state ¢/,
and visits the northernmost (or southernmost) row in the same state ¢* in both executions,
the executions will be identical afterwards, and therefore, d, 4 = d,» . Hence, there can only
be k combinations of rows and states with distinct executions in which the robot visits the
northern- or southernmost row, and these executions contribute at most 2k distinct distances
to D. Now, let ¢, r, 7" such that the robot does not visit the northern- and southernmost row
when started in state ¢ in row r or r’. Clearly, the robot performs the exact same actions in
both executions. Therefore, d, , = d,s 4, and these executions contribute at most k& additional
distances. Therefore, |D| < 3k. Analogously, we have |D*| < 3k.

We set b:=[[scpup- 6. If b < kh, redefine b := (kh + 1)b. It holds that b = O(hS*). We
subdivide P into a maximum number of blocks such that inner blocks have length b and
outer blocks have length greater than b.

We now identify a value d. Consider the subsequence m;, ¢ < m. W.l.o.g., assume the
robot moves the pebble from Oy to O,. Let (rj,¢;,¢;), 7 =1,...,1 be the row, column and
state in which the pebble is dropped during m;. We distinguish two cases: In the first case,
the robot moves by more than kh columns while carrying the pebble. In this case, it will
move until reaching the easternmost column C,. due to having a repetition in its state and
row. Therefore, c¢j41 —¢; < kh for j <. In this case, set d; = 1.

In the second case, the robot does never move by more than kh columns to the east while
carrying the pebble during ;. Thus, the pebble is dropped within the first (i.e., western)
kh columns of each inner block. P contains Q(f(h)/b) = w(h?) > (kh)? inner blocks, for
sufficiently large h. For some column ¢, we denote its index inside its block as ¢é. Hence, for
each inner block, there exists a j such that ¢; is in that block and é; < kh. There are at
most h - kh - k = (kh)? possibilities for (r;,¢;,q;). By the pigeonhole principle, there exist
s < t such that ¢s < ¢; and (1, Cs, qs) = (1, G, q). We set d; := (¢ — ¢5)/b, i.e., the number
of inner blocks between c; and ¢;, and d := H:’;l d;.

Let P’ be the parallelogram of height h and length f(h) + db. Now we show that
(Pxis1sGr,y) is the same in the execution on P and P’ for all i < m and that the robot
terminates with the same result during m,,. To that end, we will again look at a subsequence
m;, © < m where, w.l.o.g, the pebble is carried from O, to O, and compare the executions on
P and P'. Let (r5,¢j,q5), 7 =1,...,0 as above. The first [ times the pebble is dropped on P’
are identical to those on P, since the only difference in the execution between dropping the
pebble at a column ¢;, j <[ and picking it back up again can be when the robot moves to
column £ — 1. As argued above, moving to column £ — 1 on P and P’ cannot be distinguished
by the robot due to a repetition in row and state and by our choice of b. Thus, the pebble is
picked up in the same state again.

Next, we need to look at what happens on P’ after the pebble has been picked up for
the [-th time. Here, we distinguish between the two cases from above. In the first case, the
robot carries the pebble by more than kh columns to the east on P before entering O, and,
consequently, continues until reaching column ¢ — 1. The same behavior occurs on P’, only
that the robot traverses an additional d blocks and, by our choice of b, enters O, in the same
row and state as on P.

In the second case, it never carries the pebble by more than kh columns to the east during
;. We identified s,t such that (rs, és,qs) = (r¢, ¢, q¢), i.e. the pebble is picked up in the
same row, block-column, and state. Note that whenever the robot drops the pebble in some
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column ¢ of two different inner blocks, it will pick the pebble up again in the same state:
This is clearly true if the robot does not visit column 0 and ¢ — 1 between dropping and
placing the pebble. Otherwise, the robot traverses more than kh columns without seeing the
pebble, i.e. its row and state repeat every § columns for some § € D. Consequently, by our
choice of b, after both drops the robot will return to the pebble (and pick it up) in the same
state. Therefore, in both the executions on P and P’ the robot will repeatedly drop and
pick up the pebble, each repetition occurring d; blocks to the east from the previous one.
As d; | d, the robot enters O, in the same row on P and P’ and we thus also have identical
(Tﬂ'i+1 ) qﬂ'z‘+1)'

It only remains to show that the robot terminates with the same result during 7,,,. W.l.o.g,
let m,, begin in O; on P, and recall that the pebble does not reach O, before the robot
terminates. As argued before, the executions on P and P’ can only differ when the robot
drops the pebble and moves to the easternmost column of the respective parallelogram. Due
to a repetition in state and row, and by our choice of b, the robot again enters the respective
easternmost columns in the same state and row, and afterwards picks up the pebble in
the same state on both P and P’. Therefore, the robot ultimately terminates in the same
state. |

3.3 A Robot With Two Pebbles

Next, we show that having two pebbles enables the robot to decide certain exponential
functions. Note that by Theorem 5, the following result is optimal in the number of pebbles
used.

» Theorem 6. A robot with two pebbles can decide whether a given tile configuration is a
parallelogram with height h > 1 and length

2h

(=22 , where the power tower is of constant height.

Proof. Let s + 1 be the height of the power tower (i.e., there are s twos in the function)
and denote the two pebbles as a and b. Pebble a always resides in the northernmost row
of the parallelogram. We use a’s column index as a register on which we perform basic
arithmetic operations using b as a helper. Note that although the easternmost column of
the parallelogram has index ¢ — 1, we describe the algorithm as if there was an additional
column ¢. A movement from or to column £ can easily be simulated by the robot.

The algorithm is divided into three stages. The purpose of the first stage is to verify that
£ is a power of 2. In the second stage, we move a from column ¢ to column log(s_l)(ﬁ), where
log(s_l)(-) denotes the application of the logarithm s — 1 times. In the third stage, we verify
that a is in column 2" after the second stage. If in any of the three stages the robot detects
a violation of any assumption, i.e., if according to the algorithm a would have to be moved
beyond column 0 or ¢, or should be in column 0 or ¢, but is not, the robot terminates with a
negative result.

Before we describe the three stages in more detail, we describe how a’s column index
can be multiplied or divided by any constant ¢ > 1, provided that the result is integer and
between 0 and ¢. We first place b at a tile south of a, and then move a into column 0. In
case of a multiplication, we then alternatingly move a NE by c steps, and b SE by one step,
until b reaches column 0. In case of a division, we correspondingly move b by ¢ steps and a
by one step.

In the first stage, the robot does the following. It first places a at the northernmost tile
of column 1. It then repeatedly multiplies by 2 (i.e., multiplies a’s column index by 2) using
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the above-mentioned strategy. If b reaches column 0 immediately after a has reached column
£, £ is a power of 2.

At the beginning of the second stage, a is placed at the northernmost tile of column /.
The stage is divided into s — 1 phases, where in each phase a is moved from column i to
column log(i). Note that since s is a constant, the robot can count the number of phases.
Furthermore, after the first phase £ is verified to be a power of 2, and, as we will show later,
if a@’s column index is 2% at the beginning of a phase, but z is not a power of 2, then the
phase fails. Therefore, a’s column index is ensured to be a power of 2 at the beginning of
each phase.

In each phase, a is moved from some column 2” to column z in a step-wise fashion. More
precisely, in the j-th step it is moved from column 571 - 22/2"" to column 57 - 2°/2". This
is continued until the resulting column index is not divisible by 4 anymore, i.e., when it
becomes 5'°8% . 2. The general idea is to use the exponent of 5 as a counter on the number of
times x needs to be divided by 2 until it becomes 1, which yields its logarithm. This idea is
based on [7, Section 14].

It remains to show how a single step can be performed. First, the robot moves a from
column 5771 - 22/2”"" into column 57~ - 32/2’ by alternatingly dividing by 4 and multiplying
by 3. After each repetition, the robot verifies whether a’s column index is divisible by 2.
This is done by traversing the northernmost row from west to east until a is reached, and
counting the number of steps modulo 2. Note that if x/27~! is even, which is the case if  is
a power of 2, then the division by 4 is always possible. Otherwise, the division by 4 will fail
at latest when x/27 *1‘ becomes 1. Once a’s column index is not divisible by 2 anymore, a is
in column 57~ . 3%/2",

Analogously, by alternatingly dividing a’s column index by 3 and multiplying by 2 as long
as the column index is divisible by 3, the robot afterwards moves a into column 51 . 22/2’
By multiplying with 5, @ is finally moved into column 57 - 2¢/2’.

After each step, the robot verifies whether a’s column index is divisible by 4. If so, it
continues with the next step. Otherwise, j = logz, and thus @ must be in column 5°8% . 2.
From there, a can easily be moved into column x by first dividing by 2, and afterwards
alternatingly dividing by 5 and multiplying by 2 until the column index is not divisible by 5
anymore.

Note that if a’s column index is 2* at the beginning of some phase, but x is not a power

of 2, then at some step /27! will be odd, and, as described above, the algorithm will fail.

Further note that for A > 8, which can be verified beforehand, moving a from column 2%

(where, consequently, z must be at least 8) to 5°6% . 2 can only decrease a’s column index.

Therefore, although a might be moved NF in the final steps of a phase, it can easily be seen
it will be moved sufficiently far SW within the first steps such that it is never moved beyond
column ¢. If that happens nonetheless, the robot terminates with a negative result.
Finally, in the third stage, the robot verifies that @ is in column 2" by diving by 2 for
h times. To count up to h, b initially resides in row 2 and is moved one step S after each
division. When b reaches a southernmost tile, a must lie in column 4, which can easily be
verified by the robot. <

» Remark. The algorithm of the previous theorem can be adapted for any power towers
whose height is a linear function ah + 8 for constants a and 5. To count the number of
phases in the second stage, we move a south after each phase. The highest exponent of the
power tower may also be a function linear in A, which can be handled correspondingly in the
third stage.
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» Remark. The algorithm can further be adapted for any other base 8. Note that if 3 is a
composite number, we need to apply the operations to its prime factors separately, taking
into account their powers. Since it is well-known that for n > 25 there is always a prime
between n and (1 + 1/5)n [19], we can use the two smallest primes that are no prime factors
of 8 instead of 3 and 5 in the second stage of the algorithm.

» Remark. In contrast to the negative results of the previous sections, it can be shown that
for every computable function f there exists a computable function f’(z) = w(f(x)) that
can be decided using two pebbles. The main idea used in the proof is to simulate a Turing
machine to decide f(z) = y for some z and y by simulating a program machine [18] as
described in the following section. f’(x) is then chosen as a product of prime factors, where
the exponent of one prime factor is f(z), and the exponents of the additional factors are
chosen to provide exactly the space required for the simulation. Throughout the algorithm’s
execution, the values of the program machine’s registers are represented as the additional
prime factor’s exponents. If the Turing machine terminates with a positive result, and the
given space exactly matches the required space for the simulation, the robot terminates with
a positive result.

3.4 A Family of Functions Requiring an Increasing Amount of Pebbles

The discussion from the previous sections naturally brings up the question whether there is
a function family whose detection requires an increasing amount of pebbles. In this section,
we answer that question positively. As the proofs are fairly straightforward, we mostly state
the general ideas, leaving out some details.

In order to simplify analysis, we consider a robot with pebbles operating on a line segment
instead of a parallelogram. We also assume that pebbles are distinguishable and can be
placed onto the same tile. Note that it is easy to simulate colors of a finite amount of pebbles
on a line segment by keeping track of the pebbles’ order. Furthermore, the robot can simulate
placing two pebbles onto each other by placing the second pebble within constant distance
instead and save the offset from its intended position.

First, we introduce the notion of program machines as defined in [18, Section 11].

» Definition 7. A program machine consists of a finite set of registers, holding arbitrary
numbers from Ny, and a finite program of numbered instructions from the following instruction
set.

zero(r): Set register r := 0.

increment(r): Set register r:=1r + 1.

decrementOrJump(r,n): If r = 0, jump to instruction n. Otherwise set r :=r — 1.

halt: Stop the execution.

» Remark. Using the instructions from Definition 7, it is possible to simulate instructions to
copy the value of register r1 to o, and to jump if (or if not) r1 = ro [18].

» Lemma 8. A 3 register program machine can simulate a deterministic Turing machine
with T =% ={0,1}.

Proof. It is well known that a Turing machine can be simulated using two stacks containing
the tape’s bits behind and in front of the head, respectively. These stacks can be viewed as
the binary encoding of natural numbers. They will be stored in registers one and two.
Using the third register as a scratch pad, doubling and halving a register is simple. To
pop a bit from the stack, we divide by two and look at the remainder. To push a bit
onto the stack, we multiply by two and add the bit. For more details, we refer the reader
to [18, Section 11]. <
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Since we are interested in a robot moving on a finite space, we now define bounded program
machines.

» Definition 9. A bounded program machine is a program machine whose first register is
initialized to the input x. The other registers are initialized to 0. No register may exceed .

The following observation follows from the fact that a robot can easily simulate a bounded
program machine using pebbles, and vice versa.

» Observation 10. The computational power of a robot with n pebbles on a line of length
x > n is between that of an n and an n + 1 register bounded program machine with input x.

The next two lemmas show that deterministic linear bounded automata are essentially
equivalent in their computational capabilities to bounded program machines and that the
number of registers relates to the number of tape symbols needed. This enables us to
apply well-known results from complexity theory to our model. We use the definition of
deterministic linear bounded automata from [7] as Turing machines that never leave the cells
in which their input was placed. Inputs are restricted to {0, 1}*.

» Lemma 11. A deterministic linear bounded automaton with |I'| =n and ¥ = {0,1} with
input x € ¥* can be simulated using a 1+ 2[logn] register bounded program machine with
input ' .= (1x)s.

Proof. The construction from Lemma 8 ensures that no register will be increased beyond x’
when simulating the linear bounded automaton. The two stacks will now contain elements in
I'. We encode the symbols in binary and store their representation using 2[log n| registers. <

» Lemma 12. An n register bounded program machine with input (1z)s,xz € {0,1}* can be
simulated by a deterministic linear bounded automaton with 2" tape symbols and input x.

Proof. The tape stores the binary representation of the registers’ values, each symbol
representing one bit of n registers. Operations from Definition 7 are now trivial to perform. <«

Finally, it can be shown that there exists a family of languages requiring deterministic
linear bounded automata with an increasing amount of tape symbols. These will directly
translate to sets of accepted line lengths.

» Lemma 13. There exists a family of context sensitive languages Sy, C {0,1}* not accepted
by any deterministic linear bounded automaton with fewer than n symbols [7, Corollary 2].

Together with Observation 10, the previous lemmas imply the following theorem.

» Theorem 14. There exists a family L, C N such that a robot exists that can detect whether
a line has length ¢ € L,, using a finite number of pebbles but none using less than n pebbles.

To construct a family of functions for deciding side ratios of a parallelogram, we can set
1, hel,

fa(h) = .
2, hé¢L,

» Remark. The resulting parallelogram differs from the previous examples in that its length
is only 1 or 2. Note that the robot can perform the simulation of the bounded program

machine using the parallelograms height, and a length of 2 does not give it too much power.

Furthermore, we can modify the function family such that ¢ > h while still requiring n
pebbles to decide f,,(h).
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4  Future Work

In this paper we have identified some simple functions that can or cannot be decided with a
given set of pebbles. Beyond our study in Section 3.4, we are interested to find functions,
such as superexponentials, that require more than only two pebbles. Furthermore, it is an
interesting question whether, instead or in addition to using pebbles, multiple robots can
help in shape recognition problems. For example, it is still an open question whether two
robots, which are activated in an arbitrary order, are more powerful than a single robot with
a pebble. Apart from that, there are many different model assumptions under which our
problems can be investigated.

In this work we primarily focused on detecting parallelograms of certain side ratios. As
our ultimate goal is to investigate shape recognition in general, we are very interested to
examine whether our results and algorithms are applicable to other shapes as well. For
example, it may be possible to recognize more complex structures such as irregular hexagons
with certain side ratios, or to even come up with a more generic procedure to recognize larger
families of shapes. Furthermore, rasterized disks or ellipses might be interesting shapes to
consider. Other intriguing problems related to shape recognition include testing symmetry
or simply-connectedness of a tile structure.
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